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Abstract

Metal halide perovskite solar cells (PSCs) have emerged as a highly promising photovoltaic technology,
boasting an impressive power conversion efficiency exceeding 26.1% and demonstrating cost-effective
manufacturing. However, the long-term stability of these devices poses a significant challenge, hindering
their widespread manufacturing and commercialization. To tackle the degradation issue inherent in
perovskite solar cells, surface passivation techniques, particularly employing a thin layer of two-
dimensional (2D) perovskites to create a 2D/3D heterostructure. Beyond this, the exploration of metal
halide double perovskites adds a new dimension to the chemical and bandgap phase space of materials for
optoelectronic applications. In this study, we leverage a wide bandgap double perovskite interlayer to
enhance the stability of 3D metal halide perovskite. Specifically, the double perovskite nanoparticle
Cs,AgBiBrg, with its substantial band gap of 2.2 eV and exceptional air stability, is utilized. Through
optimization, a Cs,AgBiBrs-treated PSC achieves an open-circuit voltage of 1.12 V and an impressive
power conversion efficiency of 19.52%. Additionally, the Cs,AgBiBrg passivation layer proves effective in
bolstering the stability of PSCs under ambient conditions. This work demonstrates an additional strategy

and design motif to simultaneously boost the PCE of PSCs along with achieving improved stability.
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Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) have attracted tremendous interest due
to their superior optoelectronic properties, including strong light absorption, low exciton binding energy,
long carrier transport lengths, relatively easy fabrication process, and low cost. !> Recently, the power
conversion efficiency (PCE) for single-junction PSCs has climbed to 26.1%. %# Although it has remarkably
improved PCE, the inherent drawbacks of PSCs such as its poor moisture stability, and limited thermal
stability in operation, are stumbling blocks for its commercial utilization. % '° The widely used solution
fabrication process also often results in defects at grain boundaries and layer interfaces. Several groups
have reported that photovoltage loss is one of the major shortcomings that limit the performance, which is
related to the non-radiative recombination and charge transport at interfaces, particularly in ambient
conditions. '"I3 Surface engineering, including surface passivation and additive introduction, has been
devoted to suppressing the non-radiative recombination losses at interfaces. Inserting polymer layers, ' 13
organic molecules, '® 7 jonic liquids '® 1%, and two-dimensional (2D) materials 22> have demonstrated
improved stability.

Double perovskites have attracted lots of attention in recent years due to their desired ambient stability. 2
25 As for solar cell application, although lots of double perovskites, such as Cs,AgBiBr, exhibit high
inherent stability, nevertheless, their wide and indirect band gap coupled with low charge carrier transport
capability led to a low PCE of 2-6% for solar cells employing them. 252 The unique double perovskite
structure with two different transition metals at the B site in the single ABX; perovskite halide structure,
(where A is alkali-earth metal, B is the transition metal and X is the halides) has great ambient stability. °
30 As a result, double perovskite halides are attractive candidates to passivate the traditional three-
dimensional single perovskite halide. 3! Particularly, compared to the widely used organic-inorganic halides
2D perovskites, inorganic double perovskite can also offer improved stability and the promise of
amenability integration into the solar module manufacturing process. 3

In this work, we employ the Cs,AgBiBrs double perovskite as an interlayer to passivate the 3D perovskite,
which improves the device stability. We first synthesize the Cs,AgBiBrs nanopowders, which are stable in
air and even in water, and then utilize a solution process to coat it on top of a single perovskite
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(CsposFAggsMA( 1sPbl,ssBross)  surface. For the champion device with the structure
Glass/ITO/SnO,/Perovskite/Cs,AgBiBry/Spiro-OMeTAD/Au, we achieved a of 1.12 V, with a of
23.48 mA/cm?, an FF of 74.36%, and a PCE of 19.52%. The protective effect of the double perovskite layer
can contribute to the improved stability of the perovskite solar cell with Cs,AgBiBr; for the device without

any encapsulation.

