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Abstract. Recently, seven produced hadron species have been used to construct
multiple hadron sets with given differences in the net electric charge (∆q) and
strangeness (∆S ) between the two sides. A nonzero directed flow difference
∆v1 has been proposed as a consequence of the electromagnetic field produced
in relativistic heavy ion collisions. Previously, we have shown with quark coa-
lescence that ∆v1 and the slope difference ∆v′1 depend linearly on both ∆q and
∆S with zero intercept. Here we emphasize that a two-dimensional function or
fit is necessary for extracting the ∆q- and ∆S -dependences of ∆v1. On the other
hand, a one-dimensional fit gives a different value for the slope parameter of the
∆q- or ∆S -dependence. Furthermore, a one-dimensional fit is incorrect because
its slope parameter depends on the arbitrary scaling factor of a hadron set and is
thus ill-defined. We use test data of ∆v1 to explicitly demonstrate these points.

1 Introduction

Direct flow analyses of produced hadrons that contain no u and d quarks were proposed [1, 2].
Seven hadron species, K−, φ, p̄, Λ̄, Ξ̄+,Ω− and Ω̄+, were used [2] to construct multiple hadron
sets with given differences in the net electric charge (∆q) and strangeness (∆S ) between the
two sides. A nonzero directed flow difference ∆v1 (or the difference of the directed flow
slopes at midrapidity ∆v′1) has been proposed as a consequence of the electromagnetic field
produced in relativistic heavy ion collisions [2, 3], especially if ∆v1 or ∆v′1 increases with ∆q.

In earlier studies [4, 5], we have examined the consequence of the coalescence sum rule
(CSR) or quark coalescence on ∆v1 and ∆v′1 of the hadron sets. We found [4] that quark
coalescence leads to ∆v′1 = c∗q∆q+ c∗S∆S , so in general ∆v′1 ! 0 for a hadron set with nonzero
∆q and/or ∆S . Specifically, the CSR gives the following relation:

∆v′1 =
(
v′1,d̄ − v

′
1,ū

)
∆q +

[(
v′1,s̄ − v′1,s

)
/2 −

(
v′1,d̄ − v

′
1,ū

)
/3
]
∆S . (1)

Therefore, the coefficients c∗q and c∗S reflect the v′1 difference of produced quarks with different
electric charges. We then proposed two methods, the 5-set method and the 3-set method [4],
to extract the coefficients for the ∆q- and ∆S -dependences of ∆v1 or ∆v′1. Equivalently, we
can write ∆v′1 = c∗q∆q + c∗B∆B that involves the difference in the net-baryon number (∆B)
between the two sides, where quark coalescence gives c∗B = −3c∗S [5].
∗e-mail: linz@ecu.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 316, 06007 (2025) https://doi.org/10.1051/epjconf/202531606007
SQM 2024



Table 1 shows our choice of five hadron sets (Set 1-5) and the STAR Collaboration’s
choice (Index 1-5) [3]. For example, ∆qud is the net electric charge in light quarks (ū
and d̄ here) of the left side minus that of the right side including the weighting factor of
each hadron (such as 1 or 1/2). For all the hadrons sets made of these seven produced
hadron species, there are only five independent hadron sets [2, 4]. For example, each
hadron index from the STAR Collaboration can be written as a linear combination of the
hadron sets of our choice: Index1=-Set1, Index2=Set1+Set4+Set5, Index3=Set1+2*Set5,
Index4=3*Set3+6*Set4, Index5=2*Set1-2*Set2+Set4+3*Set5.

Table 1. Set 1 to 5 are our choice of five independent hadron sets, while Index 1 to 5 are the STAR
choice. Differences of electric charge, strangeness and baryon number between the two sides are given.

Set/Index # ∆q ∆qud ∆S ∆B Left side Right side
Set 1 0 0 0 0 v1[K−(ūs)] + v1

[
Λ(ūd̄ s̄)

]
v1[p̄(ūūd̄)] + v1[φ(ss̄)]

Set 2 0 0 0 0 v1
[
Λ(ūd̄ s̄)

] 1
2 v1
[
Ξ
+

(ds̄s̄)
]
+ 1

2 v1[p̄(ūūd̄)]
Set 3 0 0 0 0 1

3 v1[Ω−(sss)] + 1
3 v1
[
Ω
+

(s̄s̄s̄)
]

v1[φ(ss̄)]
Set 4 1/3 0 1 -1/3 1

2 v1[φ(ss̄)] 1
3 v1[Ω−(sss)]

Set 5 2/3 1/3 1 -1/3 1
2 v1[φ(ss̄)] + 1

3 v1[p̄(ūūd̄)] v1[K−(ūs)]
Index 1 0 0 0 0 v1[p̄(ūūd̄)] + v1[φ(ss̄)] v1[K−(ūs)] + v1

[
Λ(ūd̄ s̄)

]

