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Abstract: Spatial optimization is an integral part of GIS and spatial analysis. It involves

making various decisions in space, ranging from the location of public facilities to vehicle

routing and political districting. While useful, such problems (especially large problem

instances) are often difficult to solve using general mathematical programming (due to their

generality). Traditionally, an alternative solution method is Lagrangian relaxation, which,

if well-designed, can be fast and optimal. One has to derive the Lagrangian dual problem

and its (sub)gradients, and move towards the optimal solution via a search process such as

gradient descent. Despite its merits, Lagrangian relaxation as a solution algorithm requires

one to derive the (sub)gradients manually, which is error-prone and makes the solution

algorithm difficult to develop and highly dependent on the model at hand. This paper

aims to ease the development of Lagrangian relaxation algorithms for GIS practitioners

by employing the automatic (sub)gradient (autograd) computation capabilities originally

developed in modern Deep Learning. Using the classic p-median problem as an example,

we demonstrate how Lagrangian relaxation can be developed with paper and pencil, and

how the (sub)gradient computation derivation can be automated using autograd. As

such, the human expert only needs to implement the Lagrangian problem in a scientific

computing language (such as Python), and the system can find the (sub)gradients of this

code, even if it contains complex loops and conditional statements. We verify that the

autograd version of the algorithm is equivalent to the original version with manually

derived gradients. By automating the (sub)gradient computation, we significantly lower

the cost of developing a Lagrangian algorithm for the p-median. And such automation can

be applied to numerous other optimization problems.

Keywords: GIS; discrete optimization; Lagrangian relaxation; algorithm; gradient descent

1. Introduction

Spatial optimization is an integral part of GIS and spatial analysis, and involves

making various kinds of decisions in the space optimally. This includes finding the best

sites for central facilities such as firefighting stations and hospitals (e.g., using the p-median

problem), finding the best routes for delivery trucks (e.g., the travelling salesman problem),

and districting and zoning problems, among many others. Due to the advancements

in computer technologies and operational research since the 1970s, spatial optimization

problems in a wide range of domains can now be formulated with relative ease using

mathematical programming languages or other algebraic modeling languages. Solving

these problems, however, is not as easy due to their inherent complexity. The process of

finding an optimal solution can be excessively long, and some may not even converge.

ISPRS Int. J. Geo-Inf. 2025, 14, 15 https://doi.org/10.3390/ijgi14010015



ISPRS Int. J. Geo-Inf. 2025, 14, 15 2 of 20

There are at least four ways to solve spatial optimization problems. Firstly, spatial

optimization problems, once formulated in Integer Linear Programming (ILP) or other

modeling languages, can (often) be directly solved by the corresponding solvers (such as

CPLEX or GNU GLPK). This approach is the easiest in terms of algorithmic development,

since the optimization model itself is the program. However, this solution approach is

known to be slow for all except for small problem instances or specific types of problems.

Secondly, one can develop specialized algorithms (e.g., the Dijkstra algorithm for

the shortest path problem), and then prove that they will find the optimal solution upon

termination. These specialized algorithms are typically fast; however, many spatial op-

timization problems (such as the classic p-median problem) do not have such direct

closed-form algorithms.

Thirdly, one can resort to heuristic algorithms such as interchange heuristics, simulated

annealing, and genetic algorithms to find good solutions in a relatively short amount of

time. A potential problem with heuristic algorithms is that, generally speaking, they cannot

find the optimal solutions. One cannot be sure whether the obtained solution is optimal or

know how far the obtained solution is from the optimal solution. This is different from the

ILP-based methods in the first category, or the Lagrangian relaxation method studied in

this article (both of which can provide proof of optimality).

One last type of solution algorithm is Lagrangian relaxation, the focus of this article.

Lagrangian relaxation is based on the formulation of a Lagrangian dual problem of the

original problem (called the primal problem). Typically, it involves a search procedure

that successively finds better solutions based on the (sub)gradients of the Lagrangian dual

problem. Similar to typical methods for Integer Linear Programming (such as branch and

bound), Lagrangian relaxation can provide a proof of optimality. That is, the algorithm

knows when an optimal solution is reached. This is because Lagrangian relaxation can

provide both a super-optimal (infeasible) solution, called the dual solution and a best

incumbent feasible solution of the original problem (called the primal solution). Their

difference is called the “optimality gap”. As with the classic solution algorithms for Integer

Linear Programming, the Lagrangian-relaxation-based methods reduce this optimality gap

as they proceed. Similar to specialized algorithms, a well-designed Lagrangian relaxation

algorithm typically converges much faster than an ILP solver.

Despite its merits, a Lagrangian-relaxation-based method can take a significant amount

of time to design and implement. As shown in the next section, this is because Lagrangian

relaxation requires choosing a Lagrangian function (a.k.a. the relaxed problem) that can be

efficiently implemented in a programming language. Furthermore, it requires deriving the

mathematical formulae for the subgradients and translating these formulae into a program.

Such tasks can be error-prone and difficult, especially for those without prior training in

optimization theory. With all this work, there is still no guarantee that the Lagrangian

optimization algorithm will converge rapidly. One may still need to step back and try out

different ways of relaxation for the original problem. Therefore, the cost of developing a

Lagrangian algorithm may be too high in many cases.

