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Abstract—Motivated by the study of multi-source multi-
terminal key-dissemination, here called “key-cast,” the work at
hand presents a combinatorial characterization of when positive-
rate secure multicast network coding in the presence of eaves-
dropping nodes is possible. In key-cast, introduced by the authors
in [ITW2022], network nodes hold independent random bits,
and one seeks a communication scheme that allows all terminal
nodes to share a secret key K. We here address positive (albeit,
arbitrarily small) rate key-cast under the security requirement
that no single non-terminal network node can gain information
about the shared key K; this scenario is useful in cryptographic
settings. The work at hand studies key-dissemination protocols
based on secure network coding and presents a combinatorial
characterization of networks that support positive-rate multicast
resilient to eavesdroppers that control individual network nodes.
The secure-multicast capacity solution in the same setting is a
known open problem.

I. INTRODUCTION

The resource of shared secret randomness, i.e., a shared
secret key, plays a fundamental role in the theory and prac-
tice of network communication systems; applications include
cryptographic encryption, randomized coding technologies,
distributed computing, statistical inference, distributed learn-
ing, distributed authentication, identification, local differential-
privacy, and more (e.g., [1]–[24]). Motivated by the central
role of shared randomness in such a wide range of distributed
applications, the work at hand addresses the problem of
disseminating common randomness over noiseless networks,
i.e., in the context of Network Coding [25]–[29]; we call this
the key-cast problem. In key-cast, first studied by the authors
in [30], network nodes hold independent random bits, and one
seeks a communication scheme that allows all terminal nodes
to share a secret key K.

In this work, we focus on the cryptographically-motivated
setting of key-cast in which one is only required to disseminate
a positive-rate key, which, once shared among a collection
of terminals, can be used to generate long sequences of
common pseudo-random bits; the pseudo-random bits, in turn,
can be used in applications like those mentioned above. Our
interest lies in secret key dissemination under a natural secrecy
condition in which the shared key K is independent of the
information available at any non-terminal network node. As
a result, in our setting, no network node, not even the nodes
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where random bits originate, other than the terminal nodes
themselves that share the secret key K learns any information
about K.

This work characterizes the combinatorial requirements that
allow the design of a certain key-cast scheme based on the
notion of secure-multicast. In secure-multicast one seeks to
securely communicate source information to a collection of
terminals in the presence of an eavesdropper with predefined
eavesdropping capabilities. The model of secure multicast
network coding includes source nodes, which have access to
message information, and additional nodes that generate in-
dependent randomness used to enable secure communication.
Most prior works on secure multicast, e.g., [31]–[37], consider
a single source setting in which the source s generates both
source messages and independent randomness, while no other
network nodes can generate randomness. They further apply
a uniform security assumption in which the eavesdropper can
access any collection of at most z unit-capacity network links
for a given security parameter z. A major result in this context
includes a characterization of the secure multicast capacity and
a demonstration that the capacity can be efficiently obtained
using linear codes [31], [32], [34]–[36]. A more general model
of secure-multicast, where several network nodes can generate
messages and/or independent randomness and eavesdroppers
have access to edge sets with varying capacities (e.g., the set-
ting of eavesdropping on nodes) is studied in, e.g., [38]–[44];
in this general setting, the capacity is not fully characterized.
In fact, determining its value is known, in certain cases, to be
NP-hard [40] or as hard as determining the capacity of the
k-unicast problem [42] (a well known open problem in the
study of network codes, e.g., [39], [45], [46]).

Our study focuses on the design of positive-rate key-cast
schemes that are resilient against non-uniform eavesdroppers
that can access the information available at any single node.
Our scheme builds on a corresponding positive-rate secure-
multicast scheme in the setting in which any network node
can generate randomness or messages and under the security
requirement that no single internal network node can gain
information about the transmitted message(s). Towards that
end, in this work we ask and solve the following question
(stated roughly below, and with greater rigor in Section II).

