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ARTICLE INFO ABSTRACT

Keywords: Road networks play an important role in the sustainable development of human society. Conventionally, there

Remote sensing are two sources of road data acquisition: road extraction from Remote Sensing (RS) imagery and GIS based map

SIS fati production. Each method has its limitations. The RS road extraction methods are primarily raster-based and the
onflation

extracted roads are not directly usable in GIS due to their fragmented and noisy nature, while vector-based
methods cannot utilize rich raster information. Further more, the vector and raster data can have discrep-
ancies for various reasons. Efficient road data production requires an image-vector conflation process that can
match and combine raster and vector-based road data automatically.

In this study, we propose a full image-vector conflation framework that directly integrates image and vector
road data by appropriately transforming extracted roads from imagery and establishing a match relation between
these roads and a credible target GIS road dataset. Based on analyzing these match relations, we propose new
metrics for measuring the degree of agreement between the raster and vector road data. The proposed framework
combines state-of-the-art deep learning methods for image segmentation and optimization-based models for
object matching. We prepared a large-scale high-resolution road dataset covering two counties in Kansas, US.
Using trained models from one of the two counties, we were able to extract road segments in the other county
and match them to the TIGER/Line roads.

Our experiments show that conventional performance metrics for road extraction (e.g. IoU) are insufficient for
measuring the degree of agreement between image and vector roads as they are pixel-based and are too sensitive
to spatial displacement. Instead, the newly defined vector-based agreement metrics are needed for image-vector
conflation purposes. Experiments show that, by the vector-based metrics, nearly 90% of GIS road lengths in the
study area were extracted and over 90% of extracted roads matched the target GIS roads. The new framework
streamlines raster-vector conflation of roads and can potentially expedite relevant geospatial analyses regarding
change detection, disaster monitoring and GIS data production, among others.

Optimization

1. Introduction incur inevitable human errors, making large-scale data collection

expensive and time consuming.

Transportation networks are critical for the functioning and sus-
tainable development of human society. Obtaining accurate up-to-date
information about roads is important for a variety of reasons,
including traffic management, day-to-day GIS data production, and
emergency/disaster response. Maintaining road information is often
difficult in practice. Road data can be collected from two primary
sources. The first source is GIS-based vector data acquisition. This in-
volves land surveying, digitization of paper maps, and field measure-
ment using GPS. GIS and cartographic processes are labor-intensive and

* Corresponding author.
E-mail addresses: leizhen@whut.edu.cn (Z. Lei), lei@ku.edu (T.L. Lei).

https://doi.org/10.1016/j.compenvurbsys.2024.102174

The second source of road data collection is remote sensing. Unlike
vector data collection, remote sensing methods are relatively fast and
inexpensive. With the emergence of new sensors, their positional accu-
racy is also high and consistent. However, remote sensing methods for
road extraction have their own limitations. First, they can be disrupted
by elements such as shadows, obstructions from nearby objects, and
inundation (as shown in Fig. 1la), rendering roads as fragments of
disconnected pieces. Second, many road extraction methods render
roads as a collection of pixels. Neither the fragmented road segments or
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road surface pixels can be used directly by transportation and GIS ana-
lyses. Third, road data obtained from remote sensing typically do not
contain attribute information. To be useful, extracted road pixels or
fragments have to be merged to existing GIS datasets to have attributes
(such as street names and addresses).

A more efficient approach for producing road data is image-vector
conflation. Geospatial data conflation is the process of combining two
spatial datasets to produce a coherent new dataset with richer infor-
mation or better quality. Current conflation research mostly deal with
conflating vector-format maps from different sources. The main goal of
this work is to extend the capability of current conflation methods so
that they can work on roads in images as well. Via image-vector
conflation, remote sensing can provide frequent and accurate updates
of the geometric (and spectral) information for roads, whereas GIS can
manage and maintain a database of the higher level geometric, attribute,
and topological information.

While both road extraction and vector conflation methods have been
extensively studied, neither of them is sufficient for raster-vector
conflation by itself. On the one hand, existing road extraction methods
mostly focus on image analysis. The extracted roads have rarely been
merged with any GIS databases. On the other hand, vector-based GIS
data conflation lacks the capability of utilizing information from imag-
ery. What is lacking is a methodology for full image-vector conflation.

To achieve full image-vector conflation, several issues have to be
solved. Firstly, GIS and remote sensing data can exhibit discrepancies
with each other (as shown in Fig. 1a, b). These include coordinate errors
as well as errors introduced in the cartographic process. Such discrep-
ancies must be correctly identified during the conflation. Existing pixel-
based metrics for road extraction are not suitable for image-vector
conflation purposes. As will be demonstrated later, if used for confla-
tion, they can easily mis-classify matched roads as unmatched ones
when spatial displacement exist. Secondly, road segments extracted
from remote sensing images are often fragmented (as shown in Fig. 1a)

Road

NAIP Image

I Band 1 (Red)
[ Band 2 (Green)
Il Band 3 (Blue)

a. Broken roads in a NAIP image caused by
inundation
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and noisy. This complicates the match relation between extracted road
segments from images and the GIS roads. Thirdly, image analysis and
vector conflation processes need to be reconciled into one coherent
process to better address the aforementioned issues.

This article proposes a new framework for full image-vector confla-
tion that attempts to automate the integration of remote sensing and GIS
road data. The new framework is based on state-of-the-art deep-learning
methods, standard GIS operations and vector conflation models. And it
can be used to directly conflate a road image dataset with credible GIS
data source (such as TIGER/Line). In particular, we propose a data
processing workflow based on modern spatial databases and show that
standard GIS operations can be used to handle all of the data processing
and matching problems in image-vector conflation given that the road
extraction method can provide a segmentation of road pixels (as the
majority of road extraction methods do).

In order to relate and compare roads in the image and roads in the
vector data, we analyze the match relationship between them and
represent them using JOIN operations in relational databases. Based on
this representation, we propose two sets of performance metrics to
gauge the degree of agreement between the roads in image and the GIS
road network. The first set of metrics is based on counting the number of
correctly extracted road objects. We define and use two-sided True
Positives to account for the complex many-to-one correspondence be-
tween extracted roads and GIS roads. The second set of metrics are
length-weighted and reflect the percentage of correctly matched roads
in terms of total length.

The framework is aimed at automating image-vector conflation for
transportation networks, and can be useful in different applications once
the match between the image and vector data is established. The
matched portion between the road image and GIS dataset is useful for
data production purposes. The extracted roads typically have higher
positional precision and may be used to improve the geometries of
existing roads in GIS. The parts in which the road images and GIS data

Road
Sentinel-2 Image
B Band 1 (Red)
[ Band 2 (Green)
Il Band 3 (Blue)

b. Discrepancies between roads from
Sentinel imagery and TIGER/Line for
Lawrence, KS (due to cartographic errors
etc.)

Fig. 1. Examples of mismatch between roads in remote sensed image and roads in GIS data (red) in Douglas County, KS. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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differ are equally useful. The difference may be a result of: a) map errors
on the GIS part due to errors in the cartographic process (as shown in
Fig. 1b), or b) abnormalities in the remote sensing imagery due to
obstruction, shadowing, and even disasters such as flooding. These dif-
ferences can be automatically identified using image-vector conflation
and then used for correcting GIS maps, change detection, road condition
monitoring, and disaster relief.

In the remainder of this paper, we provide a brief review of the
relevant literature in Section 2. In Section 3, we describe the image-
vector conflation workflow based on Res-UNet and optimization-based
conflation. We then present the experimental design and results using
high-resolution NAIP imagery (0.6 m) and the recent TIGER 2020 road
network. Experimental results show that the proposed framework can
match most roads faithfully, as indicated by the newly proposed vector-
based agreement metrics.