The goal of this article is to ease the development of Lagrangian relaxation algorithms

by using automatic gradient (autograd) computation that stems from the recent advance-

ments in Deep Learning algorithms. In Deep Learning, gradient computation is routinely

used to compute the feedback signals for neural networks. Different auto-gradient packages

have been developed to suit such computational needs. We demonstrate that such packages

can be utilized to help solve spatial optimization problems by automating the derivation

of gradients (of the Lagrangian problems). Once the analyst expresses the solution of the

Lagrangian function as a suitable program, the autograd packages can take over from then

on, reducing the bulk of the derivation and programming work about the (sub)gradients.
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The complexity of the (sub)gradient computation may vary depending on the problem

at hand. In this article, we use the classic p-median problem as an example to demonstrate

the feasibility of automating such computations. But, as will be discussed later on, with

autograd, the same technology can be applied to arbitrarily complex Lagrangian problems

provided that they can be implemented in a computer language with conditional (if) and

loop statements. To the best of our knowledge, such automation has not been explored in

the spatial optimization literature.

It should be noted that the Lagrangian function is not typically differentiable every-

where, which means that the normal gradient in the mathematical sense may not exist.

Therefore, the so-called subgradients must be used instead of regular gradients. When there

is no ambiguity, we will use the term “gradient computation” and subgradient computation

interchangeably hereafter.

In the rest of this paper, we provide a brief review of Lagrangian relaxation and its

application to spatial optimization in Section 2. In Section 3, we use the p-median problem

as an example to demonstrate how gradients can be computed both manually by paper

and pencil and automatically by autograd. In the Section 4, we compare the solutions of

the p-median problem obtained by an ILP solver, and by a manual Lagrangian relaxation

algorithm, as well as by a Lagrangian relaxation algorithm using autograd. We then

conclude with a summary of the findings and suggest possible future work.

2. Background

The Lagrangian relaxation method is based on the use of Lagrangian multipliers,

and is widely applicable to constrained optimization problems, including many spatial

optimization models. In these problems, the objective that needs to be optimized cannot

be easily expressed as a closed-form function; instead, it is expressed implicitly as an

objective function plus a set of constraints. In this section, we discuss the main ingredients

of the method of Lagrangian multipliers and Lagrangian relaxation with a focus on how to

solve spatial optimization problems such as the classic p-median problem [1,2]. Interested

readers are referred to the papers and books by [3–5] on a more comprehensive coverage of

Lagrangian relaxation and convex optimization.

2.1. Lagrangian Multipliers and Lagrangian Relaxation

2.1.1. Lagrange’s Milkmaid Problem

The method of Lagrangian multipliers is best illustrated with the original Lagrange’s

milkmaid problem (Figure 1). As shown in the figure, a maid is at location o and needs to

travel to the destination location d where the cow is and milk the cow. However, there is a

constraint that the maid must first walk to the river to wash the bucket. The problem is to

find the shortest route from o to d subject to the constraint. It is not difficult to see that the

route consists of line segments from the origin o to some point P on the near side of the

river bank, and then from P to the destination d.

There are two main forces that determine the optimal solution for the location P in

the milkmaid problem (and optimization problems in general): (1) the objective func-

tion f (P), and (2) the constraint g(P) = 0. The objective function can be expressed as

min (P) = |oP|+ |Pd|. That is, the objective is to minimize the total lengths of the two trips

from o to P and P to d. As illustrated in Figure 1, the equidistant lines to points o and d (or

isochrones of f (P)) are a series of ellipses. The smaller the ellipses, the better the objective

value. This is indicated by the gradient vector of the ellipses in the figure (towards the

near side).

The second force is the constraint. Without it, the solution will be unconstrained and

P will be located on the lowest valued isochrone (i.e., the line od). With the constraint on,
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the optimal location P is “pulled” away from the unconstrained optima. The farther the

river bank is from o and d, the greater the deviation is from the unconstrained optima. This

is indicated by the gradient vector of the river bank (towards the far side) in Figure 1. A

necessary condition for location P to be optimal is that the two aforementioned gradients

cancel each other out, as will be explained shortly.

Figure 1. The milkmaid problem. o is the origin, d is the destination.

2.1.2. The Meaning of the Lagrangian Multipliers

For simplicity, we assume that the river bank is a line (we can always do so in an

infinitesimally small area). The magnitude of the gradient for the objective function

represents the extent to which the objective decreases if the location P is moved by a unit

distance along the gradient direction. The magnitude of the constraint gradient represents

the extent to which the objective increases if the location P is moved along its direction.

These two vectors must be canceled out at the optimal location. Otherwise, there would

exist a direction (i.e., the sum of the two gradient vectors projected to the constraint plane)

along which the objective can be improved further. Consequently, for any optimal solution

P∗, we must have the following:

f (P∗)− µ · g(P∗) = 0 (1)

Therefore, µ represents the ratio between the magnitudes of the objective gradient

and the constraint gradient at optimality. Furthermore, any optimal solution P∗ is by

definition feasible. Therefore, the original constraint must be satisfied, and we must have

the following:

g(P∗) = 0 (2)

A more compact way of expressing the above two optimality conditions (1) and (2) is

to consider the multiplier as a new dimension and define (in a higher dimensional space)

the so-called Lagrangian function F(P, µ) of this optimization problem as follows:
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F(P, µ) ≡ f (P)− µ · g(P) (3)

Then, the Lagrangian relaxation method optimizes F(P, µ) instead of the original

objective f (P). Now, the original optimality condition can be expressed succinctly in terms

of the gradient of the Lagrangian function (3) as follows:

∇F(P, µ) = ∇ f (P)− µ · ∇g(P) = 0 (4)

We can do so because, in terms of partial derivatives, (4) implies, in the original space,

the following: ∇ f (P)− µ · ∇g(P) = 0[= ∂F(P, µ)/∂P] and g(P) = 0[= ∂F(P, µ)/∂µ].

