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Abstract. In this paper, we propose an efficient, high-order accurate and

asymptotic-preserving (AP) semi-Lagrangian (SL) method for the BGK model
with constant or spatially dependent Knudsen number. The spatial discretiza-

tion was performed by a mass conservative nodal discontinuous Galerkin (NDG)
method, while the temporal discretization of the stiff relaxation term was real-

ized by stiffly accurate diagonally implicit Runge-Kutta (DIRK) methods along

the characteristics. Extra order conditions are enforced in [10] for the asymp-
totic accuracy (AA) property of DIRK methods when they are coupled with

a semi-Lagrangian algorithm in solving the BGK model. A local maximum

principle-preserving (LMPP) limiter was added to control numerical oscilla-
tions in the transport step. Thanks to the SL and implicit nature of time

discretization, the time stepping constraint was relaxed and much larger than

that from an Eulerian framework with explicit treatment of the source term.
Extensive numerical tests are presented to verify the high-order AA, efficiency,

and shock-capturing properties of the proposed schemes.

1. Introduction. In this paper, we propose a semi-Lagrangian (SL) nodal discon-
tinuous Galerkin (DG) solver for the BGK equation. The BGK model was intro-
duced by Bhatnagar, Gross, and Krook [1] as a relaxation model for the fundamental
Boltzmann equation [5], which describes the kinetic dynamic of rarefied gases with
a probability distribution function. The challenges of designing efficient numerical
schemes for the Boltzmann equation mainly come from its high dimensionality and
complicated nonlinear collision operator. The BGK model gains interests since it
has much lower computational cost, due to the relatively simple structure of the
relaxation operator in replacement of the collision operator, while simultaneously
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preserving several important physical properties, such as macroscopic quantities
and dissipation of entropy.

In the kinetic theory, the rarefaction degree of a gas is often measured using
the dimensionless Knudsen number defined as ϵ = λ/L with mean free path λ and
macroscopic characteristic length L. Accordingly, ϵ can be any positive number
and possibly spatially dependent. More specifically, when the collision frequency
between particles is dominant, λ gets small and the BGK model is in the limiting
fluid regime with ϵ ≪ 1. Conversely, we say that the BGK model is in the kinetic
regime with ϵ = O(1) for rarefied gases. Similar to the Boltzmann equation, when
the Knudsen number ϵ approaches 0, the kinetic model can be adequately described
by the compressible Euler equations about observable macroscopic quantities. Given
the multi-scale nature of the BGK model, it is of great interest to design asymptotic-
preserving (AP) schemes so that we have consistent and high-order solvers for the
limiting macroscopic system without the need to resolve the small O(ϵ) scale [17].

Owing to its attractive features, there have been many research works studying
the BGK model, both theoretically [21] and numerically [22, 25, 13, 2, 16]. One
popular numerical method [22, 16] was designed with implicit-explicit (IMEX) time
discretization methods in the Eulerian framework. In these methods, the non-stiff
convection part is treated explicitly and the stiff relaxation term is handled im-
plicitly. In this way, the time step size can be chosen independently of ϵ but still
suffers from the Courant-Friedrichs-Lewy (CFL)-type restriction for the transport
part. In order to further relax the stringent time step constraint, SL schemes has
been proposed [25, 13, 2]. The SL method is often designed via tracing informa-
tion along the characteristics, thus avoiding the CFL-type time step limitation and
gaining extra computational efficiency. It has become popular in different appli-
cation domains such as climate modeling [18, 27] and plasma simulations [26]. To
achieve high-order accuracy in space, the SL method can be coupled with a variety
of spatial discretizations, such as the finite difference (FD) method with weighted
and essentially non-oscillatory (WENO) reconstruction [23, 2, 25], the spectral ele-
ment method [11], and the DG method [14, 3, 24]. Compared with the DG method,
the FD method works with point values and offers better flexibility in performing
integration in the velocity space; yet it is much harder to achieve mass conserva-
tion for FD methods, leading to significant loss or gain of mass for under-resolved
simulations [25, 13]. A mass conservative SL FD method was designed in [2] by im-
posing an additional correction step but subject to stability restrictions on the CFL
number. On the other hand, the DG scheme [6, 7] is well known for its h-p adap-
tivity, flexibility in resolving problems with complex structures, and high parallel
efficiency. In order to take advantage of the flexibility in working with point values,
we adopt the nodal DG (NDG) discretization where the solution is represented by
grid points at Gaussian nodes on each DG element [15].

The focus of our paper is to develop a new class of mass conservative, asymp-
totically accurate SL NDG method coupled with diagonally implicit Runge-Kutta
(DIRK) schemes along the characteristics for the BGK model. We first propose a
mass conservative SL NDG method based on the moment-based SLDG scheme for
linear transport equations [3]. A new local maximum principle- preserving (LMPP)
limiter is added to the SL NDG solver to control numerical oscillations without af-
fecting high-order spatial accuracy. High-order temporal accuracy is achieved with
stiffly accurate DIRK methods along the dynamic characteristic elements. The
employment of stiffly accurate DIRK methods guarantees the AP property of the
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scheme in the limiting fluid regime. However, the asymptotic accuracy (AA) prop-
erty does not hold in general. In fact, the numerical results in [25] indicate that a
classical 3-stage third-order DIRK (DIRK3) method [4] only achieves second-order
accuracy in the limiting fluid regime. In [10], we perform theoretical analysis on the
AA of the SL DIRK scheme for solving the BGK model and derive additional-order
conditions to be satisfied; we then construct several DIRK methods and analyze
their stability properties. In this paper, we use a 4-stage DIRK3 method proposed
in [10] for consistent third-order accuracy in both kinetic and fluid regimes. Due to
the implicit trait of DIRK methods together with the SL nature, the time step size
can be chosen independently of ϵ and is found to be larger than that in an Eulerian
framework.

The rest of the paper is organized as follows. In Section 2, we recall the BGK
model with several important physical properties. Section 3 is devoted to the pro-
posed SL NDG-DIRK scheme. In this section, we first describe the SL NDG method
together with the LMPP limiter for the pure linear transport part and then discuss
the DIRK methods for the BGK relaxation operator. In Section 4, we demon-
strate the high-order accuracy, mass conservation, and AP and AA properties of
the schemes through several numerical experiments. Conclusions are given in Sec-
tion 5.

