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We study the instability of a dusty simple shear flow where the dust particles are distributed
non-uniformly. A simple shear flow is modally stable to infinitesimal perturbations. Also,
a band of particles remains unaffected in the absence of any background flow. However,
we demonstrate that the combined scenario — comprising a simple shear flow with a
localized band of particles — can exhibit destabilization due to their two-way interaction.
The instability originates solely from the momentum feedback from the particle phase to
the fluid phase. Eulerian—Lagrangian simulations are employed to illustrate the existence
of this instability. Furthermore, the results are compared with a linear stability analysis
of the system using an Eulerian—Eulerian model. Our findings indicate that the instability
has an inviscid origin and is characterized by a critical wavelength below which it is not
persistent. We have observed that increasing particle inertia dampens the unstable modes,
whereas the strength of the instability increases with the strength of the coupling between
the fluid and particle phases.
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1. Introduction

Particle-laden flows are prevalent in various environmental, astrophysical and industrial
settings. In the environmental context, these flows play pivotal roles in shaping the
landscape around us through sediment transport (Burns & Meiburg 2015), influencing
weather patterns via clouds (Pruppacher & Klett 1998; Shaw 2003), sea spray (Veron
2015), volcanic eruptions (Bercovici & Michaut 2010) and gravity currents (Necker ef al.
2005). Astrophysical scenarios include particle-laden flows in cosmic dust clouds, stellar
winds and the transport of interstellar dust particles in accretion disks and protoplanetary
disks, which are crucial for forming and evolving planetary systems (Youdin & Goodman
2005; Fu et al. 2014; Homann et al. 2016). In industrial and engineering applications,

1 Email address for correspondence: houssem.kasbaoui @asu.edu

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re- use, distribution and reproduction, provided the

original article is properly cited. 1002 A17-1

Check for
updates


mailto:houssem.kasbaoui@asu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.1142&domain=pdf
https://doi.org/10.1017/jfm.2024.1142

https://doi.org/10.1017/jfm.2024.1142 Published online by Cambridge University Press

A.V.S. Nath, A. Roy and M.H. Kasbaoui

particle-laden flows arise in processes like spray drying (Straatsma et al. 1999; Birchal
et al. 2006), powder handling (Baxter et al. 2000) and fluidized bed reactors (Bi et al.
2000). Particle-laden flows typically involve multiple components, with at least a carrier
phase and a dispersed phase, leading to physics occurring at multiple scales. In natural
scenarios, the carrier flows are often turbulent, and the suspended particles are advected
and sheared by this turbulence. Modelling particle-laden flows within a sufficiently dilute
limit often involves considering the momentum exchange from the fluid to the particles
while neglecting feedback from particles to the fluid (one-way coupling). However, this
feedback is significant, especially when the mass fraction of particles to fluid is of the
order of unity (e.g. dusty gas flows or water droplets in the air), as it can introduce new
dynamics into the system. In this study we investigate a novel instability in a particle-laden
simple shear flow arising from two-way coupling, where the feedback force from particles
to fluid is considered.

The non-uniform distribution of particles, also known as particle segregation or particle
banding, is observed in particle-laden flows across diverse engineering and environmental
contexts. It can occur due to various segregation mechanisms such as preferential
clustering, differential settling velocities, turbulent dispersion and particle—particle
interactions. For example, in turbulent flows, inertial particles can cluster preferentially
in regions of high strain and lower vorticity, forming regions with high and low particle
concentration (Maxey 1987; Bec 2005; Fiabane et al. 2012). This phenomenon can
arise solely from one-way coupling, and no feedback force is required. In pneumatic
conveying systems transporting granular materials, such as powders or grains, bands of
particle-rich and particle-deficient regions can form (known as rope formation) due to
agglomeration and flow dynamics (Huber & Sommerfeld 1994; Klinzing et al. 2011;
Lain & Sommerfeld 2013; Zhang et al. 2023). In turbulent wall-bounded flows carrying
suspended particles, such as industrial pipelines transporting slurries, particle segregation
can occur due to differential settling velocities, turbulent dispersion and thermophoresis.
This segregation can lead to the formation of particle-rich layers near the bottom or walls
of the flow channel, with particle-deficient regions in the core of the flow (Marchioli
et al. 2003; Picano, Sardina & Casciola 2009; Sardina et al. 2012). The particles form
extremely long clusters, called ropes, and align preferentially with the low-speed turbulent
streaks, contributing to their stabilization and suppression of bursting (Dave & Kasbaoui
2023). Despite the additional stresses resulting from particles, the alteration of near-wall
coherent structures results in a notable decrease in Reynolds shear stresses and partial
relaminarization of the near-wall flow. Fluidized bed reactors used in chemical engineering
often exhibit particle banding phenomena (Harris & Crighton 1994; Gilbertson &
Eames 2001; Liu et al. 2016). Observations of sediment-laden river flows and estuarine
environments have revealed the formation of bands of sediment deposition influenced
by flow dynamics, sediment transport mechanisms, coagulation and channel morphology
(Gibbs 1986; Sondi, Juraci¢ & Pravdi¢ 1995; Ogami, Sugai & Fujiwara 2015). These
sediment bands play a crucial role in shaping riverbeds, deltas and coastal environments.

In astrophysical accretion disks, such as those around young stars or black holes, there
are regions where gas and dust particles orbit around a central object. The dust—gas system
exhibits Keplerian motion, alongside radial and azimuthal drifts between the dust and
gas. When the gas and dust move at slightly different velocities, this disparity can result
in a relative drift between the two components. This relative motion creates a shearing
force that can amplify small perturbations/disturbances in the dust distribution — known
as streaming instability (Youdin & Goodman 2005; Chiang & Youdin 2010). The name
‘streaming instability’ reflects the differential streaming motion between gas and dust
particles within the disk. The instability arises from the relative drift between the gas
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and dust phases, a universal consequence of radial pressure gradients. Growth occurs
even though the two components interact only via dissipative drag forces. Streaming
instability exhibits growth rates that are slower than dynamical time scales but faster
than drift time scales. As a result, dust particles start clumping together, even without
self-gravity, forming dense structures or bands. Thus, the dust particles can localize,
leading to additional dynamics or instabilities due to the Keplerian shear (as we see in
this paper) and self-gravity. Thus, streaming instability is crucial in various astrophysical
processes, including planetesimals’ formation and dust grains’ growth in protoplanetary
disks.

