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Abstract

Like cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize 3-1,4
glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown
whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced
viable CESA-deficient mutants of the moss Physcomitrium patens to investigate CSLD function
without interfering CESA activity. Microscopy and spectroscopy showed that CESA-deficient
mutants synthesize cellulose microfibrils that are indistinguishable from those in vascular plants.
Correspondingly, freeze-fracture electron microscopy revealed rosette-shaped particle assemblies
in the plasma membrane that are indistinguishable from CESA-containing rosette cellulose
synthesis complexes (CSCs). Our data show that proteins other than CESAs, most likely CSLDs,
produce cellulose microfibrils in P. patens protonemal filaments. The data suggest that the
specialized roles of CSLDs in cytokinesis and tip growth are based on differential expression and
different interactions with microtubules and possibly Ca?’, rather than structural differences in the
microfibrils they produce.
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Teaser
Moss mutants lacking CESAs make cellulose microfibrils and have rosette plasma membrane
complexes presumed to contain CSLDs.

MAIN TEXT

Introduction

The structural integrity of plant cells depends on cellulose, a fibrillar f-1,4-glucan synthesized by
mobile integral plasma membrane complexes. In land plants, these cellulose synthesis complexes
(CSCs) have a distinctive rosette shape. Available evidence indicates that these CSCs are
composed of 18 cellulose synthase (CESA) enzymes and produce a fundamental cellulose
microfibril containing 18 glucan chains, although some uncertainty regarding this stoichiometry
remains (/-6). CESAs are required for vascular plant development based on the lethality of CESA
null mutations (7).

Cellulose Synthase-like D proteins (CSLDs) also synthesize B-1,4-glucan, raising the possibility
of a separate pathway for cellulose microfibril synthesis (&8). CSLD activity is required to
maintain the structural integrity of pollen tubes and root hairs, whose polarized tip-growth
distinguishes them from other plant cell types. The tips of these cells undergo extensive
remodeling of the plasma membrane and deposition of extensible cell wall materials, which must
be precisely controlled to enable growth while preventing rupture (9). CSLDs also help maintain
the integrity of the cell plate, a progenitor structure of the new cell wall that forms during plant
cytokinesis (8, 10).

CSCs containing CESAs move in the plasma membrane (//), driven by the energy released as
glucan chains coalesce to form microfibrils (/2). In cells that expand by diffuse growth, cortical
microtubules guide this movement (/7) to control microfibril orientation and cell growth polarity
(13). Catalytically active CSLDs also move in the plasma membrane, but their movements are
faster, less linear, shorter in duration, and independent of microtubules (/0). In vitro, CSLDs
formed particles similar in size to CESA trimers. However, no microfibrils were detected in these
assays and it remained unknown whether they form CSC-like complexes or synthesize
microfibrillar cellulose in vivo (8). Given their roles in polarized tip growth and cytokinesis and
their distinct patterns of movement, CSLDs could synthesize microfibrils with distinct properties
that facilitate tip growth and cell plate development. However, this has been difficult to
investigate experimentally because the products of CESA activity confound in vivo studies of
CSLD activity, and CESA and CSLD complexes are unstable in vitro (/, §).

Unlike vascular plants, mosses have an initial haploid growth phase consisting entirely of tip-
growing protonemal filaments that can be propagated indefinitely. The model moss species
Physcomitrium (formerly Physcomitrella) patens has CESAs and CSLDs (/4), and we have
shown that CESA activity is required for the transition from tip growth to three-dimensional
diffuse growth required for gametophore formation (73, 16). However, it was unknown whether
CESAs are required for protonemal tip growth.

Here we report that P. patens mutants that lack CESAs produce normal protonemal filaments. We
also show that CESA-deficient moss lines: (a) have plasma membrane rosette structures that are
morphologically indistinguishable from CESA-containing CSCs and (b) synthesize cellulose
microfibrils that are structurally indistinguishable from the microfibrils in the primary cell walls
of angiosperms.
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Results

Moss plants lacking CESAs are viable

Previously we showed that just one of the eight P. patens CESAs, PpCESAS, is sufficient for
normal development of both protonemal filaments, which extend by tip growth, and leafy
gametophores, which enlarge by diffuse growth (/5). When we also disabled PpCESAS5

(Pp3c2 13330V3.1; Figs. S1-S5), leaty gametophore development was abolished (Fig. 1A-D).
The CESA-deficient lines produced gametophore buds, but the buds turned brown and stopped
growing when they reached about 100 um in diameter (Fig. 1E-H). When we investigated the
progression of gametophore bud development by time-lapse imaging, we found that the first few
divisions followed the documented pattern (/7) including a transition to 3D growth and rhizoid
formation (Movies S1 and S2). However, prior to leaf emergence, interior cells expanded and
ruptured as shown in Movies S1 and S2 and Figs. 1E-G, where red and yellow outlines indicate
the boundaries of enlarged cells and arrows indicate the same cells after rupture in later frames.
After the second cell rupture, the bud stopped enlarging and accumulated brown pigment (Fig.
1H). The rupturing indicates that CESA activity is required to maintain cell integrity in the early
stages of gametophore development. In contrast to gametophore buds, the protonemal filaments
of CESA-deficient lines grew vigorously (Fig. 1C) and could be repeatedly subcultured.

