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Abstract—In this paper we cast the problem of training
a graph neural network based on labeled graph data in a
“federated learning” scenario where different agents have access
to data from a subset of the network nodes. The learning
problem is not decomposable, therefore it does not lend itself
to a straightforward mapping onto a distributed multi-agent
protocol. We propose a multi-agent federated learning scheme
which leverages the local and sparse structure of graph filters to
limit the information sharing while emulating the performance of
centralized training. Even though we preserve data locality and
agent communication is restricted to the neighborhood level, the
proposed method still converges in simulation.

Index Terms—Graph convolutional neural network, multi-
agent federated learning.

I. INTRODUCTION

Graph convolutional networks (GCNs) are powerful ma-

chine learning models when applied to networked data in-

cluding, but not limited to, social networks, bioinformatics,

drug discovery, power and transportation networks data, etc.

By integrating graph information into deep learning models,

GNNs achieve superior results in node classification, link

prediction, and other tasks. A typical GNN model comprises

one or more graph convolutional layers, which are Graph

Filters of a predetermined order, where each layer updates

vertex states before feeding them to the activation functions.

This process iterates across layers, enhancing the model’s

ability to handle complex graph structures.

Given that in many of the applications the graph structures

are extremely large, there has been a flurry of papers proposing

various methods to parallelize the training (see e.g. [1] for a

review). The motivation of this line of work is accelerating

the training when the graphs are extremely large rather than

keeping observations and graph data local. Instead, our work

is motivated by the latter two reasons. This is the motivation

behind the popularity of “federated learning” which offers a

practical approach to training neural networks across multiple

locations, with the key advantage being the preservation of

data locality [2]. This method not only protects privacy but

also reduces the need for sending data over the network [3],

[4]. The scenario we are interested in, however, does not fit the

federated learning model. In our model, agents can only access

a subset of the samples for the labeled data that corresponds to

the nodes in a sub-graph of the network. As a result the graph
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convolution function itself, as well as the “loss functions,” are

not decomposable. Under this regime we require new ways to

handle the evaluation and training.

The realm of distributed GCNs has been extensively ex-

plored, with a comprehensive review presented in [5], cov-

ering both full-batch and mini-batch training methodologies.

Notably, NeuGraph [6], introduced in 2019, stands as the pio-

neering effort in distributed GNN training. Subsequent studies,

such as [7], [8], and [9], have ventured into the federated

training of GCNs. These approaches typically envisage a sce-

nario where each client manages a segment of a larger graph.

Here, clients periodically perform local updates on their subset

using a semi-supervised model, with these updates being

intermittently consolidated at a central server. However, these

models assume a distributed framework of GCN parameters

across nodes, different from our approach which relies on

graph signal processing and assigns unique parameters to a

singular graph rather than to individual nodes. Consequently,

the decomposition techniques employed in these studies fall

short, as the localized datasets do not suffice for updating

parameters that depend on the entirety of the graph.

To address this challenge, our contribution introduces a

novel method that eschews the decomposition of the loss

function in favor of decomposing the gradient of the loss

function. This gradient is derived partially from an agent’s

own dataset, with additional contributions from other agents.

A key discovery is that the communication between agents

involves only the neural network’s parameters—specifically,

individual scalars—which do not reveal sufficient information

to perfectly reconstruct the original datasets. Moreover, our

approach leverages the average consensus method on the

GCNs’ parameters, further ensuring the integrity of the global

results. This additional step fortifies our model’s capability

to handle large-scale, distributed networks efficiently while

maintaining a high degree of privacy and data security.

The paper is structured as follows: Section II discusses

the graph decomposition and distributed training structures

of GCN. Following this, a specific case study is detailed in

Section III. Finally, Section IV summarizes and concludes the

paper.

II. DISTRIBUTED GCN

Consider a graph G = (V, E) whose nodes’ measurement x

and topology information is distributed among R agents, with

each agent sub-graph Gr = (Vr, Er), with x = [x1, . . . ,xR]
⊤.
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Fig. 1: Graph Decomposition of Distributed GCN.

The set of nodes V is the union of all sub-graphs,
⋃R

r=1 Vr,

and the nodes in different sub-graphs are disjoint sets, i.e.,

Vi ∩ Vj = ∅ for all distinct i, j ∈ [R]. In the following, to

help understand the basic algorithm and avoid a cumbersome

notation, we start explaining how a two-agent model R = 2
would work. In this case, the two agents observe two distinct

subsets of graph signal values x1 and x2. Again, for simplicity,

in Section II-A we first show how, with message passing

among the two agents, it is possible to produce the outputs

of a given two-layer Chebyshev GNN, with only the first

layer parametrized as a Graph Filter and the second layer

fully connected. Then, in Sections II-B we show how the loss

function stochastic gradient evaluation can be decomposed and

how updates can be performed with message passing.

