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On the relevance of glycosyl oxonium ions to
1,2-cis-selective O-glycosylation in ether solvents

Varad Agarkar, Ava E. Hart, and Justin R. Ragains

Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA

ABSTRACT ARTICLE HISTORY
Since no later than the 1970s, organic chemists have speculated Received 1 June 2024
on the role of glycosyl oxonium ions in chemical O-glycosyla- ~ Accepted 18 September 2024

tion. Such species result from the attack of ethers on glycosyl

oxocarbenium ions and are invoked to explain 1,2-cis-selectivity g_E‘IN:gRgzon. vcosyl
in ether solvents. However, a systematic study to probe this oxgrriumyiow 7 glycosy

phenomenon appears to be lacking in the chemical literature. stereoselectivity; counterion
Herein, we study the effects of solvent, counteranion, protecting effects

group electron-withdrawing effects, and acceptor on O-glycosy-

lation stereoselectivity with D-glucosyl trichloroacetimidate

donors. While many of these transformations proceed with 1,2-

cis-selectivity, our results suggest that glycosyl oxonium ions

play minimal, if any, role in O-glycosylation.

GRAPHICAL ABSTRACT

Introduction

Synthetic oligosaccharides and other O-glycosides are important molecules
for the development of glycoconjugate vaccines,!'! glycan arrays,'*! and
drugs.!”! Of the synthetic operations necessary for the production of oligo-
saccharides using chemical means, chemical O-glycosylation involving the
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Scheme 1. Background on 1,2-cis O-glycosides and the "ether model".

reaction of alcohol (acceptor) with glycosyl electrophile (donor) in the pres-
ence of an activating agent is perhaps the most important. However, all O-
glycosylations with fully substituted donors can potentially produce
both 1,2-cis and 1,2-trans O-glycosidic products (Sch. 1). While 1,2-trans
linkages are readily accessed with high selectivity using neighboring-group
participation from 2-position esters, carbonates, and carbamates, accessing
1,2-cis linkages with the same selectivity has proven to be a much more dif-
ficult problem. The myriad of solutions to the 1,2-cis problem, whether

they involve use of nucleophilic additives,** ether solvents,!'***! elec-
tron-withdrawing groups,'>'>™'”1 benzylidene protection,'®*'”! remote/
20,21] [22,23]

neighboring group participation,! and H-bonded directing groups
just to name a few, speaks both to the ingenuity of carbohydrate chemists
and the difficulty associated with this problem.'****! Further, the paucity of
automated syntheses of glycans rich in 1,2-cis linkages'*®! suggests the need
for highly 1,2-cis-selective methods.

One of the most simple solutions to 1,2-cis-selective O-glycosylation
involves the implementation of ether solvents especially with relatively elec-
tron-rich glycosyl O-trichloroacetimidate or thioglycoside donors in the pres-
ence of acidic/electrophilic activators.!'°*! Investigators such as Seeberger,
Boons, and especially Schmidt, as well as many others, have demonstrated
the unmistakable positive effect that ether solvents have toward improving
1,2-cis selectivity. A common mechanistic proposal to explain this effect
involves the formation of intermediate oxocarbenium ions from donor
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Scheme 2. Indirect evidence for glycosyl oxonium ions and previous work.

substrates 3, their interception of an ether molecule to generate an equatorial
glycosyl oxonium ion (4, which is likely more stable than the axial diaster-
eomer),?”] and subsequent backside attack of acceptor to generate 1,2-cis
glycoside (5, Sch. 1). Indeed, organic chemists have speculated on the exist-
ence of 4 since a time no later than the 1970s.'>*%73%) Despite direct evi-
dence of other highly reactive species such as glycosyloxyiminium!® and
sulfonium®*"*! jons in addition to glycosyl oxocarbenium ions,*? we are
not aware of any direct observation of species 4.

Perhaps the most compelling indirect evidence for 4 has been provided
by Dabideen and Gervay-Hague who demonstrated that various epoxides,
oxetane, and THF could give ring-opened products such as 8 (Sch. 2) via
putative intermediate 7 upon reaction with glycosyl iodide substrates in the
presence of MgO in CH,CL."** Curiously, these processes occur with rela-
tively low stereoselectivity which contrasts with the often high stereoselect-
ivity in the studies detailed by references.'"*! In our opinion, these
conditions differ dramatically from the aforementioned 1,2-cis selective
methods in ether solvents!®**) which occur, almost without exception, not
in the presence of halide anions but triflate and perchlorate.

Our previous foray into this area (Sch. 2) involved the conversion of 4-
trifluoromethylbenzyl-protected (CF;Bn) glucosyl donor 9 which can be
activated toward O-glycosylation with strong acids.'*! Activation with
triflic acid in CH,Cl, resulted in poor selectivity (data not shown), how-
ever, activation in 1,4-dioxane resulted in an encouraging selectivity of 13:1
in favor of 1,2-cis product 11 (our previous work, entry 1). During the
study, we reasoned that replacement of triflic acid with similarly acidic tri-
fluoromethanesulfonamide could be beneficial for a number of reasons.
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First, glycosyl triflates are well-documented intermediates which can be
generated under a host of conditions and which readily undergo reaction
with acceptors to generate O-glycosides.® We believed that glycosyl tri-
flates might serve to erode selectivity by competing with ether for the for-
mation of glycosyl triflates at the expense of equatorial glycosyl oxonium
ions 4. Second, trifluoromethanesulfonamide anion does not form glycosyl
trifluromethanesulfonamides with anything approaching the ease of glycosyl
triflate formation.”>® Efforts by Nokami®! as well as Wang &
Pedersen®! failed to produce any evidence for glycosyl trifluoromethane-
sulfonamides under conditions that readily produced the glycosyl triflate
analogs. With this in mind, we performed an experiment (Sch. 2, our pre-
vious work, entry 2) identical to the previous, triflic-acid-promoted proto-
col save for the use of trifluoromethanesulfonamide in its place. We
hypothesized that the presence of the apparently less-nucleophilic trifluoro-
methanesulfonamide anion would result in higher proportions of a 1,4-
dioxane-derived glycosyl oxonium intermediate. To our great surprise, this
second experiment proceeded with total loss of stereoselectivity (1:1 1,2-cis/
1,2-trans). This observation was highly intriguing to us, and we elected to
conduct a study using glucosyl O-trichloroacetimidate donors, a species
with an especially rich history of 1,2-cis selectivity in the presence of ether
solvents."! Herein, we provide details of this study. While we cannot dis-
prove the existence of glycosyl oxonium intermediates, we argue that these
species bear little relevance to 1,2-cis selective processes in ether solvents and
that the mechanistic picture may be far more complex than originally
thought to be.

Results and discussion

In our initial studies (Sch. 3), we employed relatively electron-rich benzyl-
protected glucosyl O-trichloroacetimidate donor 12 with acceptor 13
under conditions similar to those at the bottom of Scheme 2 (Sch. 3). The
D-glucose stereochemistry was chosen due to the lack of axial substituents
which might bias selectivity as could be the case with the D-mannose or
D-galactose analogs. The acceptor 13 was chosen due to its moderate
reactivity and the relative ease of selectivity determination using integration
of reducing-end methyl groups with 'H NMR."'*'*! Reaction with HOTf in
1,4-dioxane gave a 70% yield of product 14 with a 1,2-cis/1,2-trans selectiv-
ity of 4.6:1 (entry 1). Likewise, implementation of Et,O provided similar
yield and a similar selectivity of 2.3:1 (entry 2). Replacing HOTf with
TMSOTf under these same conditions resulted in a selectivity of 3.0:1
(entry 3). These selectivities are similar to those reported in our previous
work."® The diminished selectivity relative to the CF;Bn-protected
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OBn OH O%n
Br&%ﬂ J‘JJ\H % B%%O&&' activator (0.15 mmoI)Bﬁg%
BnO "0” “Cel B0 OMe solvent (2.5 mL), 18 °C "<
12 (0.15 mmol) 13 (0.105 mmol) B0
BnOOMe

14 (yield, 1,2-cis/
1,2-trans ratio)

