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Abstract
We propose an Eulerian–Lagrangian (EL) Runge–Kutta (RK) discontinuous Galerkin (DG)
method for a linear hyperbolic system. The method is designed based on the ELDG method
for transport problems (J Comput Phys 446:110,632, 2021), which tracks solutions along
approximations to characteristics in the DG framework, allowing extra large time stepping
sizes with stability with respect to the classical RKDG method. Considering each charac-
teristic family, a straightforward application of ELDG for the hyperbolic system will be to
transform to the characteristic variables, evolve them on associated characteristic-related
space–time regions, and transform them back to the original variables. However, the conser-
vation could not be guaranteed in a general setting. In this paper, we formulate a conservative
semi-discrete ELDG method by decomposing each variable into two parts, each of them
associated with a different characteristic family. As a result, four different quantities are
evolved in EL fashion and recombined to update the solution. The fully discrete scheme is
formulated by using method-of-lines RK methods, with intermediate RK solutions updated
on the background mesh. Numerical results for 1D and 2D wave equations are presented to
demonstrate the performance of the proposed ELDG method. These include the high order
spatial and temporal accuracy, stability with extra large time stepping size, and conservative
property.
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1 Introduction

In this paper, we propose an Eulerian–Lagrangian (EL) discontinuous Galerkin (DG)method
for the first-order hyperbolic system in the form of

Ut +
d∑

j=1

(A j (x, t)U )x j = F(x, t), (x, t) ∈ R
d × [0, T ], (1.1)

where d is the spatial dimension, U : R
d × [0, T ] → R

n , and A j (x, t) ∈ R
n×d . Examples

of such a system include the wave equations, Maxwell’s equations, linearized shallow water
equations. There are various versions of DGmethods for solving hyperbolic systems, such as
the Runge–Kutta DG methods [6] and the space–time DG methods [10, 18]. These methods
belong to the class of Eulerian approach, thus suffer from the CFL condition. An alternative
numerical approach is the characteristic method, which evolves a time-dependent solution by
tracking characteristics. These class of methods are also known as semi-Lagrangian methods
[2, 7, 9, 21] or Eulerian–Lagrangianmethods [3, 4, 22]. The semi-Lagrangianmethod evolves
a time-dependent solution by exactly tracking characteristics, while the Eulerian–Lagrangian
method updates the solution via approximating characteristics by linear straight lines. For
existing SLmethods, some of them are developed by 1D versions using dimensional splitting
[7, 9, 21], whereas others are purely 2D ones [2] to avoid the time-splitting error. In EL
setting, an Eulerian Lagrangian Localized Adjoint Method (ELLAM) was developed in [4],
by introducing an adjoint problem for each test function in the continuous finite element
framework. Recently, the Eulerian–Lagrangian (EL) discontinuous Galerkin method(DG)
[3, 22] and semi-Lagrangian (SL) DG [2] are being developed in the discontinuous Galerkin
finite element framework with a similar introduction of adjoint problems for test functions.
The ELDG method approximates characteristics by linear functions, which yields better
stability with extra large upper bound for time stepping sizes compared with those from
the classical Eulerian explicit RKDG method. The ELDG method is also closely related to
the Arbitrary Lagrangian Eulerian (ALE) DG method [13, 14], which was introduced as a
moving mesh DG method.

In this paper, we follow the scalar development of EL DG method, and propose a conser-
vative EL DG method for hyperbolic systems (1.1). We start from 1D cases, for which we
consider characteristic variables and the associated characteristic space–time regions. For
hyperbolic systems, a straightforward application of EL DG to each characteristic family, on
associated space–time regions can be done; yet the conservation could not be guaranteed in a
general setting. In this work, we decompose each variable into two parts, each of which asso-
ciated with different characteristic families. As a result, four different quantities are evolved
in EL fashion and are recombined to update the solution. The fully discrete scheme is for-
mulated by using method-of-lines RK methods, with intermediate RK solutions updated on
the background mesh. For 2D hyperbolic systems, we use the dimensional splitting method,
maintaining the simplicity, robustness and stability of ELDGmethods for 1D cases. Note that,
for 2D systems, characteristic Galerkin [19] or evolution Galerkin [1, 16, 17] methods have
been proposed to take into account information propagated in all bicharacteristic directions.

This paper is organized as follows. In Sect. 2, we review the ELDG for one-dimensional
(1D) linear transport problems. In Sect. 3, we develop the ELDG method for a first-order
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Fig. 1 Illustration for dynamic element Ĩ j (t) of ELDG

hyperbolic system by decomposing and evolving each component into two parts, each of
which associated with its characteristic family. 2D problems are handled by 1D algorithms
with dimensional splitting. The conservation property is proved. In Sect. 4, performance of
the proposed ELDG method is showcased through extensive numerical tests. Concluding
remarks are made in Sect. 5.

2 Review of ELDG Formulation for 1D Linear Transport Problems [3]

To illustrate the key idea of the ELDG scheme, we start from a 1D linear transport equation
in the following form

ut + (a(x, t)u)x = 0, x ∈ [xa, xb]. (2.1)

For simplicity, we assume periodic boundary conditions, and the velocity field a(x, t) is a
continuous function of space and time.

Discretization. The computational domain is partitioned as xa = x 1
2

< x 3
2

< · · · <

xN+ 1
2

= xb, called the background mesh. Let I j = [x j− 1
2
, x j+ 1

2
] denote an element of

length �x j = x j+ 1
2

− x j− 1
2
and define �x = max j �x j . We define the finite dimensional

approximation space, V k
h = {vh : vh |I j ∈ Pk(I j )}, where Pk(I j ) denotes the set of polyno-

mials of degree at most k on I j . We let tn be the n-th time level and �t = tn+1 − tn to be
the time-stepping size.

The key idea in the ELDG formulation is to design adjoint problems for test functions,
taking advantage of information propagation along characteristics. The method is formulated
on a space–time region � j = Ĩ j (t) × [tn, tn+1] with

Ĩ j (t) =
[
x̃ j− 1

2
(t), x̃ j+ 1

2
(t)
]
, t ∈ [tn, tn+1] ,

being the dynamic intervalwith size�x j (t) = x̃ j+ 1
2
(t)−x̃ j− 1

2
(t), see Fig. 1.Here x̃ j± 1

2
(t) =

x j± 1
2

+ (t − tn+1)ν j± 1
2
are straight lines emanating from cell boundaries x j± 1

2
with slopes

ν j± 1
2

= a(x j± 1
2
, tn+1) and I �

j
.= Ĩ j (tn) = [x∗

j− 1
2
, x∗

j+ 1
2
] is the upstream cell of I j at tn .

A local adjoint problem of (2.1) for all test function is defined as:
{

ψt + α(x, t)ψx = 0, (x, t) ∈ � j ,

ψ(t = tn+1) = �(x). ∀� ∈ Pk(I j ).
(2.2)
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Here α(x, t) is a bilinear function of (x, t) with

α
(
x j− 1

2
, tn+1

)
= a

(
x j− 1

2
, tn+1

)
.= ν j− 1

2
,

α
(
x j+ 1

2
, tn+1

)
= a

(
x j+ 1

2
, tn+1

)
.= ν j+ 1

2
, (2.3)

and

α(x, t) = −ν j− 1
2

x − x̃ j+ 1
2
(t)

�x j (t)
+ ν j+ 1

2

x − x̃ j− 1
2
(t)

�x j (t)

∈ P1( Ĩ j (t)), ∀t ∈ [tn, tn+1]. (2.4)

The ELDG [3] scheme can be formulated by
∫
Ĩ j (t)

(2.2) · u + (2.1) · ψ

d

dt

∫

Ĩ j (t)
(uψ)dx = −

(
F̂ψ
) ∣∣∣∣x̃ j+ 1

2
(t) +

(
F̂ψ
) ∣∣∣∣x̃ j− 1

2
(t) +

∫

Ĩ j (t)
Fψxdx . (2.5)

where F(u)
.= (a−α)u and F̂ is theLax–Friedrichsflux.Amethod-of-linesRKdiscretization

can be used for high order temporal accuracy [3].

3 The ELDG Algorithm for Hyperbolic System

In this section, we design the ELDG algorithm for a 1D hyperbolic system, in a similar spirit
as the 1D scalar case, but tracking information along different characteristics families.