To ensure that we had disabled all P. patens CESA genes, we verified large deletions in all eight
CESAs by PCR in the CESA-deficient lines (Fig. S3). We also confirmed the deletions reported
previously for CESA3, CESA4, CESA8, and CESA10 (15) and CESA6 and CESA7 (18) by
sequencing (Figs. S4, S5). In addition to the chromosome-scale P. patens genome assembly (/9),
a near telomere-to-telomere genome sequence is now available (20). A similarity search of this
sequence revealed no additional CESA sequences (see supplementary materials).

Moss plants lacking CESAs produce microfibrillar cellulose

In addition to demonstrating that cellulose synthesized by CESAs is not required for protonemal
tip growth, CESA-deficient P. patens lines provide a unique biological tool for investigating the
structure of the B-1,4-glucan presumably synthesized by CSLDs. To examine how loss of CESAs
affects the fibrillar structure of the cell walls, we extracted protonemal filaments of wild type and
CESA-deficient P. patens with 1 N NaOH, followed by acetic nitric reagent to remove matrix
polysaccharides and proteins, and shadowed the residue with platinum-carbon. The extracted cell
walls were fibrillar (Fig. 2) with no visible differences between wild type and CESA-deficient
genotypes. X-ray diffraction patterns of extracted cell walls from wild type and CESA-deficient
protonemal filaments contained the 110 (15.7°), 200 (22.6°), and 004 (35.19°) peaks
characteristic of cellulose (Fig. S6A, B). Similarly, the fluorescent cellulose-binding dye
Pontamine Fast Scarlet 4B (S4B) (21) stained the extracted cell walls of both wild type and
CESA-deficient protonemal filaments. Staining intensity was similar in both genotypes and
highest in cross walls (Fig. S6C).

We used 1D !3C cross-polarization magic-angle-spinning nuclear magnetic resonance
spectroscopy (CP MAS NMR) for structural analysis of untreated cells from CESA-deficient and
wild-type P. patens. Cellulose and starch dominate the CP MAS NMR spectra (Fig. 2C). Peaks
labeled C4! and C4? are indicative of cellulose fibrils (22). The C4! signals arise from glucosyl
residues mostly in crystalline cellulose internal to fibrils and have the C6 hydroxymethyl in the ¢g
configuration. The C4? signals arise mostly from glucosyl residues on the surface of cellulose
fibrils and have the C6 hydroxymethyl in the g#/#t configurations (22). The similar strength of
both signals suggests the fibrils have similar dimensions to fibrils found in vascular plant primary
and secondary cell walls (23, 24).
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Moss plants lacking CESAs have plasma membrane rosettes

The transmembrane (TM) regions of CESA-containing CSCs have been visualized by freeze-
fracture transmission electron microscopy (FFTEM) (25-29). In this technique, cells are frozen
rapidly and fractured under vacuum to expose integral membrane proteins, which are typically
revealed on the interior surface of the membrane leaflet adjacent to the cytoplasm after the outer
leaflet is removed during cell fracture. The fractured specimens are shadowed with
platinum/carbon to produce replicas so that the original cell structure becomes interpretable in
TEM (30). FFTEM has previously shown that the plasma membranes of P. patens protonemal
filaments contain rosette structures with six particles that often appear triangular (2, 37), similar
to the CESA-containing CSCs of vascular plants (28).

Here we show that rosettes are present in CESA-deficient P. patens protonemal filaments (Fig.
3A). Because the plane of fracture cannot be readily controlled, we inferred the cellular context of
the fractured membranes from cellular landmarks to identify regions with high densities of
rosettes. We observed elongated membrane patches representing longitudinal fractures of
protonemal plasma membranes including some with rounded ends (Fig. 3A), consistent with
fracturing at or near the apex of protonemal tip cells. We also observed circular and oval
membrane patches consistent with fractures through the apical plasma membrane of protonemal
tip cells oriented perpendicular to the plane of fracture (Fig. 3B). Figure 3C shows a rare fracture
that captures the fusion of a cell plate with the parental cell wall. The rosettes observed in our
samples were concentrated at the cell tips (Fig. 3B) and adjacent to fusing cell plates (Fig. 3C).
These are the same regions where CSLDs have been localized by live-cell imaging in P. patens
(10). Higher magnification views of rosettes in Figs. 3B and 3C are shown in Fig. S7.

