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Abstract

We propose an Eulerian-Lagrangian (EL) Runge—Kutta (RK) discontinuous Galerkin (DG)
method for a linear hyperbolic system. The method is designed based on the ELDG method
for transport problems (J Comput Phys 446:110,632, 2021), which tracks solutions along
approximations to characteristics in the DG framework, allowing extra large time stepping
sizes with stability with respect to the classical RKDG method. Considering each charac-
teristic family, a straightforward application of ELDG for the hyperbolic system will be to
transform to the characteristic variables, evolve them on associated characteristic-related
space—time regions, and transform them back to the original variables. However, the conser-
vation could not be guaranteed in a general setting. In this paper, we formulate a conservative
semi-discrete ELDG method by decomposing each variable into two parts, each of them
associated with a different characteristic family. As a result, four different quantities are
evolved in EL fashion and recombined to update the solution. The fully discrete scheme is
formulated by using method-of-lines RK methods, with intermediate RK solutions updated
on the background mesh. Numerical results for 1D and 2D wave equations are presented to
demonstrate the performance of the proposed ELDG method. These include the high order
spatial and temporal accuracy, stability with extra large time stepping size, and conservative

property.
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1 Introduction

In this paper, we propose an Eulerian—-Lagrangian (EL) discontinuous Galerkin (DG) method
for the first-order hyperbolic system in the form of

d
Ui+ (Ajx, 0OU),; = F(x, 1), (x,1) €eR? x [0, T], (1.1)
j=1

where d is the spatial dimension, U : R? x [0, T] — R", and Aj(x,t) € R4, Examples
of such a system include the wave equations, Maxwell’s equations, linearized shallow water
equations. There are various versions of DG methods for solving hyperbolic systems, such as
the Runge—Kutta DG methods [6] and the space—time DG methods [10, 18]. These methods
belong to the class of Eulerian approach, thus suffer from the CFL condition. An alternative
numerical approach is the characteristic method, which evolves a time-dependent solution by
tracking characteristics. These class of methods are also known as semi-Lagrangian methods
[2,7,9,21] or Eulerian—Lagrangian methods [3, 4, 22]. The semi-Lagrangian method evolves
a time-dependent solution by exactly tracking characteristics, while the Eulerian—Lagrangian
method updates the solution via approximating characteristics by linear straight lines. For
existing SL methods, some of them are developed by 1D versions using dimensional splitting
[7, 9, 21], whereas others are purely 2D ones [2] to avoid the time-splitting error. In EL.
setting, an Eulerian Lagrangian Localized Adjoint Method (ELLAM) was developed in [4],
by introducing an adjoint problem for each test function in the continuous finite element
framework. Recently, the Eulerian—Lagrangian (EL) discontinuous Galerkin method(DG)
[3,22] and semi-Lagrangian (SL) DG [2] are being developed in the discontinuous Galerkin
finite element framework with a similar introduction of adjoint problems for test functions.
The ELDG method approximates characteristics by linear functions, which yields better
stability with extra large upper bound for time stepping sizes compared with those from
the classical Eulerian explicit RKDG method. The ELDG method is also closely related to
the Arbitrary Lagrangian Eulerian (ALE) DG method [13, 14], which was introduced as a
moving mesh DG method.

In this paper, we follow the scalar development of EL DG method, and propose a conser-
vative EL DG method for hyperbolic systems (1.1). We start from 1D cases, for which we
consider characteristic variables and the associated characteristic space—time regions. For
hyperbolic systems, a straightforward application of EL. DG to each characteristic family, on
associated space—time regions can be done; yet the conservation could not be guaranteed in a
general setting. In this work, we decompose each variable into two parts, each of which asso-
ciated with different characteristic families. As a result, four different quantities are evolved
in EL fashion and are recombined to update the solution. The fully discrete scheme is for-
mulated by using method-of-lines RK methods, with intermediate RK solutions updated on
the background mesh. For 2D hyperbolic systems, we use the dimensional splitting method,
maintaining the simplicity, robustness and stability of ELDG methods for 1D cases. Note that,
for 2D systems, characteristic Galerkin [19] or evolution Galerkin [1, 16, 17] methods have
been proposed to take into account information propagated in all bicharacteristic directions.

This paper is organized as follows. In Sect. 2, we review the ELDG for one-dimensional
(1D) linear transport problems. In Sect. 3, we develop the ELDG method for a first-order
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Fig. 1 Illustration for dynamic element 7] (t) of ELDG

hyperbolic system by decomposing and evolving each component into two parts, each of
which associated with its characteristic family. 2D problems are handled by 1D algorithms
with dimensional splitting. The conservation property is proved. In Sect. 4, performance of
the proposed ELDG method is showcased through extensive numerical tests. Concluding
remarks are made in Sect. 5.

2 Review of ELDG Formulation for 1D Linear Transport Problems [3]

To illustrate the key idea of the ELDG scheme, we start from a 1D linear transport equation
in the following form
up+(a(x,Du)e =0, x € [xq, xp]. 2.1

For simplicity, we assume periodic boundary conditions, and the velocity field a(x, ¢) is a
continuous function of space and time.

Discretization. The computational domain is partitioned as x, = x 1<x3 < <
Xy 1= xp, called the background mesh. Let I; = [x e Xiy 1 ] denote an element of

length Ax; = x Xj1 and define Ax = max; Ax;. We define the finite dimensional

j+y T -
approximation space, Vf = {v, : vplr; € Pk(Ij)}, where PK (1) denotes the set of polyno-
mials of degree at most k on /;. We let t" be the n-th time level and At = T — " to be
the time-stepping size.

The key idea in the ELDG formulation is to design adjoint problems for test functions,
taking advantage of information propagation along characteristics. The method is formulated
on a space—time region Q; = fj () x [t", "1 with

[;(1) = [iji%(t),ij%(z)], e ],
being the dynamic interval with size Ax; () = X, j+l (t)— x -1 (1),seeFig. 1. Here X . j£) (1) =
| + (t — "ty | are straight lines emanating from cell boundaries x ., 1 with slopes
j:l: J£5 VES)
1 =alx. 1, t”+1) and I* =" = [x -1 ,x* | 1is the upstream cell of I; at ¢".
Vil jt3 J j+i J

A local ad]omt problem of (2.1) for all test functlon is defined as:

{w, o, Yy =0, (x.1) e, 0

Yt ="t = W(x). Y& e Pr()).
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Here a(x, t) is a bilinear function of (x, t) with

n+1 n+ly\ -
. = . =y,
Ol(xj_%,t > a(xj_%,t ) ]_%,

oe(xH%,t"H)=a(xj+%,t”+l)ivj+%, (2.3)
and
X=X, 1() x—x,_1()
J+3 J73
,1) = —v., _ . _
wD =y T a0
e PY(I;(1)), Vrelt" "] (2.4)

The ELDG [3] scheme can be formulated by fij © Q22 u+Q21 -y

% = - (Fv)

10 +(ﬁlﬁ) 0 -F/~ Fidx. (2.5)
I*2 72 1)

where F (1) = (a—a)u and F is the Lax—Friedrichs flux. A method-of-lines RK discretization
can be used for high order temporal accuracy [3].