3.1 1D Hyperbolic System

We consider the hyperbolic system

Ut + (A(x)U )x = F(x, t), (3.1)

where U = [u1, u2]T is a column vector, A is a 2 by 2 matrix, and F is a 2 by 1 vector. We
use the following notations for the eigen-decomposition of A(x):

• eigenvalue: λ(1)(x), λ(2)(x).
• A(x) = R(x)
R−1(x), where 
(x) = diag(λ(1)(x), λ(2)(x)),

R(x)
.= [r (1)(x) | r (2)(x)

] =
[
r11(x) r12(x)
r21(x) r22(x)

]
(3.2)

contains the right column eigenvectors r (1), r (2), and

R−1(x)
.=
[
l(1)

T
(x)

l(2)
T
(x)

]
=
[
l11(x) l12(x)
l21(x) l22(x)

]
(3.3)

contains the left row eigenvectors l(1)
T
, l(2)

T
. From R · R−1 = I , we have

(r11(x)l
(1)T (x) + r12(x)l

(2)T (x))U (x) = u1,

(r21(x)l
(1)T (x) + r22(x)l

(2)T (x))U (x) = u2.
(3.4)
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In the following, we propose a conservative ELDG scheme for the system (3.1) by the
procedure below.

(1) Partitions of space–time regions�
(1)
j and�

(2)
j . According to the first and second charac-

teristic families, we partition the computational domain as two sets of space–time regions
�

(1)
j and �

(2)
j respectively. Here �

(1)
j = Ĩ (1)

j (t) × [tn, tn+1] is related to the first char-

acteristic family. Ĩ (1)
j (t) = [x̃ (1)

j− 1
2
(t), x̃ (1)

j+ 1
2
(t)] is the dynamic interval emanating from

cell boundaries x j± 1
2
with slopes ν

(1)
j± 1

2
approximating the first characteristic velocity, see

Fig. 2(left). In general, we choose ν
(1)
j± 1

2
= λ(1)(x j± 1

2
). I �,(1)

j
.= Ĩ (1)

j (tn) is the upstream

cell of I j from the first characteristic family at tn . Similar definition can be made to�
(2)
j ,

Ĩ (2)
j (t) and I �,(2)

j for the second characteristic family. See Fig. 2(right) for illustration of

�
(2)
j .

(2) Adjoint Problems. We consider an adjoint problem for the first characteristic family on
�

(1)
j : {

(ψ(1))t + α(1)(ψ(1))x = 0, t ∈ [tn, tn+1],
(ψ(1))(t = tn+1) = �(1)(x),

(3.5)

where

α(1)(x, t) = −ν
(1)
j− 1

2

x − x̃ (1)
j+ 1

2
(t)

�x (1)
j (t)

+ ν
(1)
j+ 1

2

x − x̃ (1)
j− 1

2
(t)

�x (1)
j (t)

∈ P1( Ĩ (1)
j (t)). (3.6)

Similarly on �
(2)
j :

{
(ψ(2))t + α(2)(ψ(2))x = 0, t ∈ [tn, tn+1],
(ψ(2))(t = tn+1) = �(2)(x),

(3.7)

where

α(2)(x, t) = −ν
(2)
j− 1

2

x − x̃ (2)
j+ 1

2
(t)

�x (2)
j (t)

+ ν
(2)
j+ 1

2

x − x̃ (2)
j− 1

2
(t)

�x (2)
j (t)

∈ P1( Ĩ (2)
j (t)). (3.8)

The adjoint problems provide finite dimensional time-dependent test function space,
please see more details in Appendix B.

(3) Formulation of a conservative semi-discrete ELDGscheme. For linear hyperbolic system,
a straightforward generalization of ELDG is to transform the original variable to the
characteristic variables by a localized eigen-decomposition, that are consistent between

two characteristic families. In particular, we take the vector product of r11(x)l(1)
T
(x)

from left with (3.1) and obtain a scalar equation

r11(x)l
(1)T (x)(Ut + (A(x)U )x ) = r11(x)l

(1)T (x)F(x, t). (3.9)

Multiply ψ(1) to the equation above, we get

r11(x)l
(1)T (x)(Ut + (A(x)U )x )ψ

(1) = r11(x)l
(1)T (x)F(x, t)ψ(1). (3.10)
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Meanwhile, multiply (3.5) from the left by r11(x)l(1)
T
(x)U , we have

r11(x)l
(1)T (x)U (ψ(1))t + r11(x)l

(1)T (x)Uα(1)(ψ(1))x = 0. (3.11)

Sum Eqs. (3.10) and (3.11), and integrate over the space–time interval �(1)
j ,

∫

�
(1)
j

(
r11(x)l

(1)T (x)Utψ
(1) + r11(x)l

(1)T (x)U (ψ(1))t

+r11(x)l
(1)T (x)(A(x)U )xψ

(1)
)
dxdt

+
∫

�
(1)
j

r11(x)l
(1)T (x)Uα(1)(ψ(1))xdxdt

=
∫

�
(1)
j

r11(x)l
(1)T (x)F(x, t)ψ(1)dxdt .

(3.12)

A further manipulation on the left hand side (L.H.S.) of (3.12) gives
∫

�
(1)
j

(
(r11(x)l

(1)T (x)Uψ(1))t + r11(x)l
(1)T (x)(A(x)U )xψ

(1)

+r11(x)l
(1)T (x)Uα(1)(ψ(1))x

)
dxdt

=
∫

�
(1)
j

(
(r11(x)l

(1)T (x)Uψ(1))t + (r11(x)l
(1)T (x)A(x)Uψ(1))x

−(r11(x)l
(1)T (x))x A(x)Uψ(1)

)
dxdt

−
∫

�
(1)
j

(
r11(x)l

(1)T (x)A(x)U (ψ(1))x − r11(x)l
(1)T (x)Uα(1)(ψ(1))x

)
dxdt

=
∫ tn+1

tn

(
d

dt

∫

Ĩ (1)
j (t)

(r11(x)l
(1)TUψ(1))dx

+[r11(x)l(1)T A(x)Uψ(1) − ν(1)r11(x)l
(1)TUψ(1)]| j+

1
2

j− 1
2

)
dt

−
∫ tn+1

tn

∫

Ĩ (1)
j (t)

(
(r11(x)l

(1)T (x))x A(x)Uψ(1)

+r11(x)l
(1)T (x)(A(x)U − α(1)U )ψ(1)

x

)
dxdt .

(3.13)
Letting f 11(U ) = r11l(1)

T
(AU −α(1)U ), the time differential form of (3.12) with (3.13)

gives

d

dt

∫

Ĩ (1)
j (t)

(r11(x)l
(1)T (x)Uψ(1))dx +

(
f 11ψ(1)

) ∣∣∣∣∣x̃ (1)

j+ 1
2
(t)

−
(
f 11ψ(1)

) ∣∣∣∣∣x̃ (1)

j− 1
2
(t)

−
∫

Ĩ (1)
j (t)

f 11ψ(1)
x dx

−
∫

Ĩ (1)
j (t)

(r11(x)l
(1)T (x))x A(x)Uψ(1)dx

123



Journal of Scientific Computing (2024) 98 :70 Page 7 of 32 70

=
∫

Ĩ (1)
j (t)

r11(x)l
(1)T (x)F(x, t)ψ(1)dx . (3.14)

Similarly, we have an equation related to λ(2)

d

dt

∫

Ĩ (1)
j (t)

(r12(x)l
(2)T (x)Uψ(2))dx +

(
f 12ψ(2)

) ∣∣∣∣∣x̃ (2)

j+ 1
2
(t)

−
(
f 12ψ(2)

) ∣∣∣∣∣x̃ (2)

j− 1
2
(t)

−
∫

Ĩ (2)
j (t)

f 12ψ(2)
x dx

−
∫

Ĩ (2)
j (t)

(r12(x)l
(2)T (x))x A(x)Uψ(2)dx

=
∫

Ĩ (2)
j (t)

r12(x)l
(2)T (x)F(x, t)ψ(2)dx,

(3.15)

where f 12(U ) = r12l(2)
T
(AU − α(2)U ). Then, we can update u1 by (3.4) together with

(3.14), (3.15), taking �(1)(x) = �(x) in (3.5) and �(2)(x) = �(x) in (3.7):

∫

I j
u1,n+1�(x)dx

(3.4)=
∫

I j
r11l

(1)TUn+1�(x)dx

+
∫

I j
r12l

(2)TUn+1�(x)dx

=
∫

I ∗,(1)
j

r11l
(1)TUnψ(1)dx −

∫ tn+1

tn

(
f 11ψ(1)

) ∣∣∣∣∣x̃ (1)

j+ 1
2
(t)

+
(
f 11ψ(1)

) ∣∣∣∣∣x̃ (1)

j− 1
2
(t)

dt

+
∫ tn+1

tn

∫

Ĩ (1)
j (t)

r11(x)l
(1)T (x)F(x, t)ψ(1)

+ (r11(x)l
(1)T (x))x A(x)Uψ(1) + f 11ψ(1)

x dxdt

+
∫

I ∗,(2)
j

r12l
(2)TUnψ(2)dx

−
∫ tn+1

tn

(
f 12ψ(2)

) ∣∣∣∣∣x̃ (2)

j+ 1
2
(t)

+
(
f 12ψ(2)