A. Framework for Distributed GCN: Evaluation

When we break down the graph into two parts by setting

R = 2, the resulting decomposition of S is as follows:

S =

[
S11 S12

S21 S22

]

,x =

[
x1

x2

]

. (1)

The graph convolutions for the first and second graphs:

S1 =

[
S11

S21

]

,S2 =

[
S12

S22

]

(2)

For simplicity of notation, we denote the second-order graph

convolutions as follows1:

S
2 =

[
S
2
11 S

2
12

S
2
21 S

2
22

]

,S2
1 =

[
S
2
11

S
2
21

]

,S2
2 =

[
S
2
12

S
2
22

]

, (3)

See Fig 1 for a visualization of this partitioning.

1Here we abuse the notation, by denoting the blocks of the square of the
GSO matrix S2 as S2

ij , while the expression of the corresponding blocks is

clearly not the square of the original ones.

Therefore, with K = 2, the graph signals v is:

v =
K=2∑

k=0

hkS
kx = v1 + v2 (4)

= (h0I1 + h1S1 + h2S
2
1)x1 + (h0I2 + h1S2 + h2S

2
2)x2,

where h0, h1, h2 are trainable parameters. Assuming a two-

layer neural network configuration, the second layer is a fully-

connected affine layer:

y = Wσ(v1 + v2),W ∈ R
M×N ,y ∈ R

M×1, (5)

where y denotes the regression labels. From (5) it is clear

that the output of the graph filter (first layer) can be computed

through a network exchange that allows computing the sum v1

and v2, and by only knowing information about the network

2-hop connections. That is, it is sufficient to compute h0I +
h1Sr + h2S

2
r for r = 1, 2. Upon obtaining v1 + v2, one can

apply the activation function and use the same set of weights

W to generate the output of the second layer. Note that for the

sake of evaluation, it is simply necessary to know the Graph

Filter columns corresponding to entries of the graph signal that

are accessed by each agent. However, for the sake of training,

it is clear that both agents will have to learn and agree on the

same set of parameters h0, h1, h2 and W. The extension to

a multi-agent setup comes naturally: it is sufficient to replace

the exact evaluation of the vector v at each agent with a scaled

convex combination of the neighbors’ terms vr:

v̂(0)
r = vr =

2∑

k=0

hkS
k
rxr (6)

v̂(t,i)
r = R

N(r)
∑

r′=1

ar,r′v
(t,i)
r′ , (7)

where N(r) denotes the neighbour set of node r containing

r itself, and the matrix A = [arr′ ] contains the mixing
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coefficients. Here i refers to the consensus round while t

refers to the training iteration. We can consider the simplest

case where the graph is strongly connected and A is a

doubly stochastic matrix; then asymptotically for all nodes

r = 1, . . . , R, v̂
(t,∞)
r =

∑R
r=1 v

(t)
r . It is well known that this

communication model is an instance of the average consensus

algorithm and that the latter allows for many variations, with

asynchronous communications, switching typologies, etc. [10].

To understand how to minimize the loss with a stochastic

gradient descent approach it is useful to first understand how

it is possible to decompose the loss function. We focus on the

Mean Squared Error (MSE) loss function, leaving other cases

as future work.

B. Graph and Gradient Decomposition

Let us consider a regression problem where the label data

are also partitioned y = [y1,y2]
⊤. This is the example that

we are going to consider in our simulations, where each of

the agents is trying to reconstruct some missing samples that

pertain to its own nodal values. Let wr = vec(Wr) contain the

coefficients of the vectorized sub-matrix Wr. The equations

above imply that the loss function can be written as follows:

ℓ = ∥W1σ(v1 + v2)− y1∥
2
2 + ∥W2σ(v1 + v2)− y2∥

2
2

= ℓ1 + ℓ2

⇒
∂ℓ

∂hk

=
R∑

r=1

∂ℓr

∂hk

,
∂ℓ

∂wk

=
∂ℓr

∂wr

. (8)

The gradient of ∂ℓr
∂hk

is:

∂ℓr

∂hk

=
∥W1σ(v)− y1∥

2
2

∂hk

=

[
∂σ(v)

∂hk

]T

[2

R
N×1

︷ ︸︸ ︷

W
T
1 (W1σ(v)− y1)],

(9)

where:

∂σ(v)

∂hk

=
∂σ(v)

∂v
⊙

∂v

∂hk

=

R∑

r=1

∂σ(v)

∂v
⊙

∂vr

∂hk

. (10)

The gradient of the ReLU activation function σ′(w), is:

σ′(v) :=
∂σ(v)

∂v
=

{

0 if vi < 0

1 if vi > 0
(11)

which depends on the sum of all the vr with

∂vr

∂hk

= S
k
rxr (12)

Let us define:

urk := [σ′(v)⊙ S
k
rxr]

T 2WT
r (Wrσ(v)− yr), (13)

the gradient of the total loss with respect to hk can be

expressed as:

∂ℓ

∂hk

=
R∑

r=1

urk. (14)

Agent 1

Agent 2

Agent 3

Agent 4

Fig. 2: Illustration of Zachary’s Karate Club network, where

nodes are grouped by color to indicate their respective agents

and black lines denote edges between the nodes. Double-

headed arrows between pairs of agents represent communi-

cation links that enable the information exchange across the

agents.