Entry Solvent Activator Yield 1,2-cis/1,2-trans

1 1,4-dioxane HOTf 70% 4.6:1
2 Et,O HOTf 78% 2.3:1
3 Et,O TMSOTf 75% 3.0:1
4 THF HOTf 7% 1:1.3
5 1,4-dioxane Tf,NH 71% 1:1.2
6 Et,O Tf,NH 72% 1:1.3
7 1,4-dioxane  BF;OEt, 72% 1:1.4

Scheme 3. 1,2-cis-Selectivity with a benzyl-protected D-glucosyl trichloroacetimidate.

substrates from Scheme 2 is no cause for concern as we and others have
shown that halogenation of benzyl protecting groups results in an increase
in selectivity.">'>"'”) Interestingly, switching to THF as solvent resulted in
a total loss of selectivity but a comparable yield of 77% (1:1.3 1,2-cis/1,2-
trans, entry 4). Given the high Lewis basicity of THF relative to 1,4-dioxane
and diethyl ether™ as well as the previous results of Dabideen and
Gervay-Hague, this is a surprising result. According to a mechanistic
hypothesis like that shown in Scheme 1, one would expect glycosyl oxo-
nium formation to be most relevant in the most Lewis-basic solvents. Just
as interesting are the results of entries 5-7. Replacement of HOTf with
Tf,NH in 1,4-dioxane and diethyl ether resulted in near-total loss of 1,2-cis
selectivity providing 14 with 1,2-cis/1,2-trans selectivities of 1:1.2 and 1:1.3,
respectively (entries 5 and 6). Finally, we screened BF;eEt,O as activator,
and this resulted in a loss of 1,2-cis selectivity as well (entry 7, 1:1.4 1,2-cis/
1,2-trans). These results are similar to those presented at the bottom of
Scheme 2. Triflate appears to be essential for 1,2-cis selectivity while alter-
native activators result in loss or reversal of selectivity despite the imple-
mentation of various ether solvents. In addition, the most Lewis-basic
solvent screened (THF)[37] provides the lowest selectivity under conditions
otherwise identical to those in 1,4-dioxane and Et,O.

As mentioned before, we and others have demonstrated that halogen-
ation of benzyl groups results in an increase in 1,2-cis selectivity wherein
we attribute this increase to electron withdrawing effects.!">'>"'”) Thus, we
elected to study solvent and activator parameters with CF;Bn-protected
donor 15 and acceptor 13 (Sch. 4). As with Scheme 3, we observed the
highest selectivity (9.1:1 1,2-cis/1,2-trans) with 1,4-dioxane (entry 1).
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OCF3Bn
OCF3Bn o o c&moﬁ\
CESFi%OnS&L NH . rénoﬁﬂ activator (0.15 mmoI)CFg’Bn%FBBno o
CF3BnO 0" >ccl, BnO OMe solvent (2.5 mL), 18 °C BnO o]
15 (0.15 mmol) 13 (0.105 mmol) BnO
BnOOMe

11 (yield, 1,2-cis/
1,2-trans ratio)

Entry Solvent Activator Yield 1,2-cis/1,2-trans

1 1,4-dioxane HOTf 90% 9.1:1
2 Et,O HOTf 89% 5.4:1
3 THF HOTf 85% 1.6:1
4 THF TMSOTf 60% 2:1
5 TBME HOTf 75% 7.0:1
6 1,4-dioxane Tf,NH 70% 1.21
7 Et,O TfoNH 75% 1:11
8 TBME Tf,NH 80% 1:1

9 1,4-dioxane  BFyOEt, 36% 1:2.6

Scheme 4. 1,2-cis-selectivity with a CF3Bn-protected D-glucosyl trichloroacetimidate.

Diethyl ether also provided 1,2-cis selectivity using HOTf as activator
(5.4:1, entry 2). Similar to our previous observations, implementation of
THF results in a loss of selectivity relative to 1,4-dioxane and ether using
HOTf (1.6:1) and TMSOTSf (2:1) as activators (entries 3 and 4). These
results further corroborate the notion that high Lewis basicity does not
guarantee the high 1,2-cis selectivity expected with glycosyl oxonium inter-
mediates. We were also interested in screening an alternative ether solvent
chosen due to an expected poor propensity toward glycosyl oxonium for-
mation. Thus, the implementation of tert-butyl methyl ether (TBME, entry
5) resulted in a respectable 1,2-cis selectivity of 7:1 despite the steric hin-
drance about the ether oxygen! This observation corroborates those previ-
ously made by Seeberger and coworkers in which TBME engendered high
1,2-cis selectivity under a multitude of conditions."* Further, we screened
these same solvents using Tf,NH as activator and observed dramatically
reduced 1,2-cis selectivities with 1,4-dioxane (entry 6, 1.2:1), diethyl ether
(entry 7, 1:1.1), and TBME (1:1, entry 8). Finally, the implementation of
BF;eEt,O (entry 9) resulted in a reversal of selectivity in favor of 1,2-trans.

We were then interested in screening other acceptors than 13 to assure
that these results were not dependent on acceptor structure (Sch. 5). We
elected to screen two acceptors with high reactivity (and thus low expected
selectivity) relative to 13. Reaction of CF;Bn-protected 15 with the alcohols
N-carbobenzyloxy-3-amino-propan-1-ol 16 and cholesterol 17 resulted in
the expected 1,2-cis selectivity with HOTTf as activator and a loss of selectiv-
ity with T, NH.
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OCF3Bn
CF3BnO o NH _ OCF3Bn
CF3BnQ L+ ROH activator (0.15 mmol) Clésr_l_?»réoo o}
CF3BnO 3Bn
y o CCls (0.105 mmol) 1,4-dioxane (2.5 mL), 18 °C CF3BnO ™"poR

15 0. I
(0.15 mmol) 18/19 (yield, 1,2-cis/

ROH = CbzHN™ >""OH (16) 1,2-trans ratio)
= cholesterol (17)

Entry ROH Activator Yield 1,2-cis/1,2-trans

1 16 HOTf 73% 4.2:1
2 16 Tf,NH 70% 1:1

3 17 HOTf 70% 6.9:1
4 17 TfNH 76% 1.1:1

Scheme 5. Selectivity with additional acceptors.

Taken together, the results in Schemes 3-5 cast serious doubt on the
“ether model” presented in Scheme 1. Particularly salient are the following
three observations: 1. THF, the most Lewis-basic of the three solvents, con-
sistently provides the poorest selectivity in the presence of activators such
as HOTf and TMSOTf. 2. TBME, the most hindered of the four ether sol-
vents screened, provides 1,2-cis selectivity comparable to 1,4-dioxane and
diethyl ether and far superior to that observed with THF provided that the
relevant counteranion is triflate. 3. Perhaps most compellingly, switching
from activators such as HOTf and TMSOTf to Tf,NH and BF;eOEt,
results in loss of stereoselectivity even though we would expect trifluorome-
thanesulfonimide to interfere less than triflate with glycosyl oxonium for-
mation. As suggested before, these results do not disprove the formation of
glycosyl oxonium ions. But they do call into serious question the agency of
such species in 1,2-cis selective processes as shown in Scheme 1.

At this juncture, we conceived of alternative hypotheses. Given the loss
of stereoselectivity observed with THF, we were interested in what, if any,
effect solvent polarity might have on selectivity. We screened an additional
3 solvents (toluene, CH,Cl,, and a,0,0-trifluoromethylbenzene, Sch. 6) and
compared the resulting selectivity to solvent dielectric constant (€) with
these new results and results from Sch. 4. However, no clear trends could
be discerned in comparing either € or solvent polarity index (P’, not
shown) to 1,2-cis selectivity (Sch. 6).

Given the relatively high selectivity engendered in the presence of triflate
anion in this study and in numerous previous studies, we also hypothesized
that glycosyl triflate intermediates might play a role in 1,2-cis selectivity as
has been postulated elsewhere.*®! However, given the poor stability of gly-
cosyl triflates at the temperature (18 °C) under which the reported O-glyco-
sylations were studied herein, we elected to attempt observation of glycosyl
triflates and other intermediates derived from 12 and 15 under reaction
with TMSOTT in perdeuterated Et,O at low temperature (—40 °C). Indeed,
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OCF3Bn
OCF3Bn BO o"é) (:F:gBr\O‘&111
CF3BnO 0 n CF3BnQ
CF,BnO j\tH " Bnc% HOTf (0.15 mmol) " *~"CF.,Bn0O ™q
CF3BnO "0” >ccl, "~ OMe solvent (2.5 mL), 18 °C BO 0
15 (0.15 mmol) 13 (0.105 mmol) Bro -
nOoMme
11 (yield, 1,2-cis/
1,2-trans ratio)
Entry Solvent € Yield 1,2-cis/1,2-trans
1 1,4-dioxane 2.2 90% 9.1:1
2 toluene 24 75% 2.0:1
3 Et,0 43 89% 5.4:1
4 TBME 45 75% 7.0:1
5 THF 76 85% 1.6:1
6 CH,Cl, 8.9 71% 3.6:1
7 CF3CeHs 9.2 80% 4.0:1

Scheme 6. Solvent dielectric screen.