Question 1 (Positive-rate secure-multicast). Given a commu-
nication network G in which any network node can generate
independent randomness, and given a set of terminal nodes
D, is it possible to securely multicast a message m from a
source s to nodes in D such that no non-terminal network
node (except s) can gain information about m?
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Fig. 1: A number of examples corresponding to Question 1,
highlighting the major ideas used in our combinatorial charac-
terization of networks that allow positive-rate secure multicast.

Figure 1 depicts a number of examples corresponding to
Question 1. In the examples, any node can generate indepen-
dent uniformly distributed random bits. In what follows, we
review the examples in Figure 1, highlighting the major ideas
used in our answer to Questions 1.
• Secure multicast. The networks depicted in Figure 1 allow
the secure communication of message m from source s to
terminal set D, where D = {d} in Figure 1(a), Figure 1(b)
and D = {d1, d2} in Figure 1(c). In Figure 1(a), the vertex
u is a cut-vertex that separates s and d. So, naively, one
may conclude that u has the capabilities to gain information
about any message transmitted between s and d. However, as
noticed in prior works on secure network coding, e.g., [38]–
[44], the information traversing the cut-vertex u can at times
be protected using (a collection of) one-time pads. We refer to
such vertices u as protected cut-vertices. Cut-vertices (and
protected cut-vertices) play a major role in our analysis; see,
Definitions III.2 and III.3. Indeed, in Figure 1(a) the blue node
can generate a uniformly distributed bit a that is independent
of m. As this node is connected to both s and d, a one time
pad is established and u does not gain information about m,
implying secure communication.

The padding protocols protecting the information traversing
u may be more advanced than that of Figures1(a). Additional
examples are given in Figures 1(b) and 1(c). The nodes colored
in blue, red, and green, generate various uniformly distributed
and independent bits ax, ay, {ai}, and through certain connec-
tivity requirements (related to the notion of alternating paths,
see Definition III.4) allow the protection of source information
m traversing u. We formally define these requirements and
the corresponding “padding” protocol in Definitions III.3 and
Protocol III.1, respectively. The combinatorial characterization
of networks for which the answer to Question 1 is positive is
given in Theorem III.1.
• Secure key-cast. The examples depicted in Figures 1(a)-1(c)
also allow secure key-cast. Recall that for secure key-cast no
network node (including the sources) gain any information on
the shared key K. In the case of a single terminal d, this is
trivial, since d can trivially generate its own key K. But even
in the case of Figure 1(c) in which D = {d1, d2} one can
establish a shared key K by sending an additional uniformly
distributed and independent bit m′ from u to d1 and d2. This
allows the terminals access to m and m′, and accordingly to
the key K = m+m′ which is independent of the information

available at any non-terminal network node. We note that
while it is not always the case that networks allowing secure
multicast (when |D| > 1) also allow secure key-cast, not much
is needed (with respect to the network topology) to convert a
secure multicast scheme to a secure key-cast one. We elaborate
on such extended schemes in Theorem IV.1.

The remainder of our presentation is structured as follows.
In Section II, we present our detailed model and formalize
Question 1. The combinatorial characterization of networks
that allow positive-rate secure multicast (i.e., for which the an-
swer to Question 1 is “yes”) is given in Section III. Section IV
designs positive-rate secure key-cast schemes using positive-
rate secure-multicast. We conclude with a brief discussion on
recent work on secure key-cast in Section V. Due to space
limitations, some of the proofs are omitted and appear in the
full version of this work [47].

II. MODEL

We follow the notation of [30], modified here to address the
positive-rate setting. For any ℓ > 0, [ℓ] ≜ {1, 2, . . . , ⌈ℓ⌉}.

• Key-cast Instance: An instance I = (G,S,D,B) of the
key-cast problem includes an acyclic directed network G =
(V,E), a collection of source nodes S ⊆ V , a collection of
terminal nodes D ⊆ V , and a collection B = {β1, . . . , β|B|}
of subsets of edges specifying the secrecy requirements. Each
source node si ∈ S holds an unlimited collection Mi = {bij}j
of independent, uniformly distributed bits. Let M = ∪si∈SMi

denote all random bits available at the source nodes. Following
a convention common in the study of acyclic network coding,
we assume that the terminals d ∈ D have no outgoing edges.