Experimental Procedure

Materials

Pbl, (Sigma-Aldrich, 99.999%), PbBr, (TCI America), formamidinium iodide (FAI, 99.99%, GreatCell
Solar), methylammonium bromide (MABr, 99.99%, GreatCell Solar), CsI (99.9%, BeanTown Chemical),
CsBr (99.9%, BeanTown Chemical), AgBr (99.995%, BeanTown Chemical), BiBr; (99%, BeanTown
Chemical), Spiro-OMeTAD ( 99.87%, luminescence technology corp), SnCl,.2H,0 (97%, Acros Organics),
thiourea (99%, Alfa Aesar), dimethyl sulfoxide (DMSO, 99.8%, Sigma-Aldrich), dimethyl formamide
(DMF, 9.8%, Sigma-Aldrich), diethyl ether (anhydrous, 99.7%, Sigma-Aldrich), HBr (47.0-49.0%,
BeanTown Chemical), Li bis(trifluoromethanesulfonyl)imide (Li-TFSI, 99.95%, Sigma-Aldrich), 4-tert-
butylpyridine (TBP, 96%, Aladdin), chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich) were used as

received without any further purification.

Synthesis of Cs,AgBiBrspowder
Solid CsBr (1.278 g), AgBr (1.347 g), and BiBr; (0.564 g) were dissolved in 30 mL HBr (47.0-49.0% in
water) and reacted at 110 °C with stirring for 2h. The solution was cooled to room temperature overnight.

Orange Cs,AgBiBrg powder was obtained by centrifugation and evaporation.

Device Fabrication

The Csg 04 FAg31MA.15Pbl, 55Brg 45 perovskite precursor solution was prepared with corresponding molar
ratios of Pbl, (1.15 M), PbBr;, (0.2 M), FAI (1.05 M), MABr (0.2 M), and Csl (0.05M) dissolved in a mixed
solvent of DMF and DMSO with a volume ratio of 4:1. The prepared perovskite precursor was then stirred
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at 65 °C. The hole transport layer (HTL) precursor was prepared by dissolving 73 mg of Spiro-OMeTAD
in 1 ml of chlorobenzene mixed with 17.5 IID and 33.6 [T of bis(trifluoromethylsulfonyl)imide lithium salt
and 4-tert-butylpyridine, respectively. Cs,AgBiBrs powder was dispersed in isopropanol with ultrasonic

treatment for 0-5Smg/ml.

ITO substrates were cleaned by sonication with detergent solution, deionized water (DIW), acetone, and
isopropanol, followed by a UV-ozone treatment for 30 min. The SnO, QDs were synthesized at room
temperature. A 0.15 M solution of SnCl,.2H,0 in DIW with the presence of thiourea (CH4N,S) as a reaction
accelerator was prepared and filtered with a 0.45 I/1 PTFE filter. 3* The SnO, layer was then deposited by
spin-coating followed by 1h annealing at 180 °C in ambient. The as-prepared substrates were treated with
UV-ozone for 10 min and transferred into a nitrogen-filled glovebox. The single triple cation perovskite
layer with 1.4M CsgosFAgs1MAg 14Pbl, 55Brg 45 (CSFAMAPDIBr) was deposited at 1000 rpm for 10 s and
then 6000 rpm for 30 s. Diethyl ether (DEE) antisolvent was dropped on the spinning ITOs during the high-
speed rotation 5 s before the end of the spin coating. The deposited films were then annealed at 100 °C for
55 min. To fabricate the Cs,AgBiBrg layer, various Cs,AgBiBrgsolutions (i.e., 0 to Smg/ml) were deposited
onto the perovskite film by spin-coating at 3000 rpm for 30 s and then heated at 100 °C for 5 min. As an
HTL layer, the Spiro-OMeTAD precursor solution was spin-coated at 3000 rpm for 30 s on top of the
double perovskite layer. Finally, a 100 nm thick gold layer was evaporated on the HTL as an electrode

layer.

Materials and Device Characterization

The surface morphology of synthesized Cs,AgBiBrs powder was characterized by transmission electron
microscopy (TEM, FEI Tecnai). X-ray powder diffraction (XRD) using 45 kV, 40 mA Cu K radiation was
used to measure the crystal structures of Cs,AgBiBrs powder and perovskite films. The surface morphology
of the perovskite film and the cross-sectional images of the PSCs were characterized by scanning electron
microscopy (SEM, Thermo Scientific Apreo). Surface composition was measured by X-ray photoelectron

spectroscopy (XPS) using an Al-KO source and hemispherical analyzer (SPECS). The electrical
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characteristics were obtained using a solar simulator (Newport, Oriel Class AAA 94063A, 1000-Watt
Xenon light source) with a Keithley 2420 source meter under simulated AM 1.5G (100 mW/cm?) solar
irradiation. The light intensity was calibrated using a silicon reference cell (Newport, 91150V, certified by
National Renewable Energy Lab). The masked active area is 0.07 cm?. The external quantum efficiency
(EQE) was obtained by an EnliTech QE measurement system.