) ∣∣∣∣∣x̃ (2)

j− 1
2
(t)

dt

+
∫ tn+1

tn

∫

Ĩ (2)
j (t)

r12(x)l
(2)T (x)F(x, t)ψ(2)

+ (r12(x)l
(2)T (x))x A(x)Uψ(2) + f 12ψ(2)

x dxdt .
(3.16)

The ELDG discretization of Eq. (3.16) is to find u1h(x, t) ∈ Pk(I j (t)), so that

∫

I j
u1h(x, t

n+1)�(x)dx

=
∫

I ∗,(1)
j

r11l
(1)TUn

h ψ(1)dx +
∫ tn+1

tn
L11(Uh(t), t, Ĩ

(1)
j (t))dt

123



70 Page 8 of 32 Journal of Scientific Computing (2024) 98 :70

+
∫

I ∗,(2)
j

r12l
(2)TUn

h ψ(2)dx +
∫ tn+1

tn
L12(Uh(t), t, Ĩ

(2)
j (t))dt, (3.17)

for ψ(1)(x, t) satisfying the adjoint problem (3.5) with ∀�(x) = ψ(x, tn+1) ∈ Pk(I j ).
Here

L11(Uh(t), t, Ĩ
(1)
j (t))

= −̂f 11
j+ 1

2
ψ

(1),−
j+ 1

2
+ ̂f 11

j− 1
2
ψ

(1),+
j− 1

2
+
∫

Ĩ (1)
j (t)

f 11ψ(1)
x (x, t)dx

+
∫

Ĩ (1)
j (t)

(r11l
(1)T )x AUhψ

(1)(x, t) + r11l
(1)T Fψ(1)(x, t)dx,

L12(Uh(t), t, Ĩ
(2)
j (t))

= −̂f 12
j+ 1

2
ψ

(2),−
j+ 1

2
+ ̂f 12

j− 1
2
ψ

(2),+
j− 1

2
+
∫

Ĩ (2)
j (t)

f 12ψ(2)
x (x, t)dx

+
∫

Ĩ (2)
j (t)

(r12l
(2)T )x AUhψ

(2)(x, t) + r12l
(2)T Fψ(2)(x, t)dx, (3.18)

whereψ
(1),±
j± 1

2
= ψ(1)(x (1),±

j± 1
2

(t), t) and f̂ 11 at a cell boundary can be taken as a monotone

flux, e.g. the Lax–Friedrichs flux

̂f 11
j+ 1

2
(U ) = r11(x j+ 1

2
)l(1)

T
(x j+ 1

2
)

̂
(A ·U − ν

(1)
j+ 1

2
U )

j+ 1
2

.

ψ
(2),±
j± 1

2
= ψ(2)(x (2),±

j± 1
2

(t), t) and f̂ 12 can be similarly defined at a cell boundary. We can

similarly obtain the ELDG scheme for u2h .
(4) Fully discrete ELDG scheme with method-of-lines RK schemes. To update (3.17) from

Un
h toUn+1

h , we first apply the forward Euler time discretization to get 1st order accuracy,
then we generalize the scheme to general RKmethods. There are twomain steps involved
here.

In order to describe the implementation procedure of the fully discrete ELDG scheme, we
define the L2 projection.

Definition 3.1 (L2 projection) Let u ∈ L2(�), M = {I j }Nj=1 and M̃ = { Ĩ j }Nj=1 be two

different meshes of the whole computational domain �. We have function spaces V k
h = {u :

u|I j ∈ Pk(I j ),∀ j} and Ṽ k
h = {ũ : ũ| Ĩ j ∈ Pk( Ĩ j ),∀ j} corresponding to meshes M and M̃ .

The L2 projection of uM ∈ V k
h onto space Ṽ k

h can be defined as, find ũ M̃ ∈ Ṽ k
h , s.t.

∫

Ĩ j
ũ M̃ (x)ϕ(x)dx =

∫

Ĩ j
uM (x)ϕ(x)dx, ∀ϕ ∈ Ṽ k

h . (3.19)

We denote ũ M̃ (x) = Proj[uM (x); M, M̃]. The evaluation of the right hand side of (3.19)
can be done in a subinterval-by-subinterval fashion. The implementation details can be found
in [12].

Then, we propose a fully discrete ELRKDG scheme with procedure as described:
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(a) Obtain the initial condition on upstream meshes Ĩ (1)
j (tn) and Ĩ (2)

j (tn) of (3.17) by

Un,(1)
h = Proj[Un

h ; I j , Ĩ (1)
j (tn)] and Un,(2)

h (tn) = Proj[Un
h ; I j , Ĩ (2)

j (tn)], which are

the L2 projections of solutions from the background mesh to the upstream mesh.
(b) Update (3.17) from Un

h to Un+1
h , component-by-component.

(a) Get the mesh information of the dynamic element Ĩ (1)
j (t (l)), l = 0, . . . , s on RK

stages by x̃ (1)
j± 1

2
(t) = x j± 1

2
+ (t − tn+1)ν

(1)
j± 1

2
. Here s = 1 for forward-Euler method

and s = 2 for Heun’s method (SSPRK2), see the blue domain in Fig. 2 and for
explicit midpoint RK2 with intermediate stage in Fig. 3.

(b1) For forward-Euler method, compute
∫

I j
u1,n+1
h �(x)dx

=
∫

I ∗,(1)
j

r11l
(1)TUn

h ψ(1),ndx + �t L11(U
n
h , tn, Ĩ (1)

j (tn))

+
∫

I ∗,(2)
j

r12l
(2)TUn

h ψ(2),ndx + �t L12(U
n
h , tn, Ĩ (2)

j (tn))

=
∫

I ∗,(1)
j

r11l
(1)TUn

h ψ(1),ndx

+ �t

(
−̂f 11

j+ 1
2
(Un,(1)

h )ψ
(1),n,−
j+ 1

2
+ ̂f 11

j− 1
2
(Un,(1)

h )ψ
(1),n,+
j− 1

2

+
∫

I ∗,(1)
j

f 11(Un,(1)
h )ψ(1)

x (x, tn)dx +
∫

I ∗,(1)
j

(r11l
(1)T )x AU

n
h ψ(1)(x, tn)dx

+
∫

I ∗,(1)
j

r11l
(1)T F(x, tn)ψ(1)(x, tn)dx

)

+
∫

I ∗,(2)
j

r12l
(2)TUn

h ψ(2),ndx

+ �t

(
−̂f 12

j+ 1
2
(Un,(2)

h )ψ
(2),n,−
j+ 1

2
+ ̂f 12

j− 1
2
(Un,(2)

h )ψ
(2),n,+
j− 1

2

+
∫

I ∗,(2)
j

f 12(Un,(2)
h )ψ(2)

x (x, tn)dx +
∫

I ∗,(2)
j

(r12l
(2)T )x AU

n
h ψ(2)(x, tn)dx

+
∫

I ∗,(2)
j

r12l
(2)T F(x, tn)ψ(2)(x, tn)dx

)

(3.20)
where �tn = tn+1 − tn . We compute the four integration terms of (3.20)
∫

I ∗,(1)
j

r11l
(1)TUn

h ψ(1),ndx,
∫

I ∗,(2)
j

r12l
(2)TUn

h ψ(2),ndx,

∫

Ĩ (1)
j (tn)

(r11l
(1)T )x AU

n
h ψ(1)(x, tn)dx,

∫

Ĩ (2)
j (tn)

(r12l
(2)T )x AU

n
h ψ(2)(x, tn)dx

highlighted in blue with Un
h on background meshes subinterval-by-subinterval for

mass conservation. Similarly, we can get u2,n+1
h on I j .
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Fig. 2 Illustration for dynamic elements Ĩ (1)j (t) (left) and Ĩ (2)j (t) (right) of ELDG for the first and second
characteristic families of the system (Color figure online)

(b2) For SSPRK2 method which is a trapezoid rule, we get u1h(t
(1)) from (3.20), then

compute

∫

I j
u1,n+1
h �(x)dx

=
∫

I ∗,(1)
j

r11l
(1)TUn

h ψ(1),ndx + 0.5�t L11(Uh(t
(1)), t (1), I j )

+
∫

I ∗,(2)
j

r12l
(2)TUn

h ψ(2),ndx + 0.5�t L12(Uh(t
(1)), t (1), I j ),

(3.21)

where t (1) = tn+1, u1h(t
(1)) and u2h(t

(1)) are defined on background mesh I j .
(b3) For general RK methods with intermediate stages, we will update intermediate RK

solutions on background mesh as in [8]. For example, for a 2nd order mid point rule,
it has an intermediate stage at t (1) = tn + �t

2 . We propose the following steps, also
see Fig. 3.
A. We denote the dynamic domain tracking I j from t (1) to tn with speed ν

(1)
j± 1

2
at

mesh point x j± 1
2
as Ĩ (1)

j,(1)(t), see the green domain in Fig. 3. Ĩ (2)
j,(1)(t) related

to second characteristic is defined similarly. Then we can update Uh(t (1)) on
Ĩ (1)
j,(1)(t) and Ĩ (2)

j,(1)(t) from tn to t (1) as in a forward-Euler method.