2. The BGK model. The considered BGK model reads as

∂tf + v · ∇xf =
1

ϵ
(MU − f) (2.1)

where f = f(x,v, t) is the probability distribution function of particles that depends
on time t > 0, position x ∈ Ωx ⊂ Rd, and velocity v ∈ Rd for d ≥ 1. MU is the
local Maxwellian defined by

MU =MU (x,v, t) =
ρ(x, t)

(2πT (x, t))d/2
exp

(
−|v − u(x, t)|2

2T (x, t)

)
. (2.2)

ρ, u, T represent the macroscopic density, the mean velocity, and the temperature,
respectively. The macroscopic field U has the components of the density, momen-
tum, and energy, which are obtained by taking the first few moments of f :

U := (ρ, ρu,E)
⊤
= ⟨fϕ⟩ (2.3)

with the vector of collision invariants

ϕ = ϕ(v) :=

(
1,v,

1

2
|v|2

)⊤

, ⟨g⟩ :=
ˆ
Rd

g(v)dv.

The total energy E is related to T through E = 1
2ρ|u|

2 + d
2ρT . It is easy to check

that ⟨MUϕ⟩ = U . Hence,

⟨(MU − f)ϕ⟩ = 0, (2.4)

namely, the BGK operator satisfies the conservation of mass, momentum, and en-
ergy. Moreover, it enjoys the entropy dissipation: ⟨(MU − f) log f⟩ ≤ 0.

3. The SL NDG-DIRK scheme for the BGK model. We describe our algo-
rithm on (2.1) with 1D in physical space and 1D in velocity space only, while the
extension to multi-dimensional problems is computationally intensive, yet in prin-
ciple straightforward. We first introduce the SL NDG method with LMPP limiter
for the transport part; then, we introduce the time discretization along the material
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derivative using DIRK methods for the BGK relaxation operator, which is in the
same spirit as that in [13].

3.1. The SL NDG method for the transport term. We treat the linear trans-
port term in (2.1) with the SLDG method [3] in a nodal form. We consider a 1D spa-
tial domain [xa, xb] discretized into Nx elements: xa = x 1

2
< x 3

2
< · · · < xNx+

1
2
=

xb, with Ip = [xp− 1
2
, xp+ 1

2
] denoting an element of length △xp = xp+ 1

2
− xp− 1

2
for

p = 1, 2, · · ·Nx. We let numerical solutions and test functions belong to the finite
dimensional approximation space

V k
h = {vh : vh|Ip ∈ P k(Ip), p = 1, 2, · · ·Nx} (3.1)

where P k(Ip) denotes the set of polynomials of degree at most k over Ip. Let
∆t = tn+1 − tn represent the time discretization step size and fn(x, v) ∈ V k

h be the
numerical solution at time tn. Solutions of the DG method are often represented
by modal values, i.e, coefficients for monomial or orthogonal polynomial basis; yet
another representation of DG solutions is through its nodal values at Gaussian
quadrature points with Lagrangian polynomial basis. The advantages of working
with nodal values are the convenience to perform the integration (2.3) in phase
space for a fixed x and the more convenient treatment of the spatially dependent
ϵ(x).

We consider the model problem

ft + vfx = 0, (3.2)

and assume that its NDG solutions at tn are

fnp,ip(v) = fn(xp,ip , v), p = 1, · · ·Nx, ip = 1, · · · k + 1

as function values at Gaussian quadrature points {xp,ip} on each interval Ip with
velocity v. The subscription p, ip will be used in the same manner later. A straight-
forward way of updating the NDG solution is to directly evaluate the DG solution
fn(x, v) ∈ V k

h at upstream characteristic foot xp,ip − v∆t

fn+1
p,ip

(v) = fn(xp,ip − v∆t, v). (3.3)

Yet, such a method does not preserve the total mass. Instead, we update the NDG
solution from {fnp,ip(v)} to {fn+1

p,ip
(v)} (∀p, ip) through the modal SLDG method

[24, 3], summarized as Algorithm 1:

Step 1. Nodal to modal at tn. With the given k+ 1 NDG values {fnp,ip(v)}, the
modal DG solution in the polynomial space can be represented as

fn(x, v) =
k+1∑
ip=1

fnp,ip(v)Lp,ip(x),

by collecting the coefficients for the Lagrangian basis function Lp,ip(x) at
the corresponding k + 1 Gaussian nodes on Ip.

Step 2. Update modal information at tn+1. We apply the modal SLDGmethod
proposed in [3] to update the DG solution fn+1(x, v). The main processes
are briefly summarized as below and we refer to [3] for more details.
(1) Consider the adjoint problem for the time-dependent test function

ψ(x, t) satisfying{
ψt + vψx = 0, t ∈ [tn, tn+1];

ψ(x, tn+1) = Ψ(x) ∈ V k
h .

(3.4)
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Then, we have the weak formulationˆ
Ip

fn+1(x, v)Ψ(x) dx =

ˆ
In+1,n
p

fn(x, v)Ψn+1,n(x) dx (3.5)

where In+1,n
p = [xn+1,n

p− 1
2

, xn+1,n

p+ 1
2

] is the upstream interval located by

tracking along characteristic curves emanating from xp± 1
2
at tn+1 back-

ward in time to tn; see Figure 1. xn+1,n

p± 1
2

can be easily computed by

xp± 1
2
− v∆t. Ψn+1,n(x) is the solution to the adjoint problem (3.4) on

the upstream interval In+1,n
p with Ψn+1,n(x) = ψ(x, tn) = Ψ(x+v∆t).

