

1 **FRONT MATTER**

2 **Title**

3

4 • **An alternate route for cellulose microfibril biosynthesis in plants.**

5 • **Alternate route for cellulose microfibril biosynthesis.**

6

7 **Authors**

8 Eric M. Roberts¹, Kai Yuan^{2†}, Arielle M. Chaves², Ethan T. Pierce³, Rosalie Cresswell⁴,
9 Ray Dupree⁴, Xiaolan Yu⁵, Richard L. Blanton⁶, Shu-Zon Wu⁷, Magdalena Bezanilla⁷,
10 Paul Dupree⁵, Candace H. Haigler^{3,6}, Alison W. Roberts^{2*}

11 **Affiliations**

12 ¹Department of Biology, Rhode Island College; Providence, Rhode Island 02908, U.S.A.

13 ²Department of Biological Sciences, University of Rhode Island; Kingston, Rhode Island
14 02881, U.S.A.

15 ³Department of Crop and Soil Sciences, North Carolina State University; Raleigh, North
16 Carolina 27695, U.S.A.

17 ⁴Department of Physics, University of Warwick; Coventry, CV4 7AL, U.K.

18 ⁵Department of Biochemistry, University of Cambridge; Cambridge, CB2 1QW, U.K.

19 ⁶Department of Plant and Microbial Biology, North Carolina State University; Raleigh,
20 North Carolina 27695, U.S.A.

21 ⁷Department of Biological Sciences, Dartmouth College; Hanover, New Hampshire
22 03755, U.S.A.

23 *Corresponding author. Email: a roberts@uri.edu

24
25 †Present address: Department of Biological Sciences, Dartmouth College; Hanover, New
26 Hampshire 03755, U.S.A.

27 **Abstract**

28 Like cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β -1,4
29 glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown
30 whether they form membrane complexes *in vivo* or produce microfibrillar cellulose. We produced
31 viable CESAs-deficient mutants of the moss *Physcomitrium patens* to investigate CSLD function
32 without interfering CESAs activity. Microscopy and spectroscopy showed that CESAs-deficient
33 mutants synthesize cellulose microfibrils that are indistinguishable from those in vascular plants.
34 Correspondingly, freeze-fracture electron microscopy revealed rosette-shaped particle assemblies
35 in the plasma membrane that are indistinguishable from CESAs-containing rosette cellulose
36 synthesis complexes (CSCs). Our data show that proteins other than CESAs, most likely CSLDs,
37 produce cellulose microfibrils in *P. patens* protonemal filaments. The data suggest that the
38 specialized roles of CSLDs in cytokinesis and tip growth are based on differential expression and
39 different interactions with microtubules and possibly Ca^{2+} , rather than structural differences in the
40 microfibrils they produce.
41
42
43
44
45

46 **Teaser**

47 Moss mutants lacking CESAs make cellulose microfibrils and have rosette plasma membrane
48 complexes presumed to contain CSLDs.

49 **MAIN TEXT**

50 **Introduction**

51 The structural integrity of plant cells depends on cellulose, a fibrillar β -1,4-glucan synthesized by
52 mobile integral plasma membrane complexes. In land plants, these cellulose synthesis complexes
53 (CSCs) have a distinctive rosette shape. Available evidence indicates that these CSCs are
54 composed of 18 cellulose synthase (CESA) enzymes and produce a fundamental cellulose
55 microfibril containing 18 glucan chains, although some uncertainty regarding this stoichiometry
56 remains (1-6). CESAs are required for vascular plant development based on the lethality of *CESA*
57 null mutations (7).

58 Cellulose Synthase-like D proteins (CSLDs) also synthesize β -1,4-glucan, raising the possibility
59 of a separate pathway for cellulose microfibril synthesis (8). CSLD activity is required to
60 maintain the structural integrity of pollen tubes and root hairs, whose polarized tip-growth
61 distinguishes them from other plant cell types. The tips of these cells undergo extensive
62 remodeling of the plasma membrane and deposition of extensible cell wall materials, which must
63 be precisely controlled to enable growth while preventing rupture (9). CSLDs also help maintain
64 the integrity of the cell plate, a progenitor structure of the new cell wall that forms during plant
65 cytokinesis (8, 10).

66 CSCs containing CESAs move in the plasma membrane (11), driven by the energy released as
67 glucan chains coalesce to form microfibrils (12). In cells that expand by diffuse growth, cortical
68 microtubules guide this movement (11) to control microfibril orientation and cell growth polarity
69 (13). Catalytically active CSLDs also move in the plasma membrane, but their movements are
70 faster, less linear, shorter in duration, and independent of microtubules (10). *In vitro*, CSLDs
71 formed particles similar in size to CESA trimers. However, no microfibrils were detected in these
72 assays and it remained unknown whether they form CSC-like complexes or synthesize
73 microfibrillar cellulose *in vivo* (8). Given their roles in polarized tip growth and cytokinesis and
74 their distinct patterns of movement, CSLDs could synthesize microfibrils with distinct properties
75 that facilitate tip growth and cell plate development. However, this has been difficult to
76 investigate experimentally because the products of CESA activity confound *in vivo* studies of
77 CSLD activity, and CESA and CSLD complexes are unstable *in vitro* (1, 8).

78 Unlike vascular plants, mosses have an initial haploid growth phase consisting entirely of tip-
79 growing protonemal filaments that can be propagated indefinitely. The model moss species
80 *Physcomitrium* (formerly *Physcomitrella*) *patens* has CESAs and CSLDs (14), and we have
81 shown that CESA activity is required for the transition from tip growth to three-dimensional
82 diffuse growth required for gametophore formation (15, 16). However, it was unknown whether
83 CESAs are required for protonemal tip growth.

84 Here we report that *P. patens* mutants that lack CESAs produce normal protonemal filaments. We
85 also show that CESA-deficient moss lines: (a) have plasma membrane rosette structures that are
86 morphologically indistinguishable from CESA-containing CSCs and (b) synthesize cellulose
87 microfibrils that are structurally indistinguishable from the microfibrils in the primary cell walls
88 of angiosperms.

95
96 **Results**

97 **Moss plants lacking CESAs are viable**

98 Previously we showed that just one of the eight *P. patens* CESAs, PpCESA5, is sufficient for
99 normal development of both protonemal filaments, which extend by tip growth, and leafy
100 gametophores, which enlarge by diffuse growth (15). When we also disabled *PpCESA5*
101 (Pp3c2_13330V3.1; Figs. S1-S5), leafy gametophore development was abolished (Fig. 1A-D).
102 The CESA-deficient lines produced gametophore buds, but the buds turned brown and stopped
103 growing when they reached about 100 μ m in diameter (Fig. 1E-H). When we investigated the
104 progression of gametophore bud development by time-lapse imaging, we found that the first few
105 divisions followed the documented pattern (17) including a transition to 3D growth and rhizoid
106 formation (Movies S1 and S2). However, prior to leaf emergence, interior cells expanded and
107 ruptured as shown in Movies S1 and S2 and Figs. 1E-G, where red and yellow outlines indicate
108 the boundaries of enlarged cells and arrows indicate the same cells after rupture in later frames.
109 After the second cell rupture, the bud stopped enlarging and accumulated brown pigment (Fig.
110 1H). The rupturing indicates that CESA activity is required to maintain cell integrity in the early
111 stages of gametophore development. In contrast to gametophore buds, the protonemal filaments
112 of CESA-deficient lines grew vigorously (Fig. 1C) and could be repeatedly subcultured.
113

114 To ensure that we had disabled all *P. patens* CESA genes, we verified large deletions in all eight
115 CESAs by PCR in the CESA-deficient lines (Fig. S3). We also confirmed the deletions reported
116 previously for *CESA3*, *CESA4*, *CESA8*, and *CESA10* (15) and *CESA6* and *CESA7* (18) by
117 sequencing (Figs. S4, S5). In addition to the chromosome-scale *P. patens* genome assembly (19),
118 a near telomere-to-telomere genome sequence is now available (20). A similarity search of this
119 sequence revealed no additional CESA sequences (see supplementary materials).
120