B. We updateUn+1
h on dynamic domain Ĩ (1)

j (t) and Ĩ (2)
j (t) fromUn

h with projection

onto I ∗,(1)
j and Uh(t (1)) with projection onto Ĩ (1)

j,(1)(t
(1)).

Theorem 3.2 (Conservation) The proposed fully discrete ELDG scheme with strong stability
preserving Runge–Kutta (SSPRK) time discretization for (3.1) with F = 0 is locally con-
servative. In particular, given a ELDG solution uh(x, tn) ∈ V k

h with a periodic boundary
condition, we have

N∑

i=1

∫

I j
Uh(x, t

n+1)dx =
N∑

i=1

∫

I j
Uh(x, t

n)dx .
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Fig. 3 Update RK intermediate solutions at the background mesh (red line) from the first characteristic family
of a hyperbolic system

Proof We firstly consider the forward Euler time discretization. Taking � = 1 and F = 0
in the scheme (3.20), we have

∫

�

u1,n+1
h dx =

∑

j

∫

I j
u1,n+1
h dx

=
∑

j

[∫

I ∗,(1)
j

r11l
(1)TUn

h dx + �t

(
−̂f 11

j+ 1
2
(U (1)

h (tn)) + ̂f 11
j− 1

2
(U (1)

h (tn))

+
∫

I ∗,(1)
j

(r11l
(1)T )x AU

n
h dx

)]

+
∑

j

[∫

I ∗,(2)
j

r12l
(2)TUn

h dx + �t

(
−̂f 12

j+ 1
2
(U (2)

h (tn)) + ̂f 12
j− 1

2
(U (2)

h (tn))

+
∫

I ∗,(2)
j

(r12l
(2)T )x AU

n
h dx

)]

=
∑

j

(∫

I ∗,(1)
j

r11l
(1)TUn

h dx +
∫

I ∗,(2)
j

r12l
(2)TUn

h dx

)

+ �t
∑

j

(∫

I ∗,(1)
j

(r11l
(1)T )x AU

n
h dx +

∫

I ∗,(2)
j

(r12l
(2)T )x AU

n
h dx

)

=
∫

�

(r11l
(1)T + r12l

(2)T )Un
h dx + �t

∫

�

(r11l
(1)T + r12l

(2)T )x AU
n
h dx

=
∫

�

u1,nh dx,

(3.22)

which follows from the cancellation of unique fluxes at cell boundaries, r11l(1)
T +r12l(1)

T =
[1, 0] and (3.4) with integration in a subinterval-by-subinterval fashion. The conservation for
the fully discrete ELDG scheme can be proved in a similar fashion. ��
Remark 3.3 To maintain the mass-conservative property, the choice of eigenvectors R(x) is
not necessarily exact for ELDG scheme, as long as R(x) and R−1(x) are a consistent pair
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throughout the domain. We can also choose an approximation of exact eigenvectors if it is
not easy to obtain.

Remark 3.4 Another version of non-conservative ELDG method, with localized eigen-
decomposition, is presented in the Appendix A. It was our first native attempt in developing
ELDGmethods for hyperbolic system. The essential difference between the non-conservative
method, compared to the conservative method, is the eigen-decomposition of characteris-
tic variables, in particular the R matrix in Eq. (3.2) and the projection onto characteristic
variables in Step (3) above. In the conservative method, the eigen-decompositions for the
first and second characteristic families are consistent locally; whereas in the nonconserva-
tive method, such decomposition depends on the cell of consideration (index by i or j as
elaborated below). Specifically, the space–time region of the first characteristic family �

(1)
j

could overlap with the second-characteristic family of another space–time region �
(2)
i (with

i �= j). Such inconsistency could cause issues with mass conservation, as illustrated next
in the numerical section. The numerical performance of the non-conservative method will
serve as a comparison for the proposed scheme in the numerical section.

3.2 2D Linear Hyperbolic System

The solution for high-dimensional hyperbolic systems is given by means of a characteristic
cone, rather than individual characteristic lines [15]. Numerically, characteristic Galerkin
[19] or evolution Galerkin [1, 16, 17] methods have been proposed and developed to solve
high dimensional hyperbolic systems. This method is constructed by taking into account
information propagated in all bicharacteristic directions and involving integrals around the
characteristic cone. However, the backward integrals over the mantle, involving intermediate
times, limit both the accuracy and the stability of the resulting schemes. Thus the finite volume
evolution Galerkin (FVEG) schemes are introduced, which is in a predictor–corrector plus
finite volume framework to get higher accuracy. Even though the FVEGmethod can achieve
high-order accuracy and stability with extra large step, the algorithm implementation is very
complex for high-dimensional problems. In this paper, we use the dimensional splitting
method for higher dimensional problem.

Consider a first order 2D linear hyperbolic system

Ut + (A(x, y)U )x + (B(x, y)U )y = 0, (x, y) ∈ �. (3.23)

We assume that the computational domain � is rectangular, and it can be partitioned into
rectangular meshes with each computational cell�i j = [xi− 1

2
, xi+ 1

2
]×[y j− 1

2
, y j+ 1

2
], where

we use the piecewise Qk tensor-product polynomial spaces. Thenwe extend ELDGalgorithm
to 2D problems via dimensional splitting [20].

1. We first locate (k + 1)2 tensor-product Gaussian nodes on cell �i j : (xi,p, y j,q), p, q =
0, . . . , k. For example, see Fig. 4(left) for the case of k = 3.

2. Then, the Eq. (3.23) is split into two 1D hyperbolic problems based on the quadrature
nodes in both x− and y− directions:

Ut + (A(x, y)U )x = 0, (3.24)

Ut + (B(x, y)U )y = 0. (3.25)

Based on a 1D ELDG formulation, the split Eqs. (3.24) and (3.25) are evolved via Strang
splitting over a time step �t as follows.
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Fig. 4 Illustration of the 2D ELDG scheme via Strang splitting k = 3

• Evolve 1D Eq. (3.24) at different y j,q points for a half time-step �t/2, see Fig. 4
(middle). For each y j,q , the (k + 1) point values are mapped to a Pk polynomial per
cell, then the 1D system (3.24) is evolved by the proposed ELDG scheme. Finally,
we can map the evolved Pk polynomial back to the (k + 1) point values to update
the solution.

• Evolve 1D system (3.25) at different xi,p points for a full time-step �t as above, see
Fig. 4(right).

• Evolve 1D system (3.24) at different y j,q points for another half time-step �t/2.

The splitting 2D ELDG formulation maintains high order accuracy in space, extra large time
stepping size with stability and conservation; and has a second order splitting error.

4 Numerical Results

In this section, we show numerical results of the proposed scheme for several linear strict
hyperbolic systems including the wave equation, Maxwell equation and linearized shallow
water equation. We set the time stepping size as �t = CFL

a �x for 1D and �t = CFL
a

�x + b
�y

for

2D, where a and b are maximum eigenvalues of coefficient matrixes in x- and y-directions
respectively. We use the classical fourth order Runge–Kutta (RK4) method for time dis-
cretization. We study the following aspects: the spatial order of convergence by using small
enough time stepping sizes, the temporal order of convergence and numerical stability under
a large time stepping size by varying CFL for a fixed spatial mesh. We also study the spatial
super-convergence of the post-processed solutions, so that temporal errorwill better dominate
in the temporal convergence study. For the enhancement of spatial accuracy, we implement
post-processing technique [5] to produce the post-processed solutions by convolving the
ELDG solution with a suitable kernel consisting of B-splines at the final time.

4.1 1DWave Equations

We consider the 1D wave equation:

utt = (a2(x)ux )x + f (x, t). (4.1)

For simplicity, we assume periodic boundary conditions, and the velocity field a(x) is a
continuous non-zero and periodic function of space. Defining u1 = ut and u2 = ux , we can
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rewrite (4.1) as a linear system (3.1) with

U =
[
u1

u2

]
, A(x) =

[
0 −a2(x)

−1 0

]
, F(x, t) =

[
f (x, t)
0

]
.