OPG OPG
PGO 0 TMSOTf PGO 0 warm to 0 °C y
PGO 5 PGO 'gMS decomposition
PGO(  DirEtz0,-40°C PGOS of |
12 (PG = Bn) CCls CCls
15 (PG = CF;3Bn) 20 (detected with

TH/'3C NMR)
Scheme 7. NMR studies.

Wang & Pedersen had observed formation of glycosyl triflates from super-
disarmed 2-benzyl-3,4,6-triacetyl-D-glucosyl trichloroacetimidate under
similar conditions.*® In the event, treatment of 12/15 with TMSOTS in
D;o-Et,O at —40°C resulted in a clear conversion of trichloroacetimidate to
silylated analogs 20 confirmed by comparison to the work of Wang &
Pedersen (Sch. 7).*°) However, there was no obvious formation of glycosyl
triflate derivatives of 12/15, and slow warming toward 0°C simply resulted
in decomposition. Failure to observe glycosyl triflates under these condi-
tions does not disprove the relevance of such intermediates to 1,2-cis select-
ive O-glycosylation, and we deem these results inconclusive on the subject.

Conclusion

In conclusion, the results of this work paint a far more complicated picture
than previous assumptions based on the “ether model” might predict.
While observations made herein do not place us anywhere close to a full
mechanistic understanding of the reasons for 1,2-cis selectivity in ether
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solvents, we believe that this work rules out ether-derived glycosyl oxonium
ions as relevant intermediates. Previous mechanistic proposals that invoke
these intermediates should be reconsidered. Continuing work that will shed
further light onto the mechanistic underpinnings of these processes is
underway in our lab and will be reported in due course.

Experimental section
General methods

All reactions were performed under N, atmosphere, which was achieved by
vacuum purge backfill three times. Dried solvents (CH,Cl,, Et,O, THF)
were used directly from a PureSolv 400-5 solvent purification system.
Dry 1,4-dioxane solvent was obtained through distillation from sodium-
benzophenone ketyl. Dry tert-butyl methyl ether (TBME) and toluene were
purchased from Acros Organics. Dry CF;C¢Hs was purchased from Sigma-
Aldrich. Reagents were purchased from commercial sources (Alfa Aesar,
Acros Organics, Matrix Scientific (4-trifluoromethyl benzyl bromide),
Sigma Aldrich, TCI). Column chromatography was performed using silica
gel (60 A) purchased from SiliCycle. Analytical TLC was performed using
60 A silica gel with F254 indicator on aluminum sheets (Sigma Aldrich).
Compound visualization on TLC was performed using a hand-held UV
hand lamp and/or staining with anisaldehyde. '"H NMR and '*C NMR
experiments for intermediate compounds and anomeric ratio analysis were
performed using a Bruker AVIII-400 MHz NMR spectrometer. Low-tem-
perature NMR experiments were performed using a Bruker AVNEO
700 MHz spectrometer. CDCl; was purchased from Cambridge Isotope
Laboratories. Dyo-Et,O was purchased from Thermo Fischer Scientific.

Determination of anomeric ratios

For '"H NMR analysis of anomeric mixtures in both the crude and purified
samples, the number of scans was set to 16, while relaxation delays were
set to 20seconds. For glycosylation reactions using acceptor 13 (methyl
2,3,4-tribenzyl-a-D-glucoside), anomeric ratios were determined according
to the following set of commands using the GSD algorithm (deconvolution)
in MestReNova:

1. Phase correction — Processing > Phase correction > Automatic

2. Baseline correction - Processing > Baseline >Full auto (Bernstein
polynomials)

3. Analysis > Peak picking > options = Method - GSD, Refinement level -
5 fitting, Optimized for peaks — average. Then Ok.
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4. Analysis > Integration > Options = Calculation method - Sum, Source -
autodetect, Algorithm — peak picking, Minimum area — 3%. Then Ok.

5. Analysis > Peak picking > Automatic

6. View > Tables > Peaks.

A GSD table containing all the peaks with their respective height, width,
and area was generated. The reducing-end aglycone methyl signals from
both the 1,2-cis or alpha (3.35-3.36 ppm) and 1,2-trans or beta (3.32-
3.33ppm) products were analyzed. Areas of these signals were used to
determine anomeric ratios in Schemes 3, 4, and 6. Anomeric ratios in
Scheme 5 were determined through the integration of key signals in the 'H
NMR spectra of crude and purified samples.

Synthesis of phenyl-2,3,4,6-tetra-O-acetyl-1-thio--D-glucopyranose (23)

To 5.10g of 1,2,3,4,6-penta-O-acetyl-a,3-D-glucopyranose (21) (13.1 mmol)
in an RB.F. with a magnetic stir bar, 25.0mL of dichloromethane was
added. The flask was capped with a septum, then three cycles of nitrogen
purge backfill were performed, and the resulting solution was maintained
under a N, blanket. After all solids dissolved, the flask was placed in an ice
bath, and its contents were stirred for 30 min. 12.5mL of 33% HBr in acetic
acid was added in a dropwise fashion over a period of 5min to the flask in
an ice bath with continued stirring. The ice bath was removed after 1h,
and the reaction was monitored by TLC. The TLC showed complete con-
version after 3h. The reaction mixture was then added to 100 mL of ice-
cold water in a beaker. The mixture from the beaker was then transferred
to a separatory funnel and washed with 60 mL x2 of sat. aq. NaHCOj; solu-
tion. The organic layer was then concentrated on the rotary evaporator to
obtain a brown foam. To this brown foam in an R.B.F., a magnetic stir bar
was added, and the flask was then subjected to high vacuum for 1h. The
flask was then backfilled with N,, followed by three cycles of nitrogen
purge backfill, and 25.0mL of acetonitrile and 1.5mL of thiophenol
(15mmol) were syringed into the flask. After a homogeneous mixture was
obtained, the flask was placed in an ice bath and its contents were stirred
for 30 min. 3.9mL of triethylamine (28 mmol) was then added dropwise
over a period of 5min into the flask with continued stirring. The ice bath
was removed after 1h, and the reaction was monitored by TLC. The TLC
showed complete conversion after 3 h. The reaction mixture was transferred
to a separatory funnel, and 75mL of dichloromethane was added to the
funnel. The organic layer was then washed with 100 mL x2 of water fol-
lowed by 30 mL x2 saturated brine solution. The organic layer was then
dried using Na,SO, and concentrated to give a crude product, which was
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purified using flash column chromatography (0-20% EtOAc/hexanes) to
give 2.29¢g (5.20mmol) of 23 as a white solid (40% two steps).lH NMR
(400 MHz, Chloroform-d): 6 7.50 (m, 2H), 7.32 (m, 3H), 5.22 (t, J=9.3 Hz,
1H), 5.04 (t, J=9.8Hz, 1H), 4.97 (t, ]=9.3Hz, 1H), 4.71 (d, J=10 Hz, 1H),
420 (m, 2H), 3.72 (m, 1H), 2.09-2.06 (m, 6H), 2.02 (s, 3H), 1.99 (s, 3H).
The "H NMR matched the literature spectrum.”**’

Synthesis of phenyl-2,3,4,6-tetra-O-benzyl-1-thio-f-D-glucopyranose (25)