Rosettes from CESA-deficient P. patens are morphologically indistinguishable from CESA
rosettes

To test for structural difference between the rosettes from CESA-deficient P. patens and CESA-
containing CSCs (Fig. 4), we compared P. patens mutants with differentiating tracheary elements
from Zinnia elegans suspension cultures, which synthesize banded secondary cell walls via the
activity of abundant CESA-containing rosette CSCs (32-34). We chose Z. elegans suspension
cultures for this comparison because the role of CESAs in secondary cell wall deposition in these
cultures is well documented (32) and freeze-fracture is feasible (33, 35). Although the role of
CESAs in P. patens leafy gametophore development is also well documented (75, 16), we were
unable to produce freeze-fracture replicas of plasma membranes from P. patens gametophores
because fracture invariably occurred within the cuticle.

We analyzed rosettes in replicas of Z. elegans cells that were frozen in the earliest stage of banded
secondary cell wall synthesis, when the plasma membrane was still relatively flat, to reduce
measurement errors resulting from varied de facto shadowing angles arising from changing
topography of the plasma membrane. We measured the external diameters of rosettes in these two
cell types manually and used EMAN?2 (36) to generate 42 reference-free class averages (six class
averages within each of seven refinements) in each case. The appearance, mean diameter, and the
ranges of diameters of rosettes were similar for CESA-deficient P. patens protonemal filaments
and cultured Z. elegans cells synthesizing secondary walls via CESAs (Fig. 4). Differences in
means between cell types were less than the minimum 1.25 nm grain size of FFTEM replicas
prepared by these methods (2). Image averaging consistently reduced the range and increased the
mean diameter by 0.5 nm, probably due to 1) combining smaller rosettes with ones that were
slightly larger in class averages and 2) diminishing the contribution of fewer large rosettes to class
averages.

Science Advances Manuscript Template Page 4 of 17



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Discussion

In biology, form follows function. The uniform structure of cellulose microfibrils in land plant
cell walls was previously attributed to their synthesis by CESA enzymes arranged in distinctive
rosette CSCs. Our results show that non-CESA proteins, most likely CSLDs, also form rosettes
and produce microfibrils indistinguishable from those made by CESAs. This discovery was
possible because, in contrast to Arabidopsis (7), P. patens does not require CESA activity for
viability, so mutants expressing CSLDs in the complete absence of CESAs could be obtained.
Although CESAs are required to maintain cell integrity in diffuse-growing P. patens gametophore
buds (Fig. 1), mutant lines in which all eight CESA genes are disabled can be propagated as tip-
growing protonemal filaments (Figs. 1, S1-S4). In contrast, vascular plants like Arabidopsis
propagate through diffuse-growing embryos that require CESA activity (37, 38), whereas their
tip-growing root hairs and pollen tubes are determinant.

Several lines of evidence support our hypothesis that the rosettes observed in CESA-deficient P.
patens are formed by CSLDs. Like CESAs, CSLDs synthesize -1,4-glucan (8), move in the
plasma membrane (/0), and assemble into particles in vitro that resemble CESA trimers (8). In
CESA-deficient P. patens, rosettes are concentrated at cell tips and adjacent to fusing cell plates
(Fig. 3), which is consistent with the distribution of CSLDs previously observed in wild-type P.
patens using confocal fluorescence microscopy (/0). Tip-growing protonemal filaments also
depend on CSLDs to maintain cell integrity (/0), as do tip-growing root hairs and pollen tubes of
Arabidopsis (39, 40). Finally, the P. patens CESA superfamily includes only two other families
(14), neither of which is likely to participate in cellulose microfibril formation. These include
CSLAs, which synthesize mannan in P. patens and vascular plants (4/), and CSLCs, which, along
with CSLAs, function in the Golgi in Arabidopsis (42). P. patens has eight CSLD genes that
diversified independently from the vascular plant CSLD family (/4). CSLD2 and CSLD6 are
preferentially expressed in gametophores and are redundantly required for normal cytokinesis.
However, all eight CSLD proteins localize to protonemal cell plates and cell tips. It is unknown
whether the P. patens CSLDs form homo-oligomeric or hetero-oligomeric complexes.

Our results indicate that the structure of cellulose microfibrils and rosette CSCs have been
conserved in parallel throughout the divergence of CESAs and CSLDs, the radiation of land
plants and the specialization of primary and secondary cell walls. Based on analysis by TEM, X-
ray diffraction, and solid-state NMR, the cellulose microfibrils in CESA-deficient P. patens
protonemal filaments are structurally indistinguishable from vascular plant microfibrils
synthesized by CESAs (Figs. 2, S4). Similarly, rosettes in CESA-deficient P. patens and CESA-
containing CSCs in differentiating Z. elegans tracheary elements are morphologically
indistinguishable based on original FFTEM images and image averages (Fig. 4). Measurements of
both conform to rosettes analyzed previously in wild-type P. patens protonemal filaments.
Original images of 324 wild-type protonemal rosettes had a mean diameter of 21.4 & 1.3 nm with
a range of 17.6-25.6 nm and six EMAN2 image averages had a mean diameter 22.7 + 0.5 nm (2).
In retrospect, we believe these included both CESA- and CSLD-containing rosettes based on live-
cell imaging data for independently tagged CESA and CSLD proteins (/0).