Assume the eigen-decompositionof A(x) = R(x)
R−1(x)with
(x) = diag(λ(1)(x), λ(2)(x)),
where the eigenvalues λ(1)(x) = a(x), λ(2)(x) = −a(x). The right eigenvectors and left
eigenvectors are respectively

R(x) =
[
r11(x) r12(x)
r21(x) r22(x)

]
=
[−a(x) a(x)

1 1

]
, R−1(x) =

⎡

⎣l
(1)
j

T

l(2)j

T

⎤

⎦ =
[ −1
2a(x)

1
2

1
2a(x)

1
2

]
. (4.2)

Corresponding to (A.1) and (A.2) related to non-conservative ELDG scheme, we also have
the following localized eigen-decomposition

R j =
[
r11j r12j
r21j r22j

]
=
[−a j a j

1 1

]
, R−1

j =
⎡

⎣l
(1)
j

T

l(2)j

T

⎤

⎦ =
[ −1
2a j

1
2

1
2a j

1
2

]
. (4.3)

Example 4.1 (1Dwave equationwith constant coefficient).We consider the 1DwaveEq. (4.1)
with constant coefficient a(x) = 1 and the source term f (x, t) = 0. The initial data is
u(x, 0) = sin(x), x ∈ [0, 2π ] with periodic boundary condition. The exact solution is
u(x, t) = sin(x+t). For the constant coefficient problem, if using exact characteristic velocity
fields for space–time partition and exact eigenvectors, the proposedELDGmethod is the same
as SLDG, then it is unconditionally stable. Here we perturb the characteristic velocity ν

(1)
j+ 1

2
in (3.6) at cell boundaries and/or a(x) in (4.2) related to approximating eigenvectors to get
ELDG, ELDG1, ELDG2 and ELDG3 schemes respectively. Similarly we implement the
non-conservative ELDG methods denoted as NC ELDG, NC ELDG1, NC ELDG2 and NC
ELDG3. Related parameters of these ELDG methods are given in Table 1.

Tables 2 and 3 report spatial accuracies of the ELDG, ELDG1, ELDG2 and ELDG3
methods for this example under the same time stepping size without andwith post-processing
technique. We can observe the optimal convergence rate k + 1 and 2k + 1. We vary time
stepping sizes, with fixed well-resolved spatial meshes, and plot error versus CFL in Figs. 5
and 6 for ELDG, ELDG1, ELDG2 and ELDG3 schemes without and with post-processed
technique respectively, after a long time T = 100. The plots from post-processed ELDG
schemes better show the fourth order temporal convergence. ELDG2 and ELDG3 perform
comparably; they have a more restricted time step constraint than ELDG1. It indicates that,
stability is affected by approximations of characteristic via the space–time partition and
approximation of eigenvectors. We also note that, in both Figs. 5 and 6, the CFL allowed
with stability (observed to be around 1) is much larger than that of the RK DG method
which is 1

2k+1 . We observe similar performance of NC ELDG schemes in terms of the
error and stability for this test; but skip presenting results to save space. Further, we verify
the conservative property of the ELDG schemes are around machine precision and the non-
conservative property of the NC ELDG schemes is presented in Fig. 7.

Example 4.2 We consider the wave Eq. (4.1) with a Gaussian initial condition

u1 = exp

(
− x2

0.005

)
, u2 = 0.
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Fig. 5 The L∞ error versus CFL of various ELDG methods for 1D wave equation with the initial condition
u(x, 0) = sin(x). A long time simulation is performed with T = 100 and mesh size N = 160

Fig. 6 The L∞ error versus CFL of various ELDG methods with post-processed technique for 1D wave
equation with constant coefficient: utt = uxx with initial condition u(x, 0) = sin(x). A long time simulation
is performed with T = 100 and mesh size N = 160

Fig. 7 The error of mass versus time of ELDG schemes for 1D wave equation and the initial condition
u(x, 0) = sin(x). A long time simulation T = 100 is performed with meshes N = 160, CFL = 0.1 and RK4
time discretization. In the legend “NMC” is for the non-conservative method
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Table 2 1D wave equation with the initial condition u(x, 0) = sin(x) at T = 1

Mesh L1 Error Order L1 Error Order L1 Error Order L1 Error Order
P1 ELDG P1 ELDG1 P1 ELDG2 P1 ELDG3

20 2.54E−03 – 2.42E−03 – 2.55E−03 – 2.49E−03 –

40 6.18E−04 2.03 5.97E−04 2.02 6.18E−04 2.04 5.99E−04 2.06

80 1.58E−04 1.96 1.55E−04 1.94 1.58E−04 1.96 1.55E−04 1.95

160 3.66E−05 2.11 3.62E−05 2.10 3.66E−05 2.11 3.62E−05 2.10

P2 ELDG P2 ELDG1 P2 ELDG2 P2 ELDG3

20 5.92E−05 – 6.91E−05 – 6.01E−05 – 7.02E−05 –

40 7.48E−06 2.99 7.83E−06 3.14 7.49E−06 3.00 7.81E−06 3.17

80 9.17E−07 3.03 9.29E−07 3.08 9.17E−07 3.03 9.29E−07 3.07

160 1.17E−07 2.97 1.18E−07 2.98 1.17E−07 2.97 1.18E−07 2.98

We use CFL = 0.3 and CFL = 0.18 with RK4 time discretization for all P1 and P2 respectively. The error
for only u1 = ut was shown in this table

Table 3 1D wave equation with the initial condition u(x, 0) = sin(x) at T = 1

Mesh L1 Error Order L1 Error Order L1 Error Order L1 Error Order
P1 ELDG P1 ELDG1 P1 ELDG2 P1 ELDG3

20 2.26E−04 – 2.49E−04 – 2.38E−04 – 2.39E−04 –

40 2.36E−05 3.26 2.40E−05 3.38 2.40E−05 3.31 2.35E−05 3.35

80 2.66E−06 3.15 2.64E−06 3.18 2.67E−06 3.16 2.62E−06 3.16

160 3.15E−07 3.08 3.11E−07 3.08 3.15E−07 3.09 3.11E−07 3.08

P2 ELDG P2 ELDG1 P2 ELDG2 P2 ELDG3

20 2.15E−06 – 2.27E−06 – 2.19E−06 – 2.28E−06 –

40 3.63E−08 5.89 3.86E−08 5.87 3.67E−08 5.90 3.89E−08 5.87

80 6.40E−10 5.83 6.79E−10 5.83 6.46E−10 5.83 6.84E−10 5.83

160 1.27E−11 5.66 1.33E−11 5.68 1.28E−11 5.66 1.34E−11 5.68

We use CFL = 0.3 and CFL = 0.18 with RK4 time discretization and post-processed technique for all P1

and P2 respectively. The error with post-processed technique for only u1 = ut was shown in this table

The computational domain is [−1, 1] with the periodic boundary conditions. The exact solu-
tions u1 = 0.5

[
exp
(
− (x+t)2

0.005

)
+ exp

(
− (x−t)2

0.005

)]
and u2 = 0.5

[
exp
(
− (x+t)2

0.005

)
− exp

(
− (x−t)2

0.005

)]
are the superposition of two Gaussian functions with a periodic extensions.

We plot the solution u1 from ELDG3 with P1 and P2 numerical solutions at time T = 50.5
in Fig. 8. We can observed that there is no significant phase difference with a long time
simulation, meanwhile the dissipation can be improved by the mesh refinement and higher
order spatial approximation. Note that the CFL number we use here is much larger than the
upper bound for Eulerian RK DG methods.
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Fig. 8 Plots of the exact and numerical solutions u1 at time T = 50.5 of ELDG3 scheme for solving utt = uxx
with Gaussian function initial condition. The mesh size of N = 80 and N = 320 are used. Left: k = 1 ELDG3
with CFL = 1.5. Right: k = 2 ELDG3 with CFL = 0.9

Fig. 9 Plots of the numerical solutions u1 of ELDG3 scheme with TVD limiter for the wave equation with
step function initial condition. The final integration time T is 2.85. The mesh of 160 is used. Left: k = 1
ELDG3+TVDlimiter with CFL = 1.5. Right: k = 2 ELDG3+TVDlimiter with CFL = 0.9

Example 4.3 Weconsider thewaveEq. (4.1) on [0, 2π ]with the periodic boundary conditions
and the following discontinuous initial condition

u10(x) =
{
1, if 0.95π ≤ x ≤ 1.05π,

0.5, otherwise,

u20(x) = 1.