3 The ELDG Algorithm for Hyperbolic System

In this section, we design the ELDG algorithm for a 1D hyperbolic system, in a similar spirit
as the 1D scalar case, but tracking information along different characteristics families.

3.1 1D Hyperbolic System

We consider the hyperbolic system
Ui+ (AX)U)x = F(x, 1), (3.1

where U = [ul, uz]T is a column vector, A is a 2 by 2 matrix, and F is a 2 by 1 vector. We
use the following notations for the eigen-decomposition of A(x):

e cigenvalue: A0, A@ ).
o A(x) = R(x)AR™(x), where A(x) = diag OV (x), AP (x)),

R(x) = [r(])(x) | r(2)(x)] — |:rll(X) rlZ(x)] (3.2)

r21(x) r22(x)

contains the right column eigenvectors (', @ and

oy - 107 () _[lu(x) llz(x)]
‘ (X)_|:I(Z)T(x) i) In(x) (3.3)

contains the left row eigenvectors / (I)T, ) (Z)T. From R - R~! = I, we have
DT @) + I U@ =,

(3.4)
IV () + rp (P T ()U (x) = 2.
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In the following, we propose a conservative ELDG scheme for the system (3.1) by the

procedure below.

(D

2

3)

Partitions of space—time regions Q;l) and Q. According to the first and second charac-

teristic families, we partition the computational domain as two sets of space—time regions

Qﬁ.l) and 95.2) respectively. Here Q;l) = i;l) () x [, "1 is related to the first char-

acteristic family. i](.l)(t) = [i;l) (D), )?j:z, (t)] is the dynamic interval emanating from
-2 2

1)

cell boundaries x j+) with slopes vj Ll approximating the first characteristic velocity, see
2

Fig. 2(left). In general, we choose v;]jz% = )L(l)(xji%). I;’(l) = f;l)(t”) is the upstream

cell of /; from the first characteristic family at . Similar definition can be made to 5252),

f;z) (t) and I;."(z) for the second characteristic family. See Fig. 2(right) for illustration of

Q.

gt(if')oint Problems. We consider an adjoint problem for the first characteristic family on
i

WD)y +aW M),y =0, e[ "], 335)
@@ =t =), '
where
| x—xj(i)l() X x—x(ljl() "
o« n=-v —Z— 40— e PP ). (3.6)
=2 Ax() T2 Ax ()
Similarly on 95_2):
WD) +a@ YD) =0, el ",
@ n+1 @ (3.7
W =1""") =¥ (x),
where
N ORI S O Y
«@@, =P — P e PP (). (3.8)
772 AxT () J*2 Axi (1)

The adjoint problems provide finite dimensional time-dependent test function space,
please see more details in Appendix B.

Formulation of a conservative semi-discrete ELDG scheme. For linear hyperbolic system,
a straightforward generalization of ELDG is to transform the original variable to the
characteristic variables by a localized eigen-decomposition, that are consistent between

two characteristic families. In particular, we take the vector product of ry(x)/ (I)T(x)
from left with (3.1) and obtain a scalar equation

DT @)U + (AU = r IV @) Fx, 1), (3.9)

Multiply ¥V to the equation above, we get

IO WU+ AUV = IO @) Fx, )y . (3.10)
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Meanwhile, multiply (3.5) from the left by 11 (x)/D7 (x)U, we have
P @IDT U@ D), + 0" ua® M), =o. 3.11)

Sum Egs. (3.10) and (3.11), and integrate over the space—time interval Q(l),
/m (1" U + ot U @),
Q!
J

+r1 (x)l(l)T(x)(A(x)U)xt//(l)) dxdt

(3.12)
# [t e, dxar
Q

J

- /m IO ) F e,y Vdxdr.
QL

J

A further manipulation on the left hand side (L.H.S.) of (3.12) gives
/Q o (I Uy Oy 4 @1 @ @A@Y
j +rn 0l U (D), ) dxds
= [ (en@r T @up O+ i’ @ amup ),
—(rjn(x)l(l)T(x))xA(x)UI/f(l)) dxdt

E /Q o (@I AU D) = @O 0Ua O ), ) dxdr

tn+l d T
- 4 107 gy g
/z" (dt /I-Ig)(t)(m(x) Y )dx

il

+Hrn o1 AUy ® - v“)m(x>l<“TUw<“J|j.+%) di
J72

tn«H

| , (ene @ awuyt
j t

m

+rn IO (0 (AU — a“)U)w;‘)) dxdt.

(3.13)
Letting £11(U) = 11107 (AU — D U), the time differential form of (3.12) with (3.13)
gives
@ vy + (M) |
dt i(l)(t) 1 )?<,>1(f)
i 1

_ (f11w<1>)

1, ()
Sy — [y dx
! ® /ij(l)(t) *

_/xl) @O () AUy Vdx
;7@
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:/ IO ) Fx, Hy V. (3.14)
RO
Similarly, we have an equation related to A

% ﬁ(l)( )(rlz(x)l(z)T(x)Ullf(2))dx + (f‘zw(Z))
0

J

~(2
o
jt3

_ (flzwa))

12.,(2)
- - [y dx
5y /i}” w7

- / ()7 (1) AUy @dx
i@

J

(3.15)

= / I () P,y @dx,
0

where flz(U) = I’lgl(z)T(AU —a@U). Then, we can update u! by (3.4) together with
(3.14), (3.15), taking WV (x) = W(x) in (3.5) and W@ (x) = W(x) in (3.7):

/Ml’n+1‘y(x)dx (354)/ 1’111(])TU"+1\I—’(x)dx
1; I
+/ ral @ U () dx

1.

J
ln+1

=/ . rlll(])TU"tp(l)dx—/ (fnw(l))
]gf' mn

J
tn+l

+ / P @I @) Fe, ny®
o

dt

PO + (fllw(l)) RO
i3 i-%
[Vl
+ I ) AU D + FlyDaxdr
T 7n.,.2)
+./1’.‘*<2) ripl” U “dx
J

_ /t <f12w<2>>

tn+|

+ / / r@I@" () F e,y @
m f;z)(t)

dt

@ T (flzw(z))
i3

~(2
200
=2

4 @7 () AU ® + £12y Pdxdr.
(3.16)
The ELDG discretization of Eq. (3.16) is to find u}l (x,1) € Pk(lj (1)), so that

/ up (x, (" THW (x)dx
1
trH—l

T 5
:/*(])’111(1) Ulzll/f(l)dx‘i‘/ Lll(Uh(t),f,I;])(t))dt
1 n

j r
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tn+l

T ~
t[t® vy @ar s [ Lo@io.n P o G
1>
J

tm

for (U (x, 1) satisfying the adjoint problem (3.5) with YW (x) = ¥ (x, t"*1) € P*(I)).
Here

Li(Un(0), 1, 11V (1))

T, W= I, (D 11, (1)
=T T +/Im SO

j+3
+/i;l)(l)(”lll(l)T)xAUhW(l)(x»f)+V111(1)TF1/f(1)(x,t)dx,
LinUn(0), 1, 1P (1))
j
+ /1 j%(rlzl@)T)xAUw(”(x, D +ral® Fy@ @ ndx,  (3.18)

where w;i‘li Y (x(l) = (t),t) and fﬁ at a cell boundary can be taken as a monotone
flux, e.g. the Lax—Frlednchs flux

—

1 _ mT 0
Ty =rile i +pA-U - J+2U)j+%.