(2) Integrating
´
In+1,n
p

fn(x, v)Ψn+1,n(x) dx by summation over subinter-

vals. From Figure 1, we see there are two intersections In+1,n
p,1 =

[xn+1,n

p− 1
2

, xp− 1
2
] and In+1,n

p,2 = [xp− 1
2
, xn+1,n

p+ 1
2

] between In+1,n
p and the

background Eulerian elements Ip−1 and Ip. Equivalently, we have

In+1,n
p = In+1,n

p,1 ∪In+1,n
p,2 . The integration over the upstream cell In+1,n

p

can thus be approximated by

ˆ
In+1,n
p

fn(x, v)Ψn+1,n(x) dx ≈
2∑

l=1

ˆ
In+1,n
p,l

fn(x, v)Ψn+1,n(x) dx. (3.6)

in subinterval-by-subinterval style, since fn(x, v) is discontinuous across

cell boundaries. On each subinterval In+1,n
p,l (l = 1, 2), fn(x, v)Ψn+1,n

are continuous and can be computed exactly. Then, the polynomial
fn+1(x, v) is updated via equation (3.5) by running through a set of
k + 1 basis functions for Ψ. For the ensuring discussion of the LMPP
limiter, we assume there exists a polynomial pk(x) of degree k, approx-
imating fn+1(x, v) over Ip.

Step 3. LMPP limiter. In order to control spurious oscillations near discontinu-
ities, we apply a LMPP limiter based on a linear scaling similar to the one
in [29] to get a modified p̃k(x) to pk(x):

p̃k(x) = θ(pk(x)− p̄) + p̄, θ = min
{∣∣∣Mn+1,n

p − p̄

M ′ − p̄

∣∣∣, ∣∣∣mn+1,n
p − p̄

m′ − p̄

∣∣∣, 1} (3.7)

where

M ′ = max
x∈Ip

pk(x), m′ = min
x∈Ip

pk(x)

and p̄ is the cell average of the numerical solution pk(x) over Ip. The local
upper/lower bounds Mn+1,n

p /mn+1,n
p are set to be within global maximum

and minimum as in [29]. More specifically, we choose Mn+1,n
p /mn+1,n

p

as the maximum and minimum of piecewise polynomials over all back-
ground Eulerian cells that cover In+1,n

p . See Figure 1. These choices
of local upper/lower bounds not only preserve the MPP property glob-
all, but also help control numerical oscillations. The cell average p̄ is
the zeroth moment of piecewise polynomials on upstream cells, thus we
have p̄ ∈ [mn+1,n

p ,Mn+1,n
p ]. It can be easily checked that the properties

(a) − (c) of p̃k(x) are satisfied for (3.2) with our choice of the local maxi-
mum/minimum values.
(a) (k + 1)-th Accuracy: Proof can be done following the similar spirit to

Lemma 2.4 in [29]. We numerically verify it in Example 4.1.
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(b) Conservation:
´
Ip
p̃k(x) dx =

´
Ip
pk(x) dx.

(c) Local maximum principle-preserving: p̃k(x) ∈ [mn+1,n
p ,Mn+1,n

p ].

Step 4. Modal to nodal at tn+1. From the DG polynomials, we can evaluate the
updated NDG solution {fn+1

p,ip
(v)} with fn+1

p,ip
(v) = p̃k(xp,ip).

From now on, we denote the above Algorithm 1, i.e., the SL NDG update with
LMPP limiter using local upper/lower bounds, for the model problem (3.2) by

fn+1
p,ip

(v) = SL NDG(v,∆t){fn·,·(v)} (3.8)

where {fn·,·(v)} = {fnq,iq (v)} (q = 1, · · ·Nx, iq = 1, · · · k + 1) denote all the NDG

values at previous times and the parameters (v,∆t) represent the time step size ∆t
and velocity v.

tn

tn+1

x
p− 1

2
x
p+1

2Ip

xn+1,n

p− 1
2

xn+1,n

p+1
2In+1,n

p

In+1,n
p,1 In+1,n

p,2

Ip−1 ∪ Ip

Figure 1. Schematic illustration of the SL NDG formulation with
LMPP limiter in 1D for v > 0. Upstream interval In+1,n

p =

[xn+1,n

p− 1
2

, xn+1,n

p+ 1
2

] = In+1,n
p,1 ∪ In+1,n

p,2 . The local maximum/minimum

values Mn+1,n
p /mn+1,n

p in LMPP limiter (3.7) are computed on
Ip−1 ∪ Ip.

Proposition 3.1. (Mass conservation of SL NDG with LMPP for the transport
term) The proposed SL NDG method with LMPP limiter as described in Algorithm
1 for the model problem (3.2) has the following mass conservation property:∑

p,ip

∆xpwipf
n+1
p,ip

(v) =
∑
p,ip

∆xpwipf
n
p,ip(v), (3.9)

where ∆xp is the interval length of Ip and {wip}k+1
p=1 are Gaussian quadrature weights

corresponding to Gaussian quadrature points {xp,ip}k+1
p=1 on Ip, p = 1, · · ·Nx.

Proof. This is a direct consequence of two facts: one is that the SL modal DG
method [3] is mass conservative, and the second is the LMPP limiter maintains cell
averages and total mass.

Remark 3.2. In practice, in order to take advantage of the SLDG scheme that
has been well developed and implemented in [3], we perform the transformations
between nodal and modal values and the modal procedure is done with monomial
basis. Note that the way of updating numerical solutions via SLDG method in
Step 2 can be intuitively interpreted as a composition of shifting of the background
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Eulerian cell Ip at tn+1 and moment projection on the upstream characteristic
element In+1,n

p at tn.

3.2. A fully discretized SL NDG-DIRK method for the BGK equation.
We start from rewriting the BGK model (2.1) along the characteristics

df

dt

.
= ∂tf + v · ∇xf =

1

ϵ
(MU − f), (3.10)

where df
dt is the material derivative along the characteristics. ϵ could be either con-

stant or spatially dependent. Assume a DIRK method has s stages following the
Butcher tableau

c A
bT

with invertible A = (ai,j) ∈ Rs×s, intermediate stages c = [c1, · · · cs]T , and quad-
rature weights bT = [b1, · · · bs]. For the AP property, we consider only stiffly
accurate (SA) DIRK method, i.e., cs = 1 and A(s, :) = bT at the final time
stage. Applying a SA DIRK method to (3.10), the intermediate numerical solution
f (k)(x, v) ≈ f(x, v, t(k)) at each internal time stage t(k) = tn + ck∆t, k = 1, · · · s is
given by:

f
(k)
p,ip

(v) =SL NDG(v, ck∆t){fn·,·(v)} (3.11)

+ ∆t
k∑

j=1

akjSL NDG(v, (ck − cj)∆t)

{
1

ϵ·,·

(
M

(j)
U − f (j)

)
·,·
(v)

}
.