2.1.3. The Sign of the Lagrangian Multiplier

Note that the partial derivative of the Lagrangian function w.r.t. µ is g(P), the left-

hand-side (LHS) of the constraint, and should be zero in any feasible solution of the original

problem. Therefore, ∂F(P, µ)/∂µ stands for the amount of violation of the constraint. After

relaxing the constraint, the constraint violation generally can be non-zero in a solution of the

relaxed problem. In other words, the solution of the relaxed problem is generally infeasible

for the original problem. Given the minimization objective here, we know the following:

f (P) ≥ f (P∗) ≥ F(P, µ) (5)

In other words, the solution of the relaxed problem is generally super-optimal (i.e.,

better than the optimal solution of the original problem). This property is known as weak

duality. The difference between the two objective values is known as the optimality gap.

In an optimal solution of the relaxed problem, the violation should always be zero,

according to (2). Therefore, at optimality, the optimality gap must be zero, and we have

the following:

f (P) = F(P, µ) (6)

Property (6) is known as the strong duality. We will observe the duality gap and its

convergence to zero later on in the Section 4.

When only one constraint is relaxed, its multiplier sign can be easily determined. The

main idea is that, in relaxing a constraint, we allow it to be violated, but this violation

should be penalized in the objective function of the relaxed problem and eventually reduced

to zero (at optimality). Therefore, any violation should impact the objective (3) negatively.

In an equality constraint g(P) = 0, the potential violation is two-sided. If the violation at a

specific point P is positive, and assuming a minimization objective, we should make µ in (3)

negative so that the Lagrangian function becomes worse (greater) with a greater absolute

violation. If the violation is negative, we should make µ positive so that the Lagrangian

function increases with absolute violation. In short, we can rewrite the Lagrangian function

as (P, µ) ≡ f (P)− µ · sgn(g(P)) · |g(P)|, and see that we must have the following:

−µ · sgn(g(P)) ≥ 0 (7)

where sgn(·) is the sign function.

When the constraint is in inequality form, the violation is one-sided, and we can

pre-determine the sign of the multiplier. For example, given a minimization objective and a

less-than-or-equal constraint g(P) ≤ 0, we must have µ ≥ 0 because of (7). When multiple

constraints are relaxed, the Lagrangian multiplier becomes a vector. For each component of

the vector, the sign rule (7) still holds. We will see in the next section that this knowledge

can enable us to reduce the search space of the Lagrangian relaxation.
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2.2. Lagrangian Relaxation for Spatial Optimization Problems

With few changes, Lagrangian relaxation can also be used to solve spatial optimization

problems formulated in Integer Linear Programming. We use the classic p-median prob-

lem [1,2] as an example. The p-median problem can be formulated using Integer Linear

Programming [6]. The following notation is needed:

I: customer locations;

ai: population at i ∈ I;

J: candidate sites for facilities;

dij: distance from location i to j.

The decision variables for the p-median problems are the assignment variable xij and

location variable yj:

xij = 1, if i is assigned to j ∈ J, or 0 otherwise (8)

yj = 1, if a facility is at j ∈ J, or 0 otherwise (9)

Then, the p-median problem is to

minimize ∑
i∈I,j∈J

ai · dij · xij (10)

subject to

∑
j∈J

xij = 1, ∀i ∈ I (11)

∑
j∈J

yj ≤ p (12)

xij ≤ yj, ∀i ∈ I, j ∈ J (13)

Objective function (10) minimizes the total population weighted service distance.

Constraint (11) maintains that each customer i should be assigned to one facility. Constraint

(12) maintains that, at most, p candidate sites can be selected as facilities. Constraint (13)

refers to the Balinski constraints that relate to the assignment and location variables by

stating that a customer can only be assigned to an open facility.

In the milkmaid problem, we moved all the constraints (the only constraint) into the

objective function. With more complex problems such as the p-median, one can move a

subset of the constraints into the objective, and leave other constraints as they are. The con-

straints that are moved into the objective Lagrangian function are said to have been relaxed

or dualized. Conceptually, the remaining constraints and the modified objective function

form an implicit Lagrangian function. We optimize it in a higher-dimensional space with

the Lagrangian multipliers. This general process of relaxing some of the constraints is called

Lagrangian relaxation.

For the p-median problem, the cardinality constraint (12) can be relaxed. In the relaxed

problem, demands can be assigned to more than p facilities. But the over-location (opening

more than p facilities) is penalized (with a multiplier λ):

minimize ∑
i∈I,j∈J

ai · cij · xij + λ ·

(
∑
j∈J

yj − p

)
(14)

s.t. (12) (13)

The relaxed problem has the structure of a Simple Plant Location Problem (SPLP),

with multiplier λ being the fixed cost in SPLP. The relaxed problem for each λ can be solved
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using a solution algorithm for SPLP such as the DUALOC algorithm. Since there is only one

Lagrangian multiplier, one can use various interval reduction methods (such as bisection

and linear interpolation) [7] to determine the optimal λ value.

Alternatively, we can relax the assignment constraint (11) to obtain a new relaxed

problem. This is the approach taken by [4], and the approach that we follow in this article.

Since many multipliers are required (one µi for each relaxed constraint (11), the interval

search method ceases to work.

In this higher-dimensional space of multipliers, a general method for determining the

optimal multiplier values is the gradient descent method. Conceptually, the Lagrangian

dual problem can be solved on two levels. On the first (lower) level, we assume that

the multiplier values µi are fixed and optimize the (implicit) Lagrangian function with

respect to the original/primal decision variables (xij, yj). This problem is called the relaxed

problem or Lagrangian function from now on. It produces primal variable values as

functions of (temporarily fixed) multiplier values.