To 2.26¢g of 23 (5.13mmol) in an R.B.F. with a magnetic stir bar, 5ml of
methanol was added. The flask was capped with a septum. This was fol-
lowed by three cycles of nitrogen purge backfill, and the resulting solution
was maintained under a N, blanket. Then, 0.2mL of 5M NaOMe was
added in a dropwise fashion to the flask with continued stirring. After 1h,
the spots on TLC converged onto a single, low-eluting compound. 6.00 g of
Dowex” 50WX8, 200-400 mesh, ion exchange resin (Acros Organics) was
then added to the reaction mixture to adjust the pH to 4. The reaction
mixture was then filtered through a celite cake, and the filter cake was
rinsed with 10.0 mL of methanol. The filtrate was concentrated using rotary
evaporator and twice co-evaporated with 5.0 mL of toluene to give a white
powder of phenyl-B-D-thioglucopyranoside (24). To this powder in an
R.B.F. was added a magnetic stir bar, and the flask was then subjected to
vacuum for 1h. The flask was then backfilled with N,. Then, 1.87g
(5.06 mmol) of tetrabutylammonium iodide was added, and the flask was
capped with a septum. This was followed by three cycles of nitrogen purge
backfill, and 15.0mL of DMF was syringed into the flask. After dissolution
of all solids, the flask was lowered into an ice bath, and the flask contents
were stirred for 30 min. While the flask was still in the ice bath, excess
NaH (3.0g-60% in mineral oil, 75 mmol) was added carefully portion-wise
over a period of 5min to the reaction mixture with continued stirring.
Then, 3.0 mL (25 mmol) of benzyl bromide was then syringed into the reac-
tion mixture in a dropwise fashion over a period of 2min with continued
stirring. After 10 min, the flask was removed from the ice bath and the
reaction contents were stirred at room temperature for 20h. The reaction
was quenched at 0°C by the addition of water until gas evolution ceased.
The reaction mixture was then transferred to a separatory funnel, and
300.0mL of water was added. Then, 200.0mL of EtOAc was added fol-
lowed by vigorous shaking of the separatory funnel to get rid of DMF. The
organic and aqueous layers were separated, and the organic layer was
washed with 50 mL x2 of saturated brine solution. The organic layer was
then dried using Na,SO,4 and concentrated to give a crude product, which
was purified using flash column chromatography (0-15% EtOAc/hexanes)
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to give 2.91 g (4.60 mmol) of 25 as a white solid (90% two steps). '"H NMR
(400 MHz, Chloroform-d): 6 7.60-7.55 (m, 2H), 7.40-7.26 (m, 18H), 7.23-
7.16 (m, 5H), 4.88 (dd, J=10.9Hz, ]=2.6 Hz, 2H), 4.84 (d, ]=7.7Hz, 1H),
481 (d, J=7.6Hz, 1H), 472 (d, J=10.3Hz, 1H), 4.67 (d, J=9.7 Hz, 1H),
4.62-4.54 (m, 3H), 3.78 (dd, J=10.9Hz, J=2.0Hz, 1H), 3.73 (d, J=4.7 Hz,
1H), 3.71-3.67 (m, 1H), 3.64 (t, J=9.3 Hz, 1H), 3.54-3.47 (m, 2H). The 'H
NMR matched the literature spectrum.'*!

Synthesis of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (26)

To 3.04g of 25 (4.80 mmol) in an R.B.F. with a magnetic stir bar, 12.7mL
of acetone was added followed by 1.6mL of water. Then, 3.42g
(19.2mmol) of NBS was added carefully to the reaction mixture with con-
tinued stirring. The flask was capped with a septum and three cycles of
nitrogen purge refill were performed. After 3h, the TLC showed complete
consumption of the starting material. The reaction contents were concen-
trated on the rotary evaporator, and then 50.0 mL of dichloromethane was
added to the flask. The solution was then transferred to a separatory funnel
and washed with 50 mL x2 of water. The organic layer was then washed
with 25mL x2 of saturated brine solution. The organic layer was then dried
using Na,SO, and concentrated to give crude product, which was purified
using flash column chromatography (10-40% EtOAc/hexanes) to give
1.31g (2.42mmol) of 26 as a white solid (50%). 'H NMR (400 MHz,
Chloroform-d): & 7.37-7.27 (m, 23H), 7.16-7.11 (m, 2H), 5.23 (s,1H),
4.97-490 (m, 2H), 4.84 (d, J=5.9Hz, 1H), 4.82-4.80 (m, 1H), 4.79-4.77
(m, 1H), 4.75 (s, 1H), 4.71-4.66 (m, 1H), 4.61-4.54 (m, 2H), 4.50 (d,
J=6.0Hz, 1H), 447 (d, J=7.3Hz, 1H), 4.05-4.00 (m, 1H), 3.96 (t,
J=9.2Hz, 1H), 3.73-3.68 (m, 1H), 3.66-3.61 (m, 2H), 3.59 (d, J=3.4Hz,
1H), 3.58-3.54 (m, 1H), 2.92 (d, J=2.5Hz, 1H). The 'H NMR matched
the literature spectrum.*!!

Synthesis of 2,3,4,6-tetra-O-benzyl-a-glucopyranosyl trichloroacetimidate (12)

To 1.17g (2.16 mmol) of 26 in an R.B.F. with a magnetic stir bar, 20.0 mL
of dichloromethane was added followed by 20.0 mL of trichloroacetonitrile.
Then, 7.00g (50.6 mmol) of K,CO; was added to the flask. A reflux con-
denser was then attached to the flask, and the flask was then lowered into
a temperature-controlled oil bath maintained at 45°C with continued stir-
ring. The reaction was refluxed for 4h. After 4h, the TLC showed complete
conversion of the starting material. The reaction mixture was then filtered
through a celite cake and washed with 10 mL x2 dichloromethane. The fil-
trate was then concentrated to obtain crude product, which was then
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purified using flash column chromatography (0-25% EtOAc/hexanes) to
give 0.81g (1.18mmol) of 12 as a colorless sirup (55%). 'H NMR
(400 MHz, Chloroform-d): & 8.57 (s, 1H), 7.35-7.24 (m, 18H), 7.17-7.11
(m, 2H), 6.52 (d, J=3.5Hz, 1H), 496 (d, J=10.9Hz 1H), 4.85 (d,
J=109Hz, 1H), 4.82 (d, J=11.2Hz, 1H), 4.74 (d, J=11.7Hz, 1H), 4.67
(d, J=11.8Hz, 1H), 4.59 (d, J=12.0Hz, 1H), 4.53 (d, J=10.7Hz, 1H),
445 (d, J=12.0Hz, 1H), 4.05 (t, J=9.3Hz, 1H), 3.99 (d, J=9.9Hz, 1H),
3.81-3.73 (m, 3H), 3.67 (dd, J=11.0Hz, J=2.0Hz, 1H). The '"H NMR
matched the literature spectrum.*"’

Synthesis of phenyl-2,3,4,6-tetra-O-4’-trifluoromethylbenzyl-1-thio-f-D-
glucopyranose (27)

To 1.47g of 23 (3.34mmol) in an R.B.F. with a magnetic stir bar, 5mL of
methanol was added. The flask was capped with a septum. This was fol-
lowed by three cycles of nitrogen purge backfill, and the resulting solution
was maintained under a N, blanket. Then, 0.2mL of 5M NaOMe was
added in a dropwise fashion to the flask with continued stirring. After 1h,
the spots on TLC converged onto a single, low-eluting compound. Then,
7.00g of Dowex® 50WX8, 200-400 mesh ion exchange resin (Acros
Organics) was added to the reaction mixture to adjust the pH to 4. The
reaction mixture was then filtered through a celite cake which was rinsed
with 20.0mL of methanol. The filtrate was concentrated using a rotary
evaporator and twice co-evaporated with 5.0 mL of toluene to give a white
powder 24. To this powder in an R.B.F. was added a magnetic stir bar, and
the flask was then subjected to vacuum for 1h. The flask was then back-
filled with N, 1.23g (3.33mmol) of tetrabutylammonium iodide, and
3.98 g (16.6 mmol) of p-trifluoromethylbenzyl bromide were added, and the
flask was capped with a septum. This was followed by three cycles of nitro-
gen purge backfill, and 25.0 ml of DMF was syringed into the flask. After
dissolution of all solids, the flask was lowered into an ice bath, and the
flask contents were stirred for 30 min. While the flask was still in the ice
bath, excess NaH (2.0g-60% in mineral oil, 50 mmol) was added carefully
to the reaction mixture with continued stirring. After 10 min, the flask was
removed from the ice bath and the reaction contents were stirred at room
temperature for 20 h. The reaction was quenched at 0°C by the addition of
water until gas evolution ceased. The reaction mixture was then transferred
to a separatory funnel, and 300.0 mL of water was added. Then, 200.0 mL
of EtOAc was added followed by vigorous shaking of the separatory funnel
to get rid of DMF. The organic and aqueous layers were separated, and the
organic layer was washed with 50 mL x3 of saturated brine solution. The
organic layer was then dried using Na,SO, and concentrated to give a
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crude product which was purified using flash column chromatography (0-
15% EtOAc/hexanes) to give 1.98 g (2.19 mmol) of 27 as a white solid (66%
two steps). 'H NMR (400 MHz, Chloroform-d): & 7.60-7.47 (m, 10H),
7.46-7.37 (m, 4H), 7.33-7.26 (m, 4H), 7.25-7.20 (m, 3H), 4.96 (d,
J=112Hz, 1H), 4.88-476 (m, 3H), 4.73-4.62 (m, 4H), 457 (d,
J=12.7Hz, 1H), 3.81-3.71 (m, 2H), 3.70-3.62 (m, 2H), 3.55-3.47 (m, 2H).
The '"H NMR matched the literature spectrum.”!