Due to the SA property, there is fn+1
p,ip

(v) = f
(s)
p,ip

(v).

In the next section, we shall first introduce the formulation with the backward
Euler time discretization and then give the generalized scheme with higher-order
DIRK methods.

3.2.1. First-order SL NDG scheme. To properly describe the
fully discretized scheme, we first introduce the phase space discretization for v ∈
[−V, V ] by a set of uniform quadrature nodes −V + ∆v/2 = v1 < · · · < vq−1 <

vq < vq+1 < · · · < vNv = V − ∆v/2, with ∆v = 2V
Nv

. For the BGK equation, the

main operation in v-directions is integration (2.3). In particular, to obtain macro-
scopic moments Un

p,ip
of fnp,ip(v) at a Gaussian point xp,ip over Ip, the mid-point

quadrature rule is applied,

Un
p,ip = ⟨fnp,ip(v)ϕ⟩ ≈

Nv∑
q=1

fnp,ip(vq)ϕ(vq)∆v. (3.12)

This is is spectrally accurate for smooth solutions and with compact or periodic
boundary conditions. The Maxwellian distribution Mn

U at nodal Guassian points
can be computed using (2.2) accordingly. Notice here the convenience of using nodal
values (rather than the model information) of DG solutions in performing velocity
integration and obtaining Maxwellian functions.

Consider the first-order backward Euler time discretization. fn+1
p,ip

can be updated

following

fn+1
p,ip

(v) = SL NDG(v,∆t){fn·,·(v)}+
∆t

ϵp,ip

(
Mn+1

U − fn+1
)
p,ip

(v) (3.13)
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where the macroscopic fields of fn+1
p,ip

(v) are needed to compute Mn+1
U . This non-

linearity can be mitigated with an explicit procedure by taking moments of (3.13)
[22, 25],〈

fn+1
p,ip

(v)ϕ
〉
=

〈
SL NDG(v,∆t){fn·,·(v)}ϕ

〉
+

∆t

ϵp,ip

〈(
Mn+1

U − fn+1
)
p,ip

(v)ϕ
〉

=
〈
SL NDG(v,∆t){fn·,·(v)}ϕ

〉
, (3.14)

where the term with relaxation operator vanishes due to (2.4). Then, local
Maxwellian Mn+1

U (xp,ip , vq) can be obtained using (2.2). It was pointed out in
[25, 13, 2] that MU (x, v), computed as the continuous local Maxwellian via (2.2)
using discrete macroscopic fields U approximated by (3.12), may not necessarily
have the same moments as f(x, v) when only a small number of grid points in ve-
locity space is used. This deviation will further cause the lack of conservation for the
BGK relaxation term and it can be corrected by employing the discrete Maxwellian
proposed in [19, 20], where an unknown parameter for the discrete Maxwellian needs
to be found by solving a nonlinear system. In this paper, we neglect this discrep-
ancy and assume sufficient resolution in velocity directions. Below is the procedure
we adopt for the backward Euler discretization.

1. Predict

f∗,np,ip
(vq) = SL NDG(vq,∆t){fn·,·(vq)}. (3.15)

2. Calculate the macroscopic fields Un+1
p,ip

= ⟨f∗,np,ip
ϕ⟩ using (3.12).

3. Compute the local Maxwellian Mn+1
U (xp,ip , vq) =MU [U

n+1
p,ip

] from (2.2).

4. Update the nodal value fn+1
p,ip

by rearranging (3.13)

fn+1
p,ip

(vq) =
f∗,np,ip

(vq) +
∆t

ϵp,ip
Mn+1

U (xp,ip , vq)(
1 + ∆t

ϵp,ip

) , ∀q. (3.16)

Proposition 3.3. (Positivity-preserving (PP) property of SL NDG-BE for the
BGK model) Consider the SL NDG scheme using piecewise P k polynomial as the
solution space with the LMPP limiter, coupled with the first-order backward Euler
scheme, for solving the BGK model (2.1). The numerical solution {fn+1

p,ip
(vq)} is

positivity-preserving.

Proof. The SL NDG scheme with LMPP limiter is positivity-preserving. Addition-
ally, from (3.16), we have

fn+1
p,ip

(vq) =
ϵp,ip

ϵp,ip +∆t
f∗,np,ip

(vq) +
∆t

ϵp,ip +∆t
Mn+1

U (xp,ip , vq), ∀q.

That is, fn+1
p,ip

(vq) is a convex combination of non-negative terms f∗,np,ip
(vq) and

Mn+1
U (xp,ip , vq).

3.2.2. High-order SL NDG schemes. In order to attain higher-order accuracy in
time, we employ high-order DIRK methods. Examples of DIRK Butcher tableaus
can be found in the Appendix, see Table A1 for a 2-stage DIRK (DIRK2) method
[4] and Table A2 for a 4-stage DIRK3 method proposed in [10].

For the convenience of discussion, we introduce the following notation:

Iτ2,τ1p , f∗,τ1 ; tn ≤ τ1 ≤ τ2 ≤ tn+1.
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τ1, τ2 are the intermediate time stages. Iτ2,τ1p = [xτ2,τ1
p− 1

2

, xτ2,τ1
p+ 1

2

] denotes the upstream

characteristic element located by the backward characteristics tracing from the cell
boundaries of Ip at time τ2 backward in time to τ1, similar to those in [9]. For
example, when τ2 = tn+1, τ1 = tn, In+1,n

p is the upstream cell in (3.5). See Figure 2

for I
(1),n
p with τ2 = t(1) and τ1 = tn. f∗,τ1 serves as a SL NDG prediction at

time level τ1. For instance, f∗,np,ip
in (3.15) stands for the solution after advection

obtained via the SL NDG method. Our proposed SL NDG method coupled with
DIRK methods is summarized as follows.