• Key-Codes: A network code (F ,G) = ({fe}, {gi}), here
called a key-code, is an assignment of an alphabet X e and
a (local) encoding function fe for each edge e ∈ E and a
decoding function gi for each terminal di ∈ D. For every
edge e = (u, v), the edge message Xe ∈ X e from u to v
equals the evaluation of encoding function fe on inputs XIn(u);
here, for a generic node u0, In-edges(u0) is the collection
(e : e = (v, u0) ∈ E) of edges incoming to u0, XIn(u0) =
((Xe : e ∈ In-edges(u0)), ({bij}j : u0 = si)) captures all
information available to node u0 during the communication
process, and, similarly, In-nodes(u0) is the collection of nodes
v such that (v, u0) ∈ E. In order to ensure that XIn(u) is
available to node u before it encodes, communication proceeds
according to a predetermined topological order on E.

A key-code with target rate R > 0 is considered successful
if, for every terminal di ∈ D, the evaluation of decoding func-
tions gi on the vector of random variables XIn(di) equals the
reproduction of a uniform random variable K over alphabet
K = [2R] such that the following criteria are satisfied. First,
key K meets secrecy constraints B, which specifies that for
every β ∈ B, I(K; (Xe : e ∈ β)) = 0. Second, each terminal
di decodes key K. Notice that the alphabets X e chosen in
code design may be set to be arbitrarily large. We thus refer
to the setting at hand as “positive-rate” since the rate per time
step resulting from choosing a large alphabet size X e may be
very small but still greater than zero.
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Definition II.1 (Secure key-cast feasibility). Instance I is said
to have positive key-cast rate Rkey > 0 if there exists a key-
code (F ,G) such that

• Key Rate: K is a uniform random variable over [2Rkey ].
• Decoding: For all di ∈ D, H(K|XIn(di)) = 0.
• Secrecy: I(K; (Xe : e ∈ β)) = 0 for any subset β ∈ B.

• Secure-multicast: In the secure-multicast setting, one dis-
tinguishes between source nodes Sm that hold message infor-
mation and source nodes Sr that hold independent randomness
used for masking. The two subsets may intersect. As before,
we assume that every node si in Sm ∪ Sr holds an unlimited
collection of independent bits {bij}j .

Definition II.2 (Secure-multicast feasibility). Instance I =
(G, (Sm, Sr), D,B) is said to have positive secure-multicast
rate Rsec > 0 if there exists a network code (F ,G) such that

• Message Rate: K is a uniform random variable over
[2Rsec ] such that K = M ′ ⊂ {bij}i∈Sm,j , where M ′ is a
subset of the source-bits generated by sources in Sm.

• Decoding: For all di ∈ D, H(K|XIn(di)) = 0.
• Secrecy: I(K; (Xe : e ∈ β)) = 0 for any subset β ∈ B.

Notice that in both Definition II.1 and Definition II.2, the
random variable K is shared between the terminals in D. In
the key-cast setting (II.1), K denotes the secret key, which
may be a (uniformly distributed) function of source bits; the
source bits themselves are not necessarily decoded at terminals
in D. In the secure multicast setting (II.2), K denotes the
secret message generated at sources in Sm and decoded at each
terminal in D. It is thus evident that the task of key-cast is
more flexible than that of secure multicast: roughly speaking,
instance I has positive key-cast rate Rkey > 0 according to
Definition II.1 if I has positive secure-multicast rate Rsec > 0
according to Definition II.2, but Rkey > 0 in Definition II.1
does not ensure Rsec > 0 in Definition II.2 since Rkey > 0
does not ensure decodability of even a single bit from Sm.