(4.4)

The exact solutions u1 and u2 are discontinuous piecewise constants with moving disconti-
nuities. It is a challenging test for controlling oscillations around discontinuities. We adopt
a simple TVD limiter on background mesh at each RK stages with M = 0 in [6] for all
schemes. As shown in Fig. 5, the CFL constraint with stability is slightly less than 1 for
ELDG3 scheme. We plot the numerical solutions u1 of ELDG3 scheme with P1 and P2,
CFL = 0.9 in Fig. 9. It is found that oscillations are well controlled with the TVD limiter
and ELDG method performs well for large time stepping size. Moreover, we track the con-
servation of ELDG methods, in comparison to the NC ELDG methods and present results in
Fig. 10. It shows that the ELDG schemes maintain the conservation at the level of machine
error, while the NC ELDG schemes do not.
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Fig. 10 The error of mass versus time of various ELDG methods with TVD limiter for 1D wave equation.
T = 2.85, N = 160, CFL = 0.9 and RK4 time discretization are performed for the simulation

Fig. 11 The L∞ error versus CFL of ELDG method for Example 4.4. T = 1. �t = CFL�x

Example 4.4 (1D wave equation with variable coefficient and source term). We consider the
1D wave Eq. (4.1) with variable coefficient a(x) = 2 + sin(x) and exact solution u(x, t) =
sin(x − 2t) is periodic on [0, 2π ]. The source term is f (x, t) = −4 sin(x − 2t) + sin(x −
2t)(2 + sin(x))2 − 2(2 + sin(x)) cos(x) cos(x − 2t). For computation, we choose mesh
velocity ν

(1)
j+ 1

2
= a(x j+ 1

2
), ν

(2)
j+ 1

2
= −ν

(1)
j+ 1

2
and exact eigenvectors with a(x) = 2 + sin(x)

in (4.2).
The expected optimal spatial accuracies of the ELDG methods without and with post-

processing technique are shown in Tables 4 and 5 respectively. In Figs. 11 and 12, we plot
the L∞ error versus CFL of EL DG methods without and with post-processing technique
respectively. The following observations are made: (1) The high order accuracy of the RK
method reduce the error magnitude when large time stepping size is used; (2) The ELDG
methods with RK4 time discretization perform well around and before CFL = 1, which is
well above the stability constraint of theRKDGmethod 1/(2k+1) for Pk approximations. (3)
AfterCFL = 1 and before stability constraint of themethod, the temporal convergence order
is observed to be consistent with the order of RK discretization; (4) The ELDGmethods with
post-processing technique have smaller error magnitute than those without post-processing.
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Table 4 Example 4.4

Mesh L1 Error Order L2 Error Order L∞ Error Order

P1

20 5.20E−03 – 6.70E−03 – 2.39E−02 –

40 1.32E−03 1.98 1.74E−03 1.94 6.54E−03 1.87

80 3.28E−04 2.00 4.40E−04 1.99 1.68E−03 1.96

160 8.11E−05 2.02 1.09E−04 2.01 4.16E−04 2.01

P2

20 1.16E−04 – 1.61E−04 – 5.48E−04 –

40 1.48E−05 2.97 2.01E−05 3.00 6.70E−05 3.03

80 1.88E−06 2.98 2.46E−06 3.03 7.84E−06 3.10

160 2.31E−07 3.02 3.13E−07 2.98 1.04E−06 2.91

T = 1. We use CFL = 0.1 for P1 and P2 with RK4 time discretization. The error for only u1 = ut was
shown in this table

Table 5 Example 4.4

Mesh L1 Error Order L2 Error Order L∞ Error Order

P1

20 9.10E−04 – 1.07E−03 – 1.91E−03 –

40 1.07E−04 3.09 1.26E−04 3.09 2.26E−04 3.08

80 1.29E−05 3.05 1.53E−05 3.05 2.75E−05 3.04

160 1.58E−06 3.02 1.88E−06 3.02 3.39E−06 3.02

P2

20 5.34E−06 – 6.39E−06 – 1.56E−05 –

40 8.95E−08 5.90 1.03E−07 5.96 2.82E−07 5.79

80 1.73E−09 5.69 1.94E−09 5.73 3.32E−09 6.41

160 6.62E−11 4.71 7.59E−11 4.67 1.46E−10 4.51

T = 1. We use CFL = 0.1 for P1 and P2 with post-processed technique and RK4. The error for only
u1 = ut was shown in this table

Fig. 12 The L∞ error versus CFL of ELDG method with post-processed technique for Example 4.4. T = 1.
�t = CFL�x
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Table 6 Example 4.5

Mesh L1 error Order L2 error Order L∞ error Order

Q1

202 8.03E−04 – 9.47E−04 – 1.85E−03 –

402 2.16E−04 1.89 2.50E−04 1.92 4.56E−04 2.02

802 5.57E−05 1.96 6.40E−05 1.97 1.13E−04 2.02

1602 1.43E−05 1.96 1.64E−05 1.97 2.84E−05 1.99

Q2

202 1.70E−04 – 1.90E−04 – 3.12E−04 –

402 2.21E−05 2.95 2.47E−05 2.94 4.14E−05 2.91

802 2.75E−06 3.00 3.08E−06 3.00 5.21E−06 2.99

1602 3.38E−07 3.02 3.80E−07 3.02 6.45E−07 3.01

Qk ELDG methods (k = 1, 2) with RK4 and 4th time discretization methods for (4.5) with the smooth initial
condition at T = 1. CFL = 0.1

4.2 2DWave Equations

Example 4.5 (Two-dimensional linear systemwith constant coefficientmatrices). The second
order wave equation utt = uxx + uyy can be written as the following first order linear
hyperbolic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
u

v

)

t

+
(

−1 0

0 1

)(
u

v

)

x

+
(

0 −1

−1 0

)(
u

v

)

y

=
(
0

0

)
,

u(x, y, 0) = 1
2
√
2
sin(x + y) − 1

2
√
2
cos(x + y),

v(x, y, 0) =
√
2−1
2
√
2
sin(x + y) +

√
2+1
2
√
2
cos(x + y)

(4.5)

with period boundary conditions in both x and y directions. The exact solution is
⎧
⎨

⎩
u(x, y, t) = 1

2
√
2
sin(x + y + √

2t) − 1
2
√
2
cos(x + y − √

2t),

v(x, y, t) =
√
2−1
2
√
2
sin(x + y + √

2t) +
√
2+1
2
√
2
cos(x + y − √

2t).
(4.6)

We notice that the two matrices in Eq. (4.5) don’t commute, thus the linear system can not
be reduced to 2D scalar problems. We test accuracy for Qk ELDG methods with RK4 and
4th order dimensional splitting method [23, 24] at T = 1 for k = 1, 2 with CFL = 0.1 in
Table 6. As expected, the (k + 1)th order convergence is observed for these methods. We
plot the L∞ error versus CFL of ELDG methods with Q1 (left) and Q2 (right) polynomial
spaces for this case with Strang splitting and 4th order splitting in Fig. 13, which shows
that second and forth order splitting errors are dominant when time-stepping sizes are large
enough. The CFL constraint with stability for ELDG method is larger than that for general
RKDG method when high order time discretization is applied.

Example 4.6 (Two-dimensional linear systemwith variable coefficient matrices). The second
order wave equation utt = (a2(x, y)ux )x + (b2(x, y)uy)y can be written as the following
first order linear hyperbolic system by taking u1 = ut , u2 = ux , u3 = uy :
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Fig. 13 Example 4.5. The L∞ error versus CFL of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.5) at T = 1

⎧
⎨

⎩

⎛

⎝
u1
u2
u3

⎞

⎠

t

+
⎡

⎣

⎛

⎝
0 −(a(x, y))2 0

−1 0 0
0 0 0

⎞

⎠

⎛

⎝
u1
u2
u3

⎞

⎠

⎤

⎦

x

+
⎡

⎣

⎛

⎝
0 0 −(b(x, y)2)
0 0 0

−1 0 0

⎞

⎠

⎛

⎝
u1
u2
u3

⎞

⎠

⎤

⎦

y

=
⎛

⎝
0
0
0

⎞

⎠ . (4.7)

We consider the system (4.7) with the initial condition
⎧
⎪⎨

⎪⎩

u1(x, y, 0) = 2 cos(x + y),

u2(x, y, 0) = cos(x + y),

u3(x, y, 0) = cos(x + y),

(4.8)

where a(x, y) = 1+0.5 sin(x+ y), b(x, y) = √(4 − (1 + 0.5 sin(x + y))2) and the bound-
ary condition is periodic in both x and y directions. The exact solution is

⎧
⎪⎨

⎪⎩

u1(x, y, t) = 2 cos(x + y + 2t),

u2(x, y, t) = cos(x + y + 2t),

u3(x, y, t) = cos(x + y + 2t).

(4.9)

We report the spatial accuracy of Qk ELDG methods in Table 7. The expected optimal
convergence is observed. We plot the L∞ error versus CFL of ELDG methods in Fig. 14.
The ELDG methods perform as well as that for the linear system with constant coefficient
matrices, and the CFL allowed with stability is much larger than that of the RKDG method.