The hydrodynamic stability characteristics of particle-laden flows can be altered by
modifying existing instabilities or generating new types of instabilities, as one considers
the feedback from particles. Early studies by Kazakevich & Krapivin (1958) and Sproull
(1961) observed a notable reduction in the resistance coefficient when dust was added
to the air flowing turbulently through a pipe. It was thought that adding particles altered
the effective viscosity that led to this modification; however, this contradicts Einstein’s
formula for the suspension viscosity. Saffman (1962) was among the first to provide an
analytical model for studying the stability of a dusty planar flow. Saffman proposed that
inertial particles extract energy from turbulent fluctuations, thereby damping them. Using
a two-fluid model, Saffman modelled both particle and fluid phases as a continuum. The
momentum exchange between both phases is accounted for using a linear Stokes drag. The
modal analysis ultimately resulted in a modified Orr—Sommerfeld equation for uniformly
distributed particles. Saffman (1962) deduced that finer particles with low inertia could
induce destabilization due to a reduction in effective kinematic viscosity. Although the
effect of particles on the viscosity of dusty gas is negligible, it effectively increases
the gas density, thereby reducing the kinematic viscosity. Conversely, coarser particles
with high inertia could lead to stabilization through dissipation by Stokes drag. Saffman
concluded that dust merely alters the waves present in a clean gas and may not introduce
any additional instabilities. Subsequent studies have numerically solved the modified
Orr—Sommerfeld equation for various base flows, confirming Saffman’s conclusions
(Michael 1964; Asmolov & Manuilovich 1998; Tong & Wang 1999; Klinkenberg, De
Lange & Brandt 2011; Sozza et al. 2022). Sozza et al. (2020, 2022) investigated a dusty
Kolmogorov flow and demonstrated that increasing the particle mass loading reduces
the amplitude of the mean flow and turbulence intensity. They observed that turbulence
suppression is more pronounced for particles with smaller inertia. The study concluded
that while inertia significantly influences particle dynamics, its impact on flow properties
is negligible compared with mass loading.

Notably, Saffman’s analysis does not account for gravitational effects. Including gravity
can introduce buoyancy effects that may destabilize the flow more easily (Herbolzheimer
1983; Shaqfeh & Acrivos 1986; Borhan & Acrivos 1988). For example, Magnani,
Musacchio & Boffetta (2021) investigated dusty Rayleigh—Taylor turbulence and found
that the interface between the two phases becomes unstable in the presence of gravity
forces, evolving into a turbulent mixing layer that broadens over time. However, in a
particle-laden Rayleigh—Bénard system (Prakhar & Prosperetti 2021), it was observed that
particles tend to inhibit the onset of natural convection, thereby stabilizing the system. This
is because particles act as a distributed drag force and heat source in the fluid, similar to a
porous medium. Saffman’s analysis, also, focusing solely on uniform particle distribution,
overlooks the potential effects of non-uniform distributions. A study by Narayanan &
Lakehal (2002) has demonstrated the presence of additional unstable modes under large
Stokes numbers and high mass loading conditions in a particle-laden mixing layer where
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the particle distribution is localized. Additionally, investigations utilizing non-uniform
particle distributions have highlighted the emergence of novel instabilities (Senatore,
Davis & Jacobs 2015; Warrier, Hemchandra & Tomar 2023).

The non-uniform distribution of inertial particles arises naturally in vortical flows due
to their preferential accumulation. As noted earlier, it has long been recognized that
inertial particles tend to be centrifuged from vortical regions and cluster in regions of high
strain (Maxey 1987), a phenomenon known as preferential accumulation. A numerical
investigation by Shuai & Kasbaoui (2022) demonstrated that in a Lamb—Oseen vortex,
inertial particles are expelled from the vortex core, forming a ring-shaped cluster and a
void fraction bubble that expands outward. However, without accounting for the two-way
interaction, the vortex would decay slowly due to viscous dissipation. When the two-way
coupling is considered, it is observed that the feedback from clustered particles flattens the
vorticity distribution and leads to an accelerated vortex decay. It is noted that as the inertia
of the particles increases, the vorticity decays even more rapidly. A follow-up numerical
study by Shuai et al. (2022) on a particle-laden Rankine vortex revealed that the system
becomes unstable due to the two-way interaction, which is also validated by analytical
linear stability analysis (LSA). The feedback force from the particles triggers a novel
instability, which can cause the breakdown of an otherwise resilient vortical structure.
In the context of the merging of a pair of co-rotating vortices laden with inertial particles,
it has been shown (Shuai, Roy & Kasbaoui 2024) that the feedback force from particles
significantly alters the monotonic merging behaviour as observed without feedback. The
vortices push apart for a while due to a net repulsive force from particles ejected from the
vortex cores, thus delaying their merging.

Apart from modal instability, the interplay between particle inertia and shear from
the base flow can lead to transient growth of perturbations in particle-laden flows
via non-modal growth mechanisms such as the Orr mechanism or the ‘lift-up’ effect.
Performing a non-modal analysis, Klinkenberg et al. (2011) showed that transient growth
in a particle-laden channel flow increases proportionally with the particle mass fraction.
Similar non-modal instabilities have been observed and studied in dusty gas flows, such
as the Blasius boundary layer with a localized dust layer (Boronin & Osiptsov 2014),
plane channel suspension flow with a Gaussian layer of particles (Boronin & Osiptsov
2016) and stably stratified Blasius boundary layer flow (Parente et al. 2020). Additionally,
the inclusion of gravitational effects in a simple shear flow has been shown to alter the
uniformity of particle distribution, leading to the formation of local particle clusters and,
subsequently, to transient growth (Kasbaoui et al. 2015).

The previously mentioned studies mostly used an Eulerian—Eulerian model for
particle-laden flows. However, there are three primary methods for modelling
particle-laden flows: (i) Eulerian—Eulerian modelling, (ii) Eulerian-Lagrangian (EL)
modelling and (iii) fully resolved simulations. The Eulerian—Eulerian method (see Jackson
2000; Drew & Passman 20006) treats both the particle and fluid phases as interpenetrating
continua in an Eulerian framework, assuming particles are small (Ax > d,) and
sufficiently densely distributed to be treated as a fluid continuum. While computationally
more affordable, this method may introduce errors due to the difficulty of modelling
terms in Eulerian—Eulerian methods that require closure. In contrast, the EL method
treats the fluid phase as a continuum within an Eulerian framework while representing
the particle phase as discrete entities tracked individually in a Lagrangian manner. Here,
the fluid phase is solved at a coarser scale, typically with Ax a few times larger than d,,
resulting in a scalable and cost-effective approach. However, empirical coupling between
the particle and fluid phases introduces some approximation errors. A few studies that
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considered EL. modelling and the stability of particle-laden flows are Meiburg et al.
(2000), Richter & Sullivan (2013), Senatore et al. (2015), Kasbaoui et al. (2015), Wang &
Richter (2019), Kasbaoui (2019), Pandey, Perlekar & Mitra (2019) and Shuai et al. (2022).
The fully resolved method, for example, realized by the immersed boundary method (see
Uhlmann 2005; Breugem 2012; Kempe & Frohlich 2012; Dave, Herrmann & Kasbaoui
2023; Kasbaoui & Herrmann 2024), is employed when the grid spacing Ax is significantly
smaller than the particle diameter d,. While offering high accuracy, this method requires
extensive resolution, making it costly and impractical for large-scale applications. Thus,
in this study we only employ the EL and Eulerian—Eulerian methods, the details of which
are discussed respectively in §§ 2.1 and 4.1.