The work at hand addresses instances in which each network
node can generate uniformly distributed independent random
bits, i.e., the setting that S = V in Definition II.1 and Sr = V
in Definition II.2. Moreover, we consider eavesdroppers that
have access to any individual network node (except terminal
nodes). Namely, for v ∈ V , in Definition II.1 we consider
B = {βv | v ∈ V \ D,βv = In-edges(v)}.1 Similarly, in
Definition II.2 we require the message to be kept secret from
any non-terminal node excluding message-generating sources.

In Section III, below, we seek to combinatorially char-
acterize instances I with positive secure-multicast rate. We
note that if there exists a secure-multicast scheme over
I = (G, (Sm, Sr), D,B) communicating positive rate K with
|Sm| > 1, then there exists a positive-rate single message-
source secure-multicast scheme over I = (G, ({s}, Sr), D,B)
for each s ∈ Sm that generates message-bits in K. We can
construct the latter code from the former by replacing all

1The security requirement expressed by B implies that I(K; (Xe : e ∈
In-edges(v))) = 0. Notice, by the definition of XIn(v), that this implies
I(K;XIn(v)) = I(K; (Xe : e ∈ In-edges(v)),Mv) = 0 as well for
the independent bits Mv generated at v. That is, K is independent of all
information available to v.

random message bits in K generated by nodes in Sm \ {s}
by constants. We thus, without loss of generality, consider
instances in which Sm = {s}. We seek to answer the following
question, which formalizes Question 1 from the Introduction.

Question 1 (Positive-rate secure multicast). For which in-
stances I = (G, ({s}, V ), D,B) with B = {βv | v ∈
V \ (D ∪ {s}), βv = In-edges(v)} can we achieve Rsec > 0?

III. ANSWERING QUESTION 1

In this section we consider secure multicast instances I =
(G, (Sm = {s}, Sr = V ), D,B) in which B = {βv | v ∈
V \ (D ∪ {s}), βv = In-edges(v)}. That is, in I, we require
the information multicast from s to D to be independent of the
information available at any network node except the source s
and terminals in D. We first consider the case where |D| = 1,
i.e., D = {d}, and analyze secure communication from s to
d. We then address general D. We start with a number of
definitions followed by a subroutine to be used in our analysis.
The definitions and subroutine are illustrated by Figure 2.

A. Preliminary notation and definitions (D = {d})

Definition III.1. A vertex u ∈ V is called a cut-vertex for
the source-terminal pair (s, d) if the removal of u separates
s from d in G. Equivalently, all paths from s to d go through
u.

Let D = {d}. We define a partition of V that describes
each node’s connectivity to d and from s.

Definition III.2 (Partition (U0, U1, U2)). In the partition
(U0, U1, U2) of V , U0 is the set of vertices v ∈ V that are not
reachable from s but from which d is reachable, U1 is the set
of vertices v ∈ V that are reachable from s and from which d
is reachable, and U2 is the set of vertices v ∈ V from which
d is not reachable.

We next define the notion of “U0-protected cut-vertices.”
Roughly speaking, a cut-vertex u ∈ U1 is U0-protected if
random variables generated at nodes in U0 can be used to
mask the message transmitted by s, thereby preventing u
from learning anything about the message from s. Figure 2
depicts this definition.

Definition III.3 (U0-protected vertices). Let (U0, U1, U2) be
the partition of Definition III.2. For any cut-vertex u ∈ U1,
consider the subsets Wu, Xu, and Yu of U0, where

• v ∈ Wu if there exists a path Qw(v, u) from v to u in
which all vertices except u are in U0,