From the outset, it should be noted that we do not attempt to enhance
existing deep learning algorithms such as the Res-UNet or propose a new
one. Instead, we employ them as a component of the image-vector
conflation process (with optimized conflation being the other major
component). We adopt the specific DL algorithm (Res-UNet) because it is
relatively new and reportedly has good performance. In principle, any
modern road surface segmentation model in the deep learning literature
can be adapted and used to replace the specific NN that we use as the
road extraction component.

2. Background

Conflation is the process of combining two or more datasets into a
new dataset with richer information and/or better quality. In the context
of remote sensing, the conflation of multiple imagery data is often
referred to as data fusion. To conflate the extracted roads from images
with existing GIS road networks, the extracted roads should be con-
verted to vectors and then matched to the GIS road network. In this
section, we briefly review the background and related literature on
vector-based data conflation and road extraction (in that order). From
the outset, it should be noted that we do not aim to provide a compre-
hensive review of either road extraction or vector-based conflation
literature. Instead, we review only the representative methods in the
literature related to image-vector conflation. Interested readers are
referred to (Ruiz, Ariza, Urena, & Blazquez, 2011; Xavier, Ariza-Lopez,
& Urena-Camara, 2016) for comprehensive reviews of the GIS data
conflation literature and to (Abdollahi, Pradhan, Shukla, Chakraborty, &
Alamri, 2020a; Lian, Wang, Mustafa, & Huang, 2020) for the road
extraction literature, respectively.

2.1. Optimization based road network conflation

The ultimate goal of the proposed method is to merge a remotely
sensed road network with an existing GIS network. This can be con-
ducted in vector form between the extracted road centerlines from im-
agery and the existing GIS roads. We will review vector-based conflation
methods in this sub-section, and review the specific road extraction
methods in the next subsection. Different types of vector conflation
methods have been developed since the 1980s due to the common need
for map conflation in GIS. In the sequel, we briefly cover each type.

2.1.1. Conflation by exact coordinates

The simplest form of vector-based conflation is conflation by co-
ordinates. In essence, two vector GIS layers are superimposed on top of
each other, and objects from the two layers that coincide or almost
coincide with each other are considered as corresponding objects and
merged. This gives rise to the frequently used map overlay method in
multi-source GIS data analysis (Fan, Zipf, Fu, & Neis, 2014; Harvey,
Vauglin, & Ali, 1998).

In principle, the overlay method is similar to raster-based image
fusion (e.g., pan-sharpening). In both cases, the underlying assumption
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is that the data at the same location refer to the same objects on the
ground. Conflation is then performed at each location (pixel-based or
otherwise). A main challenge for overlay based methods is that the
underlying collocation assumption does not always hold. This is espe-
cially true for vector data because the vector data model allows infinite
precision in coordinates, and two objects in vector format almost never
agree with each other in coordinates. Significant spatial displacement
may also exist because of the land surveying and map production pro-
cesses. Several measures have been proposed to address the spatial
displacement.

2.1.2. Overlap measurement

One possible way of dealing with spatial displacement is to relax the
co-location requirement and only require that corresponding objects
have significant overlap with each other. This criterion is usually
expressed as the ratio between the intersection of two objects and the
sum, minimum or maximum area of the two objects (Fan et al., 2014;
Harvey et al., 1998). If this ratio is greater than a certain threshold (e.g.,
90%), the two objects are considered identical and matched. Appar-
ently, the overlapping ratio only applies to polygons. Linear features and
point features typically do not have non-zero overlapping areas. How-
ever, one can easily generate buffer polygons (Goodchild & Hunter,
1997) for linear and point features and then measure the overlap ratio of
the buffer polygons instead. It should be noted that the overlapping ratio
is essentially the same metric as the widely used Intersection over Union
(IoU) measurement for the degree of measurement of raster-based rep-
resentation of objects. The difference is that, in the IoU metric, there is
no distinct object boundary, and the comparison is based on overlapping
pixels in a gridded system.

2.1.3. Rubbersheeting

Another possible method for dealing with spatial displacement is to
remove it or at least reduce it. A widely adopted process known as
rubbersheeting (Saalfeld, 1985; Saalfeld, 1988) attempts to remove the
spatial displacement between two GIS datasets via a divide-and-conquer
strategy. The idea is to identify many control points, known as “anchors”
that divide the entire study area into many triangular patches between
these control points. Each triangular patch is small enough so that
spatial displacement pattern is uniform. After moving anchors in one
dataset to collocate with their counterparts in the other dataset, a
continuous transformation (known as “rubbersheeting™) is applied to
move all features within the patch to reduce displacement.

2.1.4. Greedy and heuristics based conflation methods

While overlapping and rubbersheeting methods limit and reduce the
amount of spatial displacement, a more general approach to match GIS
features is to measure displacement using distance metrics between
objects and match object pairs with smaller distances. Commonly used
distances include the Euclidean distance, the Hausdorff distance, and the
Frechet distance (among others). A prototypical example of distance
based methods is the nearest-neighbor join. It assigns each object to its
closest counterpart in the other dataset. An advantage of such simple
methods is that they are readily available in most GIS systems (spatial
join operations). One main disadvantage, as pointed out in (Beeri,
Kanza, Safra, & Sagiv, 2004), is that they can be inconsistent. Even for
point features, (Beeri et al., 2004) demonstrated that the notion of the
closest feature is not symmetric. Given two objects a, b in dataset I and
an object c in dataset J, it could be the case that c is the object closest to a
in J but b (rather than a) is the object closest to c in I. If a greedy closest
assignment strategy is used, a would be identified with b but b would be
identified with a different object c, leading to inconsistency.

An alternative method called the K-closest pair queries (KCPQ)
iteratively selects the least distance pair from all candidate object pairs
between the two datasets and identify them. (Beeri et al., 2004) them-
selves proposed a “probabilistic” measure to reconcile the inconsistency
between the two one-sided nearest neighbor joins. This involves
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computing a score between 0 and 1 for nearby features and assigning
features based on the score.

Generally speaking, the rudimentary distance-based methods and
their variants are often greedy in nature. They may be trapped in a local
optimal solution based on the features they have observed thus far.
However if a better solution is encountered in the later stages of the
search, heuristic based methods generally lack the capability to change
to better solutions.

2.1.5. Optimization based conflation modeling

Another approach, conceptualized in the early days of vector
conflation research (Rosen & Saalfeld, 1985), is the optimization-based
method. Starting with the “Map assignment problem” of (Rosen &
Saalfeld, 1985), optimization-based methods treat GIS feature matching
as an optimization problem of choosing match relations to minimize the
total distance between matched features. The use of the classic assign-
ment problem in operations research for conflation was first conceptu-
alized in (Rosen & Saalfeld, 1985), but was not implemented or
experimented with until (Li & Goodchild, 2010; Li & Goodchild, 2011).
The assignment-problem based method has been the predominant
method in the past few decades.

In its original form, the assignment problem is defined for optimally
solving the crew scheduling problem. Given a set of workers and a equal
number of jobs, the assignment problem seeks the minimum cost plan
for assigning jobs to workers, assuming that each worker has a specific
time cost for completing a specific job. Li and Goodchild (Li & Good-
child, 2010) used the assignment problem directly to solve the GIS
feature matching problem treating one GIS dataset as the worker set and
the other dataset as the job set. The Hausdorff distance between GIS
features were used to represent the assignment cost. Since the assign-
ment problem requires the worker set and job set to be equal in size, they
have to relax this requirement while matching two GIS datasets (which
are typically not equal in size) and only require that all features in the
smaller dataset must be assigned.

However, the assignment problem formulation of conflation is
flawed. As pointed out in (Lei & Lei, 2019), the assignment problem has
the stringent assumption that all objects in the smaller dataset must
assign. This can result in distorted matching solutions. To overcome the
issues of the assignment problem (Lei, 2020; Lei & Lei, 2019) developed
a set of new optimal conflation models based on the network-flow
problem. The network flow problem is another classic operations
research model, and subsumes other classic optimization problems, such
as the assignment problem and the shortest path problem, as its special
cases. Specifically, (Lei, 2020) developed two models: a fixed-charge
matching (fc-matching) model and a fixed-charge bi-matching (fc-
bimatching) model. The fc-matching model, similar to the assignment
problem, optimizes one-to-one matches between two datasets. Each
object, if matched to a target, is assumed to be the same as the target
object. In comparison, the fc-bimatching model optimizes many-to-one
and one-to-many matches. If an object is matched to a target, it is
assumed to belong to the target object as a part of it. The fc-bimatching
model optimizes the two-way many-to-one matches simultaneously in
one model, and attempts to avoid the inconsistent matches described in
(Beeri et al., 2004).