FFTEM images reveal the TM region of membrane-associated protein complexes (30). The TM
regions of CESAs and CSLDs are highly conserved (Figs. 5A, S8), consistent with both enzymes
having a glucan translocation channel surrounded by seven TM helices (/). Although the TM
regions are highly conserved, CESA and CSLD sequences diverge in their cytosolic regions,
including the length of the N-terminus, the cysteine spacing in the RING- domain, and the
presence of several insertions in the plant-conserved region (Figs. 5A, S8). The plant-conserved
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region is a CESA trimerization domain (/) and the N-terminus, specifically the RING-domain,
has also been implicated in CESA-CESA interaction (43). However, these differences evidently
do not impact the ability of CESAs and CSLDs to assemble as rosettes or the particle spacing in
the transmembrane domain visualized by FFTEM. The similar spacing of CESA- and presumed
CSLD-containing rosette particles (Fig. 4) and their included translocation channels, combined
with the structural similarity of the microfibrils they produce (Fig. 2), is consistent with the well-
established correlation between CSC organization and cellulose microfibril structure (27). We can
only speculate whether this apparent uniformity in rosette CSC morphology, despite originating
from different gene families, has resulted from purifying selection for microfibril properties that
conferred fitness or from genetic constraints that prevented the emergence of new microfibril
traits.

Based on phylogenetic analysis of angiosperm sequences, CESAs and CSLDs were originally
assigned to different families within the CESA superfamily (44). Recent analyses incorporating
representatives of the major green algal lineages (45-47) show that CESAs and CSLDs diverged
as independently evolving families at least 500 mya (Fig. 5). Along with CESA/CSLD-like
sequences from charophyte green algae (45-49), these are the only CESA superfamily members
that have the RING-domain, plant-conserved region, and class-specific region (Figs. SA, S8) that
form the interfaces between CESAs within rosette CSCs (/, 43, 50, 51). Notably, the
CESA/CSLD-like sequences have a CESA-like plant conserved region and a CSLD-like N-
terminus (Figs. 5A, S8). This, along with phylogenetic occurrence (Fig. 5B), indicates that the
CESAs and CSLDs evolved independently from a common ancestral CESA/CSLD-like protein,
with CESAs undergoing a reduction of the N-terminus and CSLDs acquiring inserts within the
plant-conserved region. The gene family trees are discordant with the species tree, with CSLDs
absent from Zygnematophyceae, but present in the LCA shared with Coleochaetophyceae.
Similarly, Coloechaetophyceae appears to have lost its CESAs after it diverged from the
Charophyceae, and the wall-less Mesostigma viride appears to have lost its CESA/CSLD-like gene
after it diverged from its LCA with Chlorokybus atmophyticus. This is consistent with the
observation that gene family loss was common throughout plant evolution (52). Given their
similarities to CESAs and CSLDs, it is possible that the CESA/CSLD-like proteins form rosettes.
This would place the evolution of the rosette CSC early in the streptophyte lineage (i.e. the clade
that includes charophyte green algae and land plants; Fig. 5B).

As discussed recently by Yang et al. (8), the maintenance of separate CESA and CSLD families
in all land plant lineages suggests that each family serves some special function. In P. patens and
seed plants, CSLDs deposit cellulose in growing cell tips and cell plates (8, 10, 53), in both cases
contributing to synthesis of a wall where none existed (54). It was suggested that CSLDs may
produce structurally distinct cellulose microfibrils that interact with callose or other cell wall
polymers to support tip growth and cell plate development (8, 10, 54). This now seems less likely
given the similarity between CESA- and presumed CSLD-containing rosettes and the cellulose
microfibrils they produce. However, CESAs and CSLDs do differ in their plasma membrane
movements, interactions with microtubules (/0), and sensitivity to cellulose biosynthesis
inhibitors (8, 10), and they may differ in their tolerance of high Ca** concentrations (54). Tip
growth and cytokinesis are both associated with Ca?* gradients (55), and CSLDs might be needed
for these processes if CESA activity is inhibited by high Ca?* (54). In contrast to CESAs (/1),
CSLD movements in the plasma membrane do not track along microtubules and they are faster
and less linear than CESA movements (/0). This may help maintain cell integrity during rapid
isodiametric apical expansion in root hairs, pollen tubes, and protonemal filaments, and for cell
plate development, all cases where microfibril deposition need not be oriented. CESAs interact
with microtubules through Cellulose Synthase Interacting protein 1 (CSI1) (56). Although the
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CESA-CSI1 interface has not been identified, evidence suggests that it may reside within the
catalytic domain (56) and/or the N-terminus (/). This coincides with sequence divergence
between CESAs and CSLDs in the plant conserved region of the catalytic domain and most of the
N-terminus (Fig. S8). Finally, it is noteworthy that the cellulose biosynthesis inhibitor isoxaben
inhibits the activity of CESAs, but not CSLDs (8, /0). CSLDs share nearly all of the amino acids
for which point mutations confer isoxaben resistance in CESAs (/0), adding to the questions that
have been raised about cellulose biosynthesis inhibitor mechanism of action (57). Future
examination of CESA and CSLD interaction with microtubules and sensitivity to Ca?* and
isoxaben promises to shed light on the evolution of regulatory differences and their consequences
for cellulose microfibril biosynthesis by distinct protein families at different stages of plant cell
development.

