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Characterizing positive-rate secure multicast
network coding with eavesdropping nodes

Michael Langberg

Abstract—Motivated by the study of multi-source multi-
terminal key-dissemination, here called ‘key-cast,” the work at
hand presents a combinatorial characterization of when positive-
rate secure multicast network coding in the presence of eaves-
dropping nodes is possible. In key-cast, introduced by the authors
in [ITW2022], network nodes hold independent random bits,
and one seeks a communication scheme that allows all terminal
nodes to share a secret key K. We here address positive (albeit,
arbitrarily small) rate key-cast under the security requirement
that no single non-terminal network node can gain information
about the shared key K; this scenario is useful in cryptographic
settings. The work at hand studies key-dissemination protocols
based on secure network coding and presents a combinatorial
characterization of networks that support positive-rate multicast
resilient to eavesdroppers that control individual network nodes.
The secure-multicast capacity solution in the same setting is a
known open problem.

I. INTRODUCTION

The resource of shared secret randomness, i.e., a shared
secret key, plays a fundamental role in the theory and prac-
tice of network communication systems; applications include
cryptographic encryption, randomized coding technologies,
distributed computing, statistical inference, distributed learn-
ing, distributed authentication, identification, local differential-
privacy, and more (e.g., [1]-[24]). Motivated by the central
role of shared randomness in such a wide range of distributed
applications, the work at hand addresses the problem of
disseminating common randomness over noiseless networks,
i.e., in the context of Network Coding [25]-[29]; we call this
the key-cast problem. In key-cast, first studied by the authors
in [30], network nodes hold independent random bits, and one
seeks a communication scheme that allows all terminal nodes
to share a secret key K.

In this work, we focus on the cryptographically-motivated
setting of key-cast in which one is only required to disseminate
a positive-rate key, which, once shared among a collection
of terminals, can be used to generate long sequences of
common pseudo-random bits; the pseudo-random bits, in turn,
can be used in applications like those mentioned above. Our
interest lies in secret key dissemination under a natural secrecy
condition in which the shared key K is independent of the
information available at any non-terminal network node. As
a result, in our setting, no network node, not even the nodes
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where random bits originate, other than the terminal nodes
themselves that share the secret key K learns any information
about K.

This work characterizes the combinatorial requirements that
allow the design of a certain key-cast scheme based on the
notion of secure-multicast. In secure-multicast one seeks to
securely communicate source information to a collection of
terminals in the presence of an eavesdropper with predefined
eavesdropping capabilities. The model of secure multicast
network coding includes source nodes, which have access to
message information, and additional nodes that generate in-
dependent randomness used to enable secure communication.
Most prior works on secure multicast, e.g., [31]-[37], consider
a single source setting in which the source s generates both
source messages and independent randomness, while no other
network nodes can generate randomness. They further apply
a uniform security assumption in which the eavesdropper can
access any collection of at most z unit-capacity network links
for a given security parameter z. A major result in this context
includes a characterization of the secure multicast capacity and
a demonstration that the capacity can be efficiently obtained
using linear codes [31], [32], [34]-[36]. A more general model
of secure-multicast, where several network nodes can generate
messages and/or independent randomness and eavesdroppers
have access to edge sets with varying capacities (e.g., the set-
ting of eavesdropping on nodes) is studied in, e.g., [38]-[44];
in this general setting, the capacity is not fully characterized.
In fact, determining its value is known, in certain cases, to be
NP-hard [40] or as hard as determining the capacity of the
k-unicast problem [42] (a well known open problem in the
study of network codes, e.g., [39], [45], [46]).

Our study focuses on the design of positive-rate key-cast
schemes that are resilient against non-uniform eavesdroppers
that can access the information available at any single node.
Our scheme builds on a corresponding positive-rate secure-
multicast scheme in the setting in which any network node
can generate randomness or messages and under the security
requirement that no single internal network node can gain
information about the transmitted message(s). Towards that
end, in this work we ask and solve the following question
(stated roughly below, and with greater rigor in Section II).

Question 1 (Positive-rate secure-multicast). Given a commu-
nication network G in which any network node can generate
independent randomness, and given a set of terminal nodes
D, is it possible to securely multicast a message m from a
source s to nodes in D such that no non-terminal network
node (except s) can gain information about m?

079-8A8t5Or¥ 8 igeheDuiyS Bt 4sEFE R Buffalo Libraries. Downlde@ig@ on July 29,2025 at 14:45:45 UTC from IEEE Xplore. Restrictions apply.



m+a, |y m+a,

(a) (b)

Fig. 1: A number of examples corresponding to Question 1,
highlighting the major ideas used in our combinatorial charac-
terization of networks that allow positive-rate secure multicast.