Here, we investigate the stability of a dusty simple shear flow with non-uniformly
distributed particles. This configuration is an idealized set-up for natural phenomena
such as sea-spray dynamics at the ocean—atmosphere interface (Barenblatt, Chorin
& Prostokishin 2005; Veron 2015), particle rope formation in pneumatic conveying
(Kruggel-Emden & Oschmann 2014) and dust particles in planetary accretion disks
(Youdin & Goodman 2005). These scenarios involve inertial particles that are locally
concentrated in a background shear flow (e.g. a turbulent shear boundary layer or
Keplerian shear). At the leading order, the system can be approximated by a top-hat
distribution of particle concentration in a simple shear flow. In the absence of particles, a
simple shear flow is modally stable to infinitesimal perturbations. Similarly, a non-uniform
particle distribution without any background flow remains unaffected. Thus, each system
under consideration is linearly stable when inspected in isolation. However, when
considering the combined system (see the schematic in figure 1), where a simple shear
flow is superimposed on a band of particles, the background flow advects the particles, and
the feedback from the particles induces an instability in the system. This study reveals that
this seemingly simple yet crucial particle-laden system exhibits a novel type of instability
when incorporating two-way coupling. In § 2 we demonstrate the presence of this novel
instability through EL numerical simulations. The mechanism underlying the genesis of
this new instability is described in § 3. An analytical study of the system is carried out
in § 4 using an Eulerian—Eulerian framework. Following the approach of Saffman (1962),
LSA is employed to establish the existence and modal nature of the instability. Section 5
offers a comparative analysis between the EL and Eulerian—Eulerian results. Finally, we
conclude in § 6.

2. Evidence of instability in a two-way coupled particle-laden shear flow

In this section we present a novel instability occurring in a particle-laden simple shear
flow. Along with the momentum transport from the fluid to particle phase, we consider
the feedback from the particle to fluid phase (two-way coupling), which is crucial for
the instability to occur. We employ an EL method to illustrate this instability. Below, we
describe the method used.

2.1. Eulerian—Lagrangian method

The EL simulations presented here are based on the volume-filtered (VF) formulation
(Anderson & Jackson 1967; Jackson 2000; Capecelatro & Desjardins 2013). In the EL
formulation the fluid phase is treated in the Eulerian frame as a continuum, while
the particle phase is treated in the Lagrangian frame, with discrete particles tracked
individually.
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Figure 1. Schematic showing the configuration studied here: () an unbounded simple shear flow (with a shear
rate I” > 0) passing over a band of particles. The particles of uniform size are randomly distributed within a
band of width /# with equal probability, forming a top-hat distribution of particle number density (N(y)), as
shown in (b).

The VF conservation equations govern the fluid (carrier) phase in the semi-dilute regime
(low particle volume fraction) as

V.ou=0, 2.1a)

u
of (E +u-. Vu) =—-Vp+ vazu + F), (2.1b)

where u is the VF fluid velocity, p is the VF pressure, por is the fluid density and uy is
the fluid viscosity. The term F), represents momentum exchange from particles (dispersed
phase) to fluid. For a semi-dilute concentration of particles (¢, < 1), F), can be expressed
as

F (v —ulp)
p=—Cp VTl oy (2.2)
P

where p, is the particle density, ¢, represents the volume fraction of particles in the
fluid medium, 7, = ppdg /(181ur) is the relaxation time scale of the particle to the fluid
acceleration and d,, the particle diameter. The total fluid stress, denoted as 7, is determined
from the combination of pressure and viscous stresses as —pI + ur(Vu + Vul), where
Vu represents the fluid velocity gradient, I is the identity matrix and (-)T is the transpose
operator. The Eulerian particle velocity, v, is computed from Lagrangian particle velocities
using (2.4). The notation (-)|, specifies fluid properties evaluated at the locations of the
particles. The fluid velocity at the particle location (u|,) is obtained through a trilinear
interpolation, as described in Capecelatro & Desjardins (2013). In (2.2) the first term
represents the stress exerted by the undisturbed flow at the location of the particle. The next
term accounts for stresses induced by the presence of particles, characterized by Stokes
drag, for Re, < 1, where Re), is the Reynolds number based on particle size. The Stokes
drag must be evaluated using the slip velocity between the particle and the undisturbed
fluid. In situations where the density ratio (o,/pr) is significantly higher (e.g. dusty gas
flows, water droplets in the air), as in our study, Stokes drag dominates the momentum
exchange. Since the density ratio is very large and the particle volume fraction is very
low, the first term in (2.2) is negligible compared with the second term. Although our EL.
simulation implementation generally accounts for both of these terms, we will later see in
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§ 4 that, in the LSA, only the Stokes drag term is used, and the first term is neglected for
simplicity.
The particles are tracked in a Lagrangian sense. Assuming point spherical particles in
a Re, < 1 flow regime, the dynamic equation for ith particle is given by Maxey & Riley
(1983) as
i i i
d—vziV-tlp—Fll'p—v, Withd—x=v’, (2.3)
dr Pp ) dt
where x' and v’ are the position and velocity of the ith particle, respectively. In this
study, gravitational/sedimentation effects have been omitted to isolate and comprehend the
distinctive impact of two-way coupling on instability. Also, we operate in the semi-dilute
regime to avoid any potential particle—particle interactions such as collision. Also, as
mentioned earlier, the density ratio (o,/0r) is kept large, so the added mass effect, Basset
history force and Saffman lift force are negligible. To evaluate the momentum feedback
from the particle phase to the fluid phase (F)), one needs to evaluate the instantaneous
particle volume fraction and Eulerian particle velocity field. At a location r, these are
obtained from the corresponding instantaneous Lagrangian quantities using

N
¢p(r) = Vpe(lr — ), (2.4a)

i=1

N
p(Nv(r) = Zv’Vpg(Ilr—X’ll), (2.4D)

i=1
where V), = rcd; /6 s the particle volume, g represents a Gaussian filter kernel of size §y =
3Ax, where Ax is the grid spacing (Capecelatro & Desjardins 2013). In the VF method the
Gaussian kernel smoothes out/regularizes the fluctuations in momentum feedback, thereby
preventing any convergence issues during simulation. The VF model was recently applied
by the authors successfully in particle-laden vortical flows (Shuai & Kasbaoui 2022; Shuai
et al. 2022, 2024). Readers interested in further details about the numerical approach may
refer to them.