On the second (higher) level, we solve the higher level Lagrangian dual problem

by allowing the multiplier value to vary and applying an optimization technique to the

multipliers to find a series of better solutions until an optimal solution is reached. In this

paper, we perform a simple gradient descent search while optimizing for the multipliers,

as described in the next section.

2.3. Computational Graphs and Automatic Gradient Computation (Autograd)

The gradients of the Lagrangian dual problem are conventionally computed by theo-

retical deviation with paper and pencil. This is not only cumbersome and error-prone, but

also requires handling special cases in which gradients in the normal sense do not exist.

Fortunately, the gradients for many optimization problems can be computed automatically

and symbolically by constructing so-called computational graphs. Mathematically, a func-

tion of a set of input data can be represented as a set of connected edges leading from one

data item to another, which eventually leads to the final function value. In our context, the

final function value is the Lagrangian function value. In this graph, each node is a data

item, which is often represented as a multi-dimensional array (or a tensor). Each edge

represents a computational step leading from this tensor to the result of that step. Naturally,

these edges form a directed acyclic graph (DAG) with the input data as the leaves and

the final objective function value as the root node. In the Deep Learning literature, this

formation process is often called the forward pass, referring to the fact that one starts from

the input and successively constructs intermediate values at each node until the final value

root node is computed.

Once constructed, the computational graph contains a full history of how the final

objective value is obtained. The history is recorded as a hierarchy of small functions at

each edge, which, when composed, expresses a big function that maps the input data to

the objective value. Using the chain rule in calculus, one can then express the gradient of

the large function as the gradients of the small functions. By the chain rule, the gradient

computation goes backward starting from the root node value and stopping at the leaf

nodes. This is why the gradient computation following the computational graph is referred

to as the backward pass.

There are two approaches with which to construct computational graphs: static and

dynamic. In static construction, the analyst directly defines the computational graph

in a specialized (graph) language and uses it to run the data through the graph. The

advantage of static computational graphs is that they allow certain optimizations of the

graphs. In dynamic construction, a computational graph is built implicitly by the computer

during the forward pass. Since the computational graph is a faithful representation of the
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computational steps of the objective function, it is compiled immediately after the objective

function value is computed. One advantage of dynamic computational graphs is their

ease of implementation because their construction does not require a separate language.

The optimization problem can be written in a familiar language, such as Python, and the

associated computational graph is computed behind the scene. Moreover, the dynamic

construction of computational graphs allows flow control statements, such as loops and

conditional statements in Python, to be used directly in writing the optimization function.

This means that complex optimization functions can be implemented using constructs of

conventional programming languages without worrying about how their gradients should

be computed.

Owing to the aforementioned advantages, we adopt dynamic computational graphs

as implemented in the Python autograd library [8]. Compared to conventional methods,

the analyst is freed from the theoretical work on deriving the formula of gradients of

their programs, and delegates that task to the computer. Instead, the analyst can focus on

developing the optimization code (in the forward pass) in a scientific computing language

such as Python or Julia.

3. Methodology

3.1. Formulation

In this section, we present the main Lagrangian relaxation algorithm for the p-median

problem. In our algorithm, we relax the assignment constraints (11). This is the same set of

constraints as used by Hanjoul and Peeters [4] (in their “Relaxation 2” method). However,

there are a number of differences. Firstly, ref. [4]’s method involved a tree search process,

which starts from the primal problem space, and its success depends on a good initial

primal solution (obtained from an interchange heuristic). In contrast, we adopt a gradient

optimization approach that works in the dual problem space and does not require an initial

primal solution. Instead, we start from an initial dual solution and move successively

towards an optimal solution. Primal solutions are only generated to measure the duality

gap and compute (sub)gradients in the dual space. Secondly, we modify constraint (11) into

an inequality form to reduce the search space of the multipliers, as will be explained briefly.

In our experiments, we found that the performance of our LR algorithm was satisfactory.

The (modified) p-median formulation is as follows:

minimize ∑
i∈I,j∈J

ai · dij · xij (15)

subject to

1 − ∑
j∈J

xij ≤ 0, ∀i ∈ I (16)

∑
j∈J

yj ≤ p (17)

xij ≤ yj, ∀i ∈ I, j ∈ J (18)

Constraint (11) is transformed into an equivalent inequality form (16). In the context of

the p-median problem, the new form (16) allows one customer to be assigned to more than

one server. But, at optimality, one customer will be assigned only to one server, because

assigning the customer to additional servers will only increase the objective function.

Therefore, the new form (16) is equivalent to the original form (11). The reason we use the

modified constraint (16) is that, according to the sign rule (7) in the previous section, the

Lagrangian multiplier for such an inequality constraint must be non-negative. Therefore,
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we reduce the search space for the Lagrangian problem by one half, which accelerates

the gradient descent process. The rest of the model is the same as the original p-median

formulation. With this in mind, the Lagrangian relaxed problem (i.e., Lagrangian function)

is as follows:

minimize ∑
i∈I,j∈J

ai · dij · xij + ∑
i

µi ·

(
1 − ∑

j∈J

xij

)
(19)

subject to (17), (18), and

µi ≥ 0, ∀i ∈ I (20)

For the Lagrangian function, the values of the multipliers µi are fixed. The objective

function (19) can be re-arranged as follows:

minimize∑
i∈I

µi − ∑
j∈J

(
∑
i∈I

(
µi − ai · dij

)
· xij

)
(21)

In the above equation, the first term is a constant. In the second term, by constraints

(17) and (18), at most, p facilities can be open, and only for the p corresponding to j values

can we have xij = 1. For the other j values, the corresponding facilities are closed, and we

must have xij = 0. This means that only p of the entries in ∑i∈I

(
µi − ai · dij

)
· xij, i ∈ I can

be non-zero.