Index 2 1 1/3 2 -2/3 v1
[
Λ(ūd̄ s̄)

] 1
3 v1[Ω−(sss)] + 2

3 v1[p̄(ūūd̄)]
Index 3 4/3 2/3 2 -2/3 v1

[
Λ(ūd̄ s̄)

]
v1[K−(ūs)] + 1

3 v1[p̄(ūūd̄)]
Index 4 2 0 6 -2 v1

[
Ω
+

(s̄s̄s̄)
]

v1[Ω−(sss)]
Index 5 7/3 1 4 -4/3 v1

[
Ξ
+

(d̄ s̄s̄)
]

v1[K−(ūs)] + 1
3 v1
[
Ω−(sss)

]

2 Extracting the ∆q or ∆S dependences

We have shown earlier [4] that ∆v1 and ∆v′1 of the hadron sets from quark coalescence depend
linearly on both ∆q and ∆S , as shown in Eq.(1). Therefore, we suggest to analyze the data
with a two-dimensional (2-D) linear function: ∆v′1 = c∗0 + c∗q ∆q + c∗S ∆S . Since the quark
coalescence predicts c∗0 = 0, a non-zero intercept parameter c∗0 would mean the breaking of
the coalescence sum rule. To extract the coefficients for the dependences on ∆q and ∆S ,
one can use the above function to fit the five independent data points; we call this the 5-set
method [4]. In the following, we use this method to demonstrate the proper way of extracting
the ∆q and ∆S dependences. We use the STAR 10-40% Au+Au data at 27A GeV as an
example, where we only take the central values for demonstration (i.e., without considering
the experimental error bars). These data are given in the STAR27 row in Table 2, where
column 2 to 6 give the ∆v′1 values (multiplied by 104) of the hadron index 1 to 5, respectively.

Table 2. Values of ∆v′1 × 104 for Set 1-5 or Index 1-5 of different test data. Values of the coefficients
c∗0, c∗q and c∗S from 2-D fits and the coefficients K∆q and K∆S from 1-D fits are also given.

Test data #1 2 3 4 5 Fit c∗0 c∗q c∗S K∆q K∆S
STAR27 3 41 39 83 64 w/o c∗0 0 12.8 9.67 33.4 15.2

with c∗0 6.66 8.66 9.93 30.5 13.0
Our27 -3 8 -55/3 23 21 w/o c∗0 0 -6.00 25.0 - -

with c∗0 -4.44 -6.00 29.4 - -
Our27ideal 0 0 0 23 21 w/o c∗0 0 -6.00 25.0 - -

with c∗0 0.00 -6.00 25.0 - -
STAR27ideal 0 44 42 138 86 w/o c∗0 0 -6.00 25.0 47.2 22.4

with c∗0 0.00 -6.00 25.0 49.0 22.9
STAR27ideal2 0 44 42 69 86 w/o c∗0 0 -6.00 25.0 40.1 21.9

(Index4 scaled by 1/2) with c∗0 0.00 -6.00 25.0 34.5 21.9

2

EPJ Web of Conferences 316, 06007 (2025) https://doi.org/10.1051/epjconf/202531606007
SQM 2024



We first use the 2-D function to fit the five STAR27 data points. We obtain the fit function
as 6.66+8.66∆q+9.93∆S (or 12.8∆q+9.67∆S if we do not allow the intercept c∗0). Figure 1
shows the 2-D fit (w/o the intercept) of the STAR27 test data over the ∆q − ∆S plane. We
also follow the method used by the STAR Collaboration [3] and perform a one-dimensional
(1-D) fit of the STAR27 test data as shown in Fig. 1. When fit with the function K∆q∆q,
we obtain 33.4∆q (or 5.33 + 30.5∆q with intercept). When using the function K∆S∆S , we
obtain 15.2∆S (or 9.65 + 13.0∆S with intercept). Note that the K∆q and K∆S values without
intercept are rather close to those extracted by the STAR Collaboration (central value of 29
and 19, respectively) [3]. However, we see in Table 2 that the ∆q and ∆S slope coefficients
from the 1-D fits can be quite different from those from the 2-D fits. For example, the K∆q
values from the 1-D fit are much larger than the c∗q values from the 2-D fit.

Figure 1. Two-dimensional fit (w/o intercept) of the STAR27 test data in Table 2.

those from the 2-D fits. For example, the K∆q values from the 1-D fit are much larger than
the c∗q values from the 2-D fit.
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Figure 2. 1-D fit of the STAR27 test data as a linear function of ∆q (upper figure) or ∆S (lower figure)
without intercept.

3.2 Comparison of two choices of hadron sets

Using the relations in Eq.(2), we convert the STAR27 test data into the five hadron sets of
our choice; the ∆v′1 × 104 values for our Set 1-5 are given in the Our27 row in Table 2.
When we fit Our27 test data with the 2-D function, we obtain −4.44 − 6.00∆q + 29.4∆S (or
−6.00∆q+25.0∆S if we do not allow the intercept c∗0). These c∗q and c∗S values are drastically
different from those from fitting the STAR27 test data.