More advanced optimization-based conflation models exist (Lei &
Lei, 2022; Lei & Lei, 2023). (Lei & Lei, 2023), for example, attempts to
preserve the connectivity between adjacent edges when matching two
road networks, and can therefore improve the reliability of the gener-
ated matches. These more advanced optimization models are generally
based on Integer Linear Programming (ILP) formulations. Compared to
the network-flow based formulations, the ILP-based models are more
flexible in expressing various match conditions but are significantly
more expensive computationally. This is because the network flow
problems have polynomial time solution algorithms (such as the push
relabel algorithm), whereas the ILP problems do not have general
polynomial time algorithms.
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2.2. Road extraction

Fundamentally, the success of image-vector conflation depends on
the availability of reliable methods for extracting the target object
(roads here) from the imagery. Over the past few decades, a plethora of
road extraction methods have been developed owing to the importance
of roads as corridors of movement and spatial references. Road extrac-
tion methods typically require high-resolution images from satellite or
aerial imagery because they are often too thin to extract for low reso-
lution images. Given the US interstate highways’ standard lane width of
3.7 m (and similar standards elsewhere), all but the primary roads will
be less than one pixel in width in lower resolution images, and therefore
difficult to extract. On the other hand, high-resolution images from
satellite and aerial platforms can have meter or sub-meter resolution and
provide sufficient detail for road extraction. Although a large number of
methods have been developed in the past decades, we classify them
roughly into two categories and discuss them briefly: 1) traditional
methods and 2) learning methods based on neural networks and deep
learning.

2.2.1. Traditional road extraction

Traditionally, computerized road extraction methods are based on
extracting a set of “features” from remote sensing images, and then using
these features to estimate whether pixels are road pixels. These image
features can be simple or abstract and complex, and can be defined
based on photometric as well as geometric characteristics.

One of the simplest image features that is useful for road extraction is
the edge feature (Jensen, 2015). It can be calculated using differential
operators which determine the difference between neighboring pixels. A
threshold can then be applied to obtain pixels that correspond to loca-
tions of changing pixel values, i.e. edges. More sophisticated edge de-
tectors such as the Canny detector have additional capabilities for noisy
suppression and so on.

Another classic method for extracting linear features such as roads is
the Hough transform (see e.g. (Liu, Zhang, Li, & Tao, 2017)). It involves
voting in a parameter space for potential linear features in an image. A
target pixel is a vote to every line that passes through itself. Real linear
features win, as they obviously will have many votes from its constituent
pixels. More sophisticated and efficient Hough transforms exist. The
reader is referred to (Liu et al., 2017) for a discussion of generalized
Hough transforms.

Mathematical morphology, a technique based on geometrical struc-
tures (Haralick, Sternberg, & Zhuang, 1987), is another classic method
used in road extraction. Directional mathematical morphology (DMM)
operators (Talbot & Appleton, 2007) (i.e., path opening and path clos-
ing) are used to remove compact noise while preserving line-like road
features in (Valero, Chanussot, Benediktsson, Talbot, & Waske, 2010).
Furthermore, Liu et al. (W, Bo, & Wu, 2015) integrated DMM with
OpenStreetMap data to achieve better performance.

Another commonly used feature is texture. The image texture is a set
of metrics about intensities arrangement in a region used to depict local
patterns and irregular sub-elements in an image. Mena and Malpica
(Mena & Malpica, 2005) fused several texture measurements for image
segmentation in a road extraction pipeline. Wang et al. (Wang et al.,
2014) fused the texture and spectral information for road extraction.

2.2.2. Deep Learning based road extraction

In traditional object extraction methods, the human experts are
responsible for choosing the image features and then designing various
feature detectors. For example, when designing a typical edge detector
using a moving window (a.k.a, kernel), the human expert needs to
determine the appropriate weight values of the kernels based on expe-
rience and reasoning. With larger kernels and more complex features,
such as textures, it is becoming increasingly difficult for the human
expert to pre-define good weights and other parameter values. This is
where the neural-network (NN) and deep learning (DL) based methods
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shine. A Neural Network typically consists of multiple layers of
Threshold Logic Units (TLUs), where each TLU is a computational unit
that applies a (usually linear) transformation of its input values and a
threshold to produce an output. Layers of TLUs are inter-connected in
the sense that the output of one TLU may feed into the input of another.
Each TLU contains a set of parameters (coefficients) for the trans-
formation. Unlike traditional object extraction methods, these parame-
ters are left as unknown values in neural networks, and a learning
algorithm is used to learn these parameters from real world training
data. This can be achieved, e.g. by penalizing mis-classifications. This
data-driven approach for selecting parameters is often more effective
than pre-defining parameters especially when the number of parameters
is large. Several important NN/DL based methods have been applied to
the road extraction problem, as follows.

2.2.3. Patch-based CNN models

The Convolutional Neural Network (CNN) (LeCun, Bottou, Bengio, &
Haffner, 1998) is one of the most important neural networks for com-
puter vision and the extraction of various objects, including roads. At the
operational level, the CNN consists of many convolution kernels (sliding
windows), forming a hierarchy of levels. At the lowest level, convolution
is performed at each location on raw pixel values in much the same way
as pre-defined convolutional operators (such as edge detectors). In
addition, these lower-level kernels extract low-level features such as
edges in various directions. The kernel parameters (weight values) are
kept as unknowns and learned from the image and the ground truth
labels. A unique feature of the CNN is that it uses a hierarchy of kernels
to capture features at different scales. While lower-level kernels capture
local details such as edges, higher-level kernels can capture larger fea-
tures spanning a much larger area. This is accomplished by down-
sampling when defining the sliding windows at the higher levels, which
is also known as “pooling”. The CNN itself is structured as an interleaved
stack of convolutional and pooling layers. The outputs of the various
levels are feature maps, including low-level features (such as edges) and
high-level features (describing larger scale structures). Owing to sam-
pling, the image or feature map becomes smaller and smaller. At the top
level, a few fully connected layers are typically used to convert the top
feature map into the final prediction.

The final prediction of the CNN is usually the class probability of the
entire image, for example, the likelihood of whether the image is for a
dog or cat. If applied directly to a road image, the output of the CNN will
be whether the image scene has any road. However, road extraction
requires the extraction of all road pixels and not just one probability.
Patch-based CNNs were proposed (Mnih & Hinton, 2010) to address this
issue. The input road image was divided into many small sliding patches
that overlapped with each other. A CNN was applied to each patch to
classify whether its center pixel represented roads. (Mnih & Hinton,
2010) was the first to use a patch-based CNN to extract roads from
remote sensing imagery. This was followed by numerous other studies
(Wang, Song, Chen, & Yang, 2015, Alshehhi, Marpu, Woon, & Mura,
2017; Li et al., 2016; Saito & Aoki; Wei, Wang, & Xu, 2017)-(Abdollahi,
Pradhan, & Shukla, 2020b).