1/,](2’; =@ x;i’; (1), 1) and J/‘E can be similarly defined at a cell boundary. We can
similarly obtain the ELDG scheme for u%

(4) Fully discrete ELDG scheme with method-of-lines RK schemes. To update (3.17) from
U to Uy +1 we first apply the forward Euler time discretization to get 1st order accuracy,
then we generalize the scheme to general RK methods. There are two main steps involved
here.

In order to describe the implementation procedure of the fully discrete ELDG scheme, we
define the L? projection.

Definition 3.1 (L2 projection) Let u € LE(Q), M = {1; }N , and M = {f-}N be two
different meshes of the whole computational domain €2. We have function spaces Vk {u:
uly; € Pk(IA,),V]} and Vh ={u: u|1j e Pk (1_,),V]} corresponding to meshes M and M.

The L? projection of uy € V,f onto space \7}{‘ can be defined as, find it ; € \74‘ , St
f it 7 ()@ (x)dx :[ up (X)(x)dx, Yo € VE. (3.19)
1j 1j

We denote i j; (x) = Projlupy(x); M, M]. The evaluation of the right hand side of (3.19)
can be done in a subinterval-by-subinterval fashion. The implementation details can be found
n[12].

Then, we propose a fully discrete ELRKDG scheme with procedure as described:
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(a) Obtain the initial condition on upstream meshes i;l) (") and I~}2) (") of (3.17) by
.1 . =(1 .2 . =2 .
U;: ™ = ProjlU}; I}, I; )(t”)] and U;' ( )(t") = ProjlU}; I}, I; )(t”)], which are
the L? projections of solutions from the background mesh to the upstream mesh.
(b) Update (3.17) from U;; to U ,’:H, component-by-component.

(a) Get the mesh information of the dynamic element i;l)(t(”), [ =0,...,5s onRK
stages by x x ! (t) =X, 1 +(r— t”+1)v; ) . Here s = 1 for forward-Euler method

and s = 2 for Heun’s method (SSPRKZ) see the blue domain in Fig. 2 and for
explicit midpoint RK2 with intermediate stage in Fig. 3.
(bl) For forward-Euler method, compute

/u,ll‘"+1lll(x)dx
Ij
=/*(U rd O Uy O dx 4 AtLy U T ()
>
J
b [ rat® OOt AL TP )
I
- T yny(Dn
= /I’f"(l) il Uhllf dx
J
T Dy (D= FT Dy (Dt
+Al< f/-"-%(Uh )WH_% +fj_%(Uh )llfj_%
T
# oo OO Dt [ eul AU O, s
]
+/ (1) rnz“)TF(x,r”m("(x,t”)dx)
Ij'
T
j

+At< flzl(U]:z Oy +f‘21(U” Oy Dt

e (2)

FRUE P (e Mdx + f Ll @) AU @ (M dx
]

+/ o il F e,y @, z")dx)
e
J

(3.20)
where A" = 1"*t! — ¢ We compute the four integration terms of (3.20)

T T
/ T Uy gy / ral® T Uny @ n gy,
I;'(l) 1;4(2)

Lo et avpy O mar. [ et aupy @ mas
7P am i@ am

J J
highlighted in blue with U}’ on background meshes subinterval-by-subinterval for

2,n+1

mass conservation. Similarly, we can get u;, on ;.
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€T jfl)(t"”rl):[y

i=3 A i+

 ntl

Q .
N i
' ' " t t ="
(D) T =@ v *5(2)
T 15 my _ T 5@ ey _ gl
i3I0 =1 i~ ) = 19+

Fig. 2 Illustration for dynamic elements ;f 1)(t) (left) and 752) () (right) of ELDG for the first and second
characteristic families of the system (Color figure online)

(b2) For SSPRK2 method which is a trapezoid rule, we get u},(tV) from (3.20), then
compute

/ u}l,’""_l\ll(x)dx
I

J

=/ N rd D Uy Oy £ 05ALy WD), 1D, 1) (3.21)
I
J

T
+ frrw il @ U O dx +05AtL UL D). 1D, 1)),

J

where t(D = ¢ +1 u,ll(t(l)) and u% (+V) are defined on background mesh /;.

(b3) For general RK methods with intermediate stages, we will update intermediate RK
solutions on background mesh as in [8]. For example, for a 2nd order mid point rule,
it has an intermediate stage at r!) = " + %. We propose the following steps, also
see Fig. 3.

A. We denote the dynamic domain tracking /; from tD to 1, with speed vji i
2
mesh point Xjpl as i;}()l)(t), see the green domain in Fig. 3. i}’z()l)(t) related

at

to second characteristic is defined similarly. Then we can update Uy, (') on
f;l()l)(t) and fj(z() l)(t) from 7" to rV as in a forward-Euler method.
B. Weupdate U Z’ +on dynamic domain f;l) (t) and INJQ) (¢) from U}/ with projection

onto I*’(l)

; and Uy, (rV) with projection onto ij(.]()l)(t(l)).

Theorem 3.2 (Conservation) The proposed fully discrete ELDG scheme with strong stability
preserving Runge—Kutta (SSPRK) time discretization for (3.1) with F = 0 is locally con-
servative. In particular, given a ELDG solution uj(x,t") € V,{‘ with a periodic boundary

condition, we have
N N
Z/ Up(x, "™ Ndx = Z/ Up (x, t")dx.
i=1 Y1 i=1 Y1
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F(1
=y A Ut
1 tn+1

/-Qll
< t t t"

AT (D)
=z IV =10 Tits

Fig.3 Update RK intermediate solutions at the background mesh (red line) from the first characteristic family
of a hyperbolic system

Proof We firstly consider the forward Euler time discretization. Taking W = 1 and F = 0
in the scheme (3.20), we have

1,n+1 _ 1,n+1
/ u, dx = Z/ u, dx
Q TR

, _ _
= rd D Ukdx + A (=1 @ amy + I P e
- oW itz J=2
Jj J

+/ ) (r”l(l)T)xAU’?dx):|
I

J

T yn _ 2 @Dy o 12 @ n
+;[/17<2) rial Uhdx—i-At( FL @@+ f2, 076

3.22
+/ @) (rlzl(z)T)xAU;’ldx>:| | |
e
J
-y PO vty + [ i@ updx
- 75 @
J J J

mT n T .
+ At Z <j;%"(')(rlll )x AU dx + /,m) (ral® "), AU dx>
J J

J

- / D 1@ urax + At/(rnl(l)T +ral®"), AUpdx
Q Q

_ 1,n
—/ u, dx,
Q

which follows from the cancellation of unique fluxes at cell boundaries, r11!/ mT +rplD T _
[1, 0] and (3.4) with integration in a subinterval-by-subinterval fashion. The conservation for
the fully discrete ELDG scheme can be proved in a similar fashion. O

Remark 3.3 To maintain the mass-conservative property, the choice of eigenvectors R(x) is
not necessarily exact for ELDG scheme, as long as R(x) and R~ (x) are a consistent pair
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throughout the domain. We can also choose an approximation of exact eigenvectors if it is
not easy to obtain.