Step 1 In the first time stage with t(1) = tn + c1∆t, as shown in Figure 2(a), the

numerical solution f
(1)
p,ip

(vq) is solved from

f
(1)
p,ip

(vq) = SL NDG(vq, c1∆t){fn·,·(vq)}+ a11
∆t

ϵp,ip

(
M

(1)
U − f (1)

)
p,ip

(vq), ∀q,

(3.17)
similarly to (3.13) using the first-order backward Euler method but with
a11∆t.

Step 2 For k = 2, · · · s, with the k-th internal stage t(k) = tn + ck∆t, compute

f
(k)
p,ip

(vq) = SL NDG(vq, ck∆t){fn
·,·(vq)}︸ ︷︷ ︸

Term I

+∆t

k−1∑
j=1

akj SL NDG(vq, (ck − cj)∆t)

{
1

ϵ·,·

(
M

(j)
U − f (j)

)
·,·
(vq)

}
︸ ︷︷ ︸

Term II

+ akk
∆t

ϵp,ip

(
M

(k)
U − f (k)

)
p,ip

(vq), ∀q.

(3.18)

Here, Term I and Term II are computed by applying the SL NDG strategy

described in Algorithm 1 on upstream cells I
(k),n
p and I

(k),(j)
p respectively;

see Figure 2(b). Let

f
∗,(k)
p,ip

(vq) = Term I + ∆t
k−1∑
j=1

akjTerm II. (3.19)

The macroscopic fields of f
(k)
p,ip

(v) can be obtained by taking the moments of

f
∗,(k)
p,ip

(vq) due to the conservation property of the BGK relaxation operator.

That is,

U
(k)
p,ip

= ⟨f (k)p,ip
(v)ϕ(v)⟩ = ⟨f∗,(k)p,ip

(v)ϕ(v)⟩. (3.20)

Then, we can compute the local Maxwellian M
(k)
U (xp,ip , vq) explicitly, and

the nodal value f
(k)
p,ip

(vq) is obtained by

f
(k)
p,ip

(vq) =
f
∗,(k)
p,ip

(vq) + akk
∆t

ϵp,ip
M

(k)
U (xp,ip , vq)

1 + akk∆t
ϵp,ip

, ∀q.

Step 3 Finally, fn+1
p,ip

(vq) = f
(s)
p,ip

(vq), ∀p, ip, q, due to the stiffly accurate property

of DIRK methods.

Remark 3.4. We note that the ck for DIRK stages is assumed to be at an increasing
order for numerical stability. Unfortunately, the PP property can not generally be
achieved for high-order DIRK methods. As addressed by Proposition 6.2 in [12],
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there are not unconditionally strong-stability-preserving (SSP) implicit RK schemes
of orders higher than one.

tn

t(1)

tn+1

x
p− 1

2
x
p+1

2

x
(1),n

p− 1
2

x
(1),n

p+1
2

f
(1)
p,ip

(vq)

xp,ip − c1vq∆t

I(1),n
p

(a) First time stage t(1)

tn

t(j)

t(k)

tn+1

x
p− 1

2
x
p+1

2

x
(k),(j)

p− 1
2

x
(k),(j)

p+1
2

x
(k),n

p− 1
2

x
(k),n

p+1
2

f
(k)
p,ip

(vq)

xp,ip − (ck − cj)vq∆t

xp,ip − ckvq∆t

I(k),(j)
p

I(k),n
p

(b) Internal time stages t(k), k = 2, · · · s

Figure 2. Schematic illustration of 1D SL NDG-DIRK formula-
tion for vq > 0.

3.2.3. DIRK discretization for (3.10) in Shu-Osher form. Keeping physical and
phase spaces continuous and assuming akk > 0, an alternative approach of per-
forming the DIRK time discretization for (3.10) along the characteristics is in the
Shu-Osher form. For k = 1, · · · s,

f (k)(x, v) = (1−
k−1∑
j=1

bkj)f
n(x− vck∆t, v)

+
k−1∑
j=1

bkjf
(j)(x− v(ck − cj)∆t, v) + akk

∆t

ϵ
(M

(k)
U − f (k))(x, v),

(3.21)

where the coefficients bkj are given by the iterative relation

bkj =
akj
ajj

−
k−1∑

l=j+1

aklblj
all

, k > j ≥ 1. (3.22)

See [10] for the detailed derivation of (3.21). In [10], we also perform the accuracy
analysis of (3.21) by conducting the Taylor expansion in the limiting fluid regime.
We find that an extra order condition needs to be imposed in order to ensure the
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consistency of third-order accuracy in both regimes. A family of 4-stage DIRK3
methods are constructed. Meanwhile, the stability of the newly created DIRK3
methods is also studied via the Von Neumann analysis to a linear two-velocity ki-
netic model. According to the accuracy and stability analysis, we select the DIRK3
method in Table A2 from [10]. Implementation-wise, when applying the SL NDG
discretization to the transport terms in (3.21), we will have

f
(k)
p,ip

(v) = (1−
k−1∑
j=1

bkj)SL NDG(v, ck∆t){fn·,·(v)}

+
k−1∑
j=1

bkjSL NDG(v, (ck − cj)∆t){f (j)·,· (v)}

+ akk
∆t

ϵp,ip

(
M

(k)
U − f (k)

)
p,ip

(v).