Materials and Methods

Culture of P. patens

For routine subculturing and to generate tissue for transformation, rapid freezing, and cell wall
isolation, we incubated cultures at 24°C with constant illumination at 50-80 umol m? s in a
plant tissue culture incubator (Model CU36L5, Percival Scientific Chambers, Perry IA USA). We
sub-cultured filaments weekly on basal medium supplemented with ammonium tartrate (BCDAT:
1.0 mM MgSOs4, 1.9 mM KH>PO4, 10 mM KNO3, 45 uM FeSOs, 5.0 mM diammonium tartrate, 1
mM CaClz, 220 nM CuSOs, 190 nM ZnSOs, 10 uM H3BO3, 2.0 uM MnCl,, 230 nM CoCl,, 170
nM KI, and 100 nM Na;MOs solidified with 0.7% (w/v) agar) and overlain with cellophane (58).
For solid-state NMR, we cultured filaments on solid BCDAT medium at 21°C under 16/8 h
day/night cycle and subcultured them on BCDAT medium supplemented with 1% 3C glucose to
obtain the *C labeled tissues.

Zinnia elegans seedling growth

We stored seeds of Zinnia elegans L. var. Envy (A5896 N; Grimes Seeds, Concord OH) in the
refrigerator under desiccation until planting. We planted seeds by dispersing them (3.5 g)
uniformly on a tray of moist potting mix (Sunshine Mix #8 / Fafard-2 with RESiLIENCE, Sun
Gro Horticulture, Agawam MA USA) and covering them lightly and germinated them in a growth
chamber (Model AR36L, Percival Scientific Chambers) with a 16/8 h, 28/24°C day/night cycle
and 50% relative humidity. Light intensity was 170 pmol m 2s™! at tray height generated by
fluorescent and incandescent lamps. We placed seedling trays with drainage holes inside trays
without holes and watered them three days a week by flooding the outer tray for about 30 min,
then pouring out excess water.

Generation and verification of CESA-deficient P. patens lines

We constructed the CRISPR-Cas9 CESAS knockout (KO) vector as described previously (735,
59). We designed protospacers (Table S1) targeting two sites within CESAS5 (Pp3c2 13330V3.1)
using CRISPOR at http://crispor.tefor.net/ (60). and cloned the protospacers into entry vectors
pENTR-Ppu6p-sgRNA-L1RS and pENTR-Ppu6p-sgRNA-L5L2 (Addgene,
https://www.addgene.org/) for tandem insertion into the destination vector. After annealing
protospacers as described previously (59), we ligated them into pENTR-PpU6p-sgRNA entry
vectors using Golden Gate assembly (New England Biolabs, Ipswich, MA) in 10 pl reactions
containing 19 fmol of entry vector and 35 fmol of annealed protospacer incubated at 37°C for 1 h
and 60°C for 5 min (/0). We recombined the resulting entry vectors with destination vector pZeo-
Cas9-gate (Addgene), which confers zeocin resistance, using Invitrogen LR Clonase II Plus
according to the manufacturer’s instructions (ThermoFisher Scientific, Waltham MA USA). We
sequence-verified all plasmids. Construction of the CESA1KO vector was described previously
(195).
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We edited a previously described cesa6/7/3/8/10/4 KO-41 line (15) with CRISPR-Cas9 to disable
CESAS5 and CESAI. As described previously (58), we transformed protoplasts generated from
filaments cultured on solid BCDAT medium with CRISPR-Cas9 knock-out vectors and selected
colonies for genotyping after one round of selection on 50 ug ml! Zeocin or 15 pg ml!
hygromycin (59). We isolated genomic DNA as described previously (58) and amplified it with
primers (Table S1) flanking the target sites and potential off-target sites predicted by CRISPOR
(60). We analyzed the PCR products by gel electrophoresis to identify large deletions and
sequenced them to confirm editing at target sites and the absence of editing at off-target sites.

For additional verification of the knockout genotype, we used primers designed to amplify
deletions in CESA1, CESA3, CESA4, CESAS5, CESAS, and CESA10 (Table S1) to amplify
genomic DNA extracted from wild type and final CESA deficient lines. The background line used
for the first round of CRISPR mutagenesis (/5) was cesa6/7KO-1 produced by homologous
recombination (/8), and we verified the deletion of these two genes by PCR in the final CESA
deficient line (Fig. S3). We also sequenced fragments amplified with primers flanking the
deletions in CESA3, CESA4, CESAS, and CESA10 (Table S1, Fig. S4) and the entire
CESA6/CESA7 tandem pair (Fig. S5) to confirm that the final CESA deficient lines retained the
deletions described previously for the cesa6/7/3/8/10/4 KO-41 line (15).