The Reynolds stress term, or the subgrid-scale tensor, is an important consideration
during the filtering operation. In a multiphase flow like ours, this term can arise from
(1) turbulent fluctuations in the fluid phase and (ii) fluctuations created by the particles.
Since our simulations are not in the turbulent regime, the first contribution can be readily
neglected. As for the contribution due to particle disturbances, it is not clear whether it is
significant and how to model it. There are ongoing efforts to model the particle-induced
subfilter-scale tensor, such as the recent work by Hausmann, Evrard & van Wachem
(2023). However, due to the large modelling uncertainty, there is no clear consensus
on how to model these subfilter effects. These considerations are outside the scope of
this paper, and thus, we neglect subfilter-scale effects other than those that appear in the
feedback force in our analysis.

The works of Sundaram & Collins (1996) and Peskin (2002) demonstrated that, in EL
simulations, using different schemes for interpolating fluid velocity at particle positions
and for extrapolating particle feedback forces to the fluid phase can result in an error gap
in the kinetic energy budget. However, this issue pertains specifically to point-particle
models, where discrete Dirac delta functions acting on the Navier—Stokes equations
represent the particle feedback force. Our method, by contrast, follows a VF approach, as
outlined by Capecelatro & Desjardins (2013), where the governing equations are derived
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via convolution with a smooth kernel, such as a Gaussian. A comparison of both methods
with experimental results for the case of a particle-laden vertical turbulent channel flow
can be found in Wang et al. (2019). Given the fundamental differences in our approach,
the kinetic energy gap highlighted by Sundaram & Collins (1996) does not apply to our
simulations despite using trilinear interpolation for fluid velocity at particle positions and
a Gaussian kernel for particle feedback. While we are unaware of any hidden energy
imbalance, this falls beyond the scope of the present study. Furthermore, Ireland &
Desjardins (2017) demonstrated that applying additional corrections to the fluid velocity
at particle positions did not lead to statistically significant variations in time-averaged
quantities, such as fluctuation energy or fluid kinetic energy.

In (2.2) and (2.3), when evaluating the drag term, the fluid velocity at the particle
location, u/,, should ideally represent the undisturbed flow. However, since the simulation
accounts for the presence of particles, the fluid velocity is already disturbed, making it
challenging to accurately estimate the undisturbed flow velocity. This error can lead to
unphysical, self-induced particle motion, which is a known challenge in EL simulations.
The self-induced motion is influenced by the length scale of the interpolation kernel g.
Studies such as Ireland & Desjardins (2017) and Balachandar, Liu & Lakhote (2019) have
proposed corrections for estimating u/|,, to reduce the risk of this unphysical phenomenon.
These studies suggest that the correction for self-induced velocity is proportional to the
ratio of particle diameter to filter width, d,,/8¢. To minimize the effect, one must maintain
dp/8r < 1, ensuring that the kernel’s length scale is large enough and that many particles
lie within the volume occupied by the kernel. Consequently, the flow is modified by the
collective effect of many particles, making the individual self-induced motion negligible.

A scaling analysis of the drag force in (2.2) reveals the coupling strength of feedback
force from particle phase to fluid phase is governed by the non-dimensional number M =
Pp{Pp)/ pr — the mass loading (or mass fraction), where (¢)) is the average volume fraction
of particles. If the particle field is dilute and the mass loading is negligible, the feedback
force can be neglected, and the one-way coupled simulations can be used to describe the
evolution of the particulate flow. However, when the density ratio (po,/pr) is significant,
as is the case here, the mass loading becomes O(1), which leads to significant feedback to
the fluid phase from the particle phase, even if the particle phase is dilute (Kasbaoui et al.
2015). As we will see in the upcoming sections, this feedback is the source of instability
in the present study, as the system considered here is stable under one-way coupling.

2.2. Ilustration of the instability

To demonstrate the instability resulting from two-way coupling, we investigate an
unbounded simple shear flow combined with a band of particles distributed in a top-hat
manner (refer to the schematic in figure 1). The fluid properties include a density of
pr =10 Kg m~3, viscosity of wr = 1.5 x 10> Kgm~!s~! and a flow shear rate of
I' = 12.65 s~ 1. The particles are monodisperse with a diameter dp = 4.62 pum and density
pp = 1000 Kg m~3, distributed uniformly within a region |y| < /2. The band width is
chosen as 4 = 6 mm to maintain a large h/d,, ratio, approximately h/d, ~ 1300, ensuring
that the fluctuations caused by discrete particle forcing remain well below the viscous
dissipation scale. The average volume fraction of particles within the band is set to
(p) = 1073, In terms of non-dimensional numbers, this corresponds to a density ratio of
op/ pr = 1000, Stokes number St = I't;, = 10~3 and mass loading M = (pop/pr){(Pp) = 1,
which is significant. Here, 7, = ppdg /(18ur) is the particle relaxation time.
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The relative importance of the gravitational settling speed (Vs = gt,) of particles
compared with the characteristic flow speed (V. = I'h) can be evaluated as V/V, =