Remark 3.4 Another version of non-conservative ELDG method, with localized eigen-
decomposition, is presented in the Appendix A. It was our first native attempt in developing
ELDG methods for hyperbolic system. The essential difference between the non-conservative
method, compared to the conservative method, is the eigen-decomposition of characteris-
tic variables, in particular the R matrix in Eq. (3.2) and the projection onto characteristic
variables in Step (3) above. In the conservative method, the eigen-decompositions for the
first and second characteristic families are consistent locally; whereas in the nonconserva-
tive method, such decomposition depends on the cell of consideration (index by i or j as
elaborated below). Specifically, the space—time region of the first characteristic family Q;U

could overlap with the second-characteristic family of another space—time region Ql@ (with
i # j). Such inconsistency could cause issues with mass conservation, as illustrated next
in the numerical section. The numerical performance of the non-conservative method will
serve as a comparison for the proposed scheme in the numerical section.

3.2 2D Linear Hyperbolic System

The solution for high-dimensional hyperbolic systems is given by means of a characteristic
cone, rather than individual characteristic lines [15]. Numerically, characteristic Galerkin
[19] or evolution Galerkin [1, 16, 17] methods have been proposed and developed to solve
high dimensional hyperbolic systems. This method is constructed by taking into account
information propagated in all bicharacteristic directions and involving integrals around the
characteristic cone. However, the backward integrals over the mantle, involving intermediate
times, limit both the accuracy and the stability of the resulting schemes. Thus the finite volume
evolution Galerkin (FVEG) schemes are introduced, which is in a predictor—corrector plus
finite volume framework to get higher accuracy. Even though the FVEG method can achieve
high-order accuracy and stability with extra large step, the algorithm implementation is very
complex for high-dimensional problems. In this paper, we use the dimensional splitting
method for higher dimensional problem.
Consider a first order 2D linear hyperbolic system

U+ (Ax, U)x + (B(x, »U)y =0, (x,y) € Q. (3.23)
We assume that the computational domain €2 is rectangular, and it can be partitioned into
rectangular meshes with each computational cell ;; = [xi_% , xi+%] X [yj_%, yH%], where
we use the piecewise Q¥ tensor-product polynomial spaces. Then we extend ELDG algorithm

to 2D problems via dimensional splitting [20].

1. We first locate (k 4+ 1)2 tensor-product Gaussian nodes on cell Q;; : (x; p, ¥j.¢), P.q =
0, ..., k. For example, see Fig. 4(left) for the case of k = 3.
2. Then, the Eq. (3.23) is split into two 1D hyperbolic problems based on the quadrature
nodes in both x— and y— directions:
Ui + (Ax, »)U)x =0, (3.24)
Ui+ (B(x,y)U), =0. (3.25)

Based on a 1D ELDG formulation, the split Egs. (3.24) and (3.25) are evolved via Strang
splitting over a time step At as follows.
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r ] |

Fig.4 Illustration of the 2D ELDG scheme via Strang splitting k = 3

e Evolve 1D Eq. (3.24) at different y; , points for a half time-step Az/2, see Fig. 4
(middle). For each y; 4, the (k + 1) point values are mapped to a PK polynomial per
cell, then the 1D system (3.24) is evolved by the proposed ELDG scheme. Finally,
we can map the evolved P* polynomial back to the (k + 1) point values to update
the solution.

e Evolve 1D system (3.25) at different x; ,, points for a full time-step At as above, see
Fig. 4(right).

e Evolve 1D system (3.24) at different y; , points for another half time-step Az/2.

The splitting 2D ELDG formulation maintains high order accuracy in space, extra large time
stepping size with stability and conservation; and has a second order splitting error.

4 Numerical Results

In this section, we show numerical results of the proposed scheme for several linear strict
hyperbolic systems including the wave equation, Maxwell equation and linearized shallow
water equation. We set the time stepping size as At = Caﬂ Ax for 1D and At = f £ LL for
2D, where a and b are maximum eigenvalues of coefficient matrixes in x- and y—AdXire?:;ions
respectively. We use the classical fourth order Runge—Kutta (RK4) method for time dis-
cretization. We study the following aspects: the spatial order of convergence by using small
enough time stepping sizes, the temporal order of convergence and numerical stability under
a large time stepping size by varying C F L for a fixed spatial mesh. We also study the spatial
super-convergence of the post-processed solutions, so that temporal error will better dominate
in the temporal convergence study. For the enhancement of spatial accuracy, we implement
post-processing technique [5] to produce the post-processed solutions by convolving the

ELDG solution with a suitable kernel consisting of B-splines at the final time.

4.1 1D Wave Equations

We consider the 1D wave equation:
uy = (> ()ux)x + f(x, ). 4.1

For simplicity, we assume periodic boundary conditions, and the velocity field a(x) is a
continuous non-zero and periodic function of space. Defining ! = u, and u? = u,, we can
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rewrite (4.1) as a linear system (3.1) with

1 .2
U= |:Z2i|, AG) = |:_Ol aO(X)]’ Flx.1) = [f()(C), l‘)i|'

Assume the eigen-decompositionof A(x) = R(x)A R (x)with A(x) = diag WV (x), 1@ (x)),
where the eigenvalues D% =akx), A@(x) = —a(x). The right eigenvectors and left
eigenvectors are respectively

mT -1 1
oy = [0 ] _ T ato)] gy {6 :[zalm ﬂ “2)

r21(x) o (x) @7 e
J

Corresponding to (A.1) and (A.2) related to non-conservative ELDG scheme, we also have
the following localized eigen-decomposition

1,12 T

r. r. —a; d; _ l
L i = J i L_ |7 _
R/_|:r21 r22i|_|: 1 1]’ RJ - l(Z)T _|:

J J j

Example 4.1 (1D wave equation with constant coefficient). We consider the 1D wave Eq. (4.1)
with constant coefficient a(x) = 1 and the source term f(x,?) = 0. The initial data is
u(x,0) = sin(x),x € [0,2r] with periodic boundary condition. The exact solution is
u(x,t) = sin(x+1t). For the constant coefficient problem, if using exact characteristic velocity
fields for space—time partition and exact eigenvectors, the proposed ELDG method is the same

[
L

(4.3)

NS
S|[—s
(ST ST
| I |

as SLDG, then it is unconditionally stable. Here we perturb the characteristic velocity vﬁ?l
2

in (3.6) at cell boundaries and/or a(x) in (4.2) related to approximating eigenvectors to get
ELDG, ELDGI, ELDG2 and ELDG3 schemes respectively. Similarly we implement the
non-conservative ELDG methods denoted as NC ELDG, NC ELDG1, NC ELDG?2 and NC
ELDG3. Related parameters of these ELDG methods are given in Table 1.