Synthesis of 2,3,4,6-tetra-O-4'-trifluoromethylbenzyl-D-glucopyranose (28)

To 2.19g of 27 (2.42mmol) in an R.B.F. with a magnetic stir bar, 20.0 mL
of acetone was added followed by 2.0mL of water. Then, 1.72g
(9.66 mmol) of NBS was added quickly to the reaction mixture with contin-
ued stirring. The flask was capped with a septum, and three cycles of nitro-
gen purge refill were performed. After 3h, the TLC showed complete
consumption of the starting material. The reaction contents were concen-
trated on the rotary evaporator, and then 50.0 mL of dichloromethane was
added to the flask. The solution was then transferred to a separatory funnel
and washed with 50 mL x2 of water. The organic layer was then washed
with 25mL x2 of saturated brine solution. The organic layer was then dried
using Na,SO, and concentrated to give crude product, which was purified
using flash column chromatography (0-30% EtOAc/hexanes) to give 1.08 ¢
(I.33mmol) of 28 as a colorless gum (55%). 'H NMR (400 MHz,
Chloroform-d): & 7.60-7.47 (m, 14H), 7.45-7.38 (m, 7H), 7.33
(d, J=8.0Hz, 2H), 7.29 (d, J=8.0Hz, 1H), 7.23-7.18 (m, 3H), 5.33
(t, J=3.0Hz, 1H), 5.02 (d, J=11.9Hz, 1H), 4.94 (d, J=12.1 Hz, 1H),4.91
(d, J=12.0Hz, 1H), 4.84-4.70 (m, 7H), 4.64 (dd, J=12.8 Hz, ]=3.2 Hz,
2H), 4.60-4.49 (m, 3H), 4.09-4.03 (m, 1H), 3.99 (t, J=9.3Hz, 1H), 3.76-
3.69 (m, 2H), 3.66 (d, J=22Hz, 1H), 3.65-3.60 (m, 2H), 3.58
(dd, J=9.5Hz, J=3.5Hz, 1H), 3.43-3.37 (m, 1H), 3.35 (d, J=5.0Hz, 1H),
2.97 (d, J=2.7Hz, 1H). The "H NMR matched the literature spectrum.[15 ]

Synthesis of 2,3,4,6-tetra-O-4'-trifluoromethylbenzyl-a, f-glucopyranosyl
trichloroacetimidate (15)

To 0.71g (0.87mmol) of 28 in an R.B.F. with a magnetic stir bar, 15.0 mL
of dichloromethane was added followed by 5.0 mL of trichloroacetonitrile.
Then, 4.50g of K,COj; (32.6 mmol) was added to the flask. A reflux con-
denser was then attached to the flask, and the flask was then lowered into
a temperature-controlled oil bath maintained at 45°C with continued stir-
ring. The reaction was refluxed for 7h. After 7h, the TLC showed complete
conversion of the starting material. The reaction mixture was then filtered
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through a celite cake which was washed with 20 mL x2 dichloromethane.
The filtrate was then concentrated to obtain crude product which was then
purified using flash column chromatography (0-25% EtOAc/hexanes) to
give 0.46g (0.48mmol) of 15 as a colorless sirup (55%). 'H NMR
(400 MHz, Chloroform-d): & 8.74 (s, 1H), 8.60 (s, 1H), 7.58-7.54 (m, 5H),
7.53-7.47 (m, 11H), 7.43-7.30 (m, 11H), 7.29-7.27 (m, 3H), 7.24-7.21 (m,
3H), 7.20-7.14 (m, 9H), 6.55 (d, J=3.4Hz 1H), 582 (dd, J=5.3Hz
J=22Hz, 1H), 498 (d, J=11.8Hz, 1H), 4.93 (t, J=11.9Hz, 1H), 4.88-
471 (m, 8H), 4.67 (d, J=49Hz, 1H), 4.65-4.56 (m, 5H), 4.51 (d,
J=12.7Hz, 1H), 4.07-3.98 (m, 2H), 3.81-3.72 (m, 8H), 3.70 (d, J=1.9 Hz,
1H), 3.68 (d, J=2.4Hz, 1H). The 'H NMR matched the literature

spectrum.!*”!

General procedure A for glycosylation using TfOH or TMSOTf or BF3eOEt,
as activators

An oven dried vial was charged with 0.15mmol of trichloroacetimidate
donor and 0.105mmol of alcohol acceptor (0.7 eq.) followed by a stir bar.
The vial was capped with a septum, subjected to vacuum for 1h, and then
backfilled with N,. Then, 2.5mL of the specified solvent was syringed into
the vial with the nitrogen line still attached. After obtaining a homogeneous
mixture, 0.15mmol (1 eq.) of activator was added using a micro-syringe,
and the reaction was allowed to stir for 12h at 18°C. The reaction was
quenched by addition of 0.05mL of Et;N. The reaction mixture was con-
centrated using a rotary evaporator and purified using flash column chro-
matography (0-30% EtOAc/hexanes).

General procedure B for glycosylation using Tf,NH as activator

An oven dried vial was charged with 0.15mmol of trichloroacetimidate
donor and 0.105mmol of alcohol acceptor (0.7 eq.) followed by a stir bar.
The vial was capped with a septum, subjected to vacuum for 1h, and then
backfilled with N,. The vial was then taken inside a glove box. Then,
42.2mg (0.15mmol) of TE,NH (1 eq.) was added to the vial, and the vial
was recapped with the septum. Then, the vial was removed from the glove
box, and a nitrogen line was attached to the vial. Following this, 2.5 mL of
specified solvent was then added with vigorous stirring. The reaction was
allowed to stir for 12h at 18°C. The reaction was then quenched by add-
ition of 0.05mL of Et;N. The reaction mixture was concentrated using a
rotary evaporator and purified using flash column chromatography (0-30%
EtOAc/hexanes).
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Glycosylation of acceptor 13 with donor 12

Compound 14 produced in the course of the Scheme 3 studies was ana-
lyzed for purity and anomeric ratios using '"H NMR (see below). The 'H
NMR spectra matched those from the literature.!*?!

Scheme 3, Entry 1: Following general procedure A, 2.5mL of 14-
dioxane, 100.0mg (0.1460 mmol) of 12, 51.1 mg (0.110 mmol) of 13, and
13 L (0.15mmol) of TfOH were used. 75.7mg (0.076 mmol) of 14 was
obtained in 70% yield. 1,2-cis: 1,2-trans =4.6: 1.

Scheme 3, Entry 2: Following general procedure A, 2.5mL of Et,0,
102.0 mg (0.1490 mmol) of 12, 52.9mg (0.114mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 88.3 mg (0.089 mmol) of 14 was obtained
in 78% yield. 1,2-cis: 1,2-trans =2.3: 1.

Scheme 3, Entry 3: Following general procedure A, 2.5mL of Et,0O,
103.2mg (0.1506 mmol) of 12, 46.5mg (0.100 mmol) of 13, and 27 puL
(0.15mmol) of TMSOTf were used. 73.9mg (0.075mmol) of 14 was
obtained in 75% yield. 1,2-cis: 1,2-trans =3: 1.