(3.23)

Compared with (3.11), (3.23) involves only one relaxation term at each intermediate
time stage. Additionally, (3.23) does not require the storage of the numerical values

of M
(k)
U . However, we notice that (3.23) is unstable when ϵ is large. The main

difference between (3.11) and (3.23) in the SL setting is best seen from the model
problem (2.1) taking ϵ→ ∞. That is, we consider the linear convection problem,

ft + fx = 0. (3.24)

where we let v = 1 in (3.2) for simplicity. If we follow the scheme in (3.11), then
when ϵ→ ∞, we have

Scheme1 : fn+1
p,ip

= SL NDG(1,∆t){fn·,·},

which is a nodal form of the SLDG method [3] and is known to be unconditionally
stable. On the other hand, if we follow the scheme formulated from (3.23), then
when ϵ→ ∞ we have for k = 1, · · · s,

Scheme2 : f
(k)
p,ip

= (1−
k−1∑
j=1

bkj)SL NDG(1, ck∆t){fn·,·}

+
k−1∑
j=1

bkjSL NDG(1, (ck − cj)∆t){f (j)·,· },

where the solution fn+1
p,ip

is updated using a linear combination of SL NDG acting

on all the intermediate DIRK time stages. The stability of Scheme 2 relies on the
stability of quadrature rules employed here and is subject to stability constraint
on time stepping size. In Figure 3, we show the L1 error versus CFL varying
from 0.5 to 10.5 for two schemes. From Figure 3(a), we observe that the Scheme
I is unconditionally stable and the error has a similar pattern as the one in [23].
From Figure 3(b), numerical instability is observed. Therefore, for the numerical
experiments in Section 4, we select formulation (3.11).

4. Numerical tests. We first present numerical experiments on the LMPP lim-
iter regarding its order of accuracy and capability of controlling oscillations near
discontinuities in Section 4.1. Then, we verify both the spatial and temporal order
of accuracy of our scheme from a smooth problem in Section 4.2. In Section 4.3, we
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(a) Scheme 1

(b) Scheme 2

Figure 3. L1 error versus CFL for (3.24) on [0, 1] with periodic
boundary condition and exact solution f(x, t) = sin(2π(x − t)) at
t = 2.0. Spatial discretization is the SL NDG scheme using P 0

polynomial space with Nx = 640, and temporal discretization is
DIRK2. Left: Scheme 1. Right: Scheme 2.

illustrate the AP property for the limiting fluid regime and for the mixed regime
problems using variable ϵ(x).

Numerical experiments are performed on the velocity domain v ∈ [−V, V ] with
V = 15, except for Example 4.5 where V = 10. The velocity space is discretized
with uniformly distributed Nv = 100 grid points. We use a third-order SL NDG
scheme unless otherwise specified. A periodic boundary condition is used, except
for Example 4.4 where a free-flow boundary condition is used. The time stepping
size is chosen following the CFL condition for the convection part: ∆t = CFL · ∆x

V ,
where CFL is usually taken larger than 1, i.e., beyond the stability constraint from
an Eulerian method.
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4.1. LMPP limiter.

Example 4.1. We apply the proposed SL NDG method with LMPP limiter in
(3.7) to solve the pure linear transport problem (3.24)

ft + fx = 0

on [0, 2π] with initial value f(x, 0) = sin(x) and exact solution f(x, t) = sin(x− t).
The L1 and L∞ errors and the corresponding order of accuracy of SL NDG with P 1

and P2 solution spaces are summarized in Table 1. The L∞ errors are computed
with six Gauss quadrature points over each interval. We can see that second-and
third-order accuracy is maintained when the LMPP limiter is used for P 1 and P 2

cases.

SL NDG without LMPP limiter SL NDG with LMPP limiter

P 1

Nx L1 error Order L∞ error Order L1 error Order L∞ error Order

10 9.19E-03 3.43E-02 1.68E-02 7.30E-02

20 2.60E-03 1.82 1.13E-02 1.61 3.37E-03 2.32 1.86E-02 1.97

40 6.57E-04 1.98 2.95E-03 1.93 7.99E-04 2.08 5.29E-03 1.81

80 1.27E-04 2.37 4.14E-04 2.83 1.75E-04 2.19 1.49E-03 1.83

160 3.95E-05 1.68 1.78E-04 1.22 5.11E-05 1.77 5.15E-04 1.53

320 1.03E-05 1.94 4.70E-05 1.92 1.23E-05 2.05 1.52E-04 1.76

P 2

Nx L1 error Order L∞ error Order L1 error Order L∞ error Order

10 4.23E-04 2.68E-03 4.61E-04 2.69E-03

20 5.88E-05 2.85 2.58E-04 3.37 6.55E-05 2.81 2.58E-04 3.38

40 7.48E-06 2.98 3.16E-05 3.03 7.87E-06 3.06 3.16E-05 3.03

80 1.12E-06 2.74 2.35E-06 3.75 1.14E-06 2.79 2.35E-06 3.75

160 1.17E-07 3.26 5.72E-07 2.04 1.18E-07 3.27 5.72E-07 2.04

320 1.47E-08 2.99 6.20E-08 3.21 1.50E-08 2.98 6.20E-08 3.21

Table 1. L1 and L∞ errors and orders for solving Example 4.1
with initial condition (4.1) using SL NDG scheme without and with
LMPP limiter at t = 10.0. CFL = 2.2.

We also show the effect of the LMPP limiter with a discontinuous initial condition

f(x, 0) =


1, −1.0 ≤ x ≤ −0.5;
0.5, −0.5 ≤ x ≤ 0.0;
−0.5, 0.0 ≤ x ≤ 0.5;
−1, 0.5 ≤ x ≤ 1.0.

(4.1)

We run the simulation up to t = 100 and plot the numerical solution of SL NDG
with P 2 solution space in Figure 4. Oscillations near the discontinuities can be
better controlled when the LMPP limiter is used in Figure 4(a) than in Figure 4(b).
We also note that the global maximum principle-preserving limiter designed in [29]
cannot control these local oscillations as well as the LMPP limiter (3.7).