Tables 2 and 3 report spatial accuracies of the ELDG, ELDGI1, ELDG2 and ELDG3
methods for this example under the same time stepping size without and with post-processing
technique. We can observe the optimal convergence rate k + 1 and 2k 4+ 1. We vary time
stepping sizes, with fixed well-resolved spatial meshes, and plot error versus C F L in Figs. 5
and 6 for ELDG, ELDGI, ELDG2 and ELDG3 schemes without and with post-processed
technique respectively, after a long time 7 = 100. The plots from post-processed ELDG
schemes better show the fourth order temporal convergence. ELDG2 and ELDG3 perform
comparably; they have a more restricted time step constraint than ELDGI. It indicates that,
stability is affected by approximations of characteristic via the space—time partition and
approximation of eigenvectors. We also note that, in both Figs. 5 and 6, the CFL allowed
with stability (observed to be around 1) is much larger than that of the RK DG method
which is 2klﬁ We observe similar performance of NC ELDG schemes in terms of the
error and stability for this test; but skip presenting results to save space. Further, we verify
the conservative property of the ELDG schemes are around machine precision and the non-
conservative property of the NC ELDG schemes is presented in Fig. 7.

Example 4.2 We consider the wave Eq. (4.1) with a Gaussian initial condition

1 x? 2_
=exp| ———]), =0.
“ P\70.005 )
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Fig.5 The L error versus C F L of various ELDG methods for 1D wave equation with the initial condition
u(x,0) = sin(x). A long time simulation is performed with 7" = 100 and mesh size N = 160
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Fig. 6 The L° error versus CFL of various ELDG methods with post-processed technique for 1D wave
equation with constant coefficient: us; = uyy with initial condition u(x, 0) = sin(x). A long time simulation
is performed with 7' = 100 and mesh size N = 160
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Fig. 7 The error of mass versus time of ELDG schemes for 1D wave equation and the initial condition
u(x,0) = sin(x). A long time simulation 7" = 100 is performed with meshes N = 160, CFL = 0.1 and RK4
time discretization. In the legend “NMC” is for the non-conservative method
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Table 2 1D wave equation with the initial condition u(x, 0) = sin(x) at 7 =1

Mesh L' Error Order L' Error Order L1 Error Order L Error Order

P! ELDG Pl ELDGI Pl ELDG2 P! ELDG3
20 254E-03 - 242E—03 - 255E—03 - 249E—03 -
40 6.18E—04  2.03 597E—04  2.02 6.18E—04  2.04 599E—04  2.06
80 1.58E—04  1.96 1.55E—04 1.94 1.58E—04  1.96 1.55E—04  1.95
160 3.66E—05  2.11 3.62E—05  2.10 3.66E—05 2.11 3.62E—05  2.10
P2 ELDG P2 ELDG1 P2 ELDG2 P2 ELDG3
20 592E—05 - 6.91E—05 - 6.01E—05 7.02E—05 -

40 7.48E—06 2.99 7.83E—06 3.14 7.49E—-06 3.00 7.81E—-06 3.17
80 9.17E—-07 3.03 9.29E—-07 3.08 9.17E—-07 3.03 9.29E—-07 3.07
160 1.17E-07 297 1.18E-07 2.98 1.17E-07 2.97 1.18E-07 2.98

We use CFL = 0.3 and CFL = 0.18 with RK4 time discretization for all P! and P2 respectively. The error
for only u! = u; was shown in this table

Table 3 1D wave equation with the initial condition u(x, 0) = sin(x) at 7 = 1

Mesh L' Error Order L1 Error Order L1 Error Order L Error Order

Pl ELDG Pl ELDGI Pl ELDG2 Pl ELDG3
20 226E—04 - 249E—04 - 238E—04 — 239E—04 -
40 236E—05 3.26 240E—05  3.38 240E—05 3.31 235E—05 335
80 2.66E—06  3.15 2.64E—06  3.18 2.67E—06 3.16 2.62E-06 3.16

160 3.15E-07  3.08 3.11E-07  3.08 3.15E-07  3.09 3.11E-07  3.08

P2 ELDG P2 ELDGI P2 ELDG2 P2 ELDG3

20 2.15E-06 - 2.27E—-06 - 2.19E—-06 - 2.28E—06 -

40 3.63E—-08 5.89 3.86E—08 5.87 3.67E—08 5.90 3.89E—-08 5.87
80 6.40E—10 5.83 6.79E—10 5.83 6.46E—10 5.83 6.84E—10 5.83
160 1.27E—-11 5.66 1.33E—11 5.68 1.28E—11 5.66 1.34E—11 5.68

Weuse CFL = 0.3 and CFL = 0.18 with RK4 time discretization and post-processed technique for all P 1
and P2 respectively. The error with post-processed technique for only u' = u; was shown in this table

The computational domain is [—1, 1] with the periodic boundary conditions. The exact solu-

i I — 05 (@) (=2 du? = 05 (rt1)?
tions u- = 0.5|exp | —5505 ) T XP | — 5005 and u”= = 0.5|exp | —"g5go5 ) — €XP
(— %66)52)] are the superposition of two Gaussian functions with a periodic extensions.
We plot the solution u! from ELDG3 with P! and P? numerical solutions at time 7 = 50.5
in Fig. 8. We can observed that there is no significant phase difference with a long time
simulation, meanwhile the dissipation can be improved by the mesh refinement and higher
order spatial approximation. Note that the CFL number we use here is much larger than the
upper bound for Eulerian RK DG methods.
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Fig.8 Plots of the exact and numerical solutions u attime 7" = 50.5 of ELDG3 scheme for solving us; = uyy
with Gaussian function initial condition. The mesh size of N = 80 and N = 320 are used. Left: k = 1 ELDG3
with CFL = 1.5. Right: k = 2 ELDG3 with CFL = 0.9
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Fig. 9 Plots of the numerical solutions u] of ELDG3 scheme with TVD limiter for the wave equation with
step function initial condition. The final integration time T is 2.85. The mesh of 160 is used. Left: k = 1
ELDG3+TVDlimiter with CFL = 1.5. Right: k = 2 ELDG3+TVDlimiter with CFL = 0.9

Example 4.3 We consider the wave Eq. (4.1) on [0, 277 ] with the periodic boundary conditions
and the following discontinuous initial condition

ul(x) IRT if 0.957 <x < 1.057,
0771 0.5, otherwise, 4.4)

ud(x) = 1.

The exact solutions ! and u? are discontinuous piecewise constants with moving disconti-
nuities. It is a challenging test for controlling oscillations around discontinuities. We adopt
a simple TVD limiter on background mesh at each RK stages with M = 0 in [6] for all
schemes. As shown in Fig. 5, the CF L constraint with stability is slightly less than 1 for
ELDG3 scheme. We plot the numerical solutions #; of ELDG3 scheme with P! and PZ,
CFL = 0.9 in Fig. 9. It is found that oscillations are well controlled with the TVD limiter
and ELDG method performs well for large time stepping size. Moreover, we track the con-
servation of ELDG methods, in comparison to the NC ELDG methods and present results in
Fig. 10. It shows that the ELDG schemes maintain the conservation at the level of machine
error, while the NC ELDG schemes do not.
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Fig. 10 The error of mass versus time of various ELDG methods with TVD limiter for 1D wave equation.
T =2.85, N =160, CFL = 0.9 and RK4 time discretization are performed for the simulation
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Fig. 11 The L error versus C F L of ELDG method for Example 44. T = 1. At = CFLAx

Example 4.4 (1D wave equation with variable coefficient and source term). We consider the
1D wave Eq. (4.1) with variable coefficient a(x) = 2 4+ sin(x) and exact solution u(x, 1) =
sin(x — 2t) is periodic on [0, 27]. The source term is f(x, t) = —4sin(x — 2¢) + sin(x —
26)(2 + sin(x))? — 2(2 + sin(x)) cos(x) cos(x — 2r). For computation, we choose mesh

velocity vj(l_: ! = a(xj 1 ), vj@ | = —v(_l_: 1 and exact eigenvectors with a(x) = 2 + sin(x)

+2
in (4.2).