Scheme 3, Entry 4: Following general procedure A, 2.5mL of THEF,
101.9mg (0.1487 mmol) of 12, 51.6mg (0.111 mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 84.9 mg (0.086 mmol) of 14 was obtained
in 77% yield. 1,2-cis: 1,2-trans =1: 1.3.

Scheme 3, Entry 5: Following general procedure B, 2.5mL of 1,4-dioxane,
108.1 mg (0.1578 mmol) of 12, 49.1 mg (0.106 mmol) of 13, and 42.2mg
(0.150mmol) of Tf,NH were used. 74.3mg (0.075mmol) of 14 was
obtained in 71% yield. 1,2-cis: 1,2-trans = 1: 1.2.

Scheme 3, Entry 6: Following general procedure B, 2.5mL of Et,0,
101.8 mg (0.1486 mmol) of 12, 46.7 mg (0.101 mmol) of 13, and 43.1 mg
(0.153mmol) of TELNH were used. 71.8mg (0.073mmol) of 14 was
obtained in 72% yield. 1,2-cis: 1,2-trans =1: 1.3.

Scheme 3, Entry 7: Following general procedure A, 2.5mL of 1,4-
dioxane, 104.4mg (0.1524 mmol) of 12, 48.4mg (0.104 mmol) of 13, and
19 puL (0.15mmol) of BF;eOEt, were used. 74.4 mg (0.075 mmol) of 14 was
obtained in 72% yield. 1,2-cis: 1,2-trans =1: 1.4.

Compounds 11, 18, and 19 produced in the course of the Scheme 4, and
Scheme 5 studies were analyzed for purity and anomeric ratios using 'H
NMR (see below). The 'H NMR spectra matched those from the
literature.**!

Glycosylation of acceptor 13 with donor 15

Scheme 4, Entry 1: Following general procedure A, 2.5mL of 1,4-dioxane,
140.9mg (0.1472mmol) of 15, 52.9mg (0.114 mmol) of 13, and 13puL
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(0.15mmol) of TfOH were used. 129.9mg (0.1032mmol) of 11 was
obtained in 90% yield. 1,2-cis: 1,2-trans =9.1: 1.

Scheme 4, Entry 2: Following general procedure A, 2.5mL of Et,0,
145.6 mg (0.1521 mmol) of 15, 49.2mg (0.106 mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 119.2mg (0.0947 mmol) of 11 was
obtained in 89% yield. 1,2-cis: 1,2-trans =5.4: 1.

Scheme 4, Entry 3: Following general procedure A, 2.5mL of THEF,
143.7mg (0.1501 mmol) of 15, 49.4mg (0.106 mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 113.5mg (0.0901 mmol) of 11 was
obtained in 85% yield. 1,2-cis: 1,2-trans = 1.6: 1.

Scheme 4, Entry 4: Following general procedure A, 2.5mL of THEF,
147.1mg (0.1537 mmol) of 15, 47.4mg (0.102mmol) of 13, and 27puL
(0.15mmol) of TMSOTf were used. 77.5mg (0.0615mmol) of 11 was
obtained in 60% yield. 1,2-cis: 1,2-trans =2: 1.

Scheme 4, Entry 5: Following general procedure A, 2.5mL of TBME,
143.7mg (0.1501 mmol) of 15, 49.1mg (0.106 mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 100.1 mg (0.0794mmol) of 11 was
obtained in 75% yield. 1,2-cis: 1,2-trans=7: 1.

Scheme 4, Entry 6: Following general procedure B, 2.5 mL of 1,4-dioxane,
141.3mg (0.1476 mmol) of 15, 48.5mg (0.104 mmol) of 13, and 42.4mg
(0.151 mmol) of TELNH were used. 91.6mg (0.073mmol) of 11 was
obtained in 70% yield. 1,2-cis: 1,2-trans =1.2: 1.

Scheme 4, Entry 7: Following general procedure B, 2.5mL of Et,0,
142.5mg (0.1489 mmol) of 15, 47.2mg (0.102mmol) of 13, and 42.2mg
(0.150 mmol) of Tf,NH were used. 96.2mg (0.076 mmol) of 11 was
obtained in 75% yield. 1,2-cis: 1,2-trans =1: 1.1.

Scheme 4, Entry 8: Following general procedure B, 2.5mL of TBME,
145.6 mg (0.1521 mmol) of 15, 47.9 mg (0.103 mmol) of 13, and 43.1 mg
(0.153mmol) of THLNH were used. 103.6mg (0.0823 mmol) of 11 was
obtained in 80% yield. 1,2-cis: 1,2-trans =1.2: 1.

Scheme 4, Entry 9: Following general procedure A, 2.5mL of 1,4-
dioxane, 147.1 mg (0.1537 mmol) of 15, 50.1 mg (0.107 mmol) of 13, and
19 puL (0.15mmol) of BF;eOEt, were used. 47.9 mg (0.038 mmol) of 11 was
obtained in 36% yield. 1,2-cis: 1,2-trans =1: 2.6.

Glycosylation of acceptors 16 and 17 with donor 15

Scheme 5, Entry 1: Following general procedure A, 2.5mL of 1,4-dioxane,
145.8 mg (0.1523 mmol) of 15, 22.2mg (0.106 mmol) of 16, and 13 puL
(0.15 mmol) of TfOH were used. 77.6 mg (0.077 mmol) of 18 was obtained
in 73% yield. 1,2-cis: 1,2-trans =4.2: 1.
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Scheme 5, Entry 2: Following general procedure B, 2.5 mL of 1,4-dioxane,
146.3 mg (0.1529 mmol) of 15, 23.6 mg (0.113 mmol) of 16, and 42.2mg
(0.150 mmol) of TEL,NH were used. 79.4mg (0.079 mmol) of 18 was
obtained in 70% yield. 1,2-cis: 1,2-trans =1: 1.

Scheme 5, Entry 3: Following general procedure A, 2.5mL of 1,4-
dioxane, 145.5mg (0.1520 mmol) of 15, 42.6 mg (0.110 mmol) of 17, and
13 L (0.15mmol) of TfOH were used. 89.7mg (0.076 mmol) of 19 was
obtained in 70% yield. 1,2-cis: 1,2-trans =6.9: 1.

Scheme 5, Entry 4: Following general procedure B, 2.5 mL of 1,4-dioxane,
176.8 mg (0.1847 mmol) of 15, 43.8 mg (0.113mmol) of 17, and 51.7 mg
(0.184 mmol) of Tf,NH were used. 100.2mg (0.0858 mmol) of 19 was
obtained in 76% yield. 1,2-cis: 1,2-trans =1.1: 1.

Glycosylation of acceptor 13 with donor 15 (additional solvents)

Scheme 6, Entry 2: Following general procedure A, 2.5mL of toluene,
148.1mg (0.1547 mmol) of 15, 48.1mg (0.103mmol) of 13, and 13puL
(0.15mmol) of TfOH were used. 97.2 mg (0.077 mmol) of 11 was obtained
in 75% vyield. 1,2-cis: 1,2-trans =2.0: 1.

Scheme 6, Entry 6: Following general procedure A, 2.5mL of DCM,
139.5mg (0.1458 mmol) of 15, 48.5mg (0.104 mmol) of 13, and 13puL
(0.15 mmol) of TfOH were used. 92.8 mg (0.074 mmol) of 11 was obtained
in 71% yield. 1,2-cis: 1,2-trans = 3.6: 1.