121 **Moss plants lacking CESAs produce microfibrillar cellulose**

122 In addition to demonstrating that cellulose synthesized by CESAs is not required for protonemal
123 tip growth, CESA-deficient *P. patens* lines provide a unique biological tool for investigating the
124 structure of the β -1,4-glucan presumably synthesized by CSLDs. To examine how loss of CESAs
125 affects the fibrillar structure of the cell walls, we extracted protonemal filaments of wild type and
126 CESA-deficient *P. patens* with 1 N NaOH, followed by acetic nitric reagent to remove matrix
127 polysaccharides and proteins, and shadowed the residue with platinum-carbon. The extracted cell
128 walls were fibrillar (Fig. 2) with no visible differences between wild type and CESA-deficient
129 genotypes. X-ray diffraction patterns of extracted cell walls from wild type and CESA-deficient
130 protonemal filaments contained the 110 (15.7°), 200 (22.6°), and 004 (35.19°) peaks
131 characteristic of cellulose (Fig. S6A, B). Similarly, the fluorescent cellulose-binding dye
132 Pontamine Fast Scarlet 4B (S4B) (21) stained the extracted cell walls of both wild type and
133 CESA-deficient protonemal filaments. Staining intensity was similar in both genotypes and
134 highest in cross walls (Fig. S6C).
135

136 We used 1D ^{13}C cross-polarization magic-angle-spinning nuclear magnetic resonance
137 spectroscopy (CP MAS NMR) for structural analysis of untreated cells from CESA-deficient and
138 wild-type *P. patens*. Cellulose and starch dominate the CP MAS NMR spectra (Fig. 2C). Peaks
139 labeled C4¹ and C4² are indicative of cellulose fibrils (22). The C4¹ signals arise from glucosyl
140 residues mostly in crystalline cellulose internal to fibrils and have the C6 hydroxymethyl in the *tg*
141 configuration. The C4² signals arise mostly from glucosyl residues on the surface of cellulose
142 fibrils and have the C6 hydroxymethyl in the *gt/tt* configurations (22). The similar strength of
143 both signals suggests the fibrils have similar dimensions to fibrils found in vascular plant primary
144 and secondary cell walls (23, 24).

145
146 **Moss plants lacking CESAs have plasma membrane rosettes**

147 The transmembrane (TM) regions of CESA-containing CSCs have been visualized by freeze-
148 fracture transmission electron microscopy (FFTEM) (25-29). In this technique, cells are frozen
149 rapidly and fractured under vacuum to expose integral membrane proteins, which are typically
150 revealed on the interior surface of the membrane leaflet adjacent to the cytoplasm after the outer
151 leaflet is removed during cell fracture. The fractured specimens are shadowed with
152 platinum/carbon to produce replicas so that the original cell structure becomes interpretable in
153 TEM (30). FFTEM has previously shown that the plasma membranes of *P. patens* protonemal
154 filaments contain rosette structures with six particles that often appear triangular (2, 31), similar
155 to the CESA-containing CSCs of vascular plants (28).

156
157 Here we show that rosettes are present in CESA-deficient *P. patens* protonemal filaments (Fig.
158 3A). Because the plane of fracture cannot be readily controlled, we inferred the cellular context of
159 the fractured membranes from cellular landmarks to identify regions with high densities of
160 rosettes. We observed elongated membrane patches representing longitudinal fractures of
161 protonemal plasma membranes including some with rounded ends (Fig. 3A), consistent with
162 fracturing at or near the apex of protonemal tip cells. We also observed circular and oval
163 membrane patches consistent with fractures through the apical plasma membrane of protonemal
164 tip cells oriented perpendicular to the plane of fracture (Fig. 3B). Figure 3C shows a rare fracture
165 that captures the fusion of a cell plate with the parental cell wall. The rosettes observed in our
166 samples were concentrated at the cell tips (Fig. 3B) and adjacent to fusing cell plates (Fig. 3C).
167 These are the same regions where CSLDs have been localized by live-cell imaging in *P. patens*
168 (10). Higher magnification views of rosettes in Figs. 3B and 3C are shown in Fig. S7.

169
170 **Rosettes from CESA-deficient *P. patens* are morphologically indistinguishable from CESA**
171 **rosettes**

172 To test for structural difference between the rosettes from CESA-deficient *P. patens* and CESA-
173 containing CSCs (Fig. 4), we compared *P. patens* mutants with differentiating tracheary elements
174 from *Zinnia elegans* suspension cultures, which synthesize banded secondary cell walls via the
175 activity of abundant CESA-containing rosette CSCs (32-34). We chose *Z. elegans* suspension
176 cultures for this comparison because the role of CESAs in secondary cell wall deposition in these
177 cultures is well documented (32) and freeze-fracture is feasible (33, 35). Although the role of
178 CESAs in *P. patens* leafy gametophore development is also well documented (15, 16), we were
179 unable to produce freeze-fracture replicas of plasma membranes from *P. patens* gametophores
180 because fracture invariably occurred within the cuticle.

181
182 We analyzed rosettes in replicas of *Z. elegans* cells that were frozen in the earliest stage of banded
183 secondary cell wall synthesis, when the plasma membrane was still relatively flat, to reduce
184 measurement errors resulting from varied de facto shadowing angles arising from changing
185 topography of the plasma membrane. We measured the external diameters of rosettes in these two
186 cell types manually and used EMAN2 (36) to generate 42 reference-free class averages (six class
187 averages within each of seven refinements) in each case. The appearance, mean diameter, and the
188 ranges of diameters of rosettes were similar for CESA-deficient *P. patens* protonemal filaments
189 and cultured *Z. elegans* cells synthesizing secondary walls via CESAs (Fig. 4). Differences in
190 means between cell types were less than the minimum 1.25 nm grain size of FFTEM replicas
191 prepared by these methods (2). Image averaging consistently reduced the range and increased the
192 mean diameter by 0.5 nm, probably due to 1) combining smaller rosettes with ones that were
193 slightly larger in class averages and 2) diminishing the contribution of fewer large rosettes to class
194 averages.

195

196 **Discussion**

197 In biology, form follows function. The uniform structure of cellulose microfibrils in land plant
 198 cell walls was previously attributed to their synthesis by CESA enzymes arranged in distinctive
 199 rosette CSCs. Our results show that non-CESA proteins, most likely CSLDs, also form rosettes
 200 and produce microfibrils indistinguishable from those made by CESAs. This discovery was
 201 possible because, in contrast to *Arabidopsis* (7), *P. patens* does not require CESA activity for
 202 viability, so mutants expressing CSLDs in the complete absence of CESAs could be obtained.
 203 Although CESAs are required to maintain cell integrity in diffuse-growing *P. patens* gametophore
 204 buds (Fig. 1), mutant lines in which all eight *CESA* genes are disabled can be propagated as tip-
 205 growing protonemal filaments (Figs. 1, S1-S4). In contrast, vascular plants like *Arabidopsis*
 206 propagate through diffuse-growing embryos that require CESA activity (37, 38), whereas their
 207 tip-growing root hairs and pollen tubes are determinant.

208

209 Several lines of evidence support our hypothesis that the rosettes observed in CESA-deficient *P.*
 210 *patens* are formed by CSLDs. Like CESAs, CSLDs synthesize β -1,4-glucan (8), move in the
 211 plasma membrane (10), and assemble into particles *in vitro* that resemble CESA trimers (8). In
 212 CESA-deficient *P. patens*, rosettes are concentrated at cell tips and adjacent to fusing cell plates
 213 (Fig. 3), which is consistent with the distribution of CSLDs previously observed in wild-type *P.*
 214 *patens* using confocal fluorescence microscopy (10). Tip-growing protonemal filaments also
 215 depend on CSLDs to maintain cell integrity (10), as do tip-growing root hairs and pollen tubes of
 216 *Arabidopsis* (39, 40). Finally, the *P. patens* CESA superfamily includes only two other families
 217 (14), neither of which is likely to participate in cellulose microfibril formation. These include
 218 CSLAs, which synthesize mannan in *P. patens* and vascular plants (41), and CSLCs, which, along
 219 with CSLAs, function in the Golgi in *Arabidopsis* (42). *P. patens* has eight *CSLD* genes that
 220 diversified independently from the vascular plant *CSLD* family (14). *CSLD2* and *CSLD6* are
 221 preferentially expressed in gametophores and are redundantly required for normal cytokinesis.
 222 However, all eight CSLD proteins localize to protonemal cell plates and cell tips. It is unknown
 223 whether the *P. patens* CSLDs form homo-oligomeric or hetero-oligomeric complexes.

