2024 IEEE 13th Sensor Array and Multichannel Signal Processing Workshop (SAM) | 979-8-3503-4481-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SAM60225.2024.10636596

A Federated Learning Approach for Graph
Convolutional Neural Networks

Andrew Campbell, Hang Liu, Anna Scaglione, and Tong Wu
Department of Electrical and Computer Engineering, Cornell Tech, Cornell University, NY USA
Emails: ac2458 @cornell.edu, hl2382@cornell.edu, as337 @cornell.edu, tw385@cornell.edu

Abstract—In this paper we cast the problem of training
a graph neural network based on labeled graph data in a
“federated learning” scenario where different agents have access
to data from a subset of the network nodes. The learning
problem is not decomposable, therefore it does not lend itself
to a straightforward mapping onto a distributed multi-agent
protocol. We propose a multi-agent federated learning scheme
which leverages the local and sparse structure of graph filters to
limit the information sharing while emulating the performance of
centralized training. Even though we preserve data locality and
agent communication is restricted to the neighborhood level, the
proposed method still converges in simulation.

Index Terms—Graph convolutional neural network, multi-
agent federated learning.

I. INTRODUCTION

Graph convolutional networks (GCNs) are powerful ma-
chine learning models when applied to networked data in-
cluding, but not limited to, social networks, bioinformatics,
drug discovery, power and transportation networks data, etc.
By integrating graph information into deep learning models,
GNNs achieve superior results in node classification, link
prediction, and other tasks. A typical GNN model comprises
one or more graph convolutional layers, which are Graph
Filters of a predetermined order, where each layer updates
vertex states before feeding them to the activation functions.
This process iterates across layers, enhancing the model’s
ability to handle complex graph structures.

Given that in many of the applications the graph structures
are extremely large, there has been a flurry of papers proposing
various methods to parallelize the training (see e.g. [1] for a
review). The motivation of this line of work is accelerating
the training when the graphs are extremely large rather than
keeping observations and graph data local. Instead, our work
is motivated by the latter two reasons. This is the motivation
behind the popularity of “federated learning” which offers a
practical approach to training neural networks across multiple
locations, with the key advantage being the preservation of
data locality [2]. This method not only protects privacy but
also reduces the need for sending data over the network [3],
[4]. The scenario we are interested in, however, does not fit the
federated learning model. In our model, agents can only access
a subset of the samples for the labeled data that corresponds to
the nodes in a sub-graph of the network. As a result the graph

This work was supported in part by the DoD-ARO under Grant No.
WO11NF2210228 and in part by the National Science Foundation (NSF) under
Grant NSF ECCS # 2210012.

convolution function itself, as well as the “loss functions,” are
not decomposable. Under this regime we require new ways to
handle the evaluation and training.

The realm of distributed GCNs has been extensively ex-
plored, with a comprehensive review presented in [5], cov-
ering both full-batch and mini-batch training methodologies.
Notably, NeuGraph [6], introduced in 2019, stands as the pio-
neering effort in distributed GNN training. Subsequent studies,
such as [7], [8], and [9], have ventured into the federated
training of GCNs. These approaches typically envisage a sce-
nario where each client manages a segment of a larger graph.
Here, clients periodically perform local updates on their subset
using a semi-supervised model, with these updates being
intermittently consolidated at a central server. However, these
models assume a distributed framework of GCN parameters
across nodes, different from our approach which relies on
graph signal processing and assigns unique parameters to a
singular graph rather than to individual nodes. Consequently,
the decomposition techniques employed in these studies fall
short, as the localized datasets do not suffice for updating
parameters that depend on the entirety of the graph.

To address this challenge, our contribution introduces a
novel method that eschews the decomposition of the loss
function in favor of decomposing the gradient of the loss
function. This gradient is derived partially from an agent’s
own dataset, with additional contributions from other agents.
A key discovery is that the communication between agents
involves only the neural network’s parameters—specifically,
individual scalars—which do not reveal sufficient information
to perfectly reconstruct the original datasets. Moreover, our
approach leverages the average consensus method on the
GCNSs’ parameters, further ensuring the integrity of the global
results. This additional step fortifies our model’s capability
to handle large-scale, distributed networks efficiently while
maintaining a high degree of privacy and data security.

The paper is structured as follows: Section II discusses
the graph decomposition and distributed training structures
of GCN. Following this, a specific case study is detailed in
Section III. Finally, Section IV summarizes and concludes the

paper.
II. DISTRIBUTED GCN

Consider a graph G = (V, £) whose nodes’ measurement
and topology information is distributed among R agents, with
each agent sub-graph G, = (V,, &), with © = [z1,...,zg] .