2.2.4. UNet-like models

A main issue of patched-based CNNs is the much repeated compu-
tation for training in the overlapping areas. An alternative NN that does
not repeat these computations is the UNet model and its various ex-
tensions. Unlike the CNNs, the UNet employs two stacks of convolution
kernels. The first stack is similar to the CNN design and gradually
transforms data from larger low-level feature maps to smaller high-level
feature maps with higher dimensions. In the big picture, it encodes the
original image into high-dimensional feature maps. Symmetrically, the
second stack “decodes” the encoded information and gradually trans-
forms data from the high-dimensional feature space back to the image
space and produces a prediction image of the same size as the input
image. Each pixel in the prediction image contains the class probability
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of that pixel (e.g., whether it is a road pixel). The prediction image is
then compared to a similarly formatted ground truth class image to
compute the difference or “loss function” value, which is used to opti-
mize or train the unknown parameters at various levels of the UNet. The
letter “U” in the term “UNet” refers to the U-shape of two stacks: one
downsampling encoder stack that boils down images to high-
dimensional feature maps plus a upsampling decoder stack.

Similar to the CNN, the hierarchical structure of the UNet means that
both fine-grained local features and large-scale features can be captured
at different levels. The various levels of features are encoded into feature
maps at each level of the encoder sub-network. Ideally, these feature
maps characterize the essence of the target objects and neglect noise
signals. Unlike the CNN, the reverse decoder network is used in UNet to
reconstruct a prediction image to match the label image. This design led
to the successful application of UNet in image segmentation and road
extraction (Litjens et al., 2017).

Various extensions of UNet have been proposed in literature. One
important direction is to employ various “skip” mechanisms, called re-
sidual block, to solve the so-called gradient explosion and vanishing
problem caused by deep network (He, Zhang, Ren, & Sun, 2016). By
using residual block in UNet, ResUNet (Zhang, Liu, & Wang, 2018)
further improved stability and accuracy in road extraction. More flexible
skip mechanisms have also been proposed in a variant of UNet called
UNet++ (Zhou, Siddiquee, Tajbakhsh, & Liang, 2020), which provided
the Res-UNet implementation that is used in this article.

2.3. Road centerline extraction

One remaining task for image-vector conflation is the extraction of
centerlines from predicted road images. As a result of typical image
segmentation algorithms, the predicted roads are in a pixelated format
and are represented as a set of road regions, or the raster equivalent of
polygons. These regions still need to be converted into polylines (i.e.,
road centerlines). This process, which is sometimes known as thinning
or skeletonization, can be tricky. Depending on the algorithm used, the
extracted road regions can be fragmented teeming with spurious lines
and noise. Some algorithms, such as the Canny edge detector, have built-
in noise-suppression and thinning functions. In general, thinning re-
quires a separate step. In the deep learning literature, a distinctive
method for extracting centerlines is via multi-task learning (Qi, Liu,
Yang, Guan, & Wu, 2017). The basic idea is to learn related tasks
simultaneously with a shared representation of the multiple tasks at
hand (road segmentation and centerline extraction). The interested
reader is referred to the review paper by (Liu, Wang, Yang, Li, & Zhang,
2022) for further details.

Most conventional and deep learning based road centerline extrac-
tion algorithms generate centerlines in pixel form (Cheng et al., 2017;
Liuetal., 2019; Luetal., 2019; Shao, Zhou, Huang, & Zhang, 2021; Yang
et al., 2019), and therefore cannot be used by GIS. Therefore, a vecto-
rization process is necessary to convert them to discrete GIS objects for
conflation. In the next section, we will present a vector-based thinning
framework that directly converts road polygons to centerlines.

2.3.1. Directly extracting centerlines from images

Other than the above image segmentation based methods, there is
also a class of remote sensing road extraction methods that directly
extract the roads in vector form. For example, Bastani et al. (Bastani
et al., 2018) proposed an iterative road centerline tracking method,
called RoadTracer, which uses a window centered on a given position at
each step of the tracking to determine the direction and the action of the
next tracking step. Constrained by the number of origins, locations, and
fixed step sizes, RoadTracer often reportedly results in incomplete
extracted roads and displaced intersections. Wei et al. (Wei, Zhang, & Ji,
2019) proposed a multi-point tracing strategy, called MspTracer, in
which they traced the centerline of a road starting from multiple in-
tersections in the road network. The road network is obtained by fusing
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the road traces. In order to correct the road offset caused by the fixed
step size in the RoadTracer, Tan et al. (Tan, Gao, Li, Cheng, & Ren, 2020)
proposed a VecRoad framework with variable step sizes, guided by the
so-called trace graph and the intersections. VecRoad can obtain road
maps that are closer to the real scene. While iterative road tracing is
good at maintaining road connectivity, it is computationally slow due to
its iterative nature. In a one-pass style, He et al. (He et al., 2020) pro-
posed a framework for generating road graphs directly from images
(Sat2Graph), which encodes road graphs into a tensor through graph
tensor coding (GTE) to train a non-recursive, supervised model. The
model predicts the whole road map from the input image and therefore
accomplishes road extraction. Gaetan et al. (Bahl, Bahri, & Lafarge,
2022) proposed a one-pass road vector extraction method with similar
principles.

It should be noted that although the above new methods can
generate road centerlines directly, these centerlines still need to be
conflated with GIS data. They can potentially suffer from the same
incompleteness and noise issues as other road extraction methods. They
can be used potentially as a component of our image-vector conflation
workflow (just as segmentation-based methods), but cannot replace the
conflation itself. We used the geometric methods to extract centerlines
not because that it is the only method, but rather because we will need
GIS in the conflation process eventually, and letting GIS to extract the
centerline allows a wider range of road extractions methods (conven-
tional or new) to be utilized. In principle, these road extraction methods
can be used interchangeably in our framework as long as they produce
road centerlines in the end.

2.3.2. Evaluation metrics

To evaluate the performance of road extraction algorithms, a
commonly used performance metric is the Intersection over Union (IoU).
It is defined as the ratio between 1) the size of the intersection of the set
of predicted road pixels (from the algorithm) and the set of labeled road
pixels (from the ground truth) and 2) the size of their union. Clearly, the
larger the IoU, the higher the degree of agreement between the com-
puter predicted roads and the labeled ground truth.

Alternatively, another commonly used set of metrics are the True
Positives (TP), False Positives (FP), False Negatives (FN), and various
rates derived from these numbers. Originally from the information
retrieval domain, the TP is defined as the number (or set of) road pixels
that are correctly classified as roads. The FP is defined as the number of
non-road pixels falsely classified as road pixels. The FN is the number of
road pixels incorrectly classified as non-road pixels. Based on this defi-
nition, commonly used metrics, such as the recall rate, the precision
rate, and the Fl-score can be computed. Existing performance metrics
are pixel-based, and are routinely computed in most research articles
and mainstream libraries such as TensorFlow and PyTorch. A potential
issue with these pixel-based performance metrics, is that they can be
disrupted by spatial displacement between the remote sensing and GIS
datasets. Therefore, they cannot be directly used to measure the degree
of agreement in raster-vector conflation, as will be demonstrated in later
sections.

In summary, a prerequisite for automatic integration of raster and
vector data is object matching or conflation. While vector-vector
conflation is still an active research topic, image-vector conflation
poses new challenges. This is due to the complex image scenes, inherent
noises in the image data, and the fragmented nature of the extracted
objects (in pixel or vector forms). The image-vector conflation problem
is an area worthy of further investigation, and the problem we will
address in the remainder of this article.

3. Methodology
This section presents the methodology and main workflow of the

proposed image-vector conflation framework. First, we describe the
extraction of road regions using the Res-UNet model. We then discuss
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methods for converting the pixel-based road regions to a polyline format
as well as important practical issues therein. Next, we detail the use of
state-of-the-art optimization-based conflation model to match the
algorithm-generated roads and the ground truth roads (TIGER/Line
2020). We then discuss the issues of performance evaluation and pro-
pose a new set of vector-based metrics to complement traditional pixel
based metrics.

3.1. Generation of vector road network from remotely sensed data

3.1.1. Training and predicting road pixels

In the first step, we extract road surface pixels in the high resolution
remote sensing images. In the NAIP images we use, each pixel is only 0.6
m by 0.6 m, and typical roads of 10 m width measure more than 15
pixels. Since the image resolution is high, road lines appear to be large
and elongated objects. To effectively extract these large road segments,
we use a relatively simple but robust deep learning model called Res-
UNet (Zhang et al., 2018; Zhou et al., 2020).