The expected optimal spatial accuracies of the ELDG methods without and with post-
processing technique are shown in Tables 4 and 5 respectively. In Figs. 11 and 12, we plot
the L error versus C F L of EL DG methods without and with post-processing technique
respectively. The following observations are made: (1) The high order accuracy of the RK
method reduce the error magnitude when large time stepping size is used; (2) The ELDG
methods with RK4 time discretization perform well around and before C FL = 1, which is
well above the stability constraint of the RKDG method 1/(2k+1) for P¥ approximations. (3)
After CF L = 1 and before stability constraint of the method, the temporal convergence order
is observed to be consistent with the order of RK discretization; (4) The ELDG methods with
post-processing technique have smaller error magnitute than those without post-processing.
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Table 4 Example 4.4

Mesh L' Error Order L2 Error Order L Error Order
Pl

20 5.20E—03 - 6.70E—03 - 2.39E-02 -
40 1.32E-03 1.98 1.74E—-03 1.94 6.54E—03 1.87
80 3.28E—-04 2.00 4.40E—04 1.99 1.68E—03 1.96
160 8.11E—05 2.02 1.09E—-04 2.01 4.16E—04 2.01
P2

20 1.16E—04 - 1.61E—04 - 5.48E—04 -
40 1.48E—05 2.97 2.01E-05 3.00 6.70E—05 3.03
80 1.88E—06 2.98 2.46E—06 3.03 7.84E—06 3.10
160 2.31E-07 3.02 3.13E-07 2.98 1.04E—06 291

T =1.Weuse CFL = 0.1 for P! and P2 with RK4 time discretization. The error for only ul = Uy was

shown in this table

Table 5 Example 4.4

Mesh L' Error Order L2 Error Order L®° Error Order
Pl

20 9.10E—04 - 1.07E—-03 - 1.91E-03 -

40 1.07E—04 3.09 1.26E—04 3.09 2.26E—04 3.08
80 1.29E—-05 3.05 1.53E—-05 3.05 2.75E—05 3.04
160 1.58E—06 3.02 1.88E—06 3.02 3.39E—-06 3.02
P2

20 5.34E—06 - 6.39E—06 - 1.56E—05 -

40 8.95E—08 5.90 1.03E-07 5.96 2.82E—07 5.79
80 1.73E—09 5.69 1.94E—09 5.73 3.32E—-09 6.41
160 6.62E—11 4.71 7.59E—11 4.67 1.46E—10 4.51
T = 1. Weuse CFL = 0.1 for P! and P2 with post-processed technique and RK4. The error for only
ul = u; was shown in this table

O P1,post-ELDG,N=160,SSPRK2,u1
> P1,postELDG,N=160,RK4,u1 /
107 slope=2
—-—-—--slope=4 102
10?2
% o % 0
2 103 o o
g1 Ch g
a o a
x o x
o 8 q10°
€ 10% o € 10
10° 10%
L > pD [>>‘>D(>D
10°
10-10
107 10° 10' 107

cfl

P2,post-ELDG,N=160,SSPRK3,u1 o

P2,post-ELDG,N=160,RK4,u1

slope=3
slope=4

10°
cfl

10"

Fig. 12 The L error versus C F L of ELDG method with post-processed technique for Example 4.4. T = 1.

At = CFLAx
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Table 6 Example 4.5

Mesh L' error Order L2 error Order L error Order
Ql

202 8.03E—04 - 9.47E—04 - 1.85E—-03 -
402 2.16E—04 1.89 2.50E—-04 1.92 4.56E—04 2.02
802 5.57E—05 1.96 6.40E—05 1.97 1.13E—-04 2.02
1602 1.43E—-05 1.96 1.64E—05 1.97 2.84E—05 1.99
Q2

202 1.70E—04 - 1.90E—-04 - 3.12E—-04 -
402 2.21E—-05 2.95 2.47E—-05 2.94 4.14E—-05 291
802 2.75E—06 3.00 3.08E—06 3.00 5.21E—-06 2.99
1602 3.38E—-07 3.02 3.80E—07 3.02 6.45E—07 3.01

Qk ELDG methods (k = 1, 2) with RK4 and 4th time discretization methods for (4.5) with the smooth initial
conditionat T =1. CFL = 0.1

4.2 2D Wave Equations

Example 4.5 (Two-dimensional linear system with constant coefficient matrices). The second
order wave equation u;; = uyx + uyy, can be written as the following first order linear

hyperbolic system:
u + —10\ [u + 0 —1 u\ 0
v 01 -1 0/\v) \o)’
t X y

4.5)
u(x,y,0) = 2[ sin(x + y) — 2[ cos(x +y),
v(x,y,0) = 2f Lsin(x + y) + {}1 cos(x + y)
with period boundary conditions in both x and y directions. The exact solution is
u(x,y, t) = Lsin(x—i—y—i—ft)— Lcos(x—i—y—ﬁt)
2[ 22 (4.6)

v(x, y,t)— 2f s1n(x+y+ft)+f+lcos(x+y V2.

We notice that the two matrices in Eq. (4.5) don’t commute, thus the linear system can not
be reduced to 2D scalar problems. We test accuracy for Q¥ ELDG methods with RK4 and
4th order dimensional splitting method [23,24] at 7 = 1 fork = 1,2 with CFL = 0.1 in
Table 6. As expected, the (k + 1)th order convergence is observed for these methods. We
plot the L™ error versus C F L of ELDG methods with Q! (left) and Q2 (right) polynomial
spaces for this case with Strang splitting and 4th order splitting in Fig. 13, which shows
that second and forth order splitting errors are dominant when time-stepping sizes are large
enough. The C F L constraint with stability for ELDG method is larger than that for general
RKDG method when high order time discretization is applied.

Example 4.6 (Two-dimensional linear system with variable coefficient matrices). The second
order wave equation u;; = (a®(x, Vuy)x + (b*(x, Y)uy)y can be written as the following
first order linear hyperbolic system by taking uy = u;, uz = uy, uz = uy:
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Fig. 13 Example 4.5. The L error versus C F L of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.5) at 7T = 1

Uy 0 —(a(x,y)? 0\ [u

u | + —1 0 0 uy

us ), 0 0 0o/ \us/],
00—, D)\ (w1 0

+ 00 0 uy =10]. 4.7
—10 0 us 0

We consider the system (4.7) with the initial condition

uy(x,y,0) =2cos(x +y),
uz(x,y,0) =cos(x +y), (4.8)
uz(x,y,0) = cos(x + ),

where a(x, y) = 1+0.5sin(x +y), b(x, y) = \/(4 — (1 4 0.5sin(x + y))?) and the bound-
ary condition is periodic in both x and y directions. The exact solution is
ui(x,y,t) =2cos(x +y + 2t),
ua(x, y, 1) = cos(x + y + 20), (4.9)
u3(x,y,t) =cos(x +y + 2t).
We report the spatial accuracy of 0% ELDG methods in Table 7. The expected optimal
convergence is observed. We plot the L* error versus C F L of ELDG methods in Fig. 14.