Results and Discussion
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Figure 1. (a) Cs,AgBiBrg powder and solution. (b) HRTEM image of Cs,AgBiBrs nanoparticles. (¢) XRD pattern (d)
UV-vis image of Cs,AgBiBrg nanoparticles (Insert: Tauc plot), and (e) the Cs,AgBiBrg powder and film exposed to

ambient with moisture RH~60% for various days.

Double perovskite Cs,AgBiBrs powder was synthesized according to the method reported before. 27 Briefly,
solid CsBr, AgBr, and BiBr; were dissolved in HBr (48% in water) and reacted at 110 °C with stirring for
2h. The synthesized Cs,AgBiBr¢ powder shows orange color, as shown in Fig. 1a. The Cs,AgBiBrs powder
was then dissolved in isopropanol (IPA) at a concentration of 0 to 5 mg/ml to form a transparent light-

yellow solution (Fig.1a) followed by ultrasonication and centrifuge process. As shown in Fig.1b, the
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synthesized Cs,AgBiBrg nanoparticles have a typical particle size of about 10 nm on average, which could

provide a uniform coverage on the surface of the perovskite absorber layer. The Cs,AgBiBr4 solution was

deposited on ITO/SnO, and characterized by X-ray diffraction (XRD) for the crystalline structure (Fig. 1c).

The indexed diffraction planes of Cs,AgBiBrs nanoparticles show the expected well-defined polycrystalline

face-centered cubic structure phase (Fm3m). 2534 A strong absorption peak was observed using Ultraviolet-

visible transmittance spectra (UV-vis) as shown in Fig. 1d for Cs,AgBiBrs, which is attributed to the

indirect bandgap ~ 2.2eV as determined by the Tauc plots equation. The Cs,AgBiBrgis stable in the ambient

with RH~60% in both powder and film states as shown in Fig. le.
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Figure.2 XPS scans of (a) Cs3d, (b) Ag3d, (c) Bi4f, and (d) Br3p core level of Cs,AgBiBr, thin film.

To determine the chemical composition of the synthesized Cs,AgBiBrg powders, X-ray photoelectron spectroscopy

(XPS) has been conducted as shown in Fig. 2. The XPS spectra of Cs3d, Ag3d, Bi4f, and Br3p core levels were fitted.
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The calculated atomic ratios of the Cs,AgBiBrs powders can be determined to be a 2:1:1:6 ratio of Cs:Ag:Bi:Br. This

stoichiometric ratio of Br has been demonstrated important to stabilize the Cs,AgBiBr electronic structure.
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Figure 3. (a) XRD patterns and (b) transmittance curves of control and Cs,AgBiBrg-treated perovskite films. Surface
SEM images of perovskite films deposited on ITO/SnO; (c¢) without and (d) with Cs,AgBiBr treatment. Cross-section

SEM images of (e) control and (f) Cs,AgBiBrg-treated PSCs.

The double perovskite solutions with various concentrations from 0 to 5 mg/ml were introduced to the triple
cation single perovskite by spin coating. The XRD spectra of the pristine (control) single perovskite and
the Cs,AgBiBrg-treated single perovskite film are determined to be almost identical (Fig. 3a), suggesting
that the diffraction peak of double perovskite nanocrystals is weak to be detected. Additionally, the
characteristic XRD peak of Pbl, (2theta ~ 12.7 deg.) was suppressed in Cs,AgBiBrs-treated film. Fig. S1
shows the intensity of the perovskite peak as a function of time, in which the Cs,AgBiBrs-treated film
displayed a slower degradation rate, providing further evidence for the passivation effect. The light
transmittance spectra for both the control and Cs, AgBiBrs-treated single perovskite film have been recorded

as shown in Fig. 3b, where the deposited Cs,AgBiBrg layer did not affect the absorption of single perovskite
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due to the limited absorption of Cs,AgBiBrs at long wavelengths as shown in Fig. 1d. The top-view
scanning electron microscopy (SEM) images for perovskite films deposited on the SnO,-coated indium tin

oxide (ITO) substrate without and with Cs,AgBiBr treatment are shown in Fig. 3¢ and Fig. 3d, respectively.
It showed that the double perovskite passivation layer suppressed the decomposition of Pbl,. Through the
cross-sectional SEM images of Glass/ITO/SnO,/perovskite/Spiro-OMeTAD/Au PSCs without and with

Cs,AgBiBrg treatment (Fig. 3e and Fig. 3f, respectively) it is demonstrated that the coated thin double

perovskite Cs,AgBiBrg layer did not impact the single perovskite layer thickness remarkably.
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Figure 4. (a) Schematic diagram of the PSC. (b) ME curves and (¢) EQE with integrated current spectra of control

and Cs,AgBiBrs-treated PSCs. The fitting curves of the Jgc (d) and

(e) under different illuminated light intensities

for control and Cs,AgBiBrg-treated devices. (f) Dark J-V curves of control and Cs,AgBiBrs-treated PSCs.