Similar to classical UNet model, the ResUNet model we use consists
of a contracting (encoding) path, an expansive (decoding) path, and a
middle part. In the contracting path, the input image is encoded into a
compact representation. The number of level of blocks along the path is
called the model depth. In the expansive path, which has the same
number of levels of up-sampling blocks, a prediction image is generated
in which each pixel is an object class (road vs. non-road). A middle part
connects these encoding and decoding parts so that the whole structure
forms a U-shape.

Unlike regular UNet, ResUNet uses residual units as the basic
building block (Zhang et al., 2018). Typical residual unit contains two 3
% 3 convolution blocks plus an “identity mapping” that links the output
of the unit with the input of the unit. Each of the two convolutional
blocks consists of a Batch Normalization (BN) layer, a ReLU activation
layer and a convolutional layer. The identity mapping connecting the
input to the output essentially makes the residual unit train the residual
signal rather than the original signal, and gives rise to the term residual
learning. This “skip” link allows the use of the lower-level features at the
input to reinforce larger-scale features at the higher level output,
thereby reducing information loss and allowing the learning model to
have a much greater depth (He et al., 2016). By combining UNet’s power
of recovering hierarchical contextual information and Residual learn-
ing’s power of enabling deeper models, ResUNet (Zhang et al., 2018)
reaches a satisfying balance between complexity and robustness that is
required for large scale road extraction.

In our application of road extraction in NAIP images, we adopt a
ResUNet structure for training and prediction with the following spec-
ifications based on fine-tuning. We use a UNet with residual connections
and a model depth of 5. Resnet-34 is used as encoder backbone. The total
number of model parameters are 24 million (24,436,369). We use tanh
function as the activation function and MSE as the loss function. The
initial learning rate is set to 0.0002 and the “RMSprop” optimizer is used
with a weight_decay of 1078.

3.1.2. Polygonization of predicted images and extraction of medial axes

Once the road regions are predicted, we verified that the quality of
these regions were sufficiently high. Although road regions are occa-
sionally broken into disconnected parts, they are generally continuous
and elongated in shape so that they can be converted to polylines. There
are multiple methods to extract road centerlines from binary road im-
ages. One possibility is raster-based polygon thinning with mathemat-
ical morphology operators, in which the road regions are narrowed
down to one pixel wide. One can then connect the pixels and identify the
links formed by tracing contiguous pixels. Depending on the algorithm
used, the thinning result may not coincide with the real centerline and
may also have too many details because of the pixelated nature of the
road regions.

In this study, we adopt a geometric approach by converting the road
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regions in the prediction images to polygons upfront (using GDAL’s
gdal_polygonize command). This allows us to preserve the shape infor-
mation as much as possible. We then extract and process the centerline
of each road polygon. We define the center line of a road polygon as its
medial axis (which can be computed using the PostGIS ST_Approx-
imateMedialAxis() function). In computational geometry, the medial
axis of a polygon is the set of points with equal distances to two or more
edges. Clearly, this is a faithful characterization of the concept of
“center” line. During the road polygonization process (using GDAL), we
accumulate road polygons extracted from all image tiles into a single
layer and merges any adjacent road polygons. This allows us to extract
continuous road segments across tile boundaries.

3.1.3. Building topology and removing twigs

While the medial axis is a natural characterization of road center-
lines, the medial axis of a road polygon typically come with many un-
wanted branches or “twigs” as shown in Fig. 2.

In one test for Shawnee County, KS (using USDA NAIP 2019 images
and TIGER/Line 2020 shapefiles), while the polygonization process
generated only 7142 road polygons, the medial axis computation
generated 211,996 line segments, which is approximately 30 times more
than the polygons. Upon closer investigation, most of these line seg-
ments are small “twigs” only a few meters in length (Fig. 2). To reduce
the number of twigs in the extracted centerlines, two approaches were
adopted. First, we generalized the road polygon shape before computing
medial axes (using the PostGIS ST Simplify() function). By smoothing
out the shape details (mostly from pixelated polygon boundaries), the
number of twigs was reduced (see Fig. 2a,b).

Although generalization reduces the number of twigs, the medial
axis computation still produces a relatively large number of twigs
(Fig. 2b). As a second measure, we remove these twigs using a topo-
logical analysis (results in Fig. 2¢). The main idea is to precisely char-
acterize twigs and then filter them out. In essence, a short edge is a twig
if one of its end nodes has a degree of one (dangling), and the other has a
degree of at least three (branching). Here, an edge is considered “short”
if its length is less than 10 m. Operation-wise, we first create the node-
edge topology using the pgRouting library (the (pgr_createTopology())
function) and compute the degree of nodes for all extracted centerlines.
We then remove all the edges that meet the degree and length criteria in
PostGIS using SQL.

Owing to the large number of edges, the topological pre-processing
above is time consuming. Initially, we attempted to compute the to-
pology for the entire Shawnee centerlines in one run. The computation
took a long time and eventually caused the PostGIS system to crash with
a memory overflow (16 Megabytes). After experimentation, we found
that we can reduce the computation time by dividing the centerlines into
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batches of 40,000 geometries each, and build the topology one batch at a
time. This is possible because pgRouting’s topology building function
(pgr_createTopology()) allows the use of a logical condition to limit the
topology-building to a subset of lines in the road table. And we keep
track of the range of id numbers for each batch of roads and let
pgr_createTopology() to only process those roads in the current batch.
After batching, the topology was successfully computed within one
hour.

In our routine, the pruning strategy is applied twice to ensure that
most twigs are removed. For the Shawnee area, the number of edges was
reduced from 211,996 to 97,512 after the first round of pruning, and was
further reduced to 96,280 after the second round. We then merged
adjacent lines that met each other at degree-two nodes, and the number
of edges was reduced to 18,982. Once the number of edges is reduced to
a commensurate level to the GIS data, we proceed to the next stage to
establish the match relation between the extracted edges and the
existing GIS dataset. The workflow for road network generation is
illustrated in Fig. 3 below.

3.2. Optimization-based conflation of extracted roads and ground truth

Once the road centerlines are extracted, we relate them to the roads
in the target GIS dataset to evaluate whether or to what extent the
extracted data agree with the target dataset. Many methods for matching
vector datasets have been developed since the early effort on map
conflation in the 1980s by the US Geological Survey (Rosen & Saalfeld,
1985; Saalfeld, 1988). In this study, we take the optimization-based
approach. As discussed in the Background section, it is capable of
capturing the essence of match relations and finding the optimal solu-
tions using off-the-shelf optimization solvers.

We chose the fixed-charge bi-matching model (Lei & Lei, 2019) (fc-
bimatching) as the main model for two reasons. First, it is much faster
than other Integer Linear Programming (ILP) based models. With the fc-
bimatching model, we were able to match two road networks with
approximately 10 k or 20 k edges within half an hour. Model instances of
this scale are often beyond the capabilities of comparable ILP models.

Second, in our application, the spatial offset between road geome-
tries extracted from images and road geometries in the target GIS dataset
is present, but is usually not large. This is because we used road data
from the latest decennial census (2020) as the GIS database and recent
NAIP images acquired in 2019. Both datasets have a relatively high
positional precision owing to advancements in surveying and sensor
technologies. Consequently, we do not have to deal with large spatial
displacements in older GIS datasets (which could amount to a half street
block). Additionally, the extracted road centerlines are often broken at
places owing to obstruction, etc., and complicated conflation models
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Fig. 2. Road polygons and their medial axes as road centerlines: the “twigs” problem.
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Fig. 3. Workflow for the generation of the vector road network.

with connectivity considerations may be a overkill. However, if more
advanced optimization models are needed in the future, they can always
be used as a drop-in replacement of the fc-bimatching model used in this
study.