The terms in (14) can also be evaluated through consensus

averaging, which is preferable to exchange the full information

about Sk
rxr, for scalability and privacy reasons. Similar to (6),

the consensus aggregation at agent r in the t-th training round

is given by

û
(t,i)
rk = R

N(r)
∑

r′=1

ar,r′u
(t,i)
r′k , ∀k. (15)

In addition, the updates on the parameters wr can be calcu-

lated locally using the values of σ(v) that can be computed

by the consensus algorithm operating on vr.

C. Multi-Agent Federated Learning Algorithm

The proposed multi-agent training algorithm first initial-

izes the local model w
(0)
r , [h

(0)
0 , . . . , h

(0)
K ] for every agent r.

Throughout the training iterations, labeled as t = 1, 2, · · · , our

algorithm consists of the following steps for each agent r:

1) Local forward computation: Compute v
(t)
r =

∑K
k=0 h

(t)
k S

k
rxr;

2) Local model aggregation: Communicate v
(t)
r with the

neighbors in N(r) and collect v
(t)
r′ from all the neighbors

∀r′ ∈ N(r) to compute v̂
(t)
r in (6);

3) Local backward computation: Compute σ(v̂
(r)
r ), fol-

lowed by calculating the gradients u
(t)
rk and ∂ℓr

∂wr

;

4) Local gradient aggregation: Communicate u
(t)
rk to the

neighbors and average u
(t)
r′k received from ∀r′ ∈ N(r)

to compute ∂ℓ
∂hk

in (15);

5) Model update: Perform a gradient descent step to

update w
(t+1)
r and [h

(t+1)
0 , . . . , h

(t+1)
K ].

III. NUMERICAL RESULTS

In this section, we evaluate the performance of our algo-

rithm on a missing data recovery task. We simulate graph-
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Fig. 3: Heat map on the normalized values of graph signals within the range of [0, 1]. Left: the ground-truth data. Middle: the

model input with 30% of the data missing. Right: the interpolation result achieved by our algorithm.

structure data generated over Zachary’s Karate Club network

[11]. The network comprises 34 nodes, each generating 1000
independent and identically distributed (i.i.d.) filtered graph

signals {g[t]}1000t=1 through a diffusion-dynamic graph filter

given by [12]

g[t] = (I+ 0.1S)−1x[t] + n[t], ∀t, (16)

where S is the graph Laplacian matrix, x[t] is the excitation

signal with i.i.d. entries uniformly distributed over [−1, 1], and

n[t] representing the Gaussian measurement noise with entries

drawn from N (0, 0.01). These filtered graph signals {g[t]}1000t=1

serve as the training outputs in our missing data recovery

model. Neither the graph filter nor the excitation is known to

the agents, but the graph filter introduces correlation among the

graph signal observations that enables the interpolation of the

missing values. The training inputs, denoted by {m[t]}1000t=1 ,

are generated by randomly removing a single entry of {g[t]}.

As shown in Fig. 2, we partition the network into four

agents by the K-Means clustering algorithm on the Fiedler

vector of the graph Laplacian matrix. We assume that each

agent gets full access to the portion of graph signals within

their respective sub-graph. However, communication between

agents is contingent upon the existence of connecting edges

among nodes across these sub-graphs. The agents aim to

develop a two-layer GCN presented in Section II-A with

K = 2 for interpolating the missing data in {m[t]}1000t=1 . To this

end, the agents train the GCN model by using the algorithm

proposed in Section II-C with the goal of minimizing the

MSE loss. In each training iteration, we calculate the gradient

with respect to one training input-output pair (m[t], g[t]) and

perform single-round model and gradient aggregation for each

agent by (6) and (15) with the following mixing matrix

A =







0.75 0.25 0 0
0.25 0.25 0.25 0.25
0 0.25 0.5 0.25
0 0.25 0.25 0.5






.

In Fig. 3, we present the interpolation performance of our al-

gorithm on a training sample with 30% of its data missing. The

results demonstrate that the model trained by our algorithm can

effectively interpolate the missing data in the graph signals.

We note that our training is achieved without exchanging the

0
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Fig. 4: MSE loss versus training iteration. The red curve

includes a single round of consensus aggregation while the

green curve contains two rounds.

local data itself but by sharing only partial model parameters

and local gradients among the agents. Notably, this induces

aggregation error during the consensus step which results in a

slower convergence as demonstrated by Fig 4. Fig. 4 plots

the training loss of our algorithm over training iterations.

We include the loss of centralized training for comparison,

which assumes the existence of a central server responsible

for training the entire GCN model with unrestricted access

to the complete dataset. We see that our distributed training

algorithm attains a comparable convergence rate with that of

the centralized baseline.

IV. CONCLUSION

In this work, we introduced a distributed GCN frame-

work for model training involving graph-structured data. This

framework decomposes the gradient computation of the global

model through local aggregation of intermediate model pa-

rameters and gradients during the forward and backward

propagation processes. We proposed a multi-agent distributed

training algorithm that replaces traditional inter-agent data

sharing by local model aggregation, thereby enhancing data

privacy and security. Through numerical experiments con-

ducted on a missing data recovery task, we demonstrated

that our distributed algorithm achieves comparable training

efficiency to centralized training methods.
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