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2025 at 15:32:06 UTC from IEEE Xplore. Restrictions apply.

Original Graph: ..

Subgraphs with 2-hop neighborhoods:
B2 A ggk lua(%"—l) BE2 2 %k— ué(%k D}

S (=

Subgraph 1:
=(7,%)

Subgraph 2:
g2 = (%2, g2)

Subgraphs with 1-hop neighborhoods

B EBIVABT) e U s

Fig. 1: Graph Decomposition of Distributed GCN.

The set of nodes V is the union of all sub-graphs, UT 1 Vr,
and the nodes in different sub-graphs are disjoint sets, i.e.,
V; NV; = @ for all distinct 4,j € [R]. In the following, to
help understand the basic algorithm and avoid a cumbersome
notation, we start explaining how a two-agent model R = 2
would work. In this case, the two agents observe two distinct
subsets of graph signal values x; and x5. Again, for simplicity,
in Section II-A we first show how, with message passing
among the two agents, it is possible to produce the outputs
of a given two-layer Chebyshev GNN, with only the first
layer parametrized as a Graph Filter and the second layer
fully connected. Then, in Sections II-B we show how the loss
function stochastic gradient evaluation can be decomposed and
how updates can be performed with message passing.

A. Framework for Distributed GCN: Evaluation

When we break down the graph into two parts by setting
R = 2, the resulting decomposition of S is as follows:

Si11 Si2 Ty
|:821 S22] ¥ I::C2:|)
The graph convolutions for the first and second graphs:
S11 S12
S: = ,Sg = 2
1 |:S21:| 2 |:822:| ()

For simplicity of notation, we denote the second-order graph
convolutions as follows':

S2, S? S? S?
82: |: 11 12:|,S2_ |: 11:|7SQ_ |: 12:|,
83, 83 S5 777 |8%,

See Fig 1 for a visualization of this partitioning.

3)

'Here we abuse the notation, by denoting the blocks of the square of the
GSO matrix S? as S?j, while the expression of the corresponding blocks is
clearly not the square of the original ones.

Therefore, with K = 2, the graph signals v is:
K=2

v= Z hkSk:c = v + vy
k=0

= (hoIl + h181 + hQS%)wl + (h012 + h182 + h2sg).’132,

where hg, hi,he are trainable parameters. Assuming a two-
layer neural network configuration, the second layer is a fully-
connected affine layer:

4)

(&)

where y denotes the regression labels. From (5) it is clear
that the output of the graph filter (first layer) can be computed
through a network exchange that allows computing the sum v
and vs, and by only knowing information about the network
2-hop connections. That is, it is sufficient to compute hol +
hiS, + thf for » = 1,2. Upon obtaining v; + vz, one can
apply the activation function and use the same set of weights
W to generate the output of the second layer. Note that for the
sake of evaluation, it is simply necessary to know the Graph
Filter columns corresponding to entries of the graph signal that
are accessed by each agent. However, for the sake of training,
it is clear that both agents will have to learn and agree on the
same set of parameters hg, h1, ho and W. The extension to
a multi-agent setup comes naturally: it is sufficient to replace
the exact evaluation of the vector v at each agent with a scaled
convex combination of the neighbors’ terms v,

y = Wo (v +v3), W € RM*N ¢y ¢ RMX1,

0 =, = ths z, (6)
N(r)

o =Ry anpop?, (M)
r’'=1

where N (r) denotes the neighbour set of node r containing
r itself, and the matrix A = [a,,s] contains the mixing

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2025 at 15:32:06 UTC from IEEE Xplore. Restrictions apply.

coefficients. Here 7 refers to the consensus round while ¢
refers to the training iteration. We can consider the simplest
case where the graph is strongly connected and A is a
doubly stochastic matrix; then asymptotically for all nodes
r=1,...,R " =% " 1Itis well known that this
communication model is an instance of the average consensus
algorithm and that the latter allows for many variations, with
asynchronous communications, switching typologies, etc. [10].
To understand how to minimize the loss with a stochastic
gradient descent approach it is useful to first understand how
it is possible to decompose the loss function. We focus on the
Mean Squared Error (MSE) loss function, leaving other cases
as future work.