224

225 Our results indicate that the structure of cellulose microfibrils and rosette CSCs have been
 226 conserved in parallel throughout the divergence of CESAs and CSLDs, the radiation of land
 227 plants and the specialization of primary and secondary cell walls. Based on analysis by TEM, X-
 228 ray diffraction, and solid-state NMR, the cellulose microfibrils in CESA-deficient *P. patens*
 229 protonemal filaments are structurally indistinguishable from vascular plant microfibrils
 230 synthesized by CESAs (Figs. 2, S4). Similarly, rosettes in CESA-deficient *P. patens* and CESA-
 231 containing CSCs in differentiating *Z. elegans* tracheary elements are morphologically
 232 indistinguishable based on original FFTEM images and image averages (Fig. 4). Measurements of
 233 both conform to rosettes analyzed previously in wild-type *P. patens* protonemal filaments.
 234 Original images of 324 wild-type protonemal rosettes had a mean diameter of 21.4 ± 1.3 nm with
 235 a range of 17.6-25.6 nm and six EMAN2 image averages had a mean diameter 22.7 ± 0.5 nm (2).
 236 In retrospect, we believe these included both CESA- and CSLD-containing rosettes based on live-
 237 cell imaging data for independently tagged CESA and CSLD proteins (10).

238

239 FFTEM images reveal the TM region of membrane-associated protein complexes (30). The TM
 240 regions of CESAs and CSLDs are highly conserved (Figs. 5A, S8), consistent with both enzymes
 241 having a glucan translocation channel surrounded by seven TM helices (1). Although the TM
 242 regions are highly conserved, CESA and CSLD sequences diverge in their cytosolic regions,
 243 including the length of the N-terminus, the cysteine spacing in the RING- domain, and the
 244 presence of several insertions in the plant-conserved region (Figs. 5A, S8). The plant-conserved

245 region is a CESA trimerization domain (1) and the N-terminus, specifically the RING-domain,
246 has also been implicated in CESA-CESA interaction (43). However, these differences evidently
247 do not impact the ability of CESAs and CSLDs to assemble as rosettes or the particle spacing in
248 the transmembrane domain visualized by FFTEM. The similar spacing of CESA- and presumed
249 CSLD-containing rosette particles (Fig. 4) and their included translocation channels, combined
250 with the structural similarity of the microfibrils they produce (Fig. 2), is consistent with the well-
251 established correlation between CSC organization and cellulose microfibril structure (27). We can
252 only speculate whether this apparent uniformity in rosette CSC morphology, despite originating
253 from different gene families, has resulted from purifying selection for microfibril properties that
254 conferred fitness or from genetic constraints that prevented the emergence of new microfibril
255 traits.

256 Based on phylogenetic analysis of angiosperm sequences, CESAs and CSLDs were originally
257 assigned to different families within the CESA superfamily (44). Recent analyses incorporating
258 representatives of the major green algal lineages (45-47) show that CESAs and CSLDs diverged
259 as independently evolving families at least 500 mya (Fig. 5). Along with CESA/CSLD-like
260 sequences from charophyte green algae (45-49), these are the only CESA superfamily members
261 that have the RING-domain, plant-conserved region, and class-specific region (Figs. 5A, S8) that
262 form the interfaces between CESAs within rosette CSCs (1, 43, 50, 51). Notably, the
263 CESA/CSLD-like sequences have a CESA-like plant conserved region and a CSLD-like N-
264 terminus (Figs. 5A, S8). This, along with phylogenetic occurrence (Fig. 5B), indicates that the
265 CESAs and CSLDs evolved independently from a common ancestral CESA/CSLD-like protein,
266 with CESAs undergoing a reduction of the N-terminus and CSLDs acquiring inserts within the
267 plant-conserved region. The gene family trees are discordant with the species tree, with CSLDs
268 absent from Zygnematophyceae, but present in the LCA shared with Coleochaetophyceae.
269 Similarly, Coleochaetophyceae appears to have lost its *CESAs* after it diverged from the
270 Charophyceae, and the wall-less *Mesostigma viride* appears to have lost its *CESA/CSLD-like* gene
271 after it diverged from its LCA with *Chlorokybus atmophyticus*. This is consistent with the
272 observation that gene family loss was common throughout plant evolution (52). Given their
273 similarities to CESAs and CSLDs, it is possible that the CESA/CSLD-like proteins form rosettes.
274 This would place the evolution of the rosette CSC early in the streptophyte lineage (i.e. the clade
275 that includes charophyte green algae and land plants; Fig. 5B).

276 As discussed recently by Yang et al. (8), the maintenance of separate CESA and CSLD families
277 in all land plant lineages suggests that each family serves some special function. In *P. patens* and
278 seed plants, CSLDs deposit cellulose in growing cell tips and cell plates (8, 10, 53), in both cases
279 contributing to synthesis of a wall where none existed (54). It was suggested that CSLDs may
280 produce structurally distinct cellulose microfibrils that interact with callose or other cell wall
281 polymers to support tip growth and cell plate development (8, 10, 54). This now seems less likely
282 given the similarity between CESA- and presumed CSLD-containing rosettes and the cellulose
283 microfibrils they produce. However, CESAs and CSLDs do differ in their plasma membrane
284 movements, interactions with microtubules (10), and sensitivity to cellulose biosynthesis
285 inhibitors (8, 10), and they may differ in their tolerance of high Ca^{2+} concentrations (54). Tip
286 growth and cytokinesis are both associated with Ca^{2+} gradients (55), and CSLDs might be needed
287 for these processes if CESA activity is inhibited by high Ca^{2+} (54). In contrast to CESAs (11),
288 CSLD movements in the plasma membrane do not track along microtubules and they are faster
289 and less linear than CESA movements (10). This may help maintain cell integrity during rapid
290 isodiametric apical expansion in root hairs, pollen tubes, and protonemal filaments, and for cell
291 plate development, all cases where microfibril deposition need not be oriented. CESAs interact
292 with microtubules through Cellulose Synthase Interacting protein 1 (CSI1) (56). Although the
293

295 CESA-CSI1 interface has not been identified, evidence suggests that it may reside within the
296 catalytic domain (56) and/or the N-terminus (1). This coincides with sequence divergence
297 between CESAs and CSLDs in the plant conserved region of the catalytic domain and most of the
298 N-terminus (Fig. S8). Finally, it is noteworthy that the cellulose biosynthesis inhibitor isoxaben
299 inhibits the activity of CESAs, but not CSLDs (8, 10). CSLDs share nearly all of the amino acids
300 for which point mutations confer isoxaben resistance in CESAs (10), adding to the questions that
301 have been raised about cellulose biosynthesis inhibitor mechanism of action (57). Future
302 examination of CESA and CSLD interaction with microtubules and sensitivity to Ca^{2+} and
303 isoxaben promises to shed light on the evolution of regulatory differences and their consequences
304 for cellulose microfibril biosynthesis by distinct protein families at different stages of plant cell
305 development.

306 Materials and Methods

307 Culture of *P. patens*

308 For routine subculturing and to generate tissue for transformation, rapid freezing, and cell wall
309 isolation, we incubated cultures at 24°C with constant illumination at 50–80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in a
310 plant tissue culture incubator (Model CU36L5, Percival Scientific Chambers, Perry IA USA). We
311 sub-cultured filaments weekly on basal medium supplemented with ammonium tartrate (BCDAT: 1
312 1.0 mM MgSO_4 , 1.9 mM KH_2PO_4 , 10 mM KNO_3 , 45 $\mu\text{M FeSO}_4$, 5.0 mM diammonium tartrate, 1
313 mM CaCl_2 , 220 nM CuSO_4 , 190 nM ZnSO_4 , 10 $\mu\text{M H}_3\text{BO}_3$, 2.0 $\mu\text{M MnCl}_2$, 230 nM CoCl_2 , 170
314 nM KI, and 100 nM Na_2MO_4 solidified with 0.7% (w/v) agar) and overlaid with cellophane (58).
315 For solid-state NMR, we cultured filaments on solid BCDAT medium at 21°C under 16/8 h
316 day/night cycle and subcultured them on BCDAT medium supplemented with 1% ^{13}C glucose to
317 obtain the ^{13}C labeled tissues.

318 Zinnia elegans seedling growth

319 We stored seeds of *Zinnia elegans* L. var. Envy (A5896 N; Grimes Seeds, Concord OH) in the
320 refrigerator under desiccation until planting. We planted seeds by dispersing them (3.5 g)
321 uniformly on a tray of moist potting mix (Sunshine Mix #8 / Fafard-2 with RESiLIENCE, Sun
322 Gro Horticulture, Agawam MA USA) and covering them lightly and germinated them in a growth
323 chamber (Model AR36L, Percival Scientific Chambers) with a 16/8 h, 28/24°C day/night cycle
324 and 50% relative humidity. Light intensity was 170 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at tray height generated by
325 fluorescent and incandescent lamps. We placed seedling trays with drainage holes inside trays
326 without holes and watered them three days a week by flooding the outer tray for about 30 min,
327 then pouring out excess water.