As pointed out in [3,4], at optimality of the Lagrangian problem, xij is determined

by the yj value. If the coefficient µi − ai · dij is positive, then xij should be set to its upper

bound, namely, yj (by (18)); otherwise, xij should be set to its lower bound, 0. That is, at

optimality, we set

x∗ij =





y∗j , if µi − ai · dij > 0

0, otherwise
(22)

where x∗ij, and y∗j are the optimal values for the Lagrangian problem.

Using the relationship between xij and yj, we can rewrite the Lagrangian function’s

objective again as follows:

minimize∑
i∈I

µi − ∑
j∈J

(
∑
i∈I

(
µi − ai · dij

)+
)
· yj (23)

where (x)+ := max(x, 0).

Because the only effective constraint is now the cardinality constraint (17), we can

sort the coefficients of yj, pick the largest p entries, and set the corresponding yjs to one.

Algorithmically, this means that, to compute the Lagrangian function, one simply needs

to sort the array of yj coefficients, add up the largest p entries and subtract them from the

sum of multipliers.

Figure 2 presents the overall workflow of the Lagrangian optimization algorithm. In

essence, the Lagrangian relaxation algorithm is a bi-level optimization problem. For the

(lower-level) optimization described in this subsection, we fix the values of the multipliers

µi, and optimize (minimize) the objective (23) w.r.t. the primal variable yj. This solves the

Lagrangian function (the lower-level problem with fixed multiplier values). We convert

this dual solution into a primal solution by simply keeping the values of the yj variables

and then deriving the xij values by the closest assignment of customers to facilities. The

difference between the primal and dual solution is the optimality gap with which we

determine whether the algorithm should be stopped.
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Figure 2. Workflow for the Lagrangian relaxation algorithm using gradient optimization.

After solving the Lagrangian function, we will allow the multipliers to vary in a higher-

level optimization problem (i.e., the Lagrangian dual problem) in search of improved dual

solutions. In particular, we will optimize the optimal solution of the lower-level Lagrangian

function w.r.t. the multipliers (i.e., the dual variables µi) by computing the gradients of the

Lagrangian function. Based on these gradients, we can compute a set of new multiplier

values (as will be discussed shortly) giving rise to a new iteration of the search. In the

flowchart in Figure 2, solving Lagrangian function constitutes the lower-level optimization

(optimizing primal variables) and the overall loop structure constitutes the higher-level

optimization problem (optimizing the dual variables/multipliers).

3.2. Subgradient Computation

Taking the derivative of objective function (19) with respect to the multipliers µi’s, we

can obtain the gradient vector θ at the values x∗ij, y∗j of the Lagrangian problem as follows:

θi = 1 − ∑
j∈J

x∗ij (24)

Let qi = ∑j∈J x∗ij; then, θi = 1 − qi. For each customer i, we inspect the p chosen

facilities, and compute the qi (and, therefore, θi) as follows: We loop through i. By (22), we

only need to inspect the js for open facilities (for which y∗j = 1). For each open facility j,

if µi − ai · dij > 0, we add one to the counter. In the end, the counter value is qi. It is not

difficult to translate the above logic into code.

Now that we have the gradient direction, one remaining issue is to decide how far

we want to move the multipliers along this direction. A commonly used formula [4] is to

compute the step size as follows:

s =
τ ·
(

ẐP − ZD

)

|θ|2
(25)

where ẐP is the best known primal objective value, and ZD is the current dual objective

value. τ is a parameter in the range of (0, 2). Operation-wise, τ can be viewed as the

learning rate parameter used in Deep Learning in that it controls the speed of the gradient

descent. However, it has a known range between 0 and 2 from the literature [4]. Based on
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this range and empirical tests, we use an initial τ value of 0.5. And we reduce the τ by one

half after every 200 steps until τ is less than 0.01.

Once the gradient is computed, it can be used to modify the multipliers. Care must be

taken to adjust the new multiplier values to be non-negative according to (20). Considering

this, the new multiplier vector is as follows:

µ′ = µ + s · θ (26)

It should be noted that the gradient with respect to µi does not always exist. For

example, in objective function (23), there is a non-smooth term
(
µi − ai · dij

)+
, where

(x)+ := max(x, 0) denotes the ReLU activation function in the NN literature. This term is

not smooth around the point µi = ai · dij because the derivative w.r.t. µi is one when µi

approaches ai · dij from the right, and zero when approaching ai · dij from the left. Therefore,

two different gradient values are possible. In this case, the entire range between the two

values (i.e., [0, 1]) is called the sub-differential of
(
µi − ai · dij

)+
at the point µi = ai · dij.

Any value in the sub-differential is called a subgradient at this point. Considering all the

|I| dimensions together, the sub-differential at µ =
(
a1d1j, a2d2j, ..., amdmj

)
is a much larger

set with many different subgradient vectors.

We can see that the subgradient is a generalization of gradients in the normal sense. By

the principles of the subgradient descent, any subgradient vector in the sub-differential can

be used. In this case, we arbitrarily pick the gradient of
(
µi − ai · dij

)+
at aidij to be zero.

In general, constructs such as the ReLU function or the absolute value function are

typically implemented in programming using a conditional statement or its equivalents

(e.g., if x > 0, then... else...). Such statements can introduce discontinuity or non-smoothness

into the gradient computation, and such anomalies need to be handled appropriately in the

subgradient optimization.