Figure 1 depicts a number of examples corresponding to
Question 1. In the examples, any node can generate indepen-
dent uniformly distributed random bits. In what follows, we
review the examples in Figure 1, highlighting the major ideas
used in our answer to Questions 1.

e Secure multicast. The networks depicted in Figure 1 allow
the secure communication of message m from source s to
terminal set D, where D = {d} in Figure 1(a), Figure 1(b)
and D = {d;,dz2} in Figure 1(c). In Figure 1(a), the vertex
u is a cut-vertex that separates s and d. So, naively, one
may conclude that u has the capabilities to gain information
about any message transmitted between s and d. However, as
noticed in prior works on secure network coding, e.g., [38]-
[44], the information traversing the cut-vertex u can at times
be protected using (a collection of) one-time pads. We refer to
such vertices u as protected cut-vertices. Cut-vertices (and
protected cut-vertices) play a major role in our analysis; see,
Definitions III.2 and III.3. Indeed, in Figure 1(a) the blue node
can generate a uniformly distributed bit a that is independent
of m. As this node is connected to both s and d, a one time
pad is established and u does not gain information about m,
implying secure communication.

The padding protocols protecting the information traversing
u may be more advanced than that of Figuresl(a). Additional
examples are given in Figures 1(b) and 1(c). The nodes colored
in blue, red, and green, generate various uniformly distributed
and independent bits a,, a,, {a;}, and through certain connec-
tivity requirements (related to the notion of alternating paths,
see Definition I11.4) allow the protection of source information
m traversing u. We formally define these requirements and
the corresponding “padding” protocol in Definitions III.3 and
Protocol I1I.1, respectively. The combinatorial characterization
of networks for which the answer to Question 1 is positive is
given in Theorem III.1.
o Secure key-cast. The examples depicted in Figures 1(a)-1(c)
also allow secure key-cast. Recall that for secure key-cast no
network node (including the sources) gain any information on
the shared key K. In the case of a single terminal d, this is
trivial, since d can trivially generate its own key K. But even
in the case of Figure 1(c) in which D = {d;,d2} one can
establish a shared key K by sending an additional uniformly
distributed and independent bit m’ from u to d; and ds. This
allows the terminals access to m and m/, and accordingly to
the key K = m -+ m’ which is independent of the information

available at any non-terminal network node. We note that
while it is not always the case that networks allowing secure
multicast (when |D| > 1) also allow secure key-cast, not much
is needed (with respect to the network topology) to convert a
secure multicast scheme to a secure key-cast one. We elaborate
on such extended schemes in Theorem IV.1.

The remainder of our presentation is structured as follows.
In Section II, we present our detailed model and formalize
Question 1. The combinatorial characterization of networks
that allow positive-rate secure multicast (i.e., for which the an-
swer to Question 1 is “yes”) is given in Section III. Section IV
designs positive-rate secure key-cast schemes using positive-
rate secure-multicast. We conclude with a brief discussion on
recent work on secure key-cast in Section V. Due to space
limitations, some of the proofs are omitted and appear in the
full version of this work [47].

II. MODEL

We follow the notation of [30], modified here to address the
positive-rate setting. For any ¢ > 0, [(] = {1,2,...,[(]}.

e Key-cast Instance: An instance Z = (G, S, D, B) of the
key-cast problem includes an acyclic directed network G =
(V, E), a collection of source nodes S C V, a collection of
terminal nodes D C V, and a collection B = {f1,..., 8|5}
of subsets of edges specifying the secrecy requirements. Each
source node s; € S holds an unlimited collection M; = {b;;};
of independent, uniformly distributed bits. Let M = U, csM;
denote all random bits available at the source nodes. Following
a convention common in the study of acyclic network coding,
we assume that the terminals d € D have no outgoing edges.

e Key-Codes: A network code (F,G) = ({f.},{g:}), here
called a key-code, is an assignment of an alphabet X', and
a (local) encoding function f. for each edge e € F and a
decoding function g; for each terminal d; € D. For every
edge e = (u,v), the edge message X, € X, from u to v
equals the evaluation of encoding function f. on inputs X1,,,);
here, for a generic node wg, In-edges(up) is the collection
(e : e = (v,ug) € E) of edges incoming to ug, X1n(ue) =
((Xe : e € In-edges(ug)), ({bij}; © wo = s;)) captures all
information available to node wuy during the communication
process, and, similarly, In-nodes(ug) is the collection of nodes
v such that (v,up) € E. In order to ensure that Xy, is
available to node u before it encodes, communication proceeds
according to a predetermined topological order on FE.