328 Generation and verification of CESA-deficient *P. patens* lines

329 We constructed the CRISPR-Cas9 CESA5 knockout (KO) vector as described previously (15,
330 59). We designed protospacers (Table S1) targeting two sites within *CESA5* (Pp3c2_13330V3.1)
331 using CRISPOR at <http://crispor.tefor.net/> (60). and cloned the protospacers into entry vectors
332 pENTR-Ppu6p-sgRNA-L1R5 and pENTR-Ppu6p-sgRNA-L5L2 (Addgene,
333 <https://www.addgene.org/>) for tandem insertion into the destination vector. After annealing
334 protospacers as described previously (59), we ligated them into pENTR-Ppu6p-sgRNA entry
335 vectors using Golden Gate assembly (New England Biolabs, Ipswich, MA) in 10 μl reactions
336 containing 19 fmol of entry vector and 35 fmol of annealed protospacer incubated at 37°C for 1 h
337 and 60°C for 5 min (10). We recombined the resulting entry vectors with destination vector pZeo-
338 Cas9-gate (Addgene), which confers zeocin resistance, using Invitrogen LR Clonase II Plus
339 according to the manufacturer's instructions (ThermoFisher Scientific, Waltham MA USA). We
340 sequence-verified all plasmids. Construction of the CESA1KO vector was described previously
341 (15).

345
346 We edited a previously described *cesa6/7/3/8/10/4* KO-41 line (15) with CRISPR-Cas9 to disable
347 *CESA5* and *CESA1*. As described previously (58), we transformed protoplasts generated from
348 filaments cultured on solid BCDAT medium with CRISPR-Cas9 knock-out vectors and selected
349 colonies for genotyping after one round of selection on 50 μ g ml⁻¹ Zeocin or 15 μ g ml⁻¹
350 hygromycin (59). We isolated genomic DNA as described previously (58) and amplified it with
351 primers (Table S1) flanking the target sites and potential off-target sites predicted by CRISPOR
352 (60). We analyzed the PCR products by gel electrophoresis to identify large deletions and
353 sequenced them to confirm editing at target sites and the absence of editing at off-target sites.
354

355 For additional verification of the knockout genotype, we used primers designed to amplify
356 deletions in *CESA1*, *CESA3*, *CESA4*, *CESA5*, *CESA8*, and *CESA10* (Table S1) to amplify
357 genomic DNA extracted from wild type and final CESA deficient lines. The background line used
358 for the first round of CRISPR mutagenesis (15) was *cesa6/7KO-1* produced by homologous
359 recombination (18), and we verified the deletion of these two genes by PCR in the final CESA
360 deficient line (Fig. S3). We also sequenced fragments amplified with primers flanking the
361 deletions in *CESA3*, *CESA4*, *CESA8*, and *CESA10* (Table S1, Fig. S4) and the entire
362 *CESA6/CESA7* tandem pair (Fig. S5) to confirm that the final CESA deficient lines retained the
363 deletions described previously for the *cesa6/7/3/8/10/4* KO-41 line (15).
364

365 Finally, we downloaded gene models from the near telomere-to-telomere sequence of *P. patens*
366 (20) and searched them by blastp in Geneious Prime v. 2019.2.3, using PpCESA5 (Phytozome
367 gene ID: Pp3c2_13330V3.1) as a query and the BLOSUM62 matrix with a max E-value=10. All
368 hits were matched with their corresponding Phytozome gene model by blastp search.
369

370 Time-lapse imaging of developing gametophore buds

371 To image developing gametophores of CESA-deficient mutants, we pipetted ground protonemal
372 tissue into the central part of microfluidic imaging chambers (61) and submerged them in half-
373 strength Hoagland's medium (2 mM KNO₃, 1.0 mM KH₂PO₄, 0.50 mM Ca(NO₃)₂, 45 μ M Fe
374 citrate, 150 μ M MgSO₄, 5.0 μ M H₃BO₃, 110 nM CuSO₄, 1.0 μ M MnCl₂, 115 nM CoCl₂, 95 nM
375 ZnSO₄, 85 nM KI, 51 nM Na₂MoO₄). We incubated the chambers under constant illumination at
376 85 μ mol m⁻² s⁻¹ for two weeks before imaging. We acquired time-lapse images on a Nikon TIE
377 body equipped with a Plan Apo λ 20X objective and a Nikon DS-Fi2-L3 camera (Nikon
378 Instruments, Melville NY USA).
379

380 Extraction of cellulose microfibrils

381 For extraction of cellulose microfibrils, we harvested 7-d-old filaments from solid medium,
382 ground them in a mortar under liquid nitrogen, extracted them with 1 N NaOH at 100°C for 1 h,
383 and washed them with filtered water to neutrality. We extracted the NaOH-insoluble fraction with
384 acetic-nitric reagent (62) at 100°C for 1 h and then collected insoluble material by centrifugation.
385 We re-extracted the pellet in fresh acetic-nitric reagent for 30 min at 100°C, washed with filtered
386 water to neutrality, and then stored the material frozen or air-dried for X-ray analysis.
387

388 Transmission electron microscope imaging of metal-shadowed cell walls

389 For metal shadowing, we suspended the 1N NaOH and acetic-nitric reagent-extracted material in
390 distilled water and pipetted it onto freshly cleaved mica and allowed it to air-dry in a dust-free
391 environment. We clamped these samples onto a single-replica freeze fracture sled and inserted
392 them into a Cressington model 308 R freeze-fracture apparatus (Cressington Scientific
393 Instruments, Watford UK) at room temperature. After high-vacuum conditions were established,
394 we shadowed the sample with platinum/carbon in the same manner as freeze-fractured samples

395 (see below). After removing the samples from the freeze-fracture machine, we scored the mica
396 with a pin and immersed the samples in chromic-sulfuric acid. While some replicated regions
397 detached quickly, most did not. After several hours we were able to detach replica fragments
398 using an acid stream expelled from a drawn-out glass Pasteur pipet. We transferred the replicas
399 through distilled water washes using a platinum loop, picked them up on Formvar-coated copper
400 grids and imaged them in the same manner as freeze-fracture replicas (see below).

401 **X-ray diffraction**

402 For X-ray diffraction, we formed thin circular membranes by collecting NaOH and acetic-nitric
403 reagent extracted material by suction onto nylon filters (5 μ m pore size), peeling the insoluble
404 material from the filter and then drying them in a dust-free environment. We used a Rigaku
405 SmartLab X-Ray Diffractometer operating at 40 kV, 44 mA (CuK α radiation) to generate
406 diffractograms from these paper-like samples.

407 **Staining with S4B**

408 We stained protonemal filaments extracted with acetic-nitric reagent without grinding with 0.01%
409 S4B (21) in tris-buffered saline and examined them with an epifluorescence microscope
410 (Olympus BH-2 with green filter set with 405 nm excitation and 455 nm dichroic mirror and
411 barrier filter) and a confocal scanning microscope (Olympus Fluoview FV1000 confocal
412 microscope with UIS2 40X N.A. 1.3 oil immersion objective and 559 nm diode laser). We
413 captured epifluorescence images using a Q-Color5 camera (Olympus America, Central Valley PA
414 USA).

415 **Solid-state nuclear magnetic resonance analysis**

416 We labeled tissue by subculturing it three times (14 days each) on BC DAT solid medium
417 containing 55.6 mM ^{13}C glucose. After snap freezing on dry ice and thawing, we packed the
418 tissue into the rotor and wicked away excess water. We performed solid-state MAS NMR on a
419 Bruker (Karlsruhe Germany) Avance Neo solid-state NMR spectrometer, operating at ^1H and ^{13}C
420 Larmor frequencies of 600 and 150.7 MHz using a 3.2 mm double-resonance EFree MAS probe.
421 We conducted all experiments at room temperature at an MAS frequency of 12.5 kHz. We
422 determined the ^{13}C chemical shift using the carbonyl peak of alanine at 177.8 ppm as an external
423 reference with respect to tetramethylsilane (TMS). The ^1H 90° pulse length was 3.0 μ s and we
424 used ^1H – ^{13}C cross-polarization (CP) with ramped (70–100%) ^1H rf amplitude, a 1 ms contact
425 time, and SPINAL 64 decoupling (63) with a 2 s recycle delay to acquire the spectrum.