B. Graph and Gradient Decomposition

Let us consider a regression problem where the label data
are also partitioned y = [y;,y2] . This is the example that
we are going to consider in our simulations, where each of
the agents is trying to reconstruct some missing samples that
pertain to its own nodal values. Let w,, = vec(W,.) contain the
coefficients of the vectorized sub-matrix W,.. The equations
above imply that the loss function can be written as follows:

(= |[Wio(vs +v2) — y1lls + [|Wao (01 + v2) — 0|5
— 0+l
oL,
8hk ’IZ 8hk 6wk a’wrl (8)
The gradient of gﬁ; is:
oty _ |[Wio(v) — il
Ohy Ol
. RN X1 (9)
B)
— |22 W (Wao (o) — w0,
Ol
where:
do(v) do(v) v a(v) . 0v (10)
6hk B ov 8hk n f— ov 8hk.

The gradient of the ReLU activation function ¢’ (w), is:

o (v) 0 ifv; <0
! = = 11
o) =5 {1 if v; > 0 b
which depends on the sum of all the v, with
Jv
I = Ske, 12
on, " (12)
Let us define:
Uy, = [0’ (v) © SFx, | T2WT (W0 (v) — y,), (13)

the gradient of the total loss with respect to hj; can be

expressed as:
Zurk (14)
8hk —

Agent 2

”’”‘577"

///I

Agent 3

B

33
24 —)"25

10

=75

Agent 4

Fig. 2: Mllustration of Zachary’s Karate Club network, where
nodes are grouped by color to indicate their respective agents
and black lines denote edges between the nodes. Double-
headed arrows between pairs of agents represent communi-
cation links that enable the information exchange across the
agents.

The terms in (14) can also be evaluated through consensus
averaging, which is preferable to exchange the full information
about S¥x,., for scalability and privacy reasons. Similar to (6),
the consensus aggregation at agent r in the ¢-th training round
is given by

N(r)

=R E a”fu ,k ,V

r’'=1

15)

In addition, the updates on the parameters w, can be calcu-
lated locally using the values of o(v) that can be computed
by the consensus algorithm operating on v,..

C. Multi-Agent Federated Learning Algorithm

The proposed multi-agent training algorithm first initial-
izes the local model w'", [h(()o)7 ey h&?’] for every agent r.
Throughout the training iterations, labeled as ¢ = 1,2, .- -, our
algorithm consists of the following steps for each agent r:

1) Local forward computation: Compute v

Z?:o hg)S’,f:cT;

2) Local model aggregation: Communicate vfﬁ) with the
neighbors in N(r) and collect v,) from all the neighbors
Vr’ € N(r) to compute o) in (6);

3) Local backward computatlon Compute U(o)) fol-
()

B'w ;

4) Local gradient aggregation: Commumcate U‘Ek) to the
neighbors and average u() received from Vr’ € N(r)
to compute z7- in (15);

5) Model update Perform a gradient descent step to

update w ™" and [h(tH) .,h(;rl)].
III. NUMERICAL RESULTS

In this section, we evaluate the performance of our algo-
rithm on a missing data recovery task. We simulate graph-

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2025 at 15:32:06 UTC from IEEE Xplore. Restrictions apply.

30% Missing Data

Ground-Truth

Fig. 3: Heat map on the normalized values of graph signals within the range of [0, 1]. Left: the ground-truth data. Middle:

1.0

Interpolation Result

0.0

the

model input with 30% of the data missing. Right: the interpolation result achieved by our algorithm.

structure data generated over Zachary’s Karate Club network
[11]. The network comprises 34 nodes, each generating 1000
independent and identically distributed (i.i.d.) filtered graph
signals {g[t]}1%9° through a diffusion-dynamic graph filter
given by [12]

glt] = (14 0.18) " 'x[t] + n[t], Vt, (16)

where S is the graph Laplacian matrix, x[t] is the excitation
signal with i.i.d. entries uniformly distributed over [—1, 1], and
n[t] representing the Gaussian measurement noise with entries
drawn from N(0,0.01). These filtered graph signals {g[t]}129°
serve as the training outputs in our missing data recovery
model. Neither the graph filter nor the excitation is known to
the agents, but the graph filter introduces correlation among the
graph signal observations that enables the interpolation of the
missing values. The training inputs, denoted by {m[t]}+29°,
are generated by randomly removing a single entry of {g[t]}.
As shown in Fig. 2, we partition the network into four
agents by the K-Means clustering algorithm on the Fiedler
vector of the graph Laplacian matrix. We assume that each
agent gets full access to the portion of graph signals within
their respective sub-graph. However, communication between
agents is contingent upon the existence of connecting edges
among nodes across these sub-graphs. The agents aim to
develop a two-layer GCN presented in Section II-A with
K = 2 for interpolating the missing data in {m[t]}+29°. To this
end, the agents train the GCN model by using the algorithm
proposed in Section II-C with the goal of minimizing the
MSE loss. In each training iteration, we calculate the gradient
with respect to one training input-output pair (m][t], g[t]) and
perform single-round model and gradient aggregation for each
agent by (6) and (15) with the following mixing matrix