A key-code with target rate R > 0 is considered successful
if, for every terminal d; € D, the evaluation of decoding func-
tions g; on the vector of random variables X1,(g,) equals the
reproduction of a uniform random variable K over alphabet
K = [2%] such that the following criteria are satisfied. First,
key K meets secrecy constraints B, which specifies that for
every § € B, I(K; (X, : e € §)) = 0. Second, each terminal
d; decodes key K. Notice that the alphabets X', chosen in
code design may be set to be arbitrarily large. We thus refer
to the setting at hand as “positive-rate” since the rate per time
step resulting from choosing a large alphabet size X', may be
very small but still greater than zero.
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Definition II.1 (Secure key-cast feasibility). Instance T is said
to have positive key-cast rate Ryey > 0 if there exists a key-
code (F,G) such that

« Key Rate: K is a uniform random variable over [2].
o Decoding: For all d; € D, H(K|X1,(4,)) = 0.
o Secrecy: I(K;(X.:e € () =0 for any subset 3 € B.

e Secure-multicast: In the secure-multicast setting, one dis-
tinguishes between source nodes .S, that hold message infor-
mation and source nodes S, that hold independent randomness
used for masking. The two subsets may intersect. As before,
we assume that every node s; in .S, U .S, holds an unlimited
collection of independent bits {b;;};.

Definition I1.2 (Secure-multicast feasibility). Instance 7 =
(G, (Sm,S:), D, B) is said to have positive secure-multicast
rate Rgec > 0 if there exists a network code (F,G) such that

o Message Rate: K is a uniform random variable over
[2ft==c] such that K = M’ C {b;;}ies,, j» where M' is a
subset of the source-bits generated by sources in Sy,.

o Decoding: For all d; € D, H(K|X1,(q,)) = 0.

o Secrecy: I(K; (X, :e € )) =0 for any subset 3 € B.

Notice that in both Definition II.1 and Definition II.2, the
random variable K is shared between the terminals in D. In
the key-cast setting (II.1), K denotes the secret key, which
may be a (uniformly distributed) function of source bits; the
source bits themselves are not necessarily decoded at terminals
in D. In the secure multicast setting (I.2), K denotes the
secret message generated at sources in .S,,, and decoded at each
terminal in D. It is thus evident that the task of key-cast is
more flexible than that of secure multicast: roughly speaking,
instance Z has positive key-cast rate Ry.y > 0 according to
Definition II.1 if Z has positive secure-multicast rate Rgec > 0
according to Definition IL.2, but Ryey > 0 in Definition 1I.1
does not ensure Fgec > 0 in Definition IL.2 since Ryey > 0
does not ensure decodability of even a single bit from .S,.

The work at hand addresses instances in which each network
node can generate uniformly distributed independent random
bits, i.e., the setting that S = V' in Definition II.1 and S, = V'
in Definition II.2. Moreover, we consider eavesdroppers that
have access to any individual network node (except terminal
nodes). Namely, for v € V, in Definition II.1 we consider
B = {8, | veV\D,B, = In-edges(v)}.! Similarly, in
Definition I1.2 we require the message to be kept secret from
any non-terminal node excluding message-generating sources.

In Section III, below, we seek to combinatorially char-
acterize instances Z with positive secure-multicast rate. We
note that if there exists a secure-multicast scheme over
T = (G, (Sm,Sr), D, B) communicating positive rate K with
[Sm| > 1, then there exists a positive-rate single message-
source secure-multicast scheme over Z = (G, ({s}, S;), D, B)
for each s € S, that generates message-bits in /. We can
construct the latter code from the former by replacing all

I'The security requirement expressed by B implies that I(K;(Xe : e €
In-edges(v))) = 0. Notice, by the definition of X1n(v), that this implies
I(K; Xm(v)) = I(K;(Xe : e € In-edges(v)), My) = 0 as well for
the independent bits M, generated at v. That is, K is independent of all
information available to v.

random message bits in K generated by nodes in S, \ {s}
by constants. We thus, without loss of generality, consider
instances in which .S,,, = {s}. We seek to answer the following
question, which formalizes Question 1 from the Introduction.