426 **Preparation of xylogenic *Zinnia elegans* suspension cultures**

427 Similar to established methods (64), we released mesophyll cells from first leaves (about 1 cm
428 long) of 8-d old *Zinnia elegans* var. Envy seedlings after sterilization in calcium hypochlorite. We
429 concentrated the cells by gentle centrifugation, washed them in medium, inoculated flasks at the
430 required density (12 ml total volume in 50 ml Erlenmeyer flasks), then cultured them for two days
431 at 27°C with 93 rpm rotary shaking in the dark. We observed early banded secondary cell wall
432 thickenings 48–49 h after culturing using an Olympus BH-2 epifluorescence microscope (violet
433 filter set with 405 nm excitation and 455 nm dichroic mirror and barrier filter) after addition of a
434 cellulose-binding fluorophore (Tinopal LPW, Ciba Geigy, Summit NJ USA; 0.0005% w/v final
435 concentration) to a small drop of the cells in medium. We used an additional barrier filter (Zeiss
436 KP560) in the emission light path to block chlorophyll autofluorescence. To increase the
437 frequency of relatively flat bands of rosettes in the freeze-fracture replicas, we collected cells for
438 freezing when the fluorescence of patterned secondary cell wall thickenings was dimly visible.

439 **Freeze-fracture transmission electron microscopy (FF-TEM)**

445 We prepared CESA-deficient *P. patens* protonemal filaments for FF-TEM as described
446 previously (2) with some modifications. We cultured filaments for 7 d on solid BCDAT medium,
447 homogenized them in water using a hand-held tissue homogenizer with a disposable hard tissue
448 probe (Omni International, Kennesaw GA USA), and cultured them at low density
449 (approximately 10 mg wet weight of inoculum per plate) for 4 d on the same medium. Colonies
450 were collected with a micro-spatula (Electron Microscopy Sciences, Hatfield PA USA) and
451 mounted in 1 μ L of bread yeast hydrated in water. We concentrated *Zinnia* cells at an early stage
452 of patterned secondary wall synthesis by gently suctioning them onto a nylon filter (5 μ m pore
453 size), which we placed on medium-saturated filter paper for 1 h recovery prior to collecting the
454 concentrated cells for freezing with a micro-spatula (33). We froze samples mounted between two
455 thin copper sample holders by plunging them into ultracold propane (EMS-002, Electron
456 Microscopy Sciences) (2) and stored specimens in liquid nitrogen until use.
457

458 We prepared and cleaned replicas as described previously (2). Briefly, we loaded copper
459 planchets into a double replica holder under liquid nitrogen and transferred them to the liquid
460 nitrogen cooled stage of a freeze-fracture machine (Model 308R, Cressington Scientific) under
461 vacuum ($<1 \times 10^{-7}$ mbar). We warmed the stage to -120°C for 20 minutes to evaporate propane
462 and cooled it to -150°C for fracturing. We rotary-shadowed the fractured specimens at 60° with
463 1.2-1.6 nm of Pt/C and applied 13-15 nm of carbon at 85° with continuous sample rotation. We
464 cleaned replicas with chromic-sulfuric acid, rinsed them in water, and mounted them on Formvar-
465 coated copper grids. We collected digital images of the acid-cleaned replicas with a high-
466 definition CMOS camera (NanoSprint43 43mp, AMT Imaging, Woburn MA USA) at 80,000
467 times magnification in a transmission electron microscope (Hitachi HT7800 operated at 80kV,
468 Hitachi High-Tech, Ibaraki Japan). We used eucentric focus, which generated good
469 correspondence between nominal and actual magnification as verified by measurement of lattice
470 spacings in negatively stained catalase crystals (40800, Ladd Research Industries, Williston VT
471 USA).
472

473 Morphometric analysis of rosettes

474 We analyzed rosettes from images of protoplasmic fracture (PF) faces of the inner surface of the
475 plasma membrane bilayer (65), which is revealed when the outer leaflet of the plasma membrane
476 is removed by the fracture process. The PF lacks 'hairy' filamentous structures (possibly cellulose
477 fibrils and/or other polymers) that are visible on the exoplasmic fracture (EF) face of the plasma
478 membrane adjacent to the cell wall (66). As fracture occurs to reveal the PF, the TMH regions
479 (lobes) of rosettes remain attached to the cytosolic region of the complex while pulling out of the
480 outer leaflet so that the entire membrane-spanning regions of the TMHs can be viewed top-down
481 in the replica.
482

483 First, a trained investigator examined unmodified digital TEM images (recorded at x80k) on a 4K
484 monitor and identified potential rosettes that met the following criteria: (a) groups of 5-6 particles
485 arranged in a hexagon, (b) within a flat, uniformly shadowed, and well-focused area of the image.
486 Next, a group of 3-5 experts working together excluded examples from further analysis when they
487 did not all agree that a particle cluster was likely to be a rosette. Although rosettes are distinctive
488 within plant plasma membranes, this vetting process was carried out because other types of
489 intramembrane particles (IMPs) can form clusters.
490

491 We measured each final set of rosettes by hand and by reference-free class averaging with
492 EMAN2 (<https://blake.bcm.edu/emanwiki/EMAN2>) (36). Using the polygon selection tool in Fiji
493 (<https://fiji.sc/>) (67), we enclosed each rosette in a hexagon by anchoring the outer edge of each
494 lobe without omitting parts of any lobe and calculated the estimated long diameter (d) from the

495 included area (A) assuming the geometry of a regular hexagon: $d = 1.732 \times (\text{SQRT}(A/2.5982))$.
496 Values for d calculated in this way are slightly lower compared to values determined from
497 circular selections, which often include more free space around the lobes (2).
498

499 Reference-free class averaging

500 We used EMAN2, version 2.91 (<https://blake.bcm.edu/emanwiki/EMAN2>) (36) to create
501 averaged images of rosettes from micrographs with image contrast inverted upon import and a
502 scale factor of 1.598 apix. We selected particles manually using e2boxer with a boxsize of 300
503 pixels. After performing CTF correction in EMAN2 and specifying a particle set, we performed
504 reference-free class averaging using e2refine2d.py, typically using six classes (ncls=6).
505
506

507 References

1. P. Purushotham, R. Ho, J. Zimmer, Architecture of a catalytically active homotrimeric plant cellulose synthase complex. *Science* **369**, 1089-1094 (2020).
2. B. T. Nixon, K. Mansouri, A. Singh, J. Du, J. K. Davis, J. G. Lee, E. Slabaugh, V. G. Vandavasi, H. O'Neill, E. M. Roberts, A. W. Roberts, Y. G. Yingling, C. H. Haigler, Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. *Sci. Rep.* **6**, 28696 (2016).
3. P. A. Penttila, A. Paajanen, Critical comment on the assumptions leading to 24-chain microfibrils in wood. *Nat. Plants* **10**, 1064-1066 (2024).
4. D. Cosgrove, P. Dupree, E. D. Gomez, C. H. Haigler, J. D. Kubicki, J. Zimmer, How many glucan chains form plant cellulose microfibrils? A mini review. *Biomacromolecules* doi: **10.1021/acs.biomac.4c00995**, (2024).
5. H. C. Tai, C. S. Tsao, J. H. Lin, Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood. *Nat. Plants* **10**, 1067-1070 (2024).
6. H. C. Tai, C. H. Chang, W. Cai, J. H. Lin, S. J. Huang, Q. Y. Lin, E. C. Yuan, S. L. Li, Y. J. Lin, J. C. C. Chan, C. S. Tsao, Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants. *Nat. Plants* **9**, 1154-1168 (2023).
7. S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin, P. Poindexter, N. Khitrov, M. Auer, C. R. Somerville, Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in *Arabidopsis*. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 15566-15571 (2007).
8. J. Yang, G. Bak, T. Burgin, W. J. Barnes, H. B. Mayes, M. J. Pena, B. R. Urbanowicz, E. Nielsen, Biochemical and genetic analysis identify CSLD3 as a beta-1,4-glucan synthase that functions during plant cell wall synthesis. *Plant Cell* **32**, 1749-1767 (2020).
9. R. G. Orr, X. Cheng, L. Vidali, M. Bezanilla, Orchestrating cell morphology from the inside out - using polarized cell expansion in plants as a model. *Curr. Opin. Cell Biol.* **62**, 46-53 (2019).
10. S. Z. Wu, A. M. Chaves, R. Li, A. W. Roberts, M. Bezanilla, Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. *J. Cell Biol.* **222**, (2023).
11. A. R. Paredez, C. R. Somerville, D. W. Ehrhardt, Visualization of cellulose synthase demonstrates functional association with microtubules. *Science* **312**, 1491-1495 (2006).
12. F. Diotallevi, B. Mulder, The cellulose synthase complex: a polymerization driven supramolecular motor. *Biophys. J.* **92**, 2666-2673 (2007).
13. P. B. Green, Mechanism for plant cellular morphogenesis. *Science* **138**, 1404-1405 (1962).
14. A. W. Roberts, J. T. Bushoven, The cellulose synthase (CESA) gene superfamily of the moss *Physcomitrella patens*. *Plant Mol. Biol.* **63**, 207-219 (2007).
15. X. Li, A. M. Chaves, D. C. T. Dees, N. Mansoori, K. Yuan, T. L. Speicher, J. H. Norris, I. Wallace, L. M. Trindade, A. W. Roberts, Cellulose synthesis complexes are homo-

545 oligomeric and hetero-oligomeric in *Physcomitrella patens*. *Plant Physiol.* **188**, 2115-2130
546 (2022).