• v ∈ Xu if there exist a path Qx(v, x) from v to some
x ∈ In-nodes(u) ∩ U1, and

• v ∈ Yu if there exists a path Qy(v, d) from v to d such
that the first (in topological order) vertex y in Qy(v, d)∩
U1 has topological order greater than u;

sets Wu, Xu, and Yu can intersect. Let {v1, v2, . . . , vκ} =
In-node(u) ∩ U0. For i ∈ [κ], let (Wu,i, Xu,i, Yu,i) be the
vertices in (Wu, Xu, Yu), respectively, that are connected by
a path to vi. Note that Xu,i and Yu,i are included in Wu,i.
Now, u is said to be U0-protected if Xu ∩ Yu ̸= ϕ, or if for
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Fig. 2: Fig. 2(a) illustrates the sets (U0, U1, U2) from Definition III.2 and the subsets Wu, Xu, Yu for cut-vertex u with the
refined subsets Xu,1 and Yu,2 from Definition III.3. Vertex w is connected by an alternating path from s (see Definition III.4).
Fig. 2(b) illustrates Protocol III.1 for u in the case where ℓ = 3 and β = γ = 0. The red node vx is in Xu,1 ∩Wu,1, the blue
node w1 is in Wu,1 ∩Wu,2, the blue node w2 is in Wu,2 ∩Wu,3, and the green node vy is in Yu,3 ∩Wu,3. After receiving
α+ ax, node u does not learn anything about α and can output α+ ay . Fig. 2(c) illustrates an example for the achievability
of Theorem III.1 in which c = 1.

ℓ ≥ 2, there exists i1, i2, . . . , iℓ ∈ [κ] such that Xu,i1 ̸= ϕ,
Yu,iℓ ̸= ϕ, and Wu,ij ∩Wu,ij+1

̸= ϕ for all j ∈ [ℓ− 1].

The above definitions are closely related to the notion of
alternating paths. See Figure 2.

Definition III.4 (Alternating path). Given a directed graph
G with vertex set V and edge set E, its undirected variant,
denoted by Ḡ, has vertex set V and undirected edge set Ē =
{(u, v) | (u, v) ∈ E}. Nodes v1 and v2 are connected by an
alternating path in G, if v1 and v2 are connected by a path
P̄v1,v2 in Ḡ. The alternating path Palt(v1, v2) in G connecting
v1 and v2 consists of the set of edges {e ∈ E | ē ∈ P̄}.

Claim III.1. If a cut-vertex u, with respect to (s, d), is
U0-protected then there exists an alternating path Palt(s, d)
connecting s and d that does not include u.

We are now ready to state the main theorem for this section.

Theorem III.1. Let I = (G, (Sm = {s}, Sr = V ), D =
{d},B) with B = {βv | v ∈ V \(D∪{s}), βv = In-edges(v)}.
Then I has secure-multicast rate Rsec > 0 according to
Definition II.2 if and only if every cut-vertex u is U0-protected.

B. The “padding” protocol

Before addressing the proof of Theorem III.1 we preset
our padding protocol (depicted in Figure 2), specifying how
information can be transmitted from vertices in U0 to a U0-
protected cut-vertex u ∈ U1 (and additional vertices in U1) to
assist in masking the message information transmitted by the
source node s. The secure-multicast scheme suggested shortly
to answer Question 1 uses the padding protocol repeatedly.

Protocol III.1 (Padding protocol for U0-protected u). Let
u be a cut-vertex in U1 that is U0-protected according to
Definition III.3. In this case, either Xu ∩ Yu ̸= ϕ or, for
some ℓ ≥ 2, there exists {i1, i2, . . . , iℓ} ⊂ [κ] such that
Xu,i1 ̸= ϕ, Yu,iℓ ̸= ϕ, and, for j ∈ [ℓ − 1], it holds that
Wu,ij ∩Wu,ij+1

̸= ϕ. We describe the protocol for the latter,

more general, case and defer the missing details to the full
version [47] of this work.