Question 1 (Positive-rate secure multicast). For which in-
stances T = (G,({s},V),D,B) with B = {8, | v €
V\ (DU{s}), B, = In-edges(v)} can we achieve Rgec > 07

III. ANSWERING QUESTION 1

In this section we consider secure multicast instances 7 =
(G,(Sm = {s},S- = V),D,B) in which B = {5, | v €
V\ (DU{s}), B, = In-edges(v)}. That is, in Z, we require
the information multicast from s to D to be independent of the
information available at any network node except the source s
and terminals in D. We first consider the case where |D| = 1,
ie., D = {d}, and analyze secure communication from s to
d. We then address general D. We start with a number of
definitions followed by a subroutine to be used in our analysis.
The definitions and subroutine are illustrated by Figure 2.

A. Preliminary notation and definitions (D = {d})

Definition IIL.1. A vertex uw € V is called a cut-vertex for
the source-terminal pair (s,d) if the removal of u separates
s from d in G. Equivalently, all paths from s to d go through
U.

Let D = {d}. We define a partition of V that describes
each node’s connectivity to d and from s.

Definition IIL.2 (Partition (Uy,Uy,Us)). In the partition
(Uo, U1, Us) of V, Uy is the set of vertices v € V that are not
reachable from s but from which d is reachable, U is the set
of vertices v € V that are reachable from s and from which d
is reachable, and U, is the set of vertices v € V' from which
d is not reachable.

We next define the notion of “Up-protected cut-vertices.”
Roughly speaking, a cut-vertex u € U is Up-protected if
random variables generated at nodes in Uy can be used to
mask the message transmitted by s, thereby preventing u
from learning anything about the message from s. Figure 2
depicts this definition.

Definition IIL.3 (Uy-protected vertices). Let (Uy, Uy, Us) be
the partition of Definition IIL.2. For any cut-vertex u € Uy,
consider the subsets W, X,, and Y,, of Uy, where

o v € W, if there exists a path Q. (v,u) from v to u in
which all vertices except u are in U,
o v € X, If there exist a path Q,(v,z) from v to some
x € In-nodes(u) N Uy, and
e v €Y, if there exists a path Q,(v,d) from v to d such
that the first (in topological order) vertex y in Q,(v,d) N
U, has topological order greater than u;
sets Wy, X,, and Y, can intersect. Let {v1,va,..., v} =
In-node(u) N Uy. For i € [k], let (Wy 4, Xui,Yui) be the
vertices in (W, X,,,Yy,), respectively, that are connected by
a path to v;. Note that X, ; and Y, ; are included in W, ;.
Now, w is said to be Uy-protected if X, NY, # ¢, or if for
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Fig. 2: Fig. 2(a) illustrates the sets (Up, Uy, Us) from Definition II1.2 and the subsets W,,, X,,, Y, for cut-vertex u with the
refined subsets X, 1 and Y, » from Definition IIL.3. Vertex w is connected by an alternating path from s (see Definition II1.4).
Fig. 2(b) illustrates Protocol III.1 for w in the case where £ = 3 and 3 = v = 0. The red node v, is in X, N W, 1, the blue
node w; is in W, 1 N W, o, the blue node ws is in W, » N W,, 3, and the green node v, is in Y, 3 N W,, 3. After receiving
o + az, node u does not learn anything about o and can output « + a,. Fig. 2(c) illustrates an example for the achievability

of Theorem III.1 in which ¢ = 1.

0 > 2, there exists 11,12, ...,i¢ € || such that X, ;, # ¢,
Yuio # ¢ and Wy i, "Wy, # ¢ forall j € [( —1].

The above definitions are closely related to the notion of
alternating paths. See Figure 2.

Definition II1.4 (Alternating path). Given a directed graph
G with vertex set V and edge set E, its undirected variant,
denoted by G, has vertex set V and undirected edge set E =
{(u,v) | (u,v) € E}. Nodes vy and vy are connected by an
alternating path in G, if v1 and ve are connected by a path
151,1,,,2 in G. The alternating path P, (v1,vs) in G connecting
vy and vy consists of the set of edges {e € E | & € P}.

Claim IIL1. If a cut-vertex u, with respect to (s,d), is
Up-protected then there exists an alternating path Pa1(s,d)
connecting s and d that does not include u.

We are now ready to state the main theorem for this section.

Theorem IIL.1. Let 7 = (G,(S,, = {s},S, = V),D =
{d},B) with B= {8, | v e V\(DU{s}), B, = In-edges(v)}.
Then T has secure-multicast rate Rso. > 0 according to
Definition I1.2 if and only if every cut-vertex u is Uy-protected.