4.2. Accuracy test of the BGK model.

Example 4.2. Consider the test proposed in [22] with the consistent initial distri-
bution

f(x, v, 0) =
ρ0√
2πT0

exp

(
− (v − u0(x))

2

2T0

)
, x ∈ [−1, 1] (4.2)
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(a) with LMPP limiter

(b) without limiter

Figure 4. Example 4.1 with discontinuous initial data (4.1) at
t = 100. Nx = 200, CFL = 2.2. Solid red line: the exact solution;
green circles: cell averages of the P 2 SL NDG numerical solutions.

and initial velocity

u0 =
1

10

[
exp

(
−(10x− 1)2

)
− 2 exp

(
−(10x+ 3)2

)]
. (4.3)

Initial density and temperature are uniform with constant values ρ(x, 0) = ρ0 = 1
and T (x, 0) = T0 = 1, respectively. The final time of the test is chosen as t = 0.04.
Since the exact solution is not available, the numerical error is computed using a
reference solution at a finer mesh Nx/2:

errorNx
= ∥fNx

− fNx/2∥

where ∥·∥ denotes L1, L2, or L∞ norms.
In Figure 5, we show the L1 errors and spatial orders of convergence for the

P k SL NDG scheme with k = 0, 1, 2. Knudsen numbers are taken to be ϵ =
10−2, 10−3, 10−6. To reduce the interference of the temporal error, we choose the
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DIRK3 method in Table A2 and CFL = 0.1. The expected (k + 1)-th order of
accuracy is observed for all ϵ.

The temporal error of the proposed SL NDGmethods using LMPP limiter in (3.7)
coupled with all time discretizations in both regimes is presented in Figure 6. Mean-
while, we also show the numerical behavior of using the DIRK3 method in Table A2
for the BGK model. We observe that a CFL as large as 10 can be chosen for all
time integrators when LMPP limiter is used. This observation supports our claim
that our scheme allows extra large CFL. When the LMPP limiter is used, from
the time discretization method perspective, we see that full third-order accuracy
is achieved with the DIRK3 method in Table A2 when CFL is sufficiently large
(around 10). Order reduction exists when CFL is small for the DIRK3 method in
Table A2. This loss in order phenomenon is the subject of our future investigation.

Table 2 shows that our scheme preserves the conservation of the macroscopic
fields U well within a machine precision error when DIRK2 and DIRK3 methods
are used, assuming that sufficient grid points are used in velocity space. A similar
observation can also be made for other time discretizations.

ϵ = 10−2 ϵ = 10−6

Nv ρ ρu E ρ ρu E

DIRK2

30 4.68E-08 1.95E-08 8.93E-07 2.36E-07 1.13E-07 4.50E-06

100 1.35E-14 1.01E-15 5.68E-15 4.05E-12 4.42E-15 1.96E-12

DIRK3

30 4.77E-08 1.99E-08 9.11E-07 2.75E-07 1.33E-07 5.24E-06

100 1.35E-14 9.49E-16 6.39E-15 3.16E-12 1.13E-15 1.54E-12

Table 2. Conservation test of the macroscopic fields U for
Example 4.2 with varying Nv. CFL = 4.0, Nx =
80 using P 2 SL NDG with LMPP limiter.

Example 4.3. For the inconsistent initial data, we use the test in [16],

f(x, v, 0) =
ρ̃√
2πT̃

[
0.5 exp

(
− (v − ũ)2

2T̃

)
+ 0.3 exp

(
− (v + 0.5ũ)2

2T̃

)]
, x ∈ [−1, 1]

(4.4)
where

ũ(x) = 1.0, ρ̃(x) = 1.0 + 0.2 sin(πx), T̃ (x) =
1

ρ̃(x)
.

f(x, v, 0) is the linear combination of two Maxwellian distributions centered around
different functions, ũ and −0.5ũ. Final simulation time is chosen as t = 0.1. L1

errors and orders of accuracy of using backward Euler, DIRK2, and DIRK3 methods
for P 2 SL NDG with LMPP limiter are presented in Figure 7. We see the expected
accuracy behavior in both kinetic and fluid regimes. When ϵ = 10−6, our scheme is
reduced to first order with inconsistent initial data. 1

1If the initial data is not well-prepared, then (3.11) may reduce to first order. This is similar to
the situation of IMEX schemes of type CK. See Theorem 3.6 in [8] and the discussion afterwards.
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(a) ϵ = 10−2

(b) ϵ = 10−3

(c) ϵ = 10−6

Figure 5. Spatial accuracy test for Example 4.2 with consistent
initial data using CFL = 0.1 and P k SL NDG with k = 0, 1, 2.
DIRK3 method in Table A2 and LMPP limiter in (3.7) are used.
Line segments of slope 1, 2, and 3 are also provided as reference.
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(a) ϵ = 10−2

(b) ϵ = 10−6

Figure 6. L1 error versus varying CFL using P 2 SL NDG with
LMPP limiter on fixed mesh Nx = 640. CFL = 0.01 is used
as the reference solution. From top to bottom: backward Euler,
DIRK2, DIRK3 methods. Line segments of slope 1, 2, and 3 are
also provided as reference. Left: ϵ = 10−2. Right: ϵ = 10−6.

4.3. AP property.

Example 4.4. Consider the following initial discontinuous distribution used in [22],

f(x, v, 0) =

{
ρL√
2πTL

· exp(− (uL−v)2

2TL
) 0 ≤ x ≤ 0.5

ρR√
2πTR

· exp(− (uR−v)2

2TR
) 0.5 ≤ x ≤ 1

(4.5)

with (ρL, uL, TL) = (2.25, 0, 1.125) and (ρR, uR, TR) = (3/7, 0, 1/6). This initial
data has discontinuity in physical space. In order to check if our scheme is able to
capture the Euler limit, we use ϵ = 10−6 and P 2 SL NDG method with Nx = 200.
We also assume the free-flow boundary condition and do the simulation up to the
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(a) ϵ = 10−2

(b) ϵ = 10−3

(c) ϵ = 10−6

Figure 7. Accuracy test for Example 4.3 with inconsistent initial
data using CFL = 4.0 and P 2 SL NDG with LMPP limiter. Line
segments of slope 1, 2, and 3 are also provided as reference. From
left to right: ϵ = 10−2, 10−3 and 10−6.
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final time t = 0.16 with CFL = 2.3. In Figure 8, we see that the shock and rarefac-
tion wave are captured well when using the backward Euler and DIRK3 methods.
Numerical portraits for DIRK2 agree with the ones for the DIRK3 method.

Figure 8. Physical profiles for Example 4.4 at final time t = 0.16
with CFL = 2.3, using P 2 SL NDG method on Nx = 200. LMPP
limiter (3.7) is applied. Left: ϵ = 10−2. Right: ϵ = 10−6. From top
to bottom: density ρ, mean velocity v, and temperature T . Blue
dashed line: backward Euler; red solid line: DIRK3.