Fix ℓ ≥ 2 and {i1, i2, . . . , iℓ} ⊂ [κ] such that Xu,i1 ̸= ϕ,
Yu,iℓ ̸= ϕ, and, for j ∈ [ℓ − 1], Wu,ij ∩ Wu,ij+1

̸= ϕ. Let
vx ∈ Xu,i1 ⊆ Xu. Then, there exists a path Qx(vx, x) from
vx to some x ∈ In-nodes(u) ∩ U1. Let ax be a uniformly
distributed bit generated at vx. For j ∈ [ℓ − 1], let aj be a
uniformly distributed bit generated at wj ∈ Wu,ij ∩Wu,ij+1 .
Let vy ∈ Yu,iℓ ⊆ Yu. Then, there exists a path Qy(vy, d)
from vy to d such that the first (by topological order) vertex
y in Qy(vy, d)∩U1 has topological order greater than u. Let
ay be a uniformly distributed bit generated at vy . Finally let
α, β, γ ∈ {0, 1} be random variables such that the variables
in the collection {α, β, γ, ax, a1, . . . , aℓ−1, ay} are mutually
independent. The protocol described below assumes that

• node x has access to α+ β + γ (additions are mod 2),
• node u has access to γ, and
• node u may or may-not have access to β,

and guarantees that

• node u is able to compute α+ β + ay .
• node u does not gain any information about α.

The protocol proceeds as follows.

• Node vx sends ax to x through Qx(vx, x) and to vi1
through Qw(vx, vi1). Node x, with access to α + β + γ
and ax, sends α+ β + γ + ax to u.

• For j ∈ [ℓ − 1], node wj sends aj to vij through
Qw(wj , vij ) and to vij+1

through Qw(wj , vij+1
).

• Node vy sends ay to y and then to d through Qy(vy, d)
and to viℓ through Qw(vy, vℓ).

• The incoming nodes of u in U0 now compute the following
functions to be forwarded to u. Node vi1 computes and
forwards ax + a1. For j ∈ {2, . . . , ℓ − 1}, node vij
computes and forwards aj−1 + aj . Node viℓ computes
and forwards aℓ−1 + ay .

The justification for the assumptions in the padding proto-
col, in addition to the precise information content of α, β, and
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γ, are presented later when the padding protocol is used in
our secure-multicast scheme given in Theorem III.1.

Under the given definitions, each of the nodes
vx,w1, . . . , wℓ−1, and vy is the source of a one-time pad (here
denoted by ax, a1, . . . , aℓ−1, ay) independent of all other
random variables in the network. These one-time pads are
sequentially added and then removed from α (representing
the source message) to ensure that α remains protected.
Protection at the bottleneck u is achieved by transmitting to
the bottleneck not the protection bits themselves but sums of
consecutive pairs of those bits. Namely,

Claim III.2. After running Protocol III.1, it holds that (i) node
u is able to compute α + β + ay , and (ii) node u does not
gain any information about α.

Proof: For (i), the proof follows from the fact that
node u, knowing γ and using incoming information from
x, vi1 , . . . , viℓ can compute γ + (α+ β + γ + ax) + (ax + a1) +

(a1 + a2) + · · ·+ (aℓ−2 + aℓ−1) + (aℓ−1 + ay) = α+ β + ay. For
(ii), note that the incoming information to u is independent of
α; namely, I(γ, α+ β + γ + ax, β, ax + a1, a1 + a2, . . . , aℓ−2 +

aℓ−1, aℓ−1 + ay;α) = 0.

C. Proof of Theorem III.1

Proof: We start by proving achievability. The proof is
depicted in Figure 2(c). If there are no cut vertices in V , then
s and t are 2-vertex connected, meaning that there exist two
vertex-disjoint paths, P1(s, d) and P2(s, d), in G between s
and d [48]. Then RSR > 0 since, given independent uniformly
distributed bits m and r, the source can send m + r on P1

and r on P2. The resulting scheme is secure.
Otherwise, let u1, . . . , uc be the collection of cut-vertices

ordered topologically. We here present a proof sketch for the
case c = 1, i.e., when there is a single cut-vertex u1 separating
s and d. As u1 is U0-protected, there exist a path Qx(vx, x) for
vx ∈ Xu1

and x ∈ In-nodes(u1) ∩ U1, and a path Qy(vy, d)
through y for vy ∈ Yu1

and y ∈ U1 of topological order
greater than that of u1; here Xu1

and Yu1
are the subsets of

U0 corresponding to u1 in Definition III.3. By Protocol III.1
and Claim III.2, assuming that u1 receives information α+β+
γ + ax and γ for ax generated at vx, vertex u1 can compute
α + β + ay in a way that keeps all incoming information to
u1 collectively independent of α.