Scheme 6, Entry 7: Following general procedure A, 2.5 mL of trifluoroto-
luene, 141.5mg (0.1478 mmol) of 15, 47.3mg (0.102mmol) of 13, and
13 pL (0.15mmol) of TfOH were used. 102.6 mg (0.0815 mmol) of 11 was
obtained in 80% yield. 1,2-cis: 1,2-trans =4.0: 1.
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VA-2-63-BnDonor+6acceptor+Et20+TfOH.1.fid — crude-1
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VA-2-BnDonor+6acceptor+Et20+TfOH-Amideremoval-021723-Pure.1.fid —
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VA-2-44D-Bndonor+6-acceptor+Et20+TMSOTf.1.fid — Crude-:
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VA-2-44D-Bndonor+6acceptor-Et20-TMSOTf.1.fid — Pure-1
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VA-2-62-Bndonor+6acceptor+THF+TfOH.1.fid — crude-1
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VA-2-62-BnDonor+6acceptor+THF+TfOH-Amideremoval-030723.1.fid — 1H-Pt
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VA-2-Bndonor+6acceptor+1,4-dioxane+Tf2NH.1.fid — Crude-:
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VA-2-62-BnDonor+6acceptor+1,4dioxane+Tf2NH-Amideremoval-021723.1.fid — 1H-Amideremoval P
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VA-2-64-Bndonor+6acceptor+Et20+Tf2NH.1.fid — crude-1
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VA-2-64-BnDonor+6acceptor+Et20+Tf2NH.1.fid — Pure-1
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VA-2-Bndonor+6acceptor+1,4dioxane+BF30Et2.1.fid — Crude-:
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VA-2-Bndonor+6acceptor+dioxane+BF30Et2.1.fid — Pure-:
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VA-2-50-CF3BnGludonor+6acceptor+dioxane+TfOH.1.fid — Crude-:
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VA-2-50-CF3Bndonor+6acceptor+dioxane+TfOH.1.fid — Pure-:
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VA-2-52-CF3BnGludonor+6acceptor+Et20+TfOH.1.fid — Crude-:
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VA-2-52-CF3BnDonor+6acceptor+Et20+TfOH.1.fid — Pure-!
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VA-2-51-CF3Bndonor+6acceptor+THF+TfOH.1.fid — Crude-I
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VA-2-51-CF3Bndonor+6acceptor+THF+TfOH.1.fid — Pure-1
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VA-2-CF3Bndonor+6acceptor+TfOH+MTBE-Crude.1.fid
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VA-2-CF3BnDonor+6acceptor+1,4-dioxane+Tf2NH-Pure
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VA-2-CF3BnDonor+6acceptor+Et20+Tf2NH-Crude.1.fid —
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VA-2-CF3Bndonor+6acceptor+Et20+Tf2NH-Pure

2800

2600

2400

2200

~2000

1800

1600

1400

1200

1000

800

- 600

400

200

-0

--200

2000°0
6€40°0
9980°0
¥8ST'T
91CEE

095€°€ 1
SS9E°€E
TZ8€°E
T68€°€
PHOV'E |
SETH'E
WLY'E
0Z84°€
vL6b'E
$90S°E
TE65E 1
2919°€ 1
STH9'E
TTL9°E
6889°€ 1
ST69°€
800£°€
THTLE
£€5L°€
9092°€
6866'€
0605t
SSES'y
0THS'b
R
1655
2995y
S6L5'b
1885
0£09'%
vT29Y
9159
€149
0£69'%
1S0L'%
€82LY
Ly
8SSL'b

Area Type

Intensity Width

710.5
658.0

20289.51 Compound
23060.88 Compound

2.32
2.67

1,2-cis: 1,24rans=1:1.1

Scheme 4, Entry 7 (Pure)

8v9L b
6vLL b
078L't
0S8L't
956/
9118t
06v8't
[8Y6'p
6£56't
Sbl6h
6887°S
SerTL
ze9T'L
6€8T L ~\L

T e e i e e

ppm

3.3560
3.3216

SFr
6LETL

€ese L

YSLTL

9€87L

8b67°L

0£0€°Z
$60€°2
Sbees
€0€€°L
TTheZ
120572
14862
60TH"L
81Sb"/
v8SbL
bL9bL
8b/b L
826b°L
TS L A
8£75°/
0bES™L
Tobs L
855, -

OCFan

O

CF3BnO

CFsBnO ™

CF3BnO

BER0

BnOOMe

11

400 MHz,
cDCI3

f1 (ppm)

36




VA-2-CF3Bndonor+6acceptor+Tf2NH+MTBE-Crude.1.fid
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VA-2-67-CF3BnDonor+6acceptor+1,4dioxane+BF30Et2.1.fid — Crude-
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Pure-:

4dioxane+BF30Et2.1.fid
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VA-2-CF3Bndonor+Cbzaminopropanol+1,4-dioxane+TfOH- — Pure-:
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VA-2-CF3Bndonor+Cbzaminopropanol+1,4-dioxane+Tf2NH — Pure-:

N29g
Rag3 - 3800
NN NN

4.4288
4.4097
4.3908

3600

F5CBnO 3400

FsCBnO O 3200
F;CBnO - 3000
FsCBNO "5 ™">NHcbz

[
Y

;2800
1 6 2600

2400

400 MHz, Scheme 5, Entry 2 (Pure) 2200
CDCI3 - 2000

;1800
;1600
| ;1400
;1200
;1000
;800
;600

400

y WIAR W

d i\ L 200

. I .
0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5
f1 (ppm)

42



F5CBnO

FsCBnO
F,CBnO

F,CBnO

17

400 MHz,
cDCI3

VA-2-CF3Bndonor+cholesterol+TfOH+1,4-dioxane-Pure.1.fid

Scheme 5, Entry 3 (Pure)

1.00=
6.90T

- 6500

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

— - - - - -
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5

f1 (ppm)

43



VA-2-91-CF3Bndonor+cholesterol+1,4-dioxane+Tf2NH.1.fid — Pure-:

' NI
F,CBnO - 4500
F;CBnO 0
F,CBnO
F3CBnO L 4000
3500
17
3000
400 MHz,
CDCI3 Scheme 5, Entry 4 (Pure)
2500
2000
1500
- 1000
WR - 500
. \Ju 0
! 7

e . . . . . . .
.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0
f1 (ppm)



- 5500

- 5000

4500

4000

3500

3000

2500

2000

1500

1000

500
-0

VA-2-CF3Bndonor+6acceptor+TfOH+CF3benzene-Crude.1.fid

$00T°0
S901°0
81110
04680
0206°0
£906°0
82160
¥526°0
£0€6°0
06521
86971
1LTT
02871
£56T'T
$00€'T
6b2E'T
85€€'T
82T
822
68872
86€9°C
99T
1586°C
6686'C
SE00°E
€800°€
L120°E
S9z0°€
1000°€
8bb0'E
969€°€
bhLEE
LbTrE
S62b'E
8995°€
91/5°€
£959°€
$299°€
T19°€
6LL9°€
€s/L°€
6095t
€55
6885
SS65H
7109°'%
zz€9h
90€Lt
886/
LTET'S
S9€T’S
2490°L
02£0°L
6£80°L
9260°L
0261,
s1TL
2067,
0S€T°L
2052,
£95T'L
919z,
788z,
100€°2
1zeL
80b€"L -
zsves ]
veoe s
€895
bges ]
006€°Z
T2ehL
0TbbL
665b°L
6b6b°L
S015°¢
SSTS°¢
81€5¢
€6b5L
7585°¢
709,

T T — e N e —

Area Type

Intensity Width

127.9
32.8

4287.50 Compound

2.66
2.81

Compound

1178.17

3.6: 1

1,2-¢js: 1,24rans

Scheme 6, Entry 7 (Crude)

ppm

3.3696
3.3397

OCF3Bn

o

CF3BnO

CF4BnO g

CF3;BnO

BaRo

BnO

11

400 MHz,
CDCI3

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5
f1 (ppm)

10.0

45



VA-2-CF3Bndonor+6acceptor+TfOH+CF3Benzene-Pure.1.fid —

4000

~3500

3000

2500

2000

1500

1000

500

0000°0
S820°0
09T

ShTe'e
€LbE'E
785€°€ 1
7€8€°€
97€5°€
T2hS°€ 1
68b5°€ 1
bTLSE
565°€
b6T9'E 1
2UTY'E
98€9°€ 1
SSH9'E 1
9559°€
1€99°€ 1
beL9'E
£969°€
zriLe
612£°€
S59/°€
9T16'E
b99bt
STISH
065
bESS
v295y
9895t
1685
ST09'h
beeoy
€269
b559'p
W99y
€189
1669
0602t
0zEL Y
vy
899/t
SH8L't
5008
1618
906"t
0£€6'%
1566t
6956
z6L6 -
159T°2

LS9TL

8681,

8507

91T

9%62T'L

6THT L

—

e ——

Type

Intensity Width Area

ppm

55059.24 Compound
14107.53 Compound

3.00
2.81

1316.3

374.1

3.3582
3.3245

3.9:1

Scheme 6, Entry 7 (Pure)