547 16. C. A. Goss, D. J. Brockmann, J. T. Bushoven, A. W. Roberts, A *CELLULOSE SYNTHASE*
548 (*CESA*) gene essential for gametophore morphogenesis in the moss *Physcomitrella patens*.
549 *Planta* **235**, 1355-1367 (2012).

550 17. C. J. Harrison, A. H. Roeder, E. M. Meyerowitz, J. A. Langdale, Local cues and
551 asymmetric cell divisions underpin body plan transitions in the moss *Physcomitrella*
552 *patens*. *Curr. Biol.* **19**, 461-471 (2009).

553 18. J. H. Norris, X. Li, S. Huang, A. M. L. Van de Meene, M. L. Tran, E. Killeavy, A. M.
554 Chaves, B. Mallon, D. Mercure, H.-T. Tan, R. A. Burton, M. S. Doblin, S. H. Kim, A. W.
555 Roberts, Functional specialization of cellulose synthase isoforms in a moss shows
556 parallels with seed plants. *Plant Physiol.* **175**, 210-222 (2017).

557 19. D. Lang, K. K. Ullrich, F. Murat, J. Fuchs, J. Jenkins, F. B. Haas, M. Piednoel, H.
558 Gundlach, M. Van Bel, R. Meyberg, C. Vives, J. Morata, A. Symeonidi, M. Hiss, W.
559 Muchero, Y. Kamisugi, O. Saleh, G. Blanc, E. L. Decker, N. van Gessel, J. Grimwood, R.
560 D. Hayes, S. W. Graham, L. E. Gunter, S. F. McDaniel, S. N. W. Hoernstein, A. Larsson,
561 F. W. Li, P. F. Perroud, J. Phillips, P. Ranjan, D. S. Rokshar, C. J. Rothfels, L. Schneider,
562 S. Shu, D. W. Stevenson, F. Thummel, M. Tillich, J. C. Villarreal Aguilar, T. Widiez, G.
563 K. Wong, A. Wymore, Y. Zhang, A. D. Zimmer, R. S. Quatrano, K. F. X. Mayer, D.
564 Goodstein, J. M. Casacuberta, K. Vandepoele, R. Reski, A. C. Cuming, G. A. Tuskan, F.
565 Maumus, J. Salse, J. Schmutz, S. A. Rensing, The *Physcomitrella patens* chromosome-
566 scale assembly reveals moss genome structure and evolution. *Plant J.* **93**, 515-533 (2018).

567 20. G. Bi, S. Zhao, J. Yao, H. Wang, M. Zhao, Y. Sun, X. Hou, F. B. Haas, D. Varshney, M.
568 Prigge, S. A. Rensing, Y. Jiao, Y. Ma, J. Yan, J. Dai, Near telomere-to-telomere genome of
569 the model plant *Physcomitrium patens*. *Nat. Plants* **10**, 327-343 (2024).

570 21. C. T. Anderson, A. Carroll, L. Akhmetova, C. Somerville, Real-time imaging of cellulose
571 reorientation during cell wall expansion in *Arabidopsis* roots. *Plant Physiol.* **152**, 787-796
572 (2010).

573 22. R. J. Vietor, R. H. Newman, M. A. Ha, D. C. Apperley, M. C. Jarvis, Conformational
574 features of crystal-surface cellulose from higher plants. *Plant J.* **30**, 721-731 (2002).

575 23. M.-A. Ha, D. C. Apperley, B. W. Evans, I. M. Huxham, W. G. Jardine, R. J. Vietor, D.
576 Reis, B. Vian, M. C. Jarvis, Fine structure in cellulose microfibrils: NMR evidence from
577 onion and quince. *Plant J.* **16**, 183-190 (1998).

578 24. R. H. Newman, Evidence for assignment of ^{13}C NMR signals to cellulose crystallite
579 surfaces in wood, pulp and isolated celluloses. *Holzforschung* **52**, 157-159 (1998).

580 25. R. M. Brown, Jr., D. Montezinos, Cellulose microfibrils: Visualization of biosynthetic and
581 orienting complexes in association with the plasma membrane. *Proc. Natl. Acad. Sci. U. S.*
582 *A.* **73**, 143-147 (1976).

583 26. S. C. Mueller, R. M. Brown, Jr., Evidence for an intramembrane component associated
584 with a cellulose microfibril-synthesizing complex in higher plants. *J. Cell Biol.* **84**, 315-
585 326 (1980).

586 27. I. Tsekos, The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-
587 synthesizing enzyme complexes. *J Phycol* **35**, 635-655 (1999).

588 28. S. Kimura, W. Laosinchai, T. Itoh, X. Cui, C. R. Linder, R. M. Brown, Jr., Immunogold
589 labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant *Vigna*
590 *angularis*. *Plant Cell* **11**, 2075-2085 (1999).

591 29. T. H. Giddings, Jr., D. L. Brower, L. A. Staehelin, Visualization of particle complexes in
592 the plasma membrane of *Micrasterias denticulata* associated with the formation of
593 cellulose fibrils in primary and secondary cell walls. *J. Cell Biol.* **84**, 327-339 (1980).

594 30. N. J. Severs, Freeze-fracture electron microscopy. *Nat Protoc* **2**, 547-576 (2007).

595 31. A. W. Roberts, E. M. Roberts, C. H. Haigler, Moss cell walls: structure and biosynthesis. *Front. Plant Sci.* **3**, 166 (2012).

596 32. Y. Watanabe, R. Schneider, S. Barkwill, E. Gonzales-Vigil, J. L. Hill, Jr., A. L. Samuels, S. Persson, S. D. Mansfield, Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E6366-E6374 (2018).

597 33. C. H. Haigler, R. M. Brown, Jr., Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of *Zinnia elegans* during differentiation to tracheary elements in suspension culture. *Protoplasma* **134**, 111-120 (1986).

598 34. N. G. Taylor, R. M. Howells, A. K. Huttly, K. Vickers, S. R. Turner, Interactions among 600 three distinct CesA proteins essential for cellulose synthesis. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 1450-1455 (2003).

599 35. B. M. Kiedaisch, R. L. Blanton, C. H. Haigler, Characterization of a novel cellulose 601 synthesis inhibitor. *Planta* **217**, 922-930 (2003).

602 36. G. Tang, L. Peng, P. R. Baldwin, D. S. Mann, W. Jiang, I. Rees, S. J. Ludtke, EMAN2: an 603 extensible image processing suite for electron microscopy. *J. Struct. Biol.* **157**, 38-46 (2007).

604 37. T. Beeckman, G. K. Przemeck, G. Stamatiou, R. Lau, N. Terryn, R. De Rycke, D. Inze, T. 605 Berleth, Genetic complexity of cellulose synthase a gene function in *Arabidopsis* 606 embryogenesis. *Plant Physiol.* **130**, 1883-1893 (2002).

607 38. C. S. Gillmor, P. Poindexter, J. Lorieu, M. M. Palcic, C. Somerville, α -glycosidase I is 608 required for cellulose biosynthesis and morphogenesis in *Arabidopsis*. *J. Cell Biol.* **156**, 609 1003-1013 (2002).

610 39. B. Favery, E. Ryan, J. Foreman, P. Linstead, K. Boudonck, M. Steer, P. Shaw, L. Dolan, 611 *KOJAK* encodes a cellulose synthase-like protein required for root hair cell morphogenesis 612 in *Arabidopsis*. *Genes Dev.* **15**, 79-89 (2001).