The schematic diagram of the devices with n-i-p architecture Glass/ITO/SnO,/Perovskite/Spiro-

OMeTAD/Au is shown in Fig. 4a. The band gap alignment can be found in Fig. S2. The current density-

voltage (J-V) curves of champion control and Cs,AgBiBry treated PSCs were presented in Fig. 4b. The

Cs,AgBiBrg treated PSC exhibited a comparable
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was attributed to the passivation effect of the CS,AgBiBrg layer, leading to less nonradiative
recombination between the perovskite and HTL. Fig. S3 presents J-V evidence indicating that the optimal
concentration of Cs,AgBiBrg is 1 mg/ml. EQE spectra indicate that the double perovskite layer did not
impact the photon conversion to electron, and the integrated photocurrent densities in EQE are ~ 20 mA/cm?
for both devices, which is slightly lower than those derived from J-V curves because the cells for EQE
measurement-do not have pre-conditioning, e.g., light soaking.
The relationship of light intensity with and was studied to investigate the effect of Cs,AgBiBry
treatment on charge carrier transport and recombination in PSCs. The  and light intensity confirms a

power-law behavior: 3

In which Jgc is the short-circuit current density under different light intensities, is the light intensity and

is the ideality factor of . As plotted in Fig. 4d, the Ovalue for the PSC with and without the Cs,AgBiBr;
interlayer were 0.96 and 0.91, respectively. The increased Ovalue of the Cs,AgBiBrs-treated PSC indicates
a more efficient charge extraction capability. The ideality factor n of values under different light

intensities can be obtained as below: 3°
= 4+—

Where is the open-circuit voltage under different light intensities,  is the open-circuit voltage under
standard light intensity, is the ideality factor, is the Boltzmann constant, is the temperature, is the
electron charge and is the light intensity. As shown in Fig. 4e, we found the Cs,AgBiBrg-treated PSC
showed a smaller slope of 1.23 / compared with the control device with a slope of 1.53 !/,
suggesting that the introduction of the double perovskite interlayer suppressed the charge recombination as
well as the intrinsic defect density. Fig. 4f shows the dark J—V curves of control and Cs,AgBiBre-treated
devices. The current density of PSC with Cs,AgBiBrg interlayer was lower than that of the control device

in the dark, demonstrating a lower leakage due to the efficient collection of photo-generated charge carriers
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through the charge transfer layer. This indicates that the Cs,AgBiBr¢ double perovskite layer suppressed

the recombination of photo-generated charge carriers.
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Figure 5. Statistical distribution of (a) open-circuit voltage (Voc), (b) short-circuit current density (Jsc), (¢) fill factor
(FF), (d) power conversion efficiency (PCE), (e) series resistance (Rs) and (f) shunt resistance (Rsh) of devices without

and with different concentrations of Cs,AgBiBrg.

The device performance statistical distribution is shown in Fig. 5. The control PSC showed a decent
champion PCE of 18.39%, with a of 1.09 V,a  of 23.40 mA/cm?, and an FF of 73.06%. Following
CS,AgBiBrg treatment, the champion device achieved a significantly enhanced PCE of 19.52%,
accompanied with a of 1.12V,a  0f23.48 mA/cm? and an FF of 74.36%. The observed boostin
FF and PCE provided evidence of the effective passivation impact attributed to the Cs,AgBiBr; layer at the
perovskite/HTL interface. In Fig S4, | FF and PCE increased with rising concentration from 0 mg/ml to
Img/ml, while further elevating the concentration beyond 1 mg/ml resulted in a decline in performance.
The  displayed a contrasting trend, however, it remains superior to the control PSC. The reduction in Rs
and the enhancement in Rsh are outcomes of optimized contacts and minimized defects within the solar