3.3. Automatic Gradient Computation (Autograd)

As mentioned in the Section 2, we use the dynamic computational graphs to auto-

matically compute the gradients. In our implementation, we employ the Python autograd

library, which makes the gradient computation fully automated. Given a Python function

calc_zdual() in our code (for computing the objective value of the Lagrangian function), all

that is needed is to call the grad() function on calc_zdual. The return value of grad(calc_zdual)

is itself a function, which takes the same number and types of parameters as calc_zdual but

computes its gradient instead of function value. This significantly reduces the complexity

of the code and, incidentally, improves its readability. Additionally, autograd has the

capability of computing subgradients built in. By using autograd, we avoid the possibil-

ity of making errors in gradient computation and take care of the anomalies such as the

aforementioned non-smoothness.

It should be noted that autograd can only be used to generate the (sub)gradients. It

is still up to the analyst to appropriately use the generated subgradients. In our case, the

multipliers µi must be adjusted to be non-negative after applying the gradient update in

(26). This is achieved by setting µ′ := max(µ′, 0).

4. Experiments

In this section, we present the experimental results of the Lagrangian relaxation algo-

rithm in terms of its convergence behavior and solution characteristics. The computational

experiments were executed on a machine with an Intel i9-13900K CPU and 96 Gigabyte

of system memory. For comparison purposes, we implemented two versions of the La-

grangian algorithm: one with explicitly derived gradients, and the other with gradients that

were automatically derived using the Python autograd package [8]. We also implemented
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an Integer Linear Programming (ILP) model of the p-median problem (19) through (20)

using the RElational Linear Programming (RELP) framework [9].

Two datasets are used to test the p-median and other central facility location problems.

The first is the Swain [10] 55 node dataset (called swain55 hereafter), which is widely used

in the spatial optimization literature. As with the literature, the Swain dataset is used both

as the sites for customers and as the sites for candidate facilities. Figure 3a presents the

layout of the 55 facilities, each representing the centroid of a postcode zone in Baltimore,

MD, USA. Each site is labeled with its ID number. The ID numbers are assigned according

to the rank of the population, so that site 1 has the highest population, site 2 has the second

highest population, and so on. The associated population value (weight) for each site is

listed in the “Pop” column in Table 1. From Figure 3 and Table 1, we can observe that the

population is approximately concentrated in the center of the region.

(a) the Swain 55 dataset (b) the largest 150 US cities 

Figure 3. Test datasets: Swain 55 node and US Cities 150 node datasets.

Table 1. The Swain 55 node data. The weight values represent the population at each customer

location.

ID Pop. ID Pop. ID Pop. ID Pop.

1 71 15 12 29 6 43 4
2 62 16 11 30 6 44 4
3 56 17 10 31 6 45 3
4 39 18 10 32 5 46 3
5 35 19 9 33 5 47 3
6 21 20 9 34 5 48 3
7 20 21 9 35 5 49 3
8 19 22 8 36 5 50 3
9 17 23 8 37 5 51 3
10 17 24 8 38 4 52 2
11 16 25 8 39 4 53 2
12 15 26 7 40 4 54 2
13 14 27 6 41 4 55 2
14 12 28 6 42 4

For comparison purposes, we also use the US Cities 150 dataset [11] in Figure 3b as

a second test dataset (called cities150 hereafter). It consists of the largest 150 cities in the

United States. St. Paul and Minneapolis are treated as one city. The population is based
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on the 1990 US census and rounded to the nearest 10,000. And distances between cities

are computed from the latitudes and longitudes from [11] using the geodesic distance.

This dataset is very different from the swain55 dataset in the spatial distribution of the

population, as the US population is more concentrated in the east and west coasts rather

than in the central regions.

4.1. Initial Solution

As mentioned in the Section 3, our Lagrangian relaxation algorithm primarily works in

the dual problem space. We do not assume knowledge about the solution of the Lagrangian

dual problem except that the multipliers should be non-negative. Therefore, we arbitrarily

choose an initial multiplier value of µi = 1.0 for each customer i ∈ I, which leads to a

usable dual solution after solving the relaxed problem (Lagrangian function) under these

multiplier values. This means that each potential violation of constraint (16) is assigned

an equal penalty. And the algorithm will then adjust the multiplier values adaptively by

means of the subgradient optimization. Predictably, for p = 5 in the Swain 55 node dataset,

the initial dual objective is 50 (there are 55 − 5 = 50 violations, each being 1.0 in worth).

The initial solution of the Lagrangian dual problem contains a set of facility selections

yj, which can be used to construct a feasible solution in the primal domain because we kept

the cardinality constraint (17) in the relaxed problem and exactly p facilities are in the dual

solution. We only need to set the values of the variable xij appropriately by assigning each

customer to the closest open facility (those with yj = 1). For the problem instance at p = 5,

the above process leads to an initial primal solution with the facility set [1, 30, 31, 32, 33]

and an associated primal objective value of 3966.86. Given the initial dual objective of 50,

the optimality gap is computed as follows:

gap =
ẐP − ẐD

ZP

The initial percentage optimality gap is 98.73%, indicating that the optimal objective

can be 98.73% smaller than the incumbent primal solution seen thus far (3966.86). This

means that the incumbent solution can be a very poor solution, as the optimal solution’s

objective value can be anywhere in the whole range of 50 and almost 4000.

4.2. Convergence

The optimality gap is used as the performance metric for our Lagrangian optimization

algorithm. Obviously, if the optimality gap is decreased to zero, the algorithm succeeds in

finding the optimal solution. Figure 4 depicts the optimality gap as the algorithm proceeds

(for the swain55 and cities150 datasets, respectively). In the figure, we present the best

primal objective value (the incumbent primal objective) as well as the dual objective values

at each iteration of the algorithm. Their difference is the absolute optimality gap. The

percent optimality gap is defined as the ratio between the absolute optimality gap and the

incumbent primal objective value. Additionally, we plot the curves for both versions of

the Lagrangian-based algorithm: one with explicitly derived gradients and the other with

automatically computed gradients.