This difference may seem to be unexpected at first, since Eq.(2) seems to show that our
hadron sets and the STAR hadron sets are equivalent. However, they are only equivalent
when the v1 difference data follow the coalescence sum rule. Figure 3 shows the 2-D fit (w/o
intercept) of Our27 test data. We see that ∆v′1 ! 0 for Set 1, 2, and 3 (all identical sets at
∆q = ∆S = 0); this clearly violates the coalescence sum rule. The violation of CSR can also

Figure 1. 2-D fit (left) and 1-D fits (right), all w/o intercept, of the STAR27 test data in Table 2.

We then convert the STAR27 test data into the five hadron sets of our choice: the Our27
row in Table 2. Fitting of Our27 test data with the 2-D function gives −4.44−6.00∆q+29.4∆S
(or −6.00∆q+25.0∆S with no intercept). These c∗q and c∗S values are drastically different from
those obtained from fitting the STAR27 test data. This difference may seem to be unexpected
at first, since our hadron sets and the STAR hadron sets are related to each other linearly and
thus equivalent. However, they are only equivalent when the ∆v1 data follow the coalescence
sum rule. The left panel of Fig. 2 shows the 2-D fit (w/o intercept) of Our27 test data. We see
that ∆v′1 ! 0 for Set 1, 2, 3 (all at ∆q=∆S =0); this clearly violates the coalescence sum rule.

Figure 2. 2-D fit (w/o intercept) of Our27 test data (left). 2-D fits of Our27ideal test data (middle) and
the STAR27ideal test data (right) give the same 2-D plane over the ∆q − ∆S space.

To explicitly demonstrate this, we set the ∆v′1 values to zero for Set 1, 2, and 3 of Our27
test data to obtain the Our27ideal test data in Table 2. This test data thus satisfy the coa-
lescence sum rule and serve as an ideal CSR case. A 2-D fit of Our27ideal test data gives
−6.00∆q + 25.0∆S ; this result is obtained with or without an intercept, which is expected for
an ideal CSR case. We then convert Our27ideal test data into the five hadron indices chosen
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by STAR, labeled as STAR27ideal in Table 2. A 2-D fit of the STAR27ideal test data also
gives −6.00∆q+ 25.0∆S , as shown in Fig. 2. Therefore, the difference in the 2-D coefficients
from fitting the STAR27 and Our27 test data is due to the breaking of CSR in the test data.

When we perform 1-D fits of the STAR27ideal test data, as shown in Fig. 3, we obtain
K∆q = 47.2 without intercept or 49.0 with intercept. They are drastically different from the
∆q slope of −6.00 from the 2-D fits. Therefore, the coefficient for the ∆q or ∆S dependence
from 1-D fits can be quite different from that from 2-D fits even in the ideal CSR case and is
thus incorrect. Note that the 2-D fit plane of the ideal CSR test data perfectly goes through
each data point, as shown in Fig. 2. However, that is not the case for the 1-D fits (see Fig. 3).
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Figure 3. 1-D fits (w/o intercept) of the STAR27ideal test data that satisfy the coalescence sum rule.

In the ideal case where the ∆v1 data follow the CSR, the 2-D coefficients are unchanged
when a given hadron set is scaled by a constant, e.g., changing the STAR Index 4 to
v1[Ω

+
(s̄s̄s̄)]/2 (left side) and v1[Ω−(sss)]/2 (right side). After all, the overall normaliza-

tion of the hadron weighting factors for each hadron set is arbitrary. For demonstration, we
scale Index4 of the STAR27ideal test data by 1/2 to get the STAR27ideal2 test data; the new
Index4 now has ∆q = 1 and ∆S = 3 and STAR27ideal2 still represents the ideal CSR case.
As expected, 2-D fits of the unscaled (STAR27ideal) and scaled (STAR27ideal2) test data
give exactly the same coefficients. When we perform 1-D fits, however, the K∆q and K∆S
values from fitting the unscaled and scaled test data are different, as shown in Table 2. This
clearly shows that the coefficients from 1-D fits are ill-defined mathematically; therefore, 1-D
fits should not be used for the analysis of the v1 difference data.

3 Summary
On the direct flow difference of hadron sets consisting of produced hadrons, we show that
2-D fits give different ∆q (or ∆S ) slope values than 1-D fits, even for the ideal test data that
follow the CSR relations perfectly. We also demonstrate that different choices of the five
independent hadron sets are equivalent and give the same 2-D coefficient values when the v1
difference data follow the CSR. On the other hand, if the extracted coefficients depend on the
choice, it indicates the breaking of the CSR. Finally, we show that the coefficients from 1-D
fits depend on the arbitrary scaling of a hadron set and are therefore ill-defined.
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