cell.
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Figure 6. (a) Mott—Schottky plots and (b) Nyquist plots of the control and Cs,AgBiBrs-treated PSCs. Steady state PL
(c) and TRPL spectra (d) of control with the structures of ITO/SnO,/perovskite and treated PSCs with the structures

of ITO/SnO2/perovskite/Cs,AgBiBry,

Figure 6a indicated a CMUV plot, also known as Mott—Schottky plot. The built-in voltage () of PSCs,
related to the depletion region length, can be extrapolated from the plots.3® As illustrated in Fig. 6a, the
obtained  of the Cs,AgBiBrs-treated PSC is higher than that of the control PSC, which can be attributed
to the lower charge accumulation at the perovskite/Cs,AgBiBrg interface. EIS was conducted to analyze the
recombination resistance in the PSCs. The EIS spectra of the cells and the equivalent circuit model are
displayed in Fig. 6b, in which  is series resistance, is recombination resistance, and CPE is
capacitance. The Cs,AgBiBrs-treated PSC demonstrated a significantly higher value of 1.6x10° P[Jin
contrast to the control device with a value of 8.3x10* PUThe results indicated that the double perovskite

interlayer served as a passivation layer, inhibiting undesired charge carrier recombination and enhancing
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the electron extraction. 37 The steady-state photoluminescence (PL) and time-resolved photoluminescence
(TRPL) spectra are shown in Fig. 6¢, d. The perovskite film was deposited on the ITO/SnO, substrate. The
PL intensity of Cs,AgBiBr; treated films in Fig.6¢c was noticeably reduced compared with pristine films,
suggesting an effective electron extraction at perovskite/ETL interface. Additionally, the PL peak presented
a blue-shift from 766 nm to 763 nm, demonstrating a lower electron trap-state density for the Cs,AgBiBr,
treated perovskite. 3 The TRPL spectrum reveals the fast decay component 1, which is ascribed to trap-
assisted nonradiative recombination, and a slow decay component ; associating with radiative
recombination of free carriers. 3° The Cs,AgBiBrytreated sample exhibits a lifetimes QLof R(J  which is
shorter than the lifetime 76RO of the pristine sample. This shorter lifetime indicates the enhanced
efficiency in electron extraction at the ETL/perovskite interface, aligning with the observations in the

steady-state PL spectra.
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Figure 7. (a) Stability of unencapsulated control and Cs,AgBiBrg-treated PSCs for 7 days in air with RH 25%. (b)
Photographic images of the color changes of the perovskite films in ambient over time. (c) The contact angle of the

control and Cs,AgBiBrg-treated films.
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The device stability was analyzed through maximum power point (MPP) tracking, as depicted in Figure 7a.
All the devices were unencapsulated and tested in ambient with humidity ~25% RH for 7 days. The
Cs,AgBiBrg treated PSC retained 89.4% of the initial PCE after 10000s, whereas only 71.9% of the initial
PCE could be retained for the control PSC. This behavior indicates that the double perovskite passivate
layer may limit the halide ions migration into the hole transport layer. Fig.7b provides additional evidence.
The color change in the control film became apparent after 2 days, whereas the Cs,AgBiBrg-treated film
started to degrade after 4 days, as illustrated in the photographic images in ambient conditions over time.
The improved stability with Cs,AgBiBrg treatment is ascribed to two factors: 1) effective passivation of
defects, such as the passivation of grain boundary and 2) the Cs,AgBiBry capping layer blocked the moisture
into the perovskite layer, which is evidenced by the enhanced surface hydrophobicity, as confirmed by

water contact angles (Fig. 7c).

Conclusion

We have demonstrated the effectiveness of incorporating a double perovskite Cs,AgBiBry capping layer
onto single perovskite solar cells (PSCs), resulting in simultaneous enhancements in device efficiency and
stability. The Cs,AgBiBrg interlayer plays a multifaceted role by mitigating nonradiative recombination,
passivating surface defects within the single perovskite layer, and facilitating exciton transportation.
Through optimization, the Cs,AgBiBrs-treated PSCs exhibited a noticeable increase in Voc alongside a
superior power conversion efficiency (PCE) of 19.52%, while also demonstrating enhanced stability under
ambient conditions. Our findings highlight the efficacy of utilizing a double perovskite passivation layer as
a viable strategy for augmenting the performance of low-cost, easily fabricable, high-efficiency perovskite
solar cells. This approach holds significant promise in expediting the commercialization of PSCs, thus

contributing to the advancement of renewable energy technologies.
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