613 40. W. Wang, L. Wang, C. Chen, G. Xiong, X. Y. Tan, K. Z. Yang, Z. C. Wang, Y. Zhou, D. 614 Ye, L. Q. Chen, *Arabidopsis* CSLD1 and CSLD4 are required for cellulose deposition and 615 normal growth of pollen tubes. *J. Exp. Bot.* **62**, 5161-5177 (2011).

616 41. A. H. Liepman, C. J. Nairn, W. G. T. Willats, I. Sørensen, A. W. Roberts, K. Keegstra, 617 Functional genomic analysis supports conservation of function among *Cellulose synthase-like A* 618 gene family members and suggests diverse roles of mannans in plants. *Plant Physiol.* **143**, 1881-1893 (2007).

619 42. J. Davis, F. Brandizzi, A. H. Liepman, K. Keegstra, *Arabidopsis* mannan synthase CSLA9 620 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. *Plant J.* 621 **64**, 1028-1037 (2010).

622 43. I. Kurek, Y. Kawagoe, D. Jacob-Wilk, M. Doblin, D. Delmer, Dimerization of cotton fiber 623 cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. 624 *Proc. Natl. Acad. Sci. U. S. A.* **99**, 11109-11114 (2002).

625 44. T. A. Richmond, C. R. Somerville, The cellulose synthase superfamily. *Plant Physiol.* **124**, 626 495-498 (2000).

627 45. E. Fitzek, L. Orton, S. Entwistle, W. S. Grayburn, C. Ausland, M. R. Duvall, Y. Yin, Cell 628 Wall Enzymes in *Zygnema circumcarinatum* UTEX 1559 Respond to Osmotic Stress in a 629 Plant-Like Fashion. *Front. Plant Sci.* **10**, 732 (2019).

630 46. S. Wang, L. Li, H. Li, S. K. Sahu, H. Wang, Y. Xu, W. Xian, B. Song, H. Liang, S. Cheng, 631 Y. Chang, Y. Song, Z. Cebi, S. Wittek, T. Reder, M. Peterson, H. Yang, J. Wang, B. 632 Melkonian, Y. Van de Peer, X. Xu, G. K. Wong, M. Melkonian, H. Liu, X. Liu, Genomes 633 of early-diverging streptophyte algae shed light on plant terrestrialization. *Nat. Plants* **6**, 634 95-106 (2020).

644 47. X. Feng, J. Zheng, I. Irisarri, H. Yu, B. Zheng, Z. Ali, S. de Vries, J. Keller, J. M. R. Furst-
645 Jansen, A. Dadras, J. M. S. Zegers, T. P. Rieseberg, A. Dhabalia Ashok, T. Darienko, M. J.
646 Bierenbroodspot, L. Gramzow, R. Petroll, F. B. Haas, N. Fernandez-Pozo, O. Nousias, T.
647 Li, E. Fitzek, W. S. Grayburn, N. Rittmeier, C. Permann, F. Rumpler, J. M. Archibald, G.
648 Theissen, J. P. Mower, M. Lorenz, H. Buschmann, K. von Schwartzenberg, L. Boston, R.
649 D. Hayes, C. Daum, K. Barry, I. V. Grigoriev, X. Wang, F. W. Li, S. A. Rensing, J. Ben
650 Ari, N. Keren, A. Mosquna, A. Holzinger, P. M. Delaux, C. Zhang, J. Huang, M. Mutwil,
651 J. de Vries, Y. Yin, Genomes of multicellular algal sisters to land plants illuminate
652 signaling network evolution. *Nat. Genet.* **56**, 1018-1031 (2024).

653 48. M. D. Mikkelsen, J. Harholt, P. Ulvskov, I. E. Johansen, J. U. Fangel, M. S. Doblin, A.
654 Bacic, W. G. Willats, Evidence for land plant cell wall biosynthetic mechanisms in
655 charophyte green algae. *Ann. Bot.* **114**, 1217-1236 (2014).

656 49. Y. Yin, M. A. Johns, H. Cao, M. Rupani, A survey of plant and algal genomes and
657 transcriptomes reveals new insights into the evolution and function of the cellulose
658 synthase superfamily. *BMC Genomics* **15**, 260 (2014).

659 50. T. H. Wilson, M. Kumar, S. R. Turner, The molecular basis of plant cellulose synthase
660 complex organisation and assembly. *Biochem. Soc. Trans.* **49**, 379-391 (2021).

661 51. G. B. Pedersen, L. Blaschek, K. E. H. Frandsen, L. C. Noack, S. Persson, Cellulose
662 synthesis in land plants. *Mol. Plant* **16**, 206-231 (2023).

663 52. B. J. Harris, J. W. Clark, D. Schrempf, G. J. Szollosi, P. C. J. Donoghue, A. M.
664 Hetherington, T. A. Williams, Divergent evolutionary trajectories of bryophytes and
665 tracheophytes from a complex common ancestor of land plants. *Nat. Ecol. Evol.* **6**, 1634-
666 1643 (2022).

667 53. F. Gu, M. Bringmann, J. R. Combs, J. Yang, D. C. Bergmann, E. Nielsen, Arabidopsis
668 CSLD5 functions in cell plate formation in a cell cycle-dependent manner. *Plant Cell* **28**,
669 1722-1737 (2016).

670 54. D. Delmer, R. A. Dixon, K. Keegstra, D. Mohnen, The plant cell wall-dynamic, strong,
671 and adaptable-is a natural shapeshifter. *Plant Cell* **36**, 1257-1311 (2024).

672 55. P. K. Hepler, Calcium: a central regulator of plant growth and development. *Plant Cell* **17**,
673 2142-2155 (2005).

674 56. S. Li, L. Lei, C. R. Somerville, Y. Gu, Cellulose synthase interactive protein 1 (CSI1) links
675 microtubules and cellulose synthase complexes. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 185-
676 190 (2012).

677 57. M. Ogden, S. J. Whitcomb, G. A. Khan, U. Roessner, R. Hoefgen, S. Persson, Cellulose
678 biosynthesis inhibitor isoxaben causes nutrient-dependent and tissue-specific Arabidopsis
679 phenotypes. *Plant Physiol.* **194**, 612-617 (2024).

680 58. A. W. Roberts, C. S. Dimos, M. J. Budziszek, Jr., C. A. Goss, V. Lai, A. M. Chaves,
681 Knocking out the wall: Revised protocols for gene targeting in *Physcomitrella patens*.
682 *Methods Mol. Biol.* **2149**, 125-144 (2020).

683 59. D. R. Mallett, M. Chang, X. Cheng, M. Bezanilla, Efficient and modular CRISPR-Cas9
684 vector system for *Physcomitrella patens*. *Plant Direct* **3**, e00168 (2019).

685 60. M. Haeussler, K. Schonig, H. Eckert, A. Eschstruth, J. Mianne, J. B. Renaud, S.
686 Schneider-Maunoury, A. Shkumatava, L. Teboul, J. Kent, J. S. Joly, J. P. Concordet,
687 Evaluation of off-target and on-target scoring algorithms and integration into the guide
688 RNA selection tool CRISPOR. *Genome Biol.* **17**, 148 (2016).

689 61. C. S. Bascom, Jr., S. Z. Wu, K. Nelson, J. Oakey, M. Bezanilla, Long-term growth of moss
690 in microfluidic devices enables subcellular studies in development. *Plant Physiol.* **172**, 28-
691 37 (2016).

692 62. D. M. Updegraff, Semimicro determination of cellulose in biological materials. *Anal.*
693 *Biochem.* **32**, 420-424 (1969).

694 63. B. M. Fung, A. K. Khitrin, K. Ermolaev, An improved broadband decoupling sequence for
695 liquid crystals and solids. *J. Magn. Reson.* **142**, 97-101 (2000).

696 64. H. Fukuda, A. Komamine, Establishment of an experimental system for the study of
697 tracheary element differentiation from single cells isolated from the mesophyll of *Zinnia*
698 *elegans*. *Plant Physiol.* **65**, 57-60 (1980).

699 65. D. Branton, S. Bullivant, N. B. Gilula, M. J. Karnovsky, H. Moor, K. Muhlethaler, D. H.
700 Northcote, L. Packer, B. Satir, P. Satir, V. Speth, L. A. Staehlin, R. L. Steere, R. S.
701 Weinstein, Freeze-etching nomenclature. *Science* **190**, 54-56 (1975).

702 66. C. H. Haigler, M. J. Grimson, J. Gervais, N. Le Moigne, H. Hofte, B. Monasse, P. Navard,
703 Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for
704 a disordered intermediate stage. *PLoS One* **9**, e93981 (2014).