Finally, we downloaded gene models from the near telomere-to-telomer sequence of P. patens
(20) and searched them by blastp in Geneious Prime v. 2019.2.3, using PpCESAS (Phytozome
gene ID: Pp3c2 13330V3.1) as a query and the BLOSUMS62 matrix with a max E-value=10. All
hits were matched with their corresponding Phytozome gene model by blastp search.

Time-lapse imaging of developing gametophore buds

To image developing gametophores of CESA-deficient mutants, we pipetted ground protonemal
tissue into the central part of microfluidic imaging chambers (67) and submerged them in half-
strength Hoagland’s medium (2 mM KNOs3, 1.0 mM KH2POq4, 0.50 mM Ca(NOs3)2, 45 uM Fe
citrate, 150 uM MgSOy4, 5.0 uM H3BO3, 110 nM CuSO4, 1.0 uM MnClz, 115 nM CoClz, 95 nM
ZnS04, 85 nM K1, 51 nM NaxMoO4). We incubated the chambers under constant illumination at
85 umol m2s™! for two weeks before imaging. We acquired time-lapse images on a Nikon TIE
body equipped with a Plan Apo 1 20X objective and a Nikon DS-Fi2-L3 camera (Nikon
Instruments, Melville NY USA).

Extraction of cellulose microfibrils

For extraction of cellulose microfibrils, we harvested 7-d-old filaments from solid medium,
ground them in a mortar under liquid nitrogen, extracted them with 1 N NaOH at 100°C for 1 h,
and washed them with filtered water to neutrality. We extracted the NaOH-insoluble fraction with
acetic-nitric reagent (62) at 100°C for 1 h and then collected insoluble material by centrifugation.
We re-extracted the pellet in fresh acetic-nitric reagent for 30 min at 100°C, washed with filtered
water to neutrality, and then stored the material frozen or air-dried for X-ray analysis.

Transmission electron microscope imaging of metal-shadowed cell walls

For metal shadowing, we suspended the 1N NaOH and acetic-nitric reagent-extracted material in
distilled water and pipetted it onto freshly cleaved mica and allowed it to air-dry in a dust-free
environment. We clamped these samples onto a single-replica freeze fracture sled and inserted
them into a Cressington model 308 R freeze-fracture apparatus (Cressington Scientific
Instruments, Watford UK) at room temperature. After high-vacuum conditions were established,
we shadowed the sample with platinum/carbon in the same manner as freeze-fractured samples
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(see below). After removing the samples from the freeze-fracture machine, we scored the mica
with a pin and immersed the samples in chromic-sulfuric acid. While some replicated regions
detached quickly, most did not. After several hours we were able to detach replica fragments
using an acid stream expelled from a drawn-out glass Pasteur pipet. We transferred the replicas
through distilled water washes using a platinum loop, picked them up on Formvar-coated copper
grids and imaged them in the same manner as freeze-fracture replicas (see below).

X-ray diffraction

For X-ray diffraction, we formed thin circular membranes by collecting NaOH and acetic-nitric
reagent extracted material by suction onto nylon filters (5 um pore size), peeling the insoluble
material from the filter and then drying them in a dust-free environment. We used a Rigaku
SmartLab X-Ray Diffractometer operating at 40 kV, 44 mA (CuKa radiation) to generate
diffractograms from these paper-like samples.

Staining with S4B

We stained protonemal filaments extracted with acetic-nitric reagent without grinding with 0.01%
S4B (21) in tris-buffered saline and examined them with an epifluorescence microscope
(Olympus BH-2 with green filter set with 405 nm excitation and 455 nm dichroic mirror and
barrier filter) and a confocal scanning microscope (Olympus Fluoview FV1000 confocal
microscope with UIS2 40X N.A. 1.3 oil immersion objective and 559 nm diode laser). We
captured epifluorescence images using a Q-Color5 camera (Olympus America, Central Valley PA
USA).

Solid-state nuclear magnetic resonance analysis

We labeled tissue by subculturing it three times (14 days each) on BCDAT solid medium
containing 55.6 mM 3C glucose. After snap freezing on dry ice and thawing, we packed the
tissue into the rotor and wicked away excess water. We performed solid-state MAS NMR on a
Bruker (Karlsruhe Germany) Avance Neo solid-state NMR spectrometer, operating at 'H and '3C
Larmor frequencies of 600 and 150.7 MHz using a 3.2 mm double-resonance EFree MAS probe.
We conducted all experiments at room temperature at an MAS frequency of 12.5 kHz. We
determined the '3C chemical shift using the carbonyl peak of alanine at 177.8 ppm as an external
reference with respect to tetramethylsilane (TMS). The 'H 90° pulse length was 3.0 ps and we
used 'H-"3C cross-polarization (CP) with ramped (70-100%) 'H rf amplitude, a 1 ms contact
time, and SPINAL 64 decoupling (63) with a 2 s recycle delay to acquire the spectrum.