1,2-cis: 1,24rans

8297,
vLLTL
18T,
6v0€"L
181€°L
09¢€'L
81€€°
S8EE°L A
985€°/
999¢°¢
6L
988€°,
L0THL
bbb L
zesyL
885H°,
£89%°L
85/bL
8€6bL
be1s
0€zs2
SS€5°L
zeps L
6555,

OCF3Bn

o

CF3BnO

CF3BnO g

CF3BnO

"R

400 MHz,
CDCI3

-

0.0

0.5

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
f1 (ppm)

0.5

46



VA-2-CF3Bndonor+6acceptor+TfOH+DCM-Crude.1.fid

7000

- 6500

6000

- 5500

- 5000

4500

4000

3500
3000

2500

2000

1500

1000

500

--500

€060°0
ST0T'0
8bCT'T
62y’ T
T192°1
LT6T°C
€L6T°C
250€°C
£09€°C
¥69€'C
LETV'T
0699°'C
£206°'C

VLS
6585y
8E65y
€609'p
6919'%
€679y
15€9'h
0Eb9'y
£0L9'% —F
wnwo.v\
9869y
[180Y
6264
BNw.v\
8187'S
0bLT L
€8T/
668T°L 1
507°L
00172
aees
19€2°£ 7
(25T LA
€497°L
8187 A
6887'£
ST0€'L
680€°Z
181€'L
0€zEL
oTEEL
oTEEL
LOVE'L
£z5€7L
98s€'L
obre L]
986",
906€°.
£96€°L
10T
Zreb
SSbbs
1156
62Lb'L
b26b'L
105 1
12052 1
szes'
bES'L
2EbS'L
6255 1
6429,

vUCO C *
98€6'C
8956'C
9gee’e
§99¢€°€
ceLE'E
oTev'e
(VA4 4
£695°€
§8€9°€
€EEL’E
S/S0'v
STSS'v
19SSV
L1958
6695t

Type

Compound

3.0: 1

Area

Intensity Width

597.8

ppm

22409.Y7 Compound

7645.46

2.84
2.94

3.3665
3.3336

OCF3Bn

197.7

Scheme|6, Entry 6 (Crude)

1,2-cis: 1}24rans

@)
CF3BnO g

CF3BnO
CF3BnO

400 MHz,
CDCI3

f1 (ppm)

47



VA-2-CF3Bndonor+6acceptor+TfOH+DCM-Pure.1.fid

4000

3500

3000

2500

2000

1500

1000

500

Area Type

Intensity Width

1859.0
621.5

ppm

81518.40 Compound
24046.51 Compound

3.18

2.93

3.3592
3.3257

OCF3Bn

3.4:1

Scheme 6, Entry 6 (Pure)

1,2-cis; 1,24rans

0]
CF4BnO g

CF3BnO
CF3;BnO

400 MHz,
cDCI3

f1 (ppm)

48




VA-2-CF3Bndonor+6acceptor+TfOH+toluene-Crude.1.fid

o o o o o o o o o o o o
o o o o o o o o o o o o o
o n o n o n o n o n o o N
(o) n wn < < [22] ™ o o — — n o 1
1 1 1 1 1 1 n 1 n 1 n 1 n 1 1 1 n 1 1
—
3
T T
S5 TS
28 NS
) N N
pmm M
>~0 O n
=0 0O n..m
(o)) 0w
2R d &
o N -
5R Y e
Mmoo .Bm
<< — < Q =
N o
- 0
=
N ™
SN ®
DN
ey
2ino
UM
M4O
[0
o v
AN =
Em A O
amm O /O
c C
m Q m -
i -
CO @) @) —
- A O c On -
0 =m -
o ~
w m N
el® S o
oc 33
o 0O
cm $ O -
B3 =
ekl
Lo
@)

f1 (ppm)

49




VA-2-CF3Bndonor+6acceptor+TfOH+toluene-Pure.1.fid

- 3400
3200
3000
2800

2600
2400

2200

2000

- 1800
- 1600
- 1400
1200
1000

800

- 600

400

200

--200

Type

Intensity Width Area

ppm

71128.47 Compound
28720.91 Compound

1138.0 4.39
3.79

558.4

3.3596
3.3264

2.5:1

Scheme 6, Entry 2 (Pure)

1,2-cis: 1,24rans

400 MHz,
CDCI3

f1 (ppm)

50



VA-BnGIuTCA-TMSOTF-233K-102723

1900000

- 1800000

1700000

- 1600000
1500000

- 1400000
1300000

1200000

1100000

1000000
900000

800000

700000

600000

500000

400000

300000

200000

100000
0

--100000

§89¢°€
§98T°€ 1
LL8E'E
SC6E'E T
LT0V'E T
290t°€ 1
€48V°€ 1
968t°€ 1
926t°€ 1

pcos-c

TS0S°€
0£0S°€ 7
T¢8S°¢
£98S°€ 1
T126°€ A
SPE6'E

£€85EY 1
€8LEY
LLYY'Y
[4 1
PITIS'Y
L2258
TL2S'Y
619t
0TZ9'v
141744
Ly
89/L'%v
e08'y

™S
NH
CCls

OBn
0

BRRo

/// Ir

7

s wrtdoll o

/

v

BnOO ®

175 MHz,

Et20 -
D10

T
-0.5

T
0.0

0.5

T T
40 35 3.0 25 20 1.5 1.0

T
50 4.5
f1 (ppm)

T T T
95 90 85 80 75 70 65 6.0 55

T
10.0

51



VA-BnGIUTCA-TMSOTF-233K-102723-13C

5500000
5000000

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

~-500000

€290°0-
0€98°'T

8T9T'HT

804C°YT

TCU8E VT
6881 T
8THS HT
S/L6SVT A
6TS9'bT \

USuZ vl
19T
I PT
£048'tT
2086't1
75£0°59 1
££50°59 1
855T°59
£202°59
1£LT°59
£52€°59 1
246£'59
bhbb'S9
8/15°59
7855'59
£619°59
7899°59
00659
€€55'69

65607
S86b°2L

Tozbes -\
obTS'EL

tossvz /f
6v90'S.
H09T'SL
0LbTSL
049L'SL
2b68'SL
vzezes
Y09t'8L
9882°T8
S8/E°78
6506°€8
209€°s8
£968°06
£60t°86
Y90T'6TT
£506°02T
2995° 22T
£565°£21
Zv19'LTT
212922t
evzL LT
[Tvl LTt
689L'LTT
T260°L2T
At
8/88' (7T
8506'£2T
£0s6'L2T
5666'£2T
1220'82T
££50°82T
LEET'8TT
AR 4
1252°821
999%'82T
6681871
9vES'8TT
9295°87T 1
1£09'82T
529821 1
S669°82T 1
S00£°87T 1
582/°8¢1 1
0ETE6ET 1
£€29°6€T
SObO'6ET
¥8£0°0bT 1
2186291 -

e

TMS
BnOO @2

OBn
(@)

BRR0

NH
CCl,

-

175 MHz,

Et20 -
D10

f1 (ppm)

52



	On the relevance of glycosyl oxonium ions to 1,2-cis-selective O-glycosylation in ether solvents
	Abstract
	Introduction
	Results and discussion
	Conclusion
	Experimental section
	General methods
	Determination of anomeric ratios
	Synthesis of phenyl-2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (23)
	Synthesis of phenyl-2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranose (25)
	Synthesis of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (26)
	Synthesis of 2,3,4,6-tetra-O-benzyl-α-glucopyranosyl trichloroacetimidate (12)
	Synthesis of phenyl-2,3,4,6-tetra-O-4’-trifluoromethylbenzyl-1-thio-β-D-glucopyranose (27)
	Synthesis of 2,3,4,6-tetra-O-4’-trifluoromethylbenzyl-D-glucopyranose (28)
	Synthesis of 2,3,4,6-tetra-O-4’-trifluoromethylbenzyl-α,β-glucopyranosyl trichloroacetimidate (15)
	General procedure A for glycosylation using TfOH or TMSOTf or BF3•OEt2 as activators
	General procedure B for glycosylation using Tf2NH as activator
	Glycosylation of acceptor 13 with donor 12
	Glycosylation of acceptor 13 with donor 15
	Glycosylation of acceptors 16 and 17 with donor 15
	Glycosylation of acceptor 13 with donor 15 (additional solvents)

	Acknowledgements
	Disclosure statement
	Funding
	References