0.7 025 0 0

A [025 025 025 0.25
10 02 05 025
0 025 025 05

In Fig. 3, we present the interpolation performance of our al-
gorithm on a training sample with 30% of its data missing. The
results demonstrate that the model trained by our algorithm can
effectively interpolate the missing data in the graph signals.
We note that our training is achieved without exchanging the

6 7 : ;
— Centralized
5 —— 4 Agents (1 Cons.)
4 —— 4 Agents (2 Cons.) -
RIS
= 1T\
2
\ S
1 —_—
0
Q Q Q Q Q Q
,\9 ,1/0 ,,)0 u@ @0
Epochs

Fig. 4: MSE loss versus training iteration. The red curve
includes a single round of consensus aggregation while the
green curve contains two rounds.

local data itself but by sharing only partial model parameters
and local gradients among the agents. Notably, this induces
aggregation error during the consensus step which results in a
slower convergence as demonstrated by Fig 4. Fig. 4 plots
the training loss of our algorithm over training iterations.
We include the loss of centralized training for comparison,
which assumes the existence of a central server responsible
for training the entire GCN model with unrestricted access
to the complete dataset. We see that our distributed training
algorithm attains a comparable convergence rate with that of
the centralized baseline.

IV. CONCLUSION

In this work, we introduced a distributed GCN frame-
work for model training involving graph-structured data. This
framework decomposes the gradient computation of the global
model through local aggregation of intermediate model pa-
rameters and gradients during the forward and backward
propagation processes. We proposed a multi-agent distributed
training algorithm that replaces traditional inter-agent data
sharing by local model aggregation, thereby enhancing data
privacy and security. Through numerical experiments con-
ducted on a missing data recovery task, we demonstrated
that our distributed algorithm achieves comparable training
efficiency to centralized training methods.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2025 at 15:32:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1]1 Y. Shao, H. Li, X. Gu, H. Yin, Y. Li, X. Miao, W. Zhang, B. Cui, and
L. Chen, “Distributed graph neural network training: A survey,” arXiv
preprint arXiv:2211.00216, 2022.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat.,, Apr. 2017, pp. 1273-1282.

[3] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data:
A survey,” Neurocomputing, vol. 465, pp. 371-390, Nov. 2021.

[4] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-iid federated learning,” Proc. Int. Conf.
Learn. Represent. (ICLR), pp. 1-23, 2021.

[5] H. Lin, M. Yan, X. Ye, D. Fan, S. Pan, W. Chen, and Y. Xie, “A
comprehensive survey on distributed training of graph neural networks,”
Proc. IEEE, vol. 111, no. 12, pp. 1572-1606, Dec. 2023.

[6] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel deep neural network computation on large graphs,”
in Proc. USENIX Annu. Tech. Conf., 2019, pp. 443-458.

[7]1 C. He et al., “Fedgraphnn: A federated learning system and benchmark
for graph neural networks,” arXiv preprint arXiv:2104.07145, 2021.

[8] K. Zhang, C. Yang, X. Li, L. Sun, and S. M. Yiu, “Subgraph federated
learning with missing neighbor generation,” Proc. Conf. Neural Inf.
Process. Syst., vol. 34, pp. 6671-6682, 2021.

[9] Y. Yao, W. Jin, S. Ravi, and C. Joe-Wong, “FedGCN: Convergence and
communication tradeoffs in federated training of graph convolutional
networks,” arXiv preprint arXiv:2201.12433, 2022.

[10] M. Mirzaei, H. Atrianfar, N. Mehdipour, and F. Abdollahi, “Asyn-
chronous consensus of continuous-time lagrangian systems with switch-
ing topology and non-uniform time delay,” Robotics and Autonomous
Systems, vol. 83, pp. 106-114, 2016.

[11] W. Zachary, “An information flow model for conflict and fission in small
groups,” J. Anthropol. Res., vol. 33, no. 4, pp. 452-473, 1977.

[12] R. Ramakrishna, H.-T. Wai, and A. Scaglione, “A user guide to low-pass
graph signal processing and its applications: Tools and applications,”
IEEE Signal Process. Mag., vol. 37, no. 6, pp. 74-85, Nov. 2020.

Authorized licensed use limited to: Cornell University Library. Downloaded on July 30,2025 at 15:32:06 UTC from IEEE Xplore. Restrictions apply.