Preparation of xylogenic Zinnia elegans suspension cultures

Similar to established methods (64), we released mesophyll cells from first leaves (about 1 cm
long) of 8-d old Zinnia elegans var. Envy seedlings after sterilization in calcium hypochlorite. We
concentrated the cells by gentle centrifugation, washed them in medium, inoculated flasks at the
required density (12 ml total volume in 50 ml Erlenmeyer flasks), then cultured them for two days
at 27°C with 93 rpm rotary shaking in the dark. We observed early banded secondary cell wall
thickenings 48-49 h after culturing using an Olympus BH-2 epifluorescence microscope (violet
filter set with 405 nm excitation and 455 nm dichroic mirror and barrier filter) after addition of a
cellulose-binding fluorophore (Tinopal LPW, Ciba Geigy, Summit NJ USA; 0.0005% w/v final
concentration) to a small drop of the cells in medium. We used an additional barrier filter (Zeiss
KP560) in the emission light path to block chlorophyll autofluorescence. To increase the
frequency of relatively flat bands of rosettes in the freeze-fracture replicas, we collected cells for
freezing when the fluorescence of patterned secondary cell wall thickenings was dimly visible.

Freeze-fracture transmission electron microscopy (FF-TEM)
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We prepared CESA-deficient P. patens protonemal filaments for FF-TEM as described
previously (2) with some modifications. We cultured filaments for 7 d on solid BCDAT medium,
homogenized them in water using a hand-held tissue homogenizer with a disposable hard tissue
probe (Omni International, Kennesaw GA USA), and cultured them at low density
(approximately 10 mg wet weight of inoculum per plate) for 4 d on the same medium. Colonies
were collected with a micro-spatula (Electron Microscopy Sciences, Hatfield PA USA) and
mounted in 1 pL of bread yeast hydrated in water. We concentrated Zinnia cells at an early stage
of patterned secondary wall synthesis by gently suctioning them onto a nylon filter (5 um pore
size), which we placed on medium-saturated filter paper for 1 h recovery prior to collecting the
concentrated cells for freezing with a micro-spatula (33). We froze samples mounted between two
thin copper sample holders by plunging them into ultracold propane (EMS-002, Electron
Microscopy Sciences) (2) and stored specimens in liquid nitrogen until use.

We prepared and cleaned replicas as described previously (2). Briefly, we loaded copper
planchets into a double replica holder under liquid nitrogen and transferred them to the liquid
nitrogen cooled stage of a freeze-fracture machine (Model 308R, Cressington Scientific) under
vacuum (<1 x 107 mbar). We warmed the stage to -120°C for 20 minutes to evaporate propane
and cooled it to -150°C for fracturing. We rotary-shadowed the fractured specimens at 60° with
1.2-1.6 nm of Pt/C and applied 13-15 nm of carbon at 85° with continuous sample rotation. We
cleaned replicas with chromic-sulfuric acid, rinsed them in water, and mounted them on Formvar-
coated copper grids. We collected digital images of the acid-cleaned replicas with a high-
definition CMOS camera (NanoSprint43 43mp, AMT Imaging, Woburn MA USA) at 80,000
times magnification in a transmission electron microscope (Hitachi HT7800 operated at 80kV,
Hitachi High-Tech, Ibaraki Japan). We used eucentric focus, which generated good
correspondence between nominal and actual magnification as verified by measurement of lattice
spacings in negatively stained catalase crystals (40800, Ladd Research Industries, Williston VT
USA).

Morphometric analysis of rosettes

We analyzed rosettes from images of protoplasmic fracture (PF) faces of the inner surface of the
plasma membrane bilayer (65), which is revealed when the outer leaflet of the plasma membrane
is removed by the fracture process. The PF lacks ‘hairy’ filamentous structures (possibly cellulose
fibrils and/or other polymers) that are visible on the exoplasmic fracture (EF) face of the plasma
membrane adjacent to the cell wall (66). As fracture occurs to reveal the PF, the TMH regions
(lobes) of rosettes remain attached to the cytosolic region of the complex while pulling out of the
outer leaflet so that the entire membrane-spanning regions of the TMHs can be viewed top-down
in the replica.

First, a trained investigator examined unmodified digital TEM images (recorded at x80k) on a 4K
monitor and identified potential rosettes that met the following criteria: (a) groups of 5-6 particles
arranged in a hexagon, (b) within a flat, uniformly shadowed, and well-focused area of the image.
Next, a group of 3-5 experts working together excluded examples from further analysis when they
did not all agree that a particle cluster was likely to be a rosette. Although rosettes are distinctive
within plant plasma membranes, this vetting process was carried out because other types of
intramembrane particles (IMPs) can form clusters.