705 67. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
706 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K.
707 Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image
708 analysis. *Nat. Methods* **9**, 676-682 (2012).

709 68. L. Li, S. Wang, H. Wang, S. K. Sahu, B. Marin, H. Li, Y. Xu, H. Liang, Z. Li, S. Cheng, T.
710 Reder, Z. Cebi, S. Wittek, M. Petersen, B. Melkonian, H. Du, H. Yang, J. Wang, G. K.
711 Wong, X. Xu, X. Liu, Y. Van de Peer, M. Melkonian, H. Liu, The genome of
712 *Prasinoderma coloniale* unveils the existence of a third phylum within green plants. *Nat.
713 Ecol. Evol.* **4**, 1220-1231 (2020).

714 69. A. W. Roberts, E. Roberts, Cellulose synthase (*CesA*) genes in algae and seedless plants.
715 *Cellulose* **11**, 419-435 (2004).

716 70. F. Madeira, M. Pearce, A. R. N. Tivey, P. Basutkar, J. Lee, O. Edbali, N. Madhusoodanan,
717 A. Kolesnikov, R. Lopez, Search and sequence analysis tools services from EMBL-EBI in
718 2022. *Nucleic Acids Res.* **50**, W276-W279 (2022).

721 Acknowledgments

722 The authors thank Deborah P. Delmer and Mary L. Tierney for invaluable discussions and
723 comments on the manuscript.

724 Funding:

725 This work was supported by grants from the National Science Foundation to AWR (IOS-
726 2124176) and to MB (IOS-2124178). Additional support was provided by a University of Rhode
727 Island Division of Research and Economic Development Bridge Grant to AWR (KY
728 contribution) and as part of The Center for LignoCellulose Structure and Formation, an Energy
729 Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic
730 Energy Sciences under Award # DE-SC0001090 (AMC, CHH, RLB, and ETP contribution). PD,
731 RD, and RC were supported by an ERC-advanced grant EVOCATE to PD funded by the UKRI
732 (EP/X027120/1). DNA sequencing was supported by the Institutional Development Award
733 (IDeA) Network for Biomedical Research Excellence from the National Institute of General
734 Medical Sciences of the National Institutes of Health under grant number P20GM103430. The
735 renewal of the 600MHz solid-state NMR console (Avance NEO) was funded by BBSRC
736 (BB/T018119/1), EPSRC and the University of Warwick. Freeze-fracture electron microscopy
737 was performed at the Analytical Instrumentation Facility (AIF) at North Carolina State
738 University, which is supported by the State of North Carolina and the National Science
739 Foundation (award number ECCS-2025064). The AIF is a member of the North Carolina
740 Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology
741 Coordinated Infrastructure (NNCI). Confocal laser scanning microscopy was performed at the
742 Rhode Island College imaging facility.

744

745

746 **Author Contributions:**

747 Conceptualization: AWR, MB

748 Methodology: EMR, AWR, CHH, RD, PD, S-ZW

749 Investigation: EMR, KY, AMC, ETP, RC, XY, RLB, S-ZW, AWR

750 Formal analysis: ETP, EMR

751 Visualization: AWR, EMR, CHH, ETP, S-ZW

752 Funding acquisition: AWR, MB, CHH

753 Project administration: AWR

754 Supervision: AWR, CHH, MB, PD

755 Writing – original draft: AWR, EMR, CHH, MB, PD

756 Writing – review & editing: KY, AMC, ETP, RC, RD, XY, RLB, S-ZW

757

758 **Competing Interests:** Authors declare that they have no competing interests.

759

760 **Data and Materials Availability:** Data supporting the morphometric analysis of rosettes (Fig. 4)
761 have been deposited at Dryad (<https://doi.org/10.5061/dryad.n02v6wx5j>). All other data are
762 available in the main text or the supplementary materials.

763

764 **Figures**

765 **Fig. 1. Viable CESA-deficient *P. patens*.** (A) Wild-type *P. patens* has filamentous protonemata
766 and leafy gametophores (arrowheads). (B) Septuple CESA knockouts expressing only PpCESA5
767 have morphologically normal protonemata and stunted gametophores (arrowheads) as described
768 previously (15). (C) CESA-deficient octuple knockouts are viable with morphologically normal
769 protonemata, but no gametophores. (D) Expression of PpCESA5 under the control of the
770 constitutive rice *Actin1* promoter partially rescues gametophore development (arrowheads) in
771 CESA-deficient octuple knockouts. (E-H) Time-lapse imaging of gametophore buds in CESA-
772 deficient *P. patens* reveals cell rupture (E-F, yellow and red outlines mark fully expanded cells; F-
773 G, yellow and red arrows indicate the positions of the respective cells after rupture) and (H) areas
774 of early senescence marked by accumulation of brown pigment. Scale bar in A = 1 mm and
775 applies to A-D. Scale bar in E = 50 μ m and applies to E-H. Time-lapse interval = 10 min.

776 **Fig. 2. Cellulose microfibrils in wild type and CESA-deficient *P. patens*.** Cell walls were
777 extracted from protonemal filaments of (A) wild type and (B) CESA-deficient *P. patens* with 1 N
778 NaOH and acetic nitric reagent before air-drying and shadowing to reveal microfibrils. (C) The
779 neutral carbohydrate region of 1D ^{13}C CP MAS NMR spectra of CESA-deficient and wild type *P.*
780 *patens*. Identifiable ^{13}C NMR shifts of cellulose (C), arabinose (A) and starch (SC) are labeled.
781 The spectra were recorded at a ^{13}C Larmor frequency of 150.7 MHz and a MAS frequency of 12
782 kHz.

783 **Fig. 3. Transmission electron microscopy imaging of rosettes in freeze-fracture replicas of**
784 **CESA-deficient *P. patens*.** (A) Plasma membrane region from the apex of a protonemal filament
785 (box in inset) with rosettes (arrowheads). Scale bar = 40 nm, inset scale bar = 3 μ m. (B) Plasma

786 membrane region from a protonemal filament (box in inset) viewed tip down with numerous
787 rosettes (arrowheads). Scale bar = 100 nm, inset scale bar = 2 μ m. (C) Plasma membrane region
788 of a dividing cell with fusing cell plate (box in inset) with numerous rosettes (arrowheads). Scale
789 bar = 100 nm, inset scale bar = 3 μ m.

790 **Fig. 4. Original images and corresponding image averages of rosettes from two cell types**
791 **with diameter measurements.** (A) Original FFTEM images and data from hand measurement of
792 543 rosettes from nine CESA-deficient *P. patens* protonemal cells (three cells from each of three
793 independent genetic lines) frozen while synthesizing primary cell walls. (B) Original TEM image
794 and data from hand measurement of 380 rosettes from five differentiating tracheary elements
795 frozen while synthesizing secondary walls via CESAs. (C, D) Representative image averages of
796 the rosettes measured in A and B. The contrast of the original images was reversed before
797 reference-free image averaging to accommodate the design of the EMAN2 program. Data for
798 each cell type are from hand measurement of the 42 image averages (six class averages within
799 each of seven refinements). Scale bar = 20 nm.

800 **Fig. 5. Sequence comparison and lineage sorting of CESAs, CSLDs and CESA/CSLD-like**
801 **proteins.** (A) Graphical comparison between *P. patens* CSLD and CESA protein sequences and a
802 representative CESA/CSLD-like protein from *Chlorokybus atmophyticus* (Chrsp_134508684).
803 Numbers indicate the percent amino acid identity between PpCESA5 or PpCSLD1 and the *C.*
804 *atmophyticus* sequence in different regions (dashed lines). CSLDs share greater identity with
805 CESA/CSLD-like sequences in the N-terminal region and RING domain (yellow), but they are
806 more similar to CESAs in the plant-conserved region (PCR, cyan). Gray=transmembrane regions
807 (TM), black=catalytic “D” and “QxxRW” domains, and magenta=class-specific region (CSR).
808 (B) Evolutionary relationships of chlorophyte green algae, five classes of charophyte green algae,
809 and land plants (Embryophyta) depicting incongruence of the CESA, CSLD, and CESA/CSLD-
810 like sequence trees. Evolutionary relationships (topology only) are from (68). Sequence
811 distributions are from (45-47).

812 813 **Supplementary Materials**

814 Supplementary Text

815 Figs. S1 to S8

816 References (1-65, references 53-65 only in SM)

817 Movies S1 to S2

818