4.3 2DMaxwell Equations

Example 4.7 Consider the 2D Maxwell equations:
⎧
⎪⎨

⎪⎩

∂Hx
∂t + ∂Ez

∂ y = 0,
∂Hy
∂t − ∂Ez

∂x = 0,
∂Ez
∂t − ∂Hy

∂x + ∂Hx
∂ y = 0,

(4.10)
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Table 7 Example 4.6

Mesh L1 Error Order L2 Error Order L∞ Error Order

Q1

202 1.89E−03 – 2.46E−03 – 5.29E−03 –

402 4.58E−04 2.05 6.01E−04 2.03 1.26E−03 2.07

802 1.13E−04 2.02 1.50E−04 2.00 3.10E−04 2.02

1602 2.81E−05 2.01 3.73E−05 2.01 7.67E−05 2.01

Q2

202 2.95E−04 – 3.66E−04 – 8.43E−04 –

402 4.06E−05 2.86 4.91E−05 2.90 1.01E−04 3.07

802 5.15E−06 2.98 6.20E−06 2.99 1.30E−05 2.95

1602 6.49E−07 2.99 7.80E−07 2.99 1.63E−06 2.99

Qk ELDGmethods (k = 1, 2) with RK4 and 4th splitting time discretization methods for (4.7) with the smooth
initial condition at T = 0.1, CFL = 0.1

Fig. 14 Example 4.6. The L∞ error versus CFL of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.7). T = 1, mesh size 402

which is a linear hyperbolic system and can be written as

Ut + AUx + BUy = 0, (4.11)

where

U =
⎡

⎣
u1
u2
u3

⎤

⎦ =
⎡

⎣
Ez

Hx

Hy

⎤

⎦ , A =
⎡

⎣
0 0 −1
0 0 0

−1 0 0

⎤

⎦ , B =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ .

We take the computational domain [−1, 1] × [−1, 1] with periodic boundary condition and
the Gaussian function initial condition:

⎧
⎪⎨

⎪⎩

u1(x, y, 0) = exp(− x2+y2

0.005 ),

u2(x, y, 0) = 0,

u3(x, y, 0) = 0.

(4.12)
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For this example, we show the numerical ELDG Q2 solution u1 at times T = 0.5, 1, 1.5, 2
in Fig. 15.

4.4 2D Linearized ShallowWater Equations

Weconsider the following linearized shallowwater system fromoceanic shallowwatermodel
[11]:

∂

∂t

⎡

⎣
φ

�u
�v

⎤

⎦+ ∂

∂x

⎡

⎣
�u
�φ

0

⎤

⎦+ ∂

∂ y

⎡

⎣
�v

0
�φ

⎤

⎦ =
⎡

⎣
0

f �v − r�u + τx
ρ

− f �u − r�v + τy
ρ

⎤

⎦ , (4.13)

where φ is the geopotential height,� > 0 is a constant mean flow geopotential height, (u, v)

is the perturbed velocity, γ ≥ 0 is the bottom friction, (τx , τy) is the wind stress, ρ is the
water density, and f = f0 + β(y − ym) is the Coriolis parameter, where f0, β, ym are
constants. The linearized shallow water equations is a linear hyperbolic system

Ut + AUx + BUy = F in �, (4.14)

where

U =
⎡

⎣
φ

�u
�v

⎤

⎦ , A =
⎡

⎣
0 1 0
� 0 0
0 0 0

⎤

⎦ , B =
⎡

⎣
0 0 1
0 0 0
� 0 0

⎤

⎦ , F =
⎡

⎣
0

f �v − γ�u + τx
ρ

− f �u − γ�v + τy
ρ

⎤

⎦ .

Example 4.8 We take � = 1, f = 0, γ = 0, and (τx , τy) = 0, which implies F = 0. The
computational domain � is taken as [−1, 1]× [−1, 1] with periodic boundary condition and
the discontinuous initial condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(x, y, 0) =
{
1, if y ≥ x,

0.5, otherwise,

u(x, y, 0) = 1,

v(x, y, 0) = 1.

(4.15)

We use TVD limiter and show the numerical ELDG Q2 solution (φ, u, v) at times T = 0.5
in Fig. 16 with CFL = 1. Stable and accurate results are observed.

Example 4.9 We also consider the linear Kelvin wave by taking � = 1, f0 = ym = 0, β =
1, γ = 0, and (τx , τy) = 0, F = [0, yv,−yu]T . The computational domain� is [−10, 10]×
[−5, 5] with periodic boundary condition. We consider the following exact solution:

⎧
⎪⎪⎨

⎪⎪⎩

φ = 1 + exp
(
− y2

2

)
exp
(
− (x+5−t)2

2

)
,

u = exp
(
− y2

2

)
exp
(
− (x+5−t)2

2

)
,

v = 0.

(4.16)
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Fig. 15 Plots of the ELDG numerical solutions u1 = Ez and their contour plots at T = 0.5, 1, 1.5, 2 for 2D
Maxwell Eq. (4.11) with Gaussian function initial condition. The mesh of 80 × 80 is used with 4th splitting
method and RK4 time discretization, CFL = 1
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Fig. 16 Example 4.8. Plots of the ELDG Q2 numerical solutions (φ, u, v) (from top to bottom) and their
contour plots at T = 0.5. The mesh is 80 × 80; 4th splitting method and RK4 time discretization with
CFL = 1 is used

We split the system as the following 1D system for stability

∂

∂t

⎡

⎣
φ

u
v

⎤

⎦+
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ ∂

∂x

⎡

⎣
φ

u
v

⎤

⎦ =
⎡

⎣
0
yv

−yu

⎤

⎦ ,

∂

∂t

⎡

⎣
φ

u
v

⎤

⎦+
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ ∂

∂ y

⎡

⎣
φ

u
v

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

(4.17)
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Table 8 Example 4.9

Mesh L1 Error Order L2 Error Order L∞ Error Order

Q1

202 1.06E−03 – 4.06E−03 – 4.59E−02 –

402 2.24E−04 2.25 8.42E−04 2.27 9.95E−03 2.20

802 5.42E−05 2.05 1.96E−04 2.10 2.15E−03 2.21

1602 1.35E−05 2.01 4.82E−05 2.03 4.91E−04 2.13

Q2

202 1.27E−04 – 4.64E−04 – 4.81E−03 –

402 1.95E−05 2.71 7.04E−05 2.72 6.14E−04 2.97

802 2.64E−06 2.89 9.67E−06 2.86 8.61E−05 2.83

1602 3.45E−07 2.94 1.24E−06 2.97 1.09E−05 2.98

We take CFL = 1.0 and use Qk ELDG methods (k = 1, 2) with RK4 and 4th splitting time discretization
methods at T = 1. The error for only φ was shown in this table

Fig. 17 Example 4.9. The L∞ error versus CFL of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization with T = 1, mesh size 402

We take CFL = 1.0 and use Qk ELDG methods (k = 1, 2) with RK4 and 4th splitting
time discretization methods for this example. The error table is shown in Table 8, where the
optimized convergence rate is observed. We also show the L∞ error versus CFL of ELDG
method with Strang splitting and 4th splitting, RK4 time discretization in Fig. 17. For this
system, the total energy Etot (t) = 1

2 (||φ||2 + ||u||2 + ||v||2) should be preserved. Figure18
shows that the ELDG method preserves the total energy to very high precision (the relative
error is less than 10−5 for Q1 and 10−8 for Q2).

5 Conclusion

In this paper, we have developed a conservative Eulerian–Lagrangian discontinuous Galerkin
(ELDG) method for linear hyperbolic systems. The new framework tracks the information of
each characteristic family by the corresponding characteristic region, and these components
are recombined in a conservative fashion. The method is shown to be stable under larger
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Fig. 18 Example 4.9. The time evolution of the relative energy |(Etot (t) − Etot (0))/Etot (0)| of Q1 and Q2

ELDG method with 4th splitting, RK4 time discretization with CFL = 1 and mesh size 1602

time stepping constraints than the corresponding Eulerian RKDGmethods. The methods are
tested via extensive numerical experiments for 1D and 2D linear hyperbolic problems. Future
works include further theoretic development and extension to general nonlinear hyperbolic
problems.
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A Appendix A: Non-conservative ELDG Scheme

In this part, we formulate the scheme by a localized characteristic field. In particular, a
piecewise constant a j approximating a(x) in (3.3) is defined on I j , and the corresponding

R j
.=
[
r (1)
j | r (2)

j

]
=
[
r11j r12j
r21j r22j

]
(A.1)

and

R−1
j

.=
⎡

⎣l
(1)
j

T

l(2)j

T

⎤

⎦ (A.2)

Define l(1)j

T
is locally defined on �

(1)
j approximating l(1)

T
(x). For simplicity, we only

present the first order ELDG scheme. Take the vector product of l(1)j

T
from left with (3.1),

we have a scalar equation

l(1)j

T
(Ut + (A(x)U )x ) = l(1)j

T
F(x, t). (A.3)
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Next, integrating over the space–time interval Ĩ (1)
j (t), then we have

d

dt

∫

Ĩ (1)
j (t)

(l(1)j

T
U )dx + l(1)j

T
(A(x)U

− ν
(1)
j+ 1

2
U )|

x̃ (1)

j+ 1
2
(t)

− l(1)j

T
(A(x)U − ν

(1)
j− 1

2
U )|

x̃ (1)

j− 1
2
(t)

=
∫

Ĩ (1)
j (t)

l(1)j

T
F(x, t)dx .