The general trend in Figure 4a demonstrates the essential features of our Lagrangian

relaxation algorithm. Basically, the subgradient optimization works primarily in the dual

problem space. Starting from the initial solution (µi = 1.0 for all i), the algorithm moves

successively to a better solution in the dual space guided by the gradient direction θ and

the stepsize (25). Correspondingly, we can observe a gradual increase in the dual objective

value in Figure 4a. What is interesting is that the primal solution derived from the dual

solution (by discarding the xij variables) is often improved as well, even though we do
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not explicitly optimize in the primal domain. This is not surprising because, when the

dual solution improves, the values of its decision variables become closer and closer to an

optimal solution, although the dual solutions are still “super-optimal” (infeasible w.r.t. to

the primal problem). Consequently, it is likely that the location variables yjs become closer

and closer to an optimal solution as well (since the yj values as a subset of the dual solution

are also feasible in the primal domain). From a different perspective, the dual problem can

be viewed as an approximate version of the primal problem where some constraints become

“soft” constraints. When one improves the approximate solution, it is natural that some

ingredients of it constitute an improved solution for the original/primal problem. Note

that the derived primal solutions do not necessarily improve at every iteration. And we

only record the best primal objective value observed at each iteration (the incumbent value).

This incumbent value is the only thing we need from the primal problem domain in order

to determine how far the solution process is from reaching optimality (i.e., the optimality

gap). This is why the primal objective curves in Figure 4 descend in a step-wise manner.

 
(a) (b) 

Figure 4. The performance of solvers: the # iteration vs. the primal and dual objectives.

Generally, Figure 4a shows that the optimality gap narrowed down as the number of

iterations increased. The primal objective decreased and the dual objective increased until

they eventually “meet”, at which point the algorithm terminates. It is noteworthy that the

optimal objective value must lie somewhere within this narrowing gap. Mathematically,

this is guaranteed by the weak duality of Lagrangian relaxation. We stop the algorithm if the

optimality gap is below half a percent (0.5%). This means that the optimal solution cannot be

different from what the algorithm finds by half a percent. From Figure 3a,b, we can observe

that the distance between the dual and the primal objective curve become indiscernible in

the end. For most applications, this threshold is sufficient. Of course, one can set a lower

threshold value for the optimality gap (at the cost of a longer computation time).

Note that, in Figure 3a, the primal objective curves for the primitive version and the

autograd version of the Lagrangian algorithm coincide, and so do the dual objective curves.

This indicates that the autograd process has correctly computed the gradients and solutions,

which are identical to the primitive version.

Figure 4b demonstrates a similar converging trend of the dual and primal problem for

the larger cities150 dataset except that the objective values are much larger (as the between

city distance is measured in meters). The number of steps to convergence is also much

higher. While the swain55 dataset took 35 steps to converge, the cities150 dataset took

276 steps. This is because the p-median problem is NP-hard. And the computational cost
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increases very rapidly with the increase in data size (as is the case with many combinatorial

optimization problems).

4.3. Solution Characteristics

Figure 5 presents the optimal objective values for various values, as reported by the

Lagrangian algorithm (autograd version) and the MILP solver, respectively. The value of

p ranged from 3 to 25 at a step size of two. First of all, we can observe that the objective

curves for the Lagrangian algorithm and the MILP model coincide. This indicates that, for

each value of p, the Lagrangian algorithm found the correct optimal solution.

Figure 5. Solution characteristics: the value of p vs. the objective.

Secondly, we can observe a decreasing trend in the optimal p-median objective value

as p increases. At p = 3, the optimal objective is 3870.24, whereas, at p = 25, the optimal

objective is only 702.77. This makes sense because, when we increase the number of open

facilities, each customer has a greater chance of finding a nearby facility for service. When

p = 25, nearly half of the candidate sites are chosen to be open facilities, and, therefore,

have zero service distance. The service distance for the rest should also be small given a

one-to-two facility–customer ratio.

4.4. Computational Cost

Figure 6 presents the number of iterations it took the algorithm to converge at each p

for the two sets of test data. From the Figure 6a, the two versions of Lagrangian algorithms

have exactly the same number of iterations at each p for the swain55 dataset. This suggests

that the manually computed gradients are exactly the same as the autograd computed

values, which verifies the correctness of the autograd-based method again. Figure 6b shows

the same result for the cities150 dataset.
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(a) (b) 

Figure 6. The total number of iterations at each value of p.

Figure 7 presents the computational times for the two Lagrangian algorithms and the

MILP solver for the two datasets. For the smaller swain55 dataset, significant fluctuations

in the computational time can be observed in Figure 7a. There is no clear conclusion as

to which algorithm is faster. But the solution times are generally small. On average, the

original, the autograd, and the MILP algorithms took 0.09, 0.10, and 0.12 s, respectively.

These fluctuations may be caused by the random delays in loading data between the

disk, the memory, and the CPU. For the larger cities150 dataset, Figure 7b shows that the

computational time for all three methods are longer and there is a clear pattern, with the

original algorithm taking the shortest time, the autograd taking a slightly longer time, and

the MILP algorithm being the slowest. On average, the original, the autograd, and the

MILP algorithms took 0.27, 0.35, and 2.1 s, respectively.

(a) (b) 

Figure 7. The p value vs. computational time.