St/Fr* 2 0.01. Here, g is the acceleration due to gravity and Fr = V,//gh is the Froude
number, a dimensionless number that measures the relative importance of inertial forces
to gravitational forces. Given that the ratio V/V, is very small, it is evident that the
gravitational settling effect of particles is negligible in this set-up. Consequently, we have
ignored it in our study. Furthermore, the Saffman lift force (Saffman 1965) experienced by

a particle moving in a simple shear flow is given by L = 1.615usd), |u,]| /dg|w|,0f/uf (w %

ug)/(Jw| |us|) (see Candelier et al. (2023) for a generalization of inertial forces in
linear flows, accounting for transient effects). When compared with the Stokes drag
D = 3muydyug, this yields |L|/|D| ~ (1.615/m) /28t pr/pp = 7.27 x 10~*. Here, u, is
the slip velocity between the particle and the fluid, and @ is the vorticity at the particle
location, assumed to scale with the background shear rate as |@| ~ I". The negligible ratio
of lift to drag force allows us to ignore the lift force in this study, as reflected in (2.3).
The numerical simulation is performed in a box of dimensions L, x L, x L,, where
L, ~ 16 666d),, Ly = 3L, and L, = 3d,,. To avoid unwanted diffusion effects, the Reynolds

number based on the box width is thus set to Re; = I'L?ps/us ~ 5000, and we focus
on inviscid instability. The flow needs to be periodic in the x direction and unbounded
in the y direction. To achieve this within the simulation box, we apply regular periodic
boundary conditions at the left and right boundaries (in the x direction) and shear-periodic
boundary conditions at the top and bottom boundaries (in the y direction), accounting for
the background shear flow (see Kasbaoui et al. 2017). By choosing a domain size that is
three times larger in the y direction, we ensure neighbouring periodic simulation boxes are
well separated and do not interfere with each other to influence the instability. We use the
EL framework described above on a uniform Cartesian grid with resolution h/Ax ~ 41,
Ny =512, Ny, = 3N, and N, = 1. The ratio d,, /8¢ is maintained at approximately 0.01, a
sufficiently small value, ensuring that the self-induced motion of particles is negligible.
Here, we perform pseudo-two-dimensional simulations by considering only one grid point
in the axial (z) direction with periodic boundary conditions applied over a thickness Az =
3d,. This allows the definition of volumetric quantities such as particle volume and volume
fraction.

In addition to conducting two-way coupled simulations, we perform one-way coupled
simulations, where the momentum exchange term (2.2) is neglected. The particles still
evolve due to the momentum contribution from the fluid. However, the particles’ feedback
to the fluid phase is deliberately switched off. This allows for comparison between one-way
and two-way coupled simulations and showcases the impact of particle feedback on the
flow dynamics.

The fluid velocity field is initially superimposed with a two-dimensional incompressible
perturbation of the form i, = el"h e /B (2y/kB?) sin kx and uy=¢€l'h e™*/B cos kx.
The perturbation has an amplitude of € = 102 relative to the characteristic flow velocity
I'h, where, as mentioned earlier, I" = 12.65 s~! and & = 6 mm. It features a sinusoidal
variation in the x direction, set to contain four full periods in the domain, i.e. A = L, /4,
where A is the wavelength of the perturbation in the x direction (i.e. kh =2 with
dimensional wave number k = 21/1). The perturbation decays in the y direction in a
Gaussian manner with a characteristic width 8 = 2h. The corresponding perturbation
vorticity field is shown in figure 2, at 1"t = 0. The initial velocity of the particles is set
equal to the local fluid velocity.
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Figure 2. The time evolution of isocontours of normalized perturbation vorticity (g,/qo) for two-way coupling
(a—e) and one-way coupling (f—j) is shown. The corresponding simulation parameters are set to M = 1, St =
1073, e =102 and (Pp) = 103, For better visualization, the figures are zoomed in and cropped to centre the
view on the particle band, although the simulation domain is larger, especially in the y direction. In addition,
the coordinates in both directions are scaled with the band width A.

The evolution of the vorticity perturbation g, normalized by its initial maximum value
qgo=€lh(k+ 2/(k,32)) = (9/4)eI" is presented in figure 2. Successive snapshots are
provided for various non-dimensional times 't = 0, 0.1, 1, 2 and 3. The snapshots are
confined to a domain that is zoomed in and cropped around the particle band for better
visualization, although the simulations use a larger domain size, especially in the y
direction, as mentioned earlier. In the case of one-way coupling (f—j), it is observed that
the vorticity patches are sheared, tilted and stretched by the background flow, and the
intensity of vorticity diminishes as time progresses. The downstream tilt of the vorticity
perturbations and the related algebraic decay of associated perturbation energy by the
Orr mechanism are described in detail in Farrell (1987) and Roy & Subramanian (2014).
The perturbed flow had a periodic behaviour with a wavelength in the x direction of
A = L,/4, which remains unchanged as time advances. At later times, it can be seen that
the perturbation field eventually decays.

Conversely, when considering two-way coupling (a—e), we observe significant evolution
and amplification of the vorticity field. The initially perturbed mode with A = L,/4
disappears, giving way to a new mode with A = L,. These newly emerged structures, likely
unstable eigenmodes, persist and their corresponding vorticity field intensifies over time.
As the simulation progresses, nonlinear interactions between successive vorticity patches
become more pronounced, eventually leading to a transition into a strongly nonlinear
regime (not shown here).

Particle dispersion is also significantly affected when two-way coupling is considered.
Figure 3 depicts the evolution of the particle volume fraction field scaled with the
average initial volume fraction. When the particle feedback is neglected (f—j), the shear
flow simply advects the particles. As the flow perturbations decay over time, they have
minimal impact on particle transport, even after a significantly longer duration. Eventually,
the disturbances die out and the particle distribution resembles the initial band (see
figure 3(f—j) at I't = 0 and 25). In contrast, two-way coupling leads to growing flow
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Figure 3. The time evolution of isocontours of the normalized particle number density (n = ¢,/{($p)),
corresponding to the simulation in figure 2, is shown. The large time snapshots illustrate the nonlinear evolution
of the instability in the two-way coupling case.

perturbations, which in turn govern the dispersion of particles (a—e). Initially, the uniform
particle band undergoes deformation due to flow disturbances characterized by a periodic
mode of A = L,. As time progresses, the interplay between background shear flow and
growing perturbations initiates nonlinear effects, resulting in particle clustering into lobes
interconnected by a relatively slender filament, as can be seen in figure 3(a—e), at I't = 25.

The simulations shown in figures 2 and 3 suggest that semi-dilute inertial particles,
distributed non-uniformly in an unbounded simple shear flow, can induce hydrodynamic
instability. This instability cannot be solely attributed to hydrodynamics since the simple
shear flow in a single-phase flow is stable to infinitesimal perturbations (see Drazin &
Reid 2004). Furthermore, it cannot be attributed to collisional effects, as the simulation
neglected particle—particle interactions. Instead, the instability must arise from the
two-way momentum exchange between the two phases, as confirmed by the absence of
instability when the two-way coupling term is deactivated in the simulation. Previous
studies have shown that uniformly distributed particles in a simple shear flow, even with
two-way coupling, do not exhibit modal instability but can demonstrate only a non-modal
instability if gravitational effects are considered (Kasbaoui et al. 2015). However, in this
study we observe the emergence of a new type of instability resulting from the interaction
between the simple shear flow and a non-uniformly distributed particle field in the absence
of gravitational settling. In the subsequent sections we demonstrate that this new type
of instability is modal and explain its generation mechanism. The following section will
provide a mechanistic explanation of the instability through wave interactions.