3.3. Evaluating the degree of agreement in image-vector conflation

One of the tricky issues in image-vector conflation is the effective
evaluation of the degree of agreement between the raster and vector
datasets. The approach we adopt is rooted in the large body of computer
vision literature, in which the accuracy of object extraction is measured
in terms of comparing the extracted pixels to the “ground truth”. If an
object in the image is correctly detected at a pixel position according to a
ground truth image, it is counted as a “True Positive” (TP). If an object is
present in the image at a pixel but not detected by the algorithm, it is
counted as a “False Negative” (FN). If the algorithm detects an non-
existing object pixel in the image, it is counted as a “False Positive” (FP).

In the context of image-vector conflation, we measure the agree-
ment/disagreement of discrete objects (in vector form). More specif-
ically, we apply the extraction model we trained to a target geographic
region (which may be different from the region where the model is
trained). In the target region, we compare the extracted roads with a
published GIS road dataset. If an extracted road segment coincides with
or is sufficiently close to a road in the published GIS data, this case is
considered as a “True Positive”. If an extracted road segment is absent
from the published GIS data, it is considered a “False Positive”. Here, we
borrow the terms “ground truth”, “True Positives” and recall rates etc.
from computer vision for measuring the degree of agreement/
disagreement between the raster and image datasets. And there is a
subtle difference from the original meaning of these terms in that the GIS
road data is not necessarily true or the “ground truth”. The GIS data can
have map errors too due to the cartographic process or the maps being
outdated. Therefore, the metrics we compute should be interpreted as
such: the degree of agreement between the roads in the raster and those
in the GIS data. With this in mind, we will use the terms the “ground
truth” and “target GIS data” interchangeably.

Several assumptions are made in the agreement metrics. First, we
assume that the published GIS data is from a credible source and has
relatively high positional accuracy. In this study, we use a road dataset
from a recent decennial census (TIGER 2020). And we assume that the
data quality is reasonably high given the advancement of surveying
technology. Second, we assume that the remote sensing imagery has
very high spatial resolution (0.6 m in our data) and positional accuracy.
This is warranted by the highly calibrated imaging process of modern
remote sensors. Combining these factors and based on inspecting the
displacement between the images and the GIS data, we assume a cutoff
distance of 30 m. If the extracted road is within this cutoff distance from
a road in the published GIS data and matched to a published road
segment by the matching algorithm (to be described briefly), it is
considered a True Positive. We can similarly define False Positives and
False Negatives, and compute the following metrics:

recally = L
°TTPYFN
recision, = L
P ° = TPy FP

3.3.1. Matching extracted roads to target GIS data

One caveat in the above classic definition of recall and precision is
that they do not really apply due to the fragmented nature of extracted
roads. This is because the classic definition is based on the assumption of
a one-to-one correspondence between the extracted and reference road
segments. That is, the geometry of an extracted road segment should be
very similar and close to the geometry of the same road in the target GIS
dataset in an ideal situation. However, in reality, the extracted road
geometries are often fragmented owing to presence of clouds, obstruc-
tion by tree canopies, and inundation etc. Consequently, one continuous
road is often broken down into several disconnected polylines in the
extracted road datasets. This is problematic for the agreement metrics
because the one-to-one assumption underlying the classic definition of
TP, FP, and FN no longer hold.

To remedy this issue, we have to step back and re-define the match
metrics from first principles while accommodating many-to-one corre-
spondence. In essence, recall measures the percentage of objects in the
ground truth data captured by object extraction. This implies that recall
should be defined in terms of the number of objects in the ground truth.
In turn, this means that the True Positives (TPs) and False Negatives
(FNs) should be defined in terms of objects in the ground truth. For
exposition, we use the letter “r” to designate the ground truth dataset
and the letter “e” to designate the extracted dataset. With this notation,
recall should be defined in terms of TP,, which is the number of correctly
matched roads in the ground truth data r. Similarly, precision mea-
sures the percentage of objects in the computer generated dataset e that
are correctly matched to their corresponding objects. Therefore, preci-
sion should be defined in terms of TP,, which is the number of correctly
matched objects in the generated data e. From this discussion, we see
that it is necessary to distinguish two types of True Positives (TP): TP,
and TP,, and define two-sided True Positives.

We do not need to define two False Positive (FP) numbers because FP
is the number of incorrectly extracted objects in the generated dataset e.
Likewise, we only need one False Negative number, as it is defined
purely in terms of ground truth data r. Now that we have extended the
definitions of TP, FP, and FN, we can define the recall and precision rates
under (two-way) many-to-one correspondence as follows:

recall = i
- TP, +FN
recision = TP,
P ~ TP, + FP

The commonly used F1-score is defined in terms of recall and pre-
cision, as follows:
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__ 2-recall-precision
" recall + precision

3.3.2. Computing match metrics using relation algebra

The aforementioned vector-based match metrics can be precisely and
conveniently computed from the two GIS layers directly using relational
algebra. The conceptual steps are as follows: First, we use the GIS layers
to store the matching results. Each object has an id field (for its unique
identifier) and a match_id field, which stores the identifier of the target
object in the other dataset to which this object is matched. The
optimization-based conflation model fills the match_id field appropri-
ately after solving the object matching problem. Then, we can compute
the metrics using a relational (join) operators, as follows:

TP, is defined as e INNER JOIN r then projected to e. TP, is defined as
e INNER JOIN r then projected tor. FP is defined as e LEFT ANTI JOIN r.
FN is defined as e RIGHT ANTI JOIN r.

The JOIN condition above is that either e's match_id value is equal to
r's id value, or vice versa, r's match_id value is equal to e’s id value.

3.3.3. Length weighted match metrics

The performance metrics so far are defined in terms of the number of
correctly extracted road lines. As an auxiliary metric, we also measure
the match rates in terms the length of road segments that are correctly
matched. This is accomplished by weighting each road segment with the
length of matched portions. For a road polyline in FP or FN, we simply
use its entire length as the length that is incorrectly matched (FP) or
missed (FN). For a correctly matched road polyline i in generated data e,
we define its matched length as the total length of all road segments in
the ground truth data r that are matched to i. Similarly, for a road
segment j in r, its matched length is the total length of all those in e that
are assigned to j.

3.3.4. Comparison with conventional metrics

It should be noted that the match metrics defined above are related to
but different from the IoU metric widely used in the remote sensing
literature for comparing predicted and ground truth images. Broadly
speaking, both our match metrics and the IoU metric measure the per-
centage of overlap between computer generated/extracted results with
some kind of reference roads. The difference between our metrics and
the IoU is that we measure the overlap between extracted roads and a
target GIS dataset that is not necessarily the ground truth. The GIS
dataset is just another useful road dataset in the vector form that we
want to merge to. Furthermore, our metrics are based on matching
discrete objects (i.e. Vector-based), whereas the IoU metric is based on
comparing pixels at each grid point.

As such, the IoU metrics should only be used in the road extraction
context for comparing against the ground truth roads (in vector or raster
form). They should not be used for general conflation purposes. This is
because the IoU metric (and similarly the pixel based F1-score reported
by many deep learning libraries) are sensitive to spatial displacement. If
the IoU is used as a match metric for image-vector conflation and the
spatial offset between extracted road segments in the GIS counterparts is
greater than the road width, the IoU (and pixel-based F1-score etc.) will
be zero. In practice, such coordinate errors occur frequently because the
GIS datasets such as TIGER and OSM do contain coordinate errors
(ranging from a few meters to 100 m in some cases). By comparison, our
match metrics are suitable for image-vector conflation as they are more
resistant to spatial offsets and coordinate errors.

The vector-based match metrics measure the degree of agreement
between the image and vector data. They may not be 100% for two
different reasons. For one, the road extraction may not be perfect; some
error in prediction or vectorization may cause mis-matching, which we
call “methodology-induced mismatching”. In the second case, which is
more interesting, there may exist some real differences between road
networks in the image and in the GIS data due to various reasons such as
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flooding, outdated maps, or GIS data production issues. We call these
differences “change-induced mismatching”. These changes often pro-
vide useful information in environmental change detection and map
quality checking. “False Positives” may indicate newly construction
roads that are not yet reflected in the target GIS data, and “False Neg-
atives” may indicate anomalies such as flooding, land slide, etc.