B. The “padding” protocol

Before addressing the proof of Theorem III.1 we preset
our padding protocol (depicted in Figure 2), specifying how
information can be transmitted from vertices in Uy to a Up-
protected cut-vertex u € U; (and additional vertices in U7) to
assist in masking the message information transmitted by the
source node s. The secure-multicast scheme suggested shortly
to answer Question 1 uses the padding protocol repeatedly.

Protocol III.1 (Padding protocol for Up-protected w). Let
u be a cut-vertex in Uy that is Uy-protected according to
Definition II1.3. In this case, either X, N'Y, #* ¢ or, for
some ¢ > 2, there exists {i1,ia2,...,i¢} C [K] such that
Xui, # & Yui, # ¢ and, for j € [{ — 1], it holds that
Wai; " Wi, # ¢. We describe the protocol for the latter,

more general, case and defer the missing details to the full
version [47] of this work.

Fix £ > 2 and {i1,%2,...,1¢} C k] such that X, ;, # ¢,
Yui, # ¢ and, for j € [0 —1], Wy, "Wy, # &. Let
vy € Xu,iy C Xy Then, there exists a path (QQy(vy,x) from
vy to some x € In-nodes(u) N Uj. Let a, be a uniformly
distributed bit generated at vgy. For j € [{ — 1], let a; be a
uniformly distributed bit generated at w; € Wy 3, N Wi, ..
Let vy € Y,;, C Y, Then, there exists a path Q,(vy,d)
from v, to d such that the first (by topological order) vertex
y in Qy(vy,d) NUy has topological order greater than u. Let
ay be a uniformly distributed bit generated at v,. Finally let
a, B,v € {0,1} be random variables such that the variables
in the collection {c, 3,7, az,a1,...,ai-1,ay} are mutually
independent. The protocol described below assumes that

e node x has access to o+ B + v (additions are mod 2),
e node u has access to v, and
e node u may or may-not have access to f3,

and guarantees that

e node u is able to compute o + 3 + ay.
e node u does not gain any information about o

The protocol proceeds as follows.

o Node v, sends a, to x through Q. (vy,x) and to v;,
through Q.,(vy,v;, ). Node x, with access to o+ 8 + 7y
and az, sends o+ B+ v+ ay to u.

o For j € [l — 1], node w; sends a; to v;; through
Qu(wj,vi;) and to v;, | through Q. (w;,v;,. ).

o Node vy sends ay to y and then to d through Q,(vy,d)
and to v;, through Q.,(vy,vy).

o The incoming nodes of u in Uy now compute the following
functions to be forwarded to u. Node v;, computes and
forwards a, + a1. For j € {2,...,4 — 1}, node v
computes and forwards aj_1 + a;j. Node v;, computes
and forwards ag_1 + ay.

The justification for the assumptions in the padding proto-
col, in addition to the precise information content of «, 3, and
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v, are presented later when the padding protocol is used in
our secure-multicast scheme given in Theorem III.1.

Under the given definitions, each of the nodes
Vg,W1, . .. ,We—1, and v, is the source of a one-time pad (here
denoted by ay,a1,...,ap—1,ay) independent of all other
random variables in the network. These one-time pads are
sequentially added and then removed from « (representing
the source message) to ensure that « remains protected.
Protection at the bottleneck « is achieved by transmitting to
the bottleneck not the protection bits themselves but sums of
consecutive pairs of those bits. Namely,

Claim II1.2. After running Protocol 1111, it holds that (i) node
u is able to compute o + B 4 ay, and (ii) node u does not
gain any information about o.

Proof: For (i), the proof follows from the fact that
node u, knowing v and using incoming information from
T, Vi, ..., V;, can compute v+ (a+ S +v+ae) + (az +a1) +
(a1 +az) + -+ (ae—2 + ae-1) + (ae—1 + ay) = a+ B +ay. For
(ii), note that the incoming information to u is independent of
a; namely, I(y,a+ B8+~ + as,B,a: +a1,a1 +az,...,ai—2+
ar—1,ae—1 + ay;a) = 0. [ |

C. Proof of Theorem III. 1

Proof: 'We start by proving achievability. The proof is
depicted in Figure 2(c). If there are no cut vertices in V, then
s and t are 2-vertex connected, meaning that there exist two
vertex-disjoint paths, P;(s,d) and Ps(s,d), in G between s
and d [48]. Then Rgz > 0 since, given independent uniformly
distributed bits m and 7, the source can send m + r on P;
and r on P,. The resulting scheme is secure.