Let U1,1, U1,2 be a partition of U1 implied by u1 in which
U1,1 includes all vertices of U1 of topological order at most
that of u1. From c = 1, it follows that either s and u1 are
connected by two vertex-disjoint paths P1(s, u1) and P2(s, u1)
or that (s, u1) ∈ E. Similarly for U1,2, u1 and d are either
connected by two vertex-disjoint paths or (u1, d) ∈ E. We here
assume the former, more general, case for both pairs (s, u1)
and (u1, d). We also assume that P1(s, u1) passes through
vertex x defined above. Full proof, for c > 1 without the
above assumptions, appears in [47].

We are now ready to suggest a secure communication
scheme in which the source s securely sends a uniform bit
m to d. Source s sends m + r1 on path P1(s, u1) until
vertex x, and send r1 on path P2(s, u1), where r1 is an

independent uniformly distributed bit. Let α = m, let β ≡ 0
be constant, and let γ = r1. It holds that x has access to
α + β + γ = m+ r1 and u1 has access to γ = r1. Applying
Protocol III.1 on u1 now guarantees by Claim III.2 that u1 can
compute α + β + ay = m + ay without gaining information
about α = m; in addition, ay is forwarded on Qy(vy, d) to
d. Notice that all other nodes in U1,1 do not gain information
about α = m either. Vertex u1 prepares to send m+ay in the
next step of communication.

In U1,2, u1 sends m+r2+ay for a uniform and independent
bit r2 on one of the two vertex disjoint paths connecting u1

and d, and sends r2 on the other. It follows that each node
in U1,2 \ {d} gains no information about m (even under the
assumption that it knows ay). As d has access to ay it can
decode m. This concludes the achievability proof. We omit
the converse proof due to space limitations.

D. Multiple terminals
When D includes more than a single terminal node, we

can perform the scheme described in Theorem III.1 for each
terminal node di in parallel with independent randomness; this
yields a legitimate code since our positive-rate model allows
arbitrary edge alphabets. We conclude the following corollary.

Corollary III.1. Let I = (G, (Sm = {s}, Sr = V ), D,B)
with B = {βv | v ∈ V \ (D ∪ {s}), βv = In-edges(v)}.
Then I has secure-multicast rate Rsec > 0 if and only if,
for every d ∈ D, every cut-vertex u with respect to (s, d) is
U0-protected.

IV. SECURE KEY-CAST THROUGH SECURE MULTICAST

We here present a sufficient condition for secure key-cast
in the setting in which we require the key K delivered to the
terminals in D to be independent of the information available
at any network node (except the terminals in D themselves).
The ability to achieve security at all nodes, including source
nodes that generate information, is a unique property of key-
cast that distinguishes key-cast from secure multicast.

Theorem IV.1. Let I = (G,V,D,B) in which B = {βv | v ∈
V \D,βv = In-edges(v)}. Then I has key-cast rate Rkey > 0
if (i) there exists a node s for which for every d ∈ D every cut-
vertex u separating s and d is U0-protected, and, in addition,
(ii) there exists a node s′ such that for all d ∈ D there is a
path from s′ to d that does not pass through s.

V. CONCLUSIONS AND OPEN PROBLEMS

In this work, we characterize positive-rate secure-multicast
instances under the notion of node-security. We show that
instances I with positive secure-multicast rate Rsec > 0 imply
(under additional connectivity conditions) positive key-cast
rate Rkey > 0 under the security requirement that information
available at any single network node (excluding the terminals
in D, but including the source nodes) is independent of the
shared key K. The opposite assertion, that Rkey > 0 implies
Rsec > 0, does not hold. A combinatorial characterization of
instances I for which Rkey > 0 was left open in this work
and has been recently resolved in the extended version [47]
(the latter, finalized after conference submission).
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