4. Experiments
4.1. Experimental settings

We collected the USDA NAIP 2019 images as the remote sensing data
and TIGER roads as the GIS data for the Douglas County and Shawnee
County, KS. The NAIP 2019 imagery is an aerial dataset with a spatial
resolution of 0.6 m and has both natural color and pseudo-color ver-
sions. We selected the pseudo-color version with the Infrared (IR), Red
(R), and Green (G) bands. We chose the pseudo color version because
our initial experiments showed that the pseudo color version with the IR
bands seems to have more discriminative power and consistently per-
forms better than the natural color version (although the difference is
small). The TIGER/Line road dataset consists of all named roads from
the most recent decennial US census (Census 2020). The Douglas
County, (1230 km? in area) and the Shawnee County (1440 km? in area)
were selected as the training and testing sites, respectively (as shown in
Fig. 4). As the training sets were too large for manually labeling road
pixels, we used the TIGER/Line dataset as the baseline road network and
used GIS packages to generate ground truth road images within Douglas
County, KS, in a similar way to prior research (e.g., (Mnih, 2013)).

Binary ground truth images were generated in accordance with the
format of the Deep Globe contest. More specifically, the TIGER/Line
roads were converted to buffer polygons with a 5 m radius and then
“burnt” into the NAIP 2019 image. In other words, pixels are assigned
non-zero or zero values based on whether they are within the road
buffer. The Douglas County NAIP image was divided into tiles of 1024 by
1024 pixels. By convention, the tiles are divided into three subsets:
training set (70%), testing set (20%) and validation set (10%). To test
the generalization capabilities of the road extraction model, we also
used the entire image for Shawnee County as another testing set, which
was divided into tiles in the same manner. While using a random subset
of tiles as the testing dataset is a common practice in deep learning, it is
more useful in practice to train the road model for one specific area and
apply it in other areas.

The experiments were then carried out following the workflow
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Fig. 4. The study area in Douglas and Shawnee Counties, KS.
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described in the Methods section and Fig. 3. The Res-UNet based road
extraction model was trained on Douglas County data and was used to
extract road areas in Shawnee County, KS. After the polygonization of
the predicted images, the extraction of medial axes and twig removal,
the extracted roads and ground truth were conflated using the fc-
bimatching model. The overall image-vector conflation was evaluated
using the vector-based metrics described in Section 3.3. Just for com-
parison purposes, we also computed traditional pixel-based IoU metrics
between the extracted roads and the rasterized version of the target GIS
roads.

4.2. Overall performance results

In this subsection, we report both conventional pixel-based and
vector-based performance metrics (with the Fl-score reported for both
cases). The metrics are reported for the cross-county experiment in
which we trained the road extraction model over Douglas County, KS,
and applied it to predict roads in the nearby Shawnee County, KS.

4.2.1. Pixel-based metrics

Overall, the average IoU of the road prediction in Shawnee County
was 59.8%, and the average prediction F1-score was 71.2%. This means
that nearly 60% of the predicted and rasterized GIS road overlapped.
The F1-score was computed using pixel-based TP, FP, and FN numbers
using the pytorch library. This suggests that the road extraction per-
formance is adequate, but there are a large portion of pixels (over 40%)
where the predicted roads and rasterized GIS roads do not match.

4.2.2. Vector-based match metrics for image-vector conflation

After the vectorization, there were 17,154 polylines in the extracted
road layer, while the target GIS layer from the US Census has 10,688
roads in the Shawnee area. The fact that there are more extracted roads
than the ground truth demonstrates the fragmented nature of the
extracted roads. Note that we define the study area as the intersection
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between all image tile areas and areas with roads in the ground truth,
leaving out empty tiles with no roads. In the non-empty areas, the
object-level recall rate is 81.0%. This means that of all the roads in the
Census data, over 80% have been matched by extracted roads with the
given cutoff distance (30 m). As will be demonstrated shortly, some
smaller roads were entirely missed by the road extraction algorithm. The
object-level precision rate was 86.7%. This means that nearly 87% of the
extracted roads matched the target GIS roads. On average, the object-
level F1-score was: 83.8%.

The object-level match metrics gauge the degree of agreement be-
tween the extracted roads and the target GIS roads in terms of the number
of correctly identified objects. In comparison, the measure-based metrics
describe the degree of agreement based on the total length of the cor-
rected identified roads. On average, the measure-based recall rate was
88.7%. This means that nearly 90% of all target roads were matched by
extracted roads. The measure-based precision was 93.0%. This means
that most of the extracted road segments, in terms of length, were
matched to the target GIS roads. The measure-based Fl-score was
90.8%.

The total computational time of the prediction-matching process was
107 min, tested on a machine with an Intel i5-12400F CPU and a Nvidia
RTX 3060 GPU. The prediction step took a little more than 30 min (1915
s), and the optimization-based matching took approximately 2 min (119
s). The rest of the time was spent on the GIS processing for poly-
gonization, medial axis extraction and twig removal.

Fig. 5 visualizes the overall degree of match between the raster and
vector roads in the Shawnee County. And Fig. 5a and Fig. 5b depicts the
extracted roads and GIS roads, respectively. Comparing the two sub-
figures, we can observe that overall, the extracted roads match the GIS
roads pretty well. Most of the roads in the GIS database have been
extracted, and there were not many spurious roads. Note that the blank
areas in the NE and SW corners of Fig. 5a were due to missing data (with
N/A pixel values) in the NAIP image. So, these areas were excluded from
both the IoU and vector-based metrics. From these two figures, it is clear
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Fig. 5. Comparison between extracted roads and existing GIS roads in Shawnee County, KS.
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that the conventional IoU metric is not a good characterization of the
degree of match. It is unlikely that only 60% of the roads matched (in
terms of mileage).

At face value, the new vector-based metrics were significantly higher
than the pixel-based IoU metric. The pixel-based IoU is approximately
60% while the measure-based recall and precision rates were both
around 90%. Fig. 5 shows that the pixel-based metrics are not suitable
for evaluating image-vector conflation and the vector-based metrics are
more appropriate. Presumably, this is because a pixel can be counted as
a false positive or false negative just because it is a few pixels off in
position. Given the 0.6 m resolution of the NAIP image, this means that a
small spatial displacement of a meter or two may cause a pixel to be
falsely counted. By comparison, the vector-based metrics speak directly
to the intuition about the degree of match between the roads as objects.

4.2.3. Discussion of the cutoff distance

In the experiments so far, we have assumed a cutoff distance of 30 m.
One natural question is the following. What is the appropriate value for
the cutoff and how do different values impact the vector-based agree-
ment metrics? In principle, the cutoff distance is not really a model
parameter that should be adjusted from one image scene to the next.
Instead, it should be a fixed value reflecting the maximum positional
offset for the entire dataset to be conflated. Within this limit, the
extracted road segment is considered to represent the same object as the
road in the ground truth.

Using a cutoff value that is either too large or too small could have
negative consequences. If the value is too small, we risk missing
correctly detected roads. If the value is too high, we risk being over-
optimistic and count off-road detections as roads. We chose a 30 m
cutoff based on estimated maximum cutoff and a visual inspection of
detected roads and their GIS counterparts (as shown in Fig. 7a,b). This
value should be chosen carefully by the human expert for each data
source based on the positional accuracy of both the image and vector
data.

To evaluate the influence of the cutoff distance, we also repeated the
above experiments for additional cutoff values at 15 m and 45 m,
respectively. At 15 m cutoff, the object-level recall rate was 77.6%,
which was 3.4% lower than the 30 m recall value. This is likely because
some of the target GIS roads were considered unmatched due to the
lower cutoff. The object-level precision rate was 82.3% (which was 4.4%
lower). This is presumably because some of the correctly extracted roads
fell outside the cutoff and considered as unmatched. The object-level F1-
score is 79.9% (3.9% percent lower).