Example 4.5. Finally, we consider an example in [28] with a variable ϵ(x)

ϵ(x) = 10−6 +
1

2
(tanh(1− a0x) + tanh(1 + a0x)) (4.6)

and a0 to be chosen. The inconsistent initial data is given as

f(x, v, 0) =
ρ̃

2
√
2πT̃

[
exp

(
− (v − ũ)2

2T̃

)
+ exp

(
− (v + 0.5ũ)2

2T̃

)]
, x ∈ [−0.5, 0.5]
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with

ρ̃(x) = 1 + 0.875 sin(2πx), T̃ (x) = 0.5 + 0.4 sin(2πx), ũ(x) = 0.75.

From (2.3), we have the initial macroscopic variables

ρ0 = ρ̃(x), T 0 = T̃ (x)2 + ũ(x)2, u0 = 0.

When a0 = 11 or 40, see Figure 9, the problem is in a mixed regime: in the middle
portion of [−0.5, 0.5], the problem is in the kinetic regime since ϵ(x) = O(1); in the
left and right portions, the problem is in the fluid regime since ϵ(x) ≈ 10−6. We
can also see that a0 = 11 gives a wider peak of ϵ(x).
CFL = 4.0 is used for all of the following tests. In Figure 10, we choose a0 = 11

and show the distribution of density ρ, velocity v, and temperature T at time
t = 0.1, 0.3, 0.45 with Nx = 40. We compare our results with a reference solution
computed by the hierarchical high-order NDG3-IMEX scheme in [28] with Nx = 200
and Nv = 200. The performances of the DIRK2 method are comparable with those
given by the DIRK3 method. It is clear that the results of the DIRK3 method
match the reference solutions much better than backward Euler method, while
discontinuities can be observed in the solution for all methods. In Table 3, we also
show the L1 errors and order of accuracy at a short time t = 0.001. For backward
Euler and DIRK2 methods, first-and second- order of accuracy can be observed
clearly. While there is loss of accuracy on refined meshes due to the mixed regimes,
this is beyond the scope of this paper. In Table 4, we see that our proposed scheme
is mass conservative for the mixed regime problem when Nv is large.

We also test with a0 = 40, which gives a narrower peak of ϵ(x). From Figure 11,
we see that the discontinuities are again well observed. Again, results by the DIRK3
method are closer to the reference solutions than those by backward Euler.

Figure 9. Variable ϵ(x) for Example 4.5.

5. Conclusions. In this paper, we developed a semi-Lagrangian (SL) nodal dis-
continuous Galerkin (NDG) scheme for solving the BGK model. In the proposed
method, the nodal DG solution of the linear transport term is evolved along the
characteristics using an efficient SL NDG solver combined with a local maximum
principle-preserving (LMPP) limiter; meanwhile, the BGK relaxation operator is
treated with diagonally implicit Runge-kutta (DIRK) methods proposed in [10]



242 MINGCHANG DING, JING-MEI QIU AND RUIWEN SHU

Figure 10. Mixed regime problem with ϵ(x) in (4.6) with a0 =
11. Nx = 40. CFL = 4.0. P 2 SL NDG method with LMPP
limiter (3.7) is applied. Solid line: reference solution computed by
the hierarchical NDG3-IMEX scheme with Nx = 200 and Nv =
200. From left to right: simulation time t = 0.1, 0.3, 0.45. From
top to bottom: the density ρ, mean velocity v and temperature T .

V 2
h BE DIRK2 DIRK3

Nx L1 error Order L1 error Order L1 error Order

40 3.66E-04 7.10E-05 2.71E-05

80 1.85E-04 0.98 1.37E-05 2.38 3.57E-06 2.93

160 9.22E-05 1.01 3.15E-06 2.12 5.63E-07 2.67

320 4.58E-05 1.01 7.88E-07 2.00 1.29E-07 2.13

640 2.28E-05 1.01 2.11E-07 1.90 4.42E-08 1.54

Table 3. L1 errors and orders of the mixed regime problem with
ϵ(x) in (4.6) and a0 = 11 at t = 0.001. P 2 SL NDG method and
CFL = 0.1 are used.

along the characteristics. The high spatial and temporal order of accuracy, the
conservation of macroscopic fields, and the AP property are verified via numerical
experiments. So far, we only consider the 1D1V BGK model with periodic or free-
flow boundary conditions. The planned future work includes the extension to high
dimensional model with more general boundary conditions.
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DIRK2 DIRK3

Nv ρ ρu E ρ ρu E

30 2.38E-04 2.59E-14 2.58E-04 2.38E-04 2.76E-14 2.58E-04

100 3.09E-14 9.79E-15 2.82E-14 3.20E-14 9.65E-15 2.81E-14

Table 4. Conservation test of the macroscopic fields U for the
mixed regime problem 4.5 with a0 = 11 using varying Nv at t =
0.1. CFL = 4.0, Nx = 80 and P 2 SL NDG method with LMPP
limiter (3.7) are used.

Figure 11. Mixed regime problem with ϵ(x) in (4.6) with a0 = 40.
P 2 SL NDGmethod with LMPP limiter (3.7) is applied on Nx = 40
using CFL = 4.. Solid red line: reference solution computed by the
hierarchical NDG3-IMEX scheme with Nx = 200 and Nv = 200.
From left to right: simulation time t = 0.1, 0.3, 0.45. From top to
bottom: the density ρ, mean velocity v and temperature T .
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Appendix: Butcher Tableaus of DIRK methods. Classical 2-stage DIRK2
and 3-stage DIRK3 methods:

ν ν 0
1 1− ν ν

1− ν ν
, ν = 1−

√
2/2.

Table A1. DIRK2.

4-stage DIRK3 method in [10]

1
4

1
4

11
28

1
7

1
4

1
3

61
144

− 49
144

1
4

1 0 0 3
4

1
4

0 0 3
4

1
4

Table A2. 4-stage DIRK3
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