Otherwise, let uq,...,u. be the collection of cut-vertices
ordered topologically. We here present a proof sketch for the
case ¢ = 1, i.e.,, when there is a single cut-vertex u; separating
s and d. As u is Uy-protected, there exist a path @, (v, x) for
vy € Xy, and & € In-nodes(u1) N Uy, and a path Q,(vy, d)
through y for v, € Y,, and y € U; of topological order
greater than that of u;; here X,,, and Y,,, are the subsets of
Uy corresponding to u; in Definition III.3. By Protocol III.1
and Claim II1.2, assuming that u; receives information o+ 5+
v+ a, and vy for a, generated at v,, vertex u; can compute
o+ B+ ay in a way that keeps all incoming information to
uy collectively independent of a.

Let Uy,1,U; 2 be a partition of U; implied by 1y in which
Ui 1 includes all vertices of U; of topological order at most
that of u;. From ¢ = 1, it follows that either s and u; are
connected by two vertex-disjoint paths P (s, u;) and Ps(s, uq)
or that (s,u;1) € E. Similarly for Uy 2, uy and d are either
connected by two vertex-disjoint paths or (u1, d) € E. We here
assume the former, more general, case for both pairs (s, u;)
and (u1,d). We also assume that P;(s,u1) passes through
vertex x defined above. Full proof, for ¢ > 1 without the
above assumptions, appears in [47].

We are now ready to suggest a secure communication
scheme in which the source s securely sends a uniform bit
m to d. Source s sends m + r; on path Pj(s,u;) until
vertex x, and send r; on path P5(s,u;), where 1 is an

independent uniformly distributed bit. Let & = m, let 5 =0
be constant, and let v = r;. It holds that x has access to
a+ B+ v =m+r; and uy has access to v = ry. Applying
Protocol III.1 on %; now guarantees by Claim III.2 that u; can
compute o + 3 + a, = m + a, without gaining information
about o = m; in addition, a, is forwarded on Qy(vy,d) to
d. Notice that all other nodes in Uy ; do not gain information
about o = m either. Vertex u, prepares to send m +a, in the
next step of communication.

In Uy 2, uy sends m+rz+a, for a uniform and independent
bit ro on one of the two vertex disjoint paths connecting
and d, and sends 75 on the other. It follows that each node
in Uy 2 \ {d} gains no information about m (even under the
assumption that it knows ay). As d has access to a, it can
decode m. This concludes the achievability proof. We omit
the converse proof due to space limitations. |

D. Multiple terminals

When D includes more than a single terminal node, we
can perform the scheme described in Theorem III.1 for each
terminal node d; in parallel with independent randomness; this
yields a legitimate code since our positive-rate model allows
arbitrary edge alphabets. We conclude the following corollary.

Corollary IIL.1. Let T = (G, (Sy, = {s},S, = V), D, B)
with B = {B, | v € V\ (D U/ {s}),B, = In-edges(v)}.
Then I has secure-multicast rate Rgsec > 0 if and only if,
for every d € D, every cut-vertex u with respect to (s,d) is
Uyp-protected.

IV. SECURE KEY-CAST THROUGH SECURE MULTICAST

We here present a sufficient condition for secure key-cast
in the setting in which we require the key K delivered to the
terminals in D to be independent of the information available
at any network node (except the terminals in D themselves).
The ability to achieve security at all nodes, including source
nodes that generate information, is a unique property of key-
cast that distinguishes key-cast from secure multicast.

Theorem IV.1. Let 7 = (G,V, D, B) in which B={f, | v €
VD, B, = In-edges(v)}. Then I has key-cast rate Ryey > 0
if (i) there exists a node s for which for every d € D every cut-
vertex u separating s and d is Uy-protected, and, in addition,
(ii) there exists a node s' such that for all d € D there is a
path from s’ to d that does not pass through s.

V. CONCLUSIONS AND OPEN PROBLEMS

In this work, we characterize positive-rate secure-multicast
instances under the notion of node-security. We show that
instances Z with positive secure-multicast rate Rsec > 0 imply
(under additional connectivity conditions) positive key-cast
rate Ryey > 0 under the security requirement that information
available at any single network node (excluding the terminals
in D, but including the source nodes) is independent of the
shared key K. The opposite assertion, that Ry.y, > 0 implies
Rgec > 0, does not hold. A combinatorial characterization of
instances Z for which Ry.y > 0 was left open in this work
and has been recently resolved in the extended version [47]
(the latter, finalized after conference submission).
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