3. Mechanism of instability: a dusty Taylor-Caulfield instability

In the previous section we observed that instability arises from the two-way coupling
between the particle and fluid phases, driven by the finite inertia of the particles.
Surprisingly, even weakly inertial particles (St = 10~3) triggered the instability. In this
section we delve into the instability mechanism in the small particle inertia limit while
still considering the particle—fluid coupling. We employ the concept of wave interaction to
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elucidate this instability mechanism. In the weak particle inertia limit we demonstrate that
our particle-laden system resembles a stratified fluid system. The fluid exhibits an effective
modified density, which is stratified due to the particle concentration gradient. This density
stratification creates edge waves and their interaction leads to instability, similar to the
case of the Taylor—Caulfield instability (Taylor 1931; Caulfield 1994; Balmforth, Roy &
Caulfield 2012). However, there is a caveat: the wave generation mechanism differs slightly
here, which we will address as we proceed.

In the limit of weak particle inertia, following Ferry & Balachandar (2001), Rani
& Balachandar (2003), the feedback force F), in (2.2) for dusty gas system can be
approximated as F, = —pp¢pa + O(t,), where a = (0u/0t + u - Vu) represents the fluid
acceleration term. Substituting it back into (2.10) yields a simplified form representing a
fluid with modified density (in the inviscid limit) as

ou
Jo (E +u- Vu) = —Vp, 3.1

where p = pr + ppn{¢p,) represents an effective fluid density due to the suspended
particles, where n = ¢,/(¢p) is the normalized particle number density. Thus, a spatial
inhomogeneity in the particle concentration can result in a variation in the effective density
of this composite fluid even if oFf is a constant. Additionally, the conservation of the total
number of particles yields

ap

ot
Together, (2.1a), (3.1) and (3.2) resemble a stratified incompressible fluid system and is
known as the single-fluid continuum model describing a particle-laden system. Taking
the curl of (3.1) after scaling it with p gives the evolution equation for the flow vorticity
(g = V x u) as (for a two-dimensional case)

+u-Vp=0. 3.2)

9 v
(_‘1+u.vq>:ax_p, (3.3)
dt P

where we have used the relation between a and Vp from (3.1) here for further
simplification. A general evolution equation for vorticity in a multiphase flow is obtained
by Osnes, Vartdal & Pettersson Reif (2018) by taking the curl of the momentum
conservation equation for the fluid phase. According to the equation, in a two-dimensional,
incompressible flow the vorticity generation is due to three factors: (i) barotropic torque,
(i1) torque due to feedback force, and (iii) torque due to the misalignment between
volume-fraction-weighted fluid density and feedback force. Out of these, the last two
terms are present only because of the feedback force from particles. In the dilute limit
of particle concentration and negligible particle inertia, one can approximate the feedback
force as mentioned earlier, ), &~ —p,¢pa, and reduce Osnes’s general multiphase vorticity
equation to our (3.3), assuming no barotropic torque generation. According to Osnes’s
equation, vorticity is generated due to the particle feedback force, especially when the
relative velocity between the particle and fluid phases remains large, and the particles
remain accelerated or decelerated, as noted in the case of channelling instability (Koneru
et al. 2020; Ouellet et al. 2022). When viewed in terms of (3.3), this indicates that vorticity
can arise in the system due to the misalignment between fluid acceleration and the gradient
in particle concentration due to the baroclinic source term a x Vp. In the subsequent
paragraphs we demonstrate the precise way by which vorticity is generated in our system
and how it gives rise to propagating waves that can interact and lead to instability.
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The base state flow may inherently possess a vorticity field. However, the additional
vorticity disturbance created would be responsible for generating waves. To analyse this,
we need to consider the evolution equation for the disturbance vorticity field. Without
loss of generality, let us consider a general two-dimensional system in the x—y plane with
unidirectional flow in the horizontal direction and vertically stratified particle distribution.
We can decompose the relevant quantities into base state and disturbance (denoted by
() parts as u = U(y)x + u(x,y) and p = pp(y) + g(x, y). The vorticity field g = ¢,z
will be along the z direction and can be decomposed as g, = Q,(y) + g.(x, y), where
the base state vorticity is Q,(y) = —U’(y). Substituting these expressions into (3.3) and
considering the leading disturbance terms, we obtain the linearized evolution equation for
the disturbance vorticity field as

Dg; 10[/; Duy (op U/)/ -
o~ = T T~ + My )
Dt pp Dt Pb

(3.4)

where the operator D/Dt = 9/0t+ U(y)d/ox represents the linearized material
derivative and ()’ represents the operation d/dy. Utilizing the relationship between the
vertical displacement field 7 and the vertical velocity field u, = D#n/Dt, we can rewrite
(3.4) as

3.5
D (3.5
i.e. the quantity inside the bracket is materially conserved. In other words, the disturbance
vorticity ¢, is related to the horizontal disturbance velocity #, and the vertical
displacement 7 as

D(. _p (U
_<qz_ux_b_npb ) =01
Pb Pb

/ AV
Z]z = ﬁx@ + ﬁ(pr)
Pb Pb

The constant term represents a bulk vorticity in the background flow. Since we are
primarily interested in the relative vorticity generation g, with respect to this bulk vorticity,
we can set the constant term to zero without loss of generality. From this general
formulation, let us consider our special case where the base state flow is a simple shear
flow, i.e. U = I'y, and the base state particle number density has a top-hat distribution.
Without loss of generality, we assume that I" > 0. Since the particle concentration has
sharp variations at locations y = h/2 and y = —h/2, the effective density p of the fluid
also varies sharply at these locations. The base state density pp(y) takes a constant value
p1 = pr outside the particle band and p = (pr + (¢p)pp) > p1 within the particle band,
as shown in schematic figure 4. These density jumps cause the locations of the jumps
(y = £h/2) to act like interfaces separating different density fluids, marked as I and
II in the figure 4. To begin with, we consider each of these interfaces in isolation and
demonstrate that they support propagating waves due to disturbances.