The ELDG methods perform as well as that for the linear system with constant coefficient
matrices, and the C F L allowed with stability is much larger than that of the RKDG method.

4.3 2D Maxwell Equations

Example 4.7 Consider the 2D Maxwell equations:

dH, _|_ BEZ _0

oty ab. _

dHy 0E;,

o =0, (4.10)
z __ Y aHx —

at ax + ay =0,
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Table 7 Example 4.6

Mesh L' Error Order L2 Error Order L Error Order
Ql

202 1.89E—-03 - 2.46E—03 - 5.29E—-03 -
402 4.58E—04 2.05 6.01E—04 2.03 1.26E—03 2.07
802 1.13E—-04 2.02 1.50E—04 2.00 3.10E—-04 2.02
1602 2.81E—05 2.01 3.73E-05 2.01 7.67TE—05 2.01
Q2

202 2.95E—04 - 3.66E—04 - 8.43E—04 -
402 4.06E—05 2.86 4.91E-05 2.90 1.01E—04 3.07
802 5.15E—-06 2.98 6.20E—06 2.99 1.30E-05 2.95
1602 6.49E—07 2.99 7.80E—07 2.99 1.63E—-06 2.99

Qk ELDG methods (k = 1, 2) with RK4 and 4th splitting time discretization methods for (4.7) with the smooth
initial condition at T=0.1, CFL = 0.1

O Q1,ELDG-Strang splitN=40% RK4,u, O Q2ELDG-Strang splitN=40 RK4,u, 1
> Q1ELDG-4th spiitN=402 RK4,u, > Q2ELDG-4th splitN=40% RK4,u,
. slope=2 slope=2
107 f|--—-—-slope=4 4072 o= slope=4
H H
5] & 193
2 210
-2
g g
DD
Iy DD y
0 oo B 20pg g o s
> b DDDyDDWW& 100 & o W/
i g BB 5 Db sopd> D> ;
10° bob / B > /
/ /
/
107 10° 10' 107" 10° 10'
cfl cfl

Fig. 14 Example 4.6. The L error versus C F L of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization for (4.7). T = 1, mesh size 402

which is a linear hyperbolic system and can be written as

U+ AUy + BUy, =0, 4.11)
where
uj E, 0 0-1 010
U=|u|=|H,|, A=] 000 ]|, B=]100
us3 H, —-10 0 000

We take the computational domain [—1, 1] x [—1, 1] with periodic boundary condition and
the Gaussian function initial condition:

2 2
ui(x, y, 0) = exp(— 555 )
uz(x, y,0) =0, (4.12)
u3(x,y,0) =0.
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For this example, we show the numerical ELDG Q2 solution u#; at times 7 = 0.5, 1, 1.5, 2
in Fig. 15.

4.4 2D Linearized Shallow Water Equations

We consider the following linearized shallow water system from oceanic shallow water model
[11]:

5 [ ¢ 5 | Pu 5 [ @V 0
o du + o oY + o 0 |=| fov—rou+= |, (4.13)
"l ov 1o Y| g —fou—rdv+ 2

where ¢ is the geopotential height, ® > 0 is a constant mean flow geopotential height, (u, v)
is the perturbed velocity, y > 0 is the bottom friction, (zx, 7,) is the wind stress, p is the
water density, and f = fo + B(y — ym) is the Coriolis parameter, where fy, B, y, are
constants. The linearized shallow water equations is a linear hyperbolic system

U+ AU, + BUy = F in Q, (4.14)
where
) 010 001 0
U=|du|, A=|®00|, B=[000]|, F=| fOv—ydu+7
dv 000 ®00 —fou—ydv+ 2

Example 4.8 We take ® =1, f =0,y = 0, and (7, 7)) = 0, which implies F = 0. The
computational domain €2 is taken as [—1, 1] x [—1, 1] with periodic boundary condition and
the discontinuous initial condition:

1 if y>x,
¢(x,y,0) = 0.5, otherwise
s, : (4.15)
u(x,y, 0 =1,
v(x,y,0) =1

We use TVD limiter and show the numerical ELDG Q2 solution (¢, u, v) at times T = 0.5
in Fig. 16 with C F L = 1. Stable and accurate results are observed.

Example 4.9 We also consider the linear Kelvin wave by taking ® =1, fo =y, =0,8 =
1, y =0,and (zy, 7y) = 0, F = [0, yv, —yu]T.ThecomputationaldomainQis [—10, 10] x
[—5, 5] with periodic boundary condition. We consider the following exact solution:

¢ =1+exp (—%) exp (—7()‘%27[)2) ;
u = exp (—g) exp (—W), (4.16)

v=0.
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Fig. 15 Plots of the ELDG numerical solutions u; = E; and their contour plots at T = 0.5, 1, 1.5, 2 for 2D
Maxwell Eq. (4.11) with Gaussian function initial condition. The mesh of 80 x 80 is used with 4th splitting
method and RK4 time discretization, CFL = 1
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Time t=0.5

1
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Fig. 16 Example 4.8. Plots of the ELDG Q2 numerical solutions (¢, u, v) (from top to bottom) and their
contour plots at 7 = 0.5. The mesh is 80 x 80; 4th splitting method and RK4 time discretization with
CFL = 1lisused

We split the system as the following 1D system for stability

o] [010] 5 [¢ 0
—|u|+]100|—|u|=]| yv |,
ot v 000 ox v —yu
- = - - = 4.17)
¢ 001 5 o} 0
—|u|[+]000|—|u|=10
1y | l1o0] v |o
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Table 8 Example 4.9

Mesh L' Error Order L2 Error Order L Error Order
Ql

202 1.06E—03 - 4.06E—03 - 4.59E—-02 -
402 2.24E—-04 2.25 8.42E—-04 2.27 9.95E—-03 2.20
802 5.42E—05 2.05 1.96E—04 2.10 2.15E-03 2.21
1602 1.35E—-05 2.01 4.82E—05 2.03 4.91E—-04 2.13
Qz

202 1.27E—-04 - 4.64E—04 - 4.81E—03 -
402 1.95E—-05 2.71 7.04E—05 2.72 6.14E—04 2.97
802 2.64E—06 2.89 9.67E—06 2.86 8.61E—05 2.83
1602 3.45E-07 2.94 1.24E—-06 2.97 1.09E—-05 2.98

We take CFL = 1.0 and use Qk ELDG methods (k = 1, 2) with RK4 and 4th splitting time discretization
methods at 7 = 1. The error for only ¢ was shown in this table

o

Q1,ELDG-Strang split N=402 RK4,¢ J O Q2ELDG-Strang split,N=402 RK4, ¢
D Q1,ELDG-4th splitN=402,RK4,o : D> Q2,ELDG-4th splitN=40% RK4, ,
107" slope=2
—-—-—--slope=4

slope=2
== slope=4

max|error|
max|error|

O 0 og DUDDDDDd:‘DD ! 4
o $
1020 L e W of &/
[ o i
gDD ! o ° [y /
> 10° o ;
B oo Boogpopst®
/
107" 10° 10° 107 10° 10'
cfl cfl

Fig. 17 Example 4.9. The L®° error versus C F L of ELDG method with Strang splitting and 4th splitting,
RK4 time discretization with 7 = 1, mesh size 402

We take CFL = 1.0 and use Q¥ ELDG methods (k = 1, 2) with RK4 and 4th splitting
time discretization methods for this example. The error table is shown in Table 8, where the
optimized convergence rate is observed. We also show the L error versus C F L of ELDG
method with Strang splitting and 4th splitting, RK4 time discretization in Fig. 17. For this
system, the total energy E;,; (t) = %(| 16112 + u||® + ||v]|?) should be preserved. Figure 18
shows that the ELDG method preserves the total energy to very high precision (the relative
error is less than 107 for Q! and 10~ for 0?).