At 45 m cutoff, the object-level recall rate was 82.8%, which was
1.8% higher than the 30 m recall value. The object-level precision rate
was 89.0% (which was 2.3% higher). The F1-score is 85.8% (2% higher).
This is presumably because the larger cutoff distance led to a smaller
number of unmatched roads in both the set of extracted roads and the
target GIS roads. The nominal increase in agreement metrics is relatively
small. On the other hand, we should be careful about these far off
detected roads when counting them as true matches. And it is advisable
to visually inspect them to make sure that they indeed correspond to
roads in the ground truth GIS data. Overall, this test suggests that when
an appropriate cutoff distance is used, the vector-based metrics are
much higher than the IoU (around 60%) and renders a more accurate
characterization of the degree of agreement of the overall image-vector
conflation process.

4.3. Case studies

In this subsection, we demonstrate a number of scenes to gain a
better understanding of the difference between the pixel and vector
based metrics as well as the quality of the overall image-vector confla-
tion process. Fig. 6 depicts the result of the conflation between the
predicted road network and ground truth road network from TIGER-line
in the Topeka area. In the figure, the thick lines indicate matched roads.
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Fig. 6. True Positives (thick), False Positives (thin green) and False Negatives
(thin red) in Topeka, KS. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Specifically, the thick green lines represent the extracted roads that are
matched to roads in the ground truth. The thick red lines represent
matched ground truth roads. Thin green lines represent extracted roads
that fail to match any roads in the ground truth (False Positive), and thin
red lines represent ground truth roads that are missed by the road
extraction (False Negative). From the figure, we can observe that the
conflation/matching was mostly correct. While there are missed/mis-
matched roads here and there, there are a few blocks of missed roads
near US I-70 and S Kansas Ave (as will be discussed shortly). This is in
accordance with the vector-based metrics presented previously.

To understand the difference between raster- and vector-based
metrics, we present in Fig. 7. two example scenes demonstrating the
spatial displacement between the extracted roads and the ground truth.
In Fig. 7a, we can observe that in the curved portion of the road, the
extracted road (in blue) is almost complete off from the ground truth
road (in red). For a short length of the road, the pixel-based IoU would
be effectively zero. However, any human expert can immediately tell,
that the road extraction model did an excellent job and extracted the
road pixels even though they are nominally outside the ground truth
road area. Upon closer inspection, it can be seen that the western portion
of the road suffers from the same displacement issue, although to a lesser
degree.

Fig. 7b demonstrates a similar problem. It can be observed that for
almost the entire length of the horizontal road, the extracted road
polygon is approximately half the road width off relative to the ground
truth road area. Similar to the case in Fig. 7a, this would lead to a low
pixel-based performance metric (in IoU or F1-score). This is a systematic
underestimation of the degree of agreement, given the fact that the al-
gorithm did a near perfect job in extracting the roads here.

Fig. 8a presents a scene in which much of the roads are either
obstructed or shadowed by nearby tree crowns. Consequently, the road
extraction model is disrupted by these conditions, and only fragments of
the roads (blue) are extracted, which constitute a small percentage of the
ground truth in red (as shown in Fig. 8b). This means that the measure-
based recall for the depicted roads will be low, as a large percentage of
the ground truth roads (in terms of length) have no counterparts in the
extracted roads. By comparison, the measure-based precision will be
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a. Zero loU at the turn

Fig. 7. Spatial displacement between extracted roads (blue) and ground truth in GIS (red). (For interpretation of the references to color in this figure legend, the
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Fig. 8. Obstruction by tree canopy and shadows.
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high (near 100%) in this scene, as almost all road lengths in the
extracted data have been accounted for in the ground truth. This scene
demonstrates the difference between length-based metrics and the
object-count metrics. In the specific case here, the object-count metrics
over-count the amount of captured roads, as both roads have some
captured portions and will count as two matched roads. The measure-
based metrics are a more accurate description of the degree of agree-
ment in this case.

Fig. 9 shows some difficult scenes for road extraction. Fig. 9a shows a
scene of the Topeka area near US I-70 and S Kansas Ave. We can observe
that most of the roads near the bend of the highway are missed by road
extraction. This is probably because this area is used commercially and
industrially (with a BNSF terminal). Given a low tree canopy, the surface
materials of the shopping areas and the terminal look similar to those of
the roads. Another potential reason is that most of the training areas
(Douglas County) are either rural areas or small towns, which lack high
density land-use areas. Consequently, such roads are missing in the
training dataset, and the DL network did not encounter these types of
roads and their environments. Fig. 9b depicts a missing road situation in
a rural area near 106th Road (horizontal) and I Road (vertical). We can
observe that the horizontal road was detected. However, the vertical
road (I road) was missed by the algorithm. This is probably due to the
fact that the vertical road is too narrow compared to typical roads in the
training data. In this study, we used a fixed buffer radius for all roads. In
future work, this could be remedied by using actual road widths from the
GIS dataset (if available).

5. Conclusion and future work

Conventional road extraction research mostly stops at the boundary
between image and vector analyses. The extracted road segments or
pixels have rarely been merged to existing GIS data. In this paper, we
argue that a more effective way of road data production is to combine
road data in the raster and the vector forms into one new dataset, and we
propose such a framework for full image-vector conflation. In addition

[ Predicted Region
[ Ground Truth Road

NAIP Image

I Band 1 (Red)
[ Band 2 (Green)
Il Band 3 (Blue)

a. Low contrast areas causing FN
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to the road extraction phase, we propose to use GIS and optimization to
merge the extracted road centerlines to published GIS datasets by
establishing a match relation between them.

To achieve full image-vector conflation, we needed to handle the
complex match relation between the fragmented road extractions and
the target GIS road data. Via an analysis of this relation, we defined
vector-based match metrics for image-vector conflation based on
comparing the extracted road centerlines and the target GIS road data.
In particular, we defined and used two-sided true positives between the
two datasets to account for the typical many-to-one matching between
the fragmented extracted roads and the target GIS roads. We also
defined length-weighted versions of the match metrics that gauge the
degree of agreement in terms of the total length of matched roads.

To verify the effectiveness of the framework, we created a large-scale
experiment data set covering two counties in Kansas, USA, using one
county (Douglas) as data for training a Res-UNet based road extraction
model. We used the other county’s data (Shawnee) to test the image-
vector conflation process.

On average, the object-count based recall, precision and F1-score
were 81.0%, 86.7% and 83.8%, respectively. The measurement-based
(i.e., length-based) recall, precision and F1-score were 88.7%, 93.0%
and 90.8%, respectively. These results indicate that the degree of
agreement between the roads in the imagery and those in the target GIS
dataset is quite high. In terms of total lengths, nearly 90% of all roads
were correctly extracted and matched, and 93% of the extract center-
lines corresponded to actual roads. By comparison, conventional pixel-
based metrics such as the IoU are not suitable for measuring the de-
gree of agreement due to their sensitivity to spatial displacement.

We also detailed the major steps of the conflation framework and
discussed some of the difficult cases in the Experiment section. Based on
this discussion, several directions are worthy of future study. First, the
centerline extraction process (especially the topology building and
“twig” removal) is time consuming. Future work could improve the
centerline extraction process by dividing the entire area into smaller
blocks and processing each block sequentially (or even in parallel).

100 m

A L
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771 Ground Truth Road
NAIP Image

I Band 1 (Red)

[0 Band 2 (Green)
Il Band 3 (Blue)

b. Weak road signals

Fig. 9. Miscellaneous difficult scenes for road extraction.
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Second, the case studies showed that the training data did not include
certain areas (high-density commercial areas) and consequently did not
recognize these types of roads in the testing area. Future work could
expand the training data to include more representative environments.
On the GIS side, some roads were missed, probably because of their
smaller widths. In future work, the ground truth dataset could be
enhanced by adopting varying buffer radii based on actual or estimated
road widths (rather than a fixed buffer width).
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