We believe that the higher computational times of the autograd-based Lagrangian

algorithm are associated with the autograd process itself. As mentioned in the Section 2, the

autograd library needs to build an additional computational graph for the Lagrangian dual

problem. Therefore, automatic gradient computation comes with a (modest) cost. However,

autograd dispenses with the need for deriving the gradient formulae and implementing
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them in a programming language, and, therefore, reduces a large part of the algorithm

development time. For the GIS analyst without prior training in optimization, the work in

deriving gradients may even be a barrier, and autograd removes this barrier.

4.5. Sensitivity

Just as with Deep Learning algorithms, an important parameter for our Lagrangian

relaxation algorithm is the “learning rate” τ. However, in our case, the range of τ is known

to be between 0.0 and 2.0, as mentioned in the Section 3. Thus far, we have used a default τ

value of 0.5 in the experiments. To test the sensitivity of the algorithm w.r.t. the learning rate,

we have also tested τ values ranging from 0.1 to 1.9 at a 0.1 step size. A key performance

metric is the number of steps to convergence, since other metrics such as the running time

depend on it. Therefore, we present the number of iterations to convergence in Figures 7

and 8 for the swain55 and cities150 datasets, respectively.

(a) (b) 

Figure 8. Learning rate vs. the number of iterations.

Figure 8 presents the sensitivity results for the swain55 dataset for p = 5 (Figure 8a)

and p = 25 (Figure 8b), respectively. We can observe that, for p = 5, the number of iterations

range from about 40 to 360, with the smallest number of iterations at τ = 0.3 and τ = 0.5.

For p = 25, the number of iterations range from about 20 to 240, with lower numbers

achieved when τ is in the 0.2 to 0.8 range.

Figure 9 presents the sensitivity of τ for the larger cities150 dataset. For p = 5 (Figure 9a)

and p = 25 (Figure 9b), the number of iterations to termination ranges from about 190 to

830, and from about 210 to 710, respectively. Once more, the algorithm converges faster

when the learning rate is within the 0.2 to 0.8 range. It seems that the learning rate

should not be too small or too large. Otherwise, the number of steps to convergence can

increase significantly.

Figure 10 presents the running time for the swain55 and cities150 datasets (p = 5),

respectively. We can observe that the running time ranges from about 0.09 to 0.17 s for the

smaller swain55 dataset and ranges from about 0.3 to 0.5 s for the larger cities150 dataset.

The general trend of the running time curves approximately follows the curves of the

number of iterations, as shown in Figure 8. And the running times are shorter when the

learning rate is not too large or too small (between 0.2 and 0.8).

Overall, the computational experiments show that the automatic gradient compu-

tation is correct and that all its outcomes are consistent with the hand-crafted gradient

formulae. The primal solutions, dual solutions, and paths to convergence are exactly the
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same. The Lagrangian algorithms generate the same optimal solutions as Integer-Linear-

Programming-based solvers. The automatic gradient computation did cause a (modest)

increase in computational time. The computational time for the autograd algorithm is

generally within one second for the two test datasets.

(a) (b) 

Figure 9. Learning rate vs. the number of iterations (cities150).

 
(a) (b) 

Figure 10. Learning rate vs. computational time (s).

5. Conclusion and Future Work

Lagrangian relaxation involves transforming the original optimization problem into

a Lagrangian dual problem by relaxing some or all of its constraints. It is a promising

method for solving complex (spatial) optimization problems in that it is both providing

proof of optimality (like mathematical programming) and fast (like heuristic procedures).

Additionally, it is flexible in that many different relaxations can be created by relaxing

different constraint sets. Conventionally, one of the issues with Lagrangian relaxation is the

complexity associated with developing an efficient procedure for solving the Lagrangian

dual problem and with the derivation and computation of the gradients associated with

this procedure. In this article, we demonstrate that this complexity can be alleviated, at

least in part, by employing automatic gradient (autograd) libraries originating from the

Deep Learning research.
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The main idea is that, since autograd libraries can keep track of the computational

graph of the Lagrangian function and compute its gradient automatically, the analyst only

needs to develop the solution procedure for the Lagrangian function itself in a scientific

computing language and test the Lagrangian relaxation algorithm. Since autograd libraries

can handle arbitrary loop and conditional statements, the range of Lagrangian problems

that can be implemented and fed to autograd computation is quite large. Thus, one may

significantly reduce the length of the development cycle of a Lagrangian-relaxation-based

algorithm, and allow for more relaxation schemes to be tested.

We demonstrated the feasibility of using autograd for Lagrangian relaxation by imple-

menting it in a subgradient optimization framework for the classic p-median problem using

both hand-crafted gradients and automatically computed gradients. Our experimental

results with the widely used Swain 55 node dataset and a US Cities dataset showed that

the autograd version of the Lagrangian algorithm generated exactly the same solutions

(final and intermediate) as the primitive version (using hand-crafted gradients). In addi-

tion, the optimal solutions from the Lagrangian algorithms are identical to those obtained

using an Integer Linear Programming solver. In terms of computational cost, the autograd

component did come with a (modest) cost for building the computational graphs.

Overall, we demonstrated the effectiveness of using automatic gradient computation

(autograd) in Lagrangian relaxation, using the p-median problem as an example. The

p-median problem is a foundational problem in location-allocation modeling. As shown

by Hillsman [12], it can be used as a unifying location model that subsumes other location

models as its special cases. In practice, a heuristic solver for the p-median problem is

also used as a unifying model in the ESRI Network Analyst’s location-allocation module.

Consequently, the presented methodology can potentially be applied in GIS systems as

an alternative solver with optimality proofs. In addition, we expect that the proposed

method can be applied to a wide range of other optimization problems, thereby reducing

the cost of development of Lagrangian relaxation algorithms and increasing the domain of

its application. This aspect is left for future research.
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