5 Conclusion

In this paper, we have developed a conservative Eulerian—Lagrangian discontinuous Galerkin
(ELDG) method for linear hyperbolic systems. The new framework tracks the information of
each characteristic family by the corresponding characteristic region, and these components
are recombined in a conservative fashion. The method is shown to be stable under larger
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10° 10°®

relative energy, Q1-ELDG relative energy, Q2-ELDG

10°
10

g g 1070

H ]

107

10-1 1

10® 107

0 0.5 1 15 2 25 3 3.5 1 1.5 5 0 0.5 1 15 2 25 3 35 4 4.5 5
t t

Fig. 18 Example 4.9. The time evolution of the relative energy |(Ezot (t) — Etot(0))/Etor (0)] of Q1 and Q2
ELDG method with 4th splitting, RK4 time discretization with C ¥ L = 1 and mesh size 160

time stepping constraints than the corresponding Eulerian RK DG methods. The methods are
tested via extensive numerical experiments for 1D and 2D linear hyperbolic problems. Future
works include further theoretic development and extension to general nonlinear hyperbolic
problems.
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Data Availability The datasets and source code generated and analyzed during the current study are available
in the repository https://github.com/xuehong05/conservativeELDGforlinearhyperbolic-system.

A Appendix A: Non-conservative ELDG Scheme

In this part, we formulate the scheme by a localized characteristic field. In particular, a
piecewise constant a; approximating a(x) in (3.3) is defined on I, and the corresponding

(OEe) i
Ry = [ 1] =5 b (A1)
i i
and
mT
R*;lf (A2)
i l(z)T :
J

T
Define l;l) is locally defined on Q;D approximating / (])T(x). For simplicity, we only

T
present the first order ELDG scheme. Take the vector product of l;l) from left with (3.1),
we have a scalar equation

ﬁﬂwﬁwmmmg=§ﬂﬂnﬁ (A.3)

@ Springer


https://github.com/xuehong05/conservativeELDGforlinearhyperbolic-system

Journal of Scientific Computing (2024) 98:70 Page290f32 70

Next, integrating over the space—time interval I ;1) (1), then we have

d mT mT
E/i@m(lj Uydx + 1" (AU

w7 M
- ﬁ )| ® 0 — 7 (AU — v IU)I M ,0 (A.4)

- /ﬂ) zj.” F(x, t)dx.
0]
The first order ELDG discretization of Eq. (A.4) is to find /" Uy, (x, 1) € PO(I{" (1)), so that

d T T —
a M N O] _m
o /ﬂ.”(,) 17" Updx = [zj (AX)Up vH%UMH%]

[l“) (AU — “’ Uh)|,_,] (A3)

I F (e, ndx = L, i
+ [ IV Pl ndx = Ly, 1 TV 1)),
RO

Here (A(x)U; — v;{il Up) at a cell boundary can be taken as a monotone flux, e.g. the
2

Lax—Friedrichs flux

—,0 1 + 0yt -

(AU — Vit U) i 2<A(x 1)U+2 +2U+1+A(x %) it
(1 _ +
iUy T2y —U +‘))

— (1 .M 2) (2)
where a1 2 = max{|r (xj+%) vj+%|,|k (xH_%) |}
T
Similarly, we can easily update 152) U), related to k(z) in the following:
4 127 gz = — 197 AU — v U]
dt Ji®u 7 O b= Vo lj+s
[1@) (A Uy — v( 7, Ul 5] (A6)

+ f 127 F (e, tdx = LUy (). 1, I (1),
fj(.z)(t) J

T

where [ i is a constant vector, locally defined on i](z) (t) approximating / @ (x).
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A simple first order ELDG scheme is composed by two evolution Egs. (A.5) and (A.6).
T T
That is, we can update u}, by (A.5), (A.6) and u}l = (r}llﬁl) + r}zlﬁz) YUp:

/ u;l’""'ldx:/
I I

J J

r}llj”TU,;’“der/I 21Dyt

., e
:rJU/I*m 1) Ugldx+r}1/1n Ly @)1, 11V @)ar (A7)
’ 1

T ~
+rl? f o I Uldx ] / LyU (). 1. I @)t
1> tn
J

where U; and U, ;"H are defined on the background mesh /;, U, ,El) (t)and U ,EZ) (1) are defined

on the space—time dynamic meshes i;l) (t) and i;z) (t) respectively. Similarly, we can update
2
u he

We apply forward-Euler method for time discretization with above ELDG scheme (A.7):

T T
/ ubm gy :r]“/ 1D urdax — ar D
I 1;‘(1) J J 7

AU v um| o — AU =V 0)] )
g T2

- , , ’- (A.8)
+r}2/ 197 Utdx — Arr
. 5@ J J
J
) )
(Ax)U™ — Vj+%U”)|x*'(2) — (AU — vji%U)Ix*-fzf

it} i=7

Remark A.1 The above ELDG scheme is not conservative for two reasons:

and r; are discontinuous across cell

(1) Flux terms can’t cancel each other as r; E

j

1 5@

AU .

@ X, V.,l-l f,;a(l) l;l) U"dx + r}2 f,jm) l;-l) Utdx # 3, f](,- U"dx because of the incon-

sistency in characteristic transformations between neighboring cells among r }ll ﬁ.l)

1,mnT 12,07
[ 5

boundary of Q2

and
12,7
r lj .

B Appendix B: The Notation of Test Function

We give some notations which is used in the implementation of the fully discrete ELDG
scheme with RK time discretization.
For convenience, we only give the definitions related to Q;U below because we can

similarly get the definitions related to 95.2). As scalar case, we take test function ¢ (x, 1)
as wj(lr)n (x,1) =W mx — oM@ — 1)) in the adjoint problem which is a set of basis of
Pk (f](.l)(t)), where f;l)(t) is donated by a domain related 2D ag ij (t) in scalar problem.
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Here, we also take W; ,, as orthogonal basis on /;, and let

k
1,31 A1,(1):d 1 ~(1
w, Ve, =3 a; V" Povi)en, on I[P, (B.1)
1=0
where 011 (D:D) are coefficients for the basis. Let l}}’(l)(t) = (ﬁ}’(l);(o)(t), . ﬁ}’(l);(k)(t))T

be the coefficient vector of size (k + 1) x 1. Then we have

T
L(1 1 1,1 1
[ wy Ve 0y e ndx, / w0y ) (x, Ddx
P ' i ’

J J

=0V, Ve .

LA//?’(I)(t) can be similarly defined.

Similar definition can be made to 952) and ¥ @ (x, 1) for the second characteristics family.
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