Consider interface I at y = h/2, where the effective density drops from p» to p; (as we
move along the positive y direction). As a result, p,(y) = —Apd(y — h/2) < 0, where
Ap = (p2 — p1) > 0 and §(-) represents a Dirac delta function. Let us assume that the
interface is perturbed sinusoidally (77), as shown in the figure 4. From (3.6), we can deduce
that a disturbance vorticity field is generated, given by g, = (it, + I'17) p,,/ pp. Generally,
the associated horizontal perturbation velocity i, will have a discontinuity at the interface,
which changes sign once we cross the interface. Physically, for a wave to be supported at
the interface, there can be no self-induced i, for a wave-like solution at the interface. Thus,
i, = 0 at the interface. Then the generated vorticity disturbance is directly proportional to
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Figure 4. Schematic illustrating the background simple shear flow, density jumps at the two interface locations
labelled I and II, and the corresponding interface disturbance fields. The initial interface displacement field
(1) is depicted as a continuous sinusoidal curve, while its later stage is shown as a dashed curve, indicating
its intrinsic propagation direction. The perturbation vorticity field (g;) and perturbation vertical velocity fields
(ity) are also sinusoidal, with crests (troughs) represented by anticlockwise (clockwise) and upward (downward)
arrows, respectively.

the interface perturbation as g, = I” ﬁ,o,; /pp. Since I' > 0, pp > 0 and, as we saw earlier,
pp, < 0 at interface I, the generated vorticity disturbance will be out of phase with the
interface displacement field. The maximum g, (anticlockwise) occurs at the troughs of the
n field, and the minimum ¢, (clockwise) occurs at the crests of the interface perturbation,
as can be seen in figure 4 (the crests and troughs of the generated vorticity disturbances
are shown as circular arrows). Since the density gradient is localized at the interface, the
resulting vorticity disturbance would also be localized at the interface as a Dirac delta
function with sinusoidal variation in the flow direction. The generated disturbance vorticity
field induces a vertical flow velocity field i, which has a maximum at the positive sloping
node and a minimum at the negative sloping node of the 7. The vertical velocity field
lags behind the interface displacement by 90°. The crests and troughs of the u, field are
represented as upward and downward vertical arrows in figure 4. The 90° phase difference
serves as the perfect criterion for the propagation of the interface displacement as a wave.
Upon visual inspection of figure 4, one can intuitively deduce that the upward i, at the
positively sloping 7 node and, similarly, the downward u, at the negatively sloping 7 node
would result in an intrinsic propagation of the wave leftward relative to the base state flow
at the interface location. Also, the 90° phase difference ensures that the wave would not
experience any amplification or damping but only undergo propagation (see Carpenter
et al. 2011).

This is similar to the generation of a propagating edge wave in a background shear flow
where there is a jump in vorticity/shear rate present (see Vallis 2006). A generalized edge
wave in a stratified fluid, which has both jumps in shear rate (from I to ) and density
(from p; to p1) across an interface, should have a phase speed ¢ of the form

(I'p1 — 1202)
¢ = Uinterface + e (3.7

Here, we do not have a jump in shear rate (i.e. /7 =12 =1I") but only a jump in
density. Thus, the resulting wave at interface I would propagate with a phase speed
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of ¢y = I'h/2 — I" At/k, where k is the spatial wavenumber in the x direction of the
disturbance and we used the definition of the Atwood number At = (o2 — p1)/(p2 + p1),
a non-dimensional number that frequently appears in the instability of density stratified
flows. In non-dimensional terms (as one chooses the length scale to be / and the time scale
to be I"~1), the phase speed is cf =c1/(I'h) = 1/2 — At/k*, or the dispersion relation
cfk* = k*/2 — At, which we will formally obtain as a large k* = kh (i.e. large separation
h) asymptotic expression of the dispersion relation of the full system in §4.2. Here, ()*
represents non-dimensional quantities.

Similarly, another propagating wave would be generated at interface II in isolation. At
this interface, since the particle concentration varies such that p, = Apd(y + h/2) > 0,
the vorticity disturbance generated would be localized at the interface and in phase with
1. As a result, the vertical velocity disturbance field thus produced would lead 7 by 90°,
and thus, the intrinsic propagation of the wave would be rightward relative to the base
state flow at the interface location, as shown in figure 4. The propagation speed would be
cn=—Th/2+ T At/kor cfy = —1/2 + At/k*.

Now that we have established that there would be a leftward propagating wave at
interface I and a rightward propagating wave at interface II when they are in isolation
or, equivalently, when the interfaces are well separated (i.e. h — oo or k* > 1), let us
consider the scenario as the separation /& between the interfaces is reduced. One can expect
the interfacial waves to perceive other’s presence and interact as they come closer. This
is because, although the interfacial vorticity fields are localized Dirac delta functions,
the vertical velocity fields typically exhibit exponential decay (wave evanescence) away
from the interface location (e.g. exp(—k|y — h/2|) as we see in § 4.2 as the eigenfunction
associated with u,). As the waves approach each other, they could interact. Still, for
modal instability to occur, two essential conditions must be satisfied (see Carpenter et al.
2011): (i) the phase speeds of the waves should be stationary with respect to each other
(‘phase locking’) and (ii) the relative phase of the waves should lead to the mutual
growth of the interface disturbances. As the interfaces approach each other, the individual
wave speeds also approach one another and are expected to become equal (and equal to
zero, i.e. ¢ = ¢y = 0) for kh = k* = 2 Ar. However, along with this natural convergence,
interactions play a role such that the waves become stationary relative to each other at a
slightly larger separation (or non-dimensional wavenumber kz'fuwﬂ > 2 At). The leftward

propagating wave at interface I can slow down the rightward propagating wave at interface
IT and vice versa (for I' > 0), thus achieving phase locking at a larger separation. Once the
phase locking is achieved, it can be maintained even though the isolated phase speeds are
generally unequal (except at k* = 2 Ar) due to mutual interaction. Adjustments in the phase
difference between the waves maintain an induced phase speed that exactly cancels the
intrinsic propagation speed. Therefore, condition (i) would be satisfied for 0 < k* < k7, i
through adjustments in the relative phase difference of the waves.