We measured each final set of rosettes by hand and by reference-free class averaging with
EMAN? (https://blake.bcm.edu/emanwiki/EMAN?2) (36). Using the polygon selection tool in Fiji
(https:/fiji.sc/) (67), we enclosed each rosette in a hexagon by anchoring the outer edge of each
lobe without omitting parts of any lobe and calculated the estimated long diameter (d) from the
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included area (A) assuming the geometry of a regular hexagon: d = 1.732 x (SQRT (A/2.5982)).
Values for d calculated in this way are slightly lower compared to values determined from
circular selections, which often include more free space around the lobes (2).

Reference-free class averaging

We used EMAN?2, version 2.91 (https://blake.bcm.edu/emanwiki’EMAN?) (36) to create
averaged images of rosettes from micrographs with image contrast inverted upon import and a
scale factor of 1.598 apix. We selected particles manually using e2boxer with a boxsize of 300
pixels. After performing CTF correction in EMAN?2 and specifying a particle set, we performed
reference-free class averaging using e2refine2d.py, typically using six classes (ncls=6).
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Figures

Fig. 1. Viable CESA-deficient P. patens. (A) Wild-type P. patens has filamentous protonemata
and leafy gametophores (arrowheads). (B) Septuple CESA knockouts expressing only PpCESAS
have morphologically normal protonemata and stunted gametophores (arrowheads) as described
previously (15). (C) CESA-deficient octuple knockouts are viable with morphologically normal
protonemata, but no gametophores. (D) Expression of PpPCESAS5 under the control of the
constitutive rice Actinl promoter partially rescues gametophore development (arrowheads) in
CESA-deficient octuple knockouts. (E-H) Time-lapse imaging of gametophore buds in CESA-
deficient P. patens reveals cell rupture (E-F, yellow and red outlines mark fully expanded cells; F-
G, yellow and red arrows indicate the positions of the respective cells after rupture) and (H) areas
of early senescence marked by accumulation of brown pigment. Scale bar in A = 1 mm and
applies to A-D. Scale bar in E = 50 um and applies to E-H. Time-lapse interval = 10 min.

Fig. 2. Cellulose microfibrils in wild type and CESA-deficient P. patens. Cell walls were
extracted from protonemal filaments of (A) wild type and (B) CESA-deficient P. patens with 1 N
NaOH and acetic nitric reagent before air-drying and shadowing to reveal microfibrils. (C) The
neutral carbohydrate region of 1D '*C CP MAS NMR spectra of CESA-deficient and wild type P.
patens. Identifiable 13C NMR shifts of cellulose (C), arabinose (A) and starch (SC) are labeled.
The spectra were recorded at a '3C Larmor frequency of 150.7 MHz and a MAS frequency of 12
kHz.

Fig. 3. Transmission electron microscopy imaging of rosettes in freeze-fracture replicas of
CESA-deficient P. patens. (A) Plasma membrane region from the apex of a protonemal filament
(box in inset) with rosettes (arrowheads). Scale bar = 40 nm, inset scale bar = 3 pm. (B) Plasma
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membrane region from a protonemal filament (box in inset) viewed tip down with numerous
rosettes (arrowheads). Scale bar = 100 nm, inset scale bar = 2 pm. (C) Plasma membrane region
of a dividing cell with fusing cell plate (box in inset) with numerous rosettes (arrowheads). Scale
bar = 100 nm, inset scale bar = 3 um.

Fig. 4. Original images and corresponding image averages of rosettes from two cell types
with diameter measurements. (A) Original FFTEM images and data from hand measurement of
543 rosettes from nine CESA-deficient P. patens protonemal cells (three cells from each of three
independent genetic lines) frozen while synthesizing primary cell walls. (B) Original TEM image
and data from hand measurement of 380 rosettes from five differentiating tracheary elements
frozen while synthesizing secondary walls via CESAs. (C, D) Representative image averages of
the rosettes measured in A and B. The contrast of the original images was reversed before
reference-free image averaging to accommodate the design of the EMAN2 program. Data for
each cell type are from hand measurement of the 42 image averages (six class averages within
each of seven refinements). Scale bar = 20 nm.

Fig. 5. Sequence comparison and lineage sorting of CESAs, CSLDs and CESA/CSLD-like
proteins. (A) Graphical comparison between P. patens CSLD and CESA protein sequences and a
representative CESA/CSLD-like protein from Chlorokybus atmophyticus (Chrsp 134508684).
Numbers indicate the percent amino acid identity between PpCESAS or PpCSLDI1 and the C.
atmophyticus sequence in different regions (dashed lines). CSLDs share greater identity with
CESA/CSLD-like sequences in the N-terminal region and RING domain (yellow), but they are
more similar to CESAs in the plant-conserved region (PCR, cyan). Gray=transmembrane regions
(TM), black=catalytic “D” and “QxxRW” domains, and magenta=class-specific region (CSR).
(B) Evolutionary relationships of chlorophyte green algae, five classes of charophyte green algae,
and land plants (Embryophyta) depicting incongruence of the CESA, CSLD, and CESA/CSLD-
like sequence trees. Evolutionary relationships (topology only) are from (68). Sequence
distributions are from (45-47).
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