(A.4)

The first order ELDG discretization of Eq. (A.4) is to find l(1)j Uh(x, t) ∈ P0( Ĩ (1)
j (t)), so that

d

dt

∫

Ĩ (1)
j (t)

l(1)j

T
Uhdx = −

[
l(1)j

T ̂
(A(x)Uh − ν

(1)
j+ 1

2
Uh)| j+ 1

2

]

+
[
l(1)j

T ̂
(A(x)Uh − ν

(1)
j− 1

2
Uh)| j− 1

2

]

+
∫

Ĩ (1)
j (t)

l(1)j

T
F(x, t)dx

.= L1(Uh(t), t, Ĩ
(1)
j (t)).

(A.5)

Here
̂

(A(x)Uh − ν
(1)
j+ 1

2
Uh) at a cell boundary can be taken as a monotone flux, e.g. the

Lax–Friedrichs flux

̂
(AU − ν

(1)
j+ 1

2
U )

j+ 1
2

= 1

2

(
A(x+

j+ 1
2
)U+

j+ 1
2

− ν
(1)
j+ 1

2
U+

j+ 1
2

+ A(x−
j+ 1

2
)U−

j+ 1
2

−ν
(1)
j+ 1

2
U−

j+ 1
2

− α1,2(U
+
j+ 1

2
−U−

j+ 1
2
)

)

where α1,2 = max{|λ(1)(x j+ 1
2
) − ν

(1)
j+ 1

2
|, |λ(2)(x j+ 1

2
) − ν

(2)
j+ 1

2
|}.

Similarly, we can easily update l(2)j

T
Uh related to λ(2) in the following:

d

dt

∫

Ĩ (2)
j (t)

l(2)j

T
Uhdx = −

[
l(2)j

T ̂
(A(x)Uh − ν

(2)
j+ 1

2
Uh)| j+ 1

2

]

+
[
l(2)j

T ̂
(A(x)Uh − ν

(2)
j− 1

2
Uh)| j− 1

2

]

+
∫

Ĩ (2)
j (t)

l(2)j

T
F(x, t)dx

.= L2(Uh(t), t, Ĩ
(2)
j (t)),

(A.6)

where l(2)j

T
is a constant vector, locally defined on Ĩ (2)

j (t) approximating l(2)
T
(x).
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A simple first order ELDG scheme is composed by two evolution Eqs. (A.5) and (A.6).

That is, we can update u1h by (A.5), (A.6) and u1h = (r11j l(1)j

T + r12j l(2)j

T
)Uh :

∫

I j
u1,n+1
h dx =

∫

I j
r11j l(1)j

T
Un+1
h dx +

∫

I j
r12j l(2)j

T
Un+1
h dx

= r11j

∫

I ∗,(1)
j

l(1)j

T
Un
h dx + r11j

∫ tn+1

tn
L1(U

(1)
h (t), t, Ĩ (1)

j (t))dt

+ r12j

∫

I ∗,(2)
j

l(2)j

T
Un
h dx + r12j

∫ tn+1

tn
L2(U

(2)
h (t), t, Ĩ (2)

j (t))dt,

(A.7)

whereUn
h andUn+1

h are defined on the background mesh I j ,U
(1)
h (t) andU (2)

h (t) are defined

on the space–time dynamic meshes Ĩ (1)
j (t) and Ĩ (2)

j (t) respectively. Similarly, we can update

u2h .
We apply forward-Euler method for time discretization with above ELDG scheme (A.7):

∫

I j
u1,n+1dx = r11j

∫

I ∗,(1)
j

l(1)j

T
Undx − �t r11j l(1)j

T

[
̂

(A(x)Un − ν
(1)
j+ 1

2
Un)|

x�,(1)

j+ 1
2

− ̂
(A(x)U − ν

(1)
j− 1

2
U )|

x�,(1)

j− 1
2

]

+ r12j

∫

I ∗,(2)
j

l(2)j

T
Undx − �t r12j l(2)j

T

[
̂

(A(x)Un − ν
(2)
j+ 1

2
Un)|

x�,(2)

j+ 1
2

− ̂
(A(x)U − ν

(2)
j− 1

2
U )|

x�,(2)

j− 1
2

]
.

(A.8)

Remark A.1 The above ELDG scheme is not conservative for two reasons:

(1) Flux terms can’t cancel each other as r11j l(1)j

T
and r12j l(2)j

T
are discontinuous across cell

boundary of �
(1)
j ,�

(2)
j .

(2)
∑

j r
11
j

∫
I ∗,(1)
j

l(1)j

T
Undx + r12j

∫
I ∗,(2)
j

l(1)j

T
Undx �= ∑ j

∫
I j
Undx because of the incon-

sistency in characteristic transformations between neighboring cells among r11j l(1)j

T
and

r12j l(2)j

T
.

B Appendix B: The Notation of Test Function

We give some notations which is used in the implementation of the fully discrete ELDG
scheme with RK time discretization.

For convenience, we only give the definitions related to �
(1)
j below because we can

similarly get the definitions related to �
(2)
j . As scalar case, we take test function ψ(1)(x, t)

as ψ
(1)
j,m(x, t) = � j,m(x − α(1)(t − tn+1)) in the adjoint problem which is a set of basis of

Pk( Ĩ (1)
j (t)), where Ĩ (1)

j (t) is donated by a domain related λ(1) as Ĩ j (t) in scalar problem.
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Here, we also take � j,m as orthogonal basis on I j , and let

u1,(1)h (x, t) =
k∑

l=0

û1,(1);(l)j (t)ψ(1)
j,l (x, t), on Ĩ (1)

j (t), (B.1)

where û1,(1);(l) are coefficients for the basis. Let Û 1,(1)
j (t) = (û1,(1);(0)j (t), . . . , û1,(1);(k)j (t))T

be the coefficient vector of size (k + 1) × 1. Then we have
[∫

Ĩ (1)
j (t)

u1,(1)h (x, t)ψ(1)
j,0(x, t)dx, . . . ,

∫

Ĩ (1)
j (t)

u1,(1)h (x, t)ψ(1)
j,k(x, t)dx

]T

= Û 1,(1)
j (t),∀t ∈ [tn, tn+1].

Û 2,(1)
j (t) can be similarly defined.

Similar definition can bemade to�
(2)
j andψ(2)(x, t) for the second characteristics family.

References

1. Butler, D.S.: The numerical solution of hyperbolic systems of partial differential equations in three
independent variables. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 255(1281), 232–252 (1960)

2. Cai, X., Guo, W., Qiu, J.-M.: A high order conservative semi-Lagrangian discontinuous Galerkin method
for two-dimensional transport simulations. J. Sci. Comput. 73(2–3), 514–542 (2017)

3. Cai, X., Qiu, J.-M., Yang, Y.: An Eulerian–Lagrangian discontinuous Galerkin method for transport
problems and its application to nonlinear dynamics. J. Comput. Phys. 439, 110392 (2021)

4. Celia, M., Russell, T., Herrera, I., Ewing, R.: An Eulerian–Lagrangian localized adjoint method for the
advection–diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

5. Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003)

6. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

7. Crouseilles, N., Mehrenberger, M., Vecil, F.: Discontinuous Galerkin semi-Lagrangian method for
Vlasov–Poisson. In: ESAIM: Proceedings, vol. 32, pp. 211–230. EDP Sciences (2011)

8. Ding,M., Cai, X.,Guo,W.,Qiu, J.-M.:A semi-Lagrangian discontinuousGalerkin (DG)-localDGmethod
for solving convection–diffusion equations. J. Comput. Phys. 409, 109295 (2020)

9. Einkemmer, L.,Ostermann,A.:Convergence analysis of a discontinuousGalerkin/Strang splitting approx-
imation for the Vlasov–Poisson equations. SIAM J. Numer. Anal. 52(2), 757–778 (2014)

10. Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J.
Numer. Anal. 36(3), 935–952 (1999)

11. Giraldo, F.X.,Warburton, T.:Ahigh-order triangular discontinuousGalerkin oceanic shallowwatermodel.
Int. J. Numer. Methods Fluids 56(7), 899–925 (2008)

12. Guo, W., Nair, R., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the
cubed-sphere. Mon. Weather Rev. 142(1), 457–475 (2013)

13. Hong, X., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method for hyperbolic equa-
tions involving δ-singularities. SIAM J. Numer. Anal. 58(1), 125–152 (2020)

14. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method
for conservation laws: analysis and application in one dimension. Math. Comput. 86(305), 1203–1232
(2017)

15. Kröger, T.:Multidimensional systems of hyperbolic conservation laws, numerical schemes, and character-
istic theory: connections, differences, and numerical comparison. Ph.D. Thesis, Aachen, Techn. Hochsch.,
Diss., (2004)

16. Lax, P.: Systems of Conservation Laws. Technical report, LOS ALAMOS NATIONAL LAB NM (1959)
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