Similar to the propagation criterion, upon visual inspection of figure 4, one can deduce
that an upward u, component at the crests of 77 and equivalently a downward u, component
at the troughs of 7 will lead to the growth of the wave. As the isolated waves become phase
locked, the interaction occurs in such a way that the u, field of one wave at an interface and
the 7 field of the other interface satisfy this criterion, and vice versa. Thus, by condition
(ii), the phase-locked waves mutually trigger amplification and arrest propagation, leading
to instability through wave interaction for any smaller separation of the interfaces (or
non-dimensional wavenumbers in the range 0 < k* < kz',‘umﬁ). This intricate interaction
between the phase-locked waves is fundamental to understanding the mechanism behind
the generation of modal instability in such dust-stratified fluid systems.
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We now address the earlier caveat, highlighting an important distinction from the
classical Taylor—Caulfield instability. In the Taylor—Caulfield instability, interfacial waves
are generated due to a Boussinesq-type baroclinic torque driven by buoyancy/gravity
effects. This occurs in a system with an overall stable stratification (p; < p2 < p3), where
p1 1s at the top, po is at the middle and p3 is at the bottom layers. A pair of stable surface
gravity waves are generated at each interface, separating these layers due to the Boussinesq
baroclinic effects. One of them propagates leftward while the other propagates rightward;
together, they interact to produce a stationary wave that is dampening at each interface.
However, when the interfaces are brought closer, in a background shear flow (" > 0), the
interaction between the leftward propagating wave at the upper interface and the rightward
propagating wave at the lower interface leads to instability.

However, in our system, no gravitational/buoyancy effects are present. Therefore,
no restoring mechanism could generate propagating waves from Boussinesq baroclinic
effects. Instead, the oft-neglected non-Boussinesq baroclinic effects are responsible for
wave generation, acting as a different type of restoring mechanism. The waves generated
closely resemble edge waves or vorticity waves rather than surface gravity waves, as only
one stable propagating wave is generated at each interface. Similar to the Taylor—Caulfield
instability, instability in our system requires a leftward propagating wave at the top
interface and a rightward propagating wave at the bottom interface (noting that this
preference is due to I > 0 and would be reversed if I" < 0). Thus, for instability to occur,
p3 must be smaller than p,, which we have assumed to be the same as p;. However, if
the system were configured with p3 = p; > p7, the direction of waves at each interface
would be reversed. In such a scenario, the interaction would only amplify their propagation
speed, suppressing phase locking and avoiding any chance of instability. Similarly, if
p3 > p2 > p1 (p3 < p2 < p1) then there would be leftward (rightward) propagation of
waves at both the interfaces, whose interaction also can not produce instability. With
the evidence of instability from EL simulations and an explanation of the mechanism
involving interacting edge waves, we now proceed towards a quantitative evaluation of the
growth rate of the instability using a LSA.

4. Linear stability analysis

In this section we employ an analytical approach, complemented by numerical assistance,
to investigate the system more formally, illustrating the existence and criteria and
quantifying the growth rate of the instability. To achieve this, we incorporate a continuum
description of the particle phase, outlined below.

4.1. Two-fluid model

We adopt the Eulerian—Eulerian description of a particle-laden flow, as outlined by
previous works such as Saffman (1962); Marble (1970); Druzhinin (1995); Jackson (2000);
Kasbaoui et al. (2015). The dispersed phase, or particle phase, is characterized by a
set of conservation equations inspired from the kinetic theory of gases, employing a
mono-kinetic particle velocity distribution function. According to the method, the particle
phase is considered a continuum fluid of zero pressure, valid for very dilute suspensions.
The mass and momentum conservation equations for the fluid and particle phases in the
semi-dilute regime, expressed in non-dimensional form, are
V.u=0, 4.1a)

on

T 4+ V.@mv) =0, 4.1b)
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o v LI YL Gl (4.1¢)
— +u-Vu=— —Vu _ dc
pY P Re St
d(nv) n(u — v)
V. - 7 4.1d
o1 + (nvv) S/ ( )

where, as mentioned earlier, u represents the fluid velocity, v denotes the particle velocity
and n = ¢p/(¢p) is the normalized particle number density; but all depicted as fields
here. Here onwards, we drop ()* from non-dimensional quantities as we only deal
with them unless specified otherwise. For non-dimensionalization, the length and time
scales are set to the initial width of the particle band (%) and the inverse shear rate
(I'™1), respectively. The dimensional number density ¢p/Vp is normalized by (¢p)/V),
to obtain a non-dimensional measure for the particle concentration field denoted as
n = ¢p/{¢p), where V), represents the particle volume. The non-dimensional numbers
include the Reynolds number (Re = I"h?/v), which quantifies fluid inertia, the Stokes
number (St = I'1p), characterizing particle inertia, and, as mentioned earlier, the particle
mass loading M = p,(¢,)/pr. We have not accounted for particle interactions and
inertial lift forces in our current formulation, although these effects could alter particle
trajectories significantly. Both hydrodynamic and non-hydrodynamic interactions among
dust particles can influence particle trajectories, affecting phenomena like coagulation and
deposition (see Patra, Koch & Roy (2022) and references therein). In this study we focus on
the highly dilute limit and neglect the role of any interactions. The non-zero slip velocity
a particle has with its background local shear flow causes it to experience an inertial lift
force, as derived by Saffman (1965) for a simple shear flow scenario. The magnitude of the
Saffman lift force depends on the particle Reynolds number based on the local shear rate.
In our problem this Reynolds number is small; hence, we disregard the effect of inertial
lift.

4.1.1. Linearization and normal mode analysis of the inviscid equations

We disregard viscous effects in the analytical approach and focus solely on the inviscid
scenario, where Re — oo, as we have seen that the mechanism of the instability is
inherently inviscid. For stability analysis, we linearize the governing equations (4.1). The
flow quantities are split into their base state, denoted by capital letters, and perturbation,
denoted with a tilde, such as u=U+u, v=V+v, p=P+p and n =N+ n. We
consider a two-dimensional stability analysis in the x—y plane. A general base state of the
form U = V = U(y)x and N = N(y) satisfies the governing equations (4.1). That is, it is
assumed that there is no slip between the base state particle and fluid velocities. Perturbing
the base state with two-dimensional infinitesimal disturbances of the form u(x, y, 1),
v(x,y, 1), p(x,y, 1) and n(x, y, t), we obtain the linearized version of the equations as

V-u=0, 4.2a)
on on dN

. U— Dy —— NV.~=0, 4.2b
ot + ox ty dy + Y ( )
8&+U8L~z+~dUA V~+MN(5—17) (4.20)
- J— Uy—X = — —_—, ~C

or T Cax Ty P St
d(ND) N Ua(Nf)) L ND dU. N@@-19) 42d)

Vy— = .

ot ox Yayt St
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Here & = i, X + ityy and ¥ = v,x 4 U,p, where X and y are the unit vectors in the x and y
direction, respectively. While it may appear that N could be scaled out of all the terms in
(4.2d), it is retained because one must consider that in regions where there are no particles,
N =0, v = (Nv)/N cannot be defined in these empty regions. We use two-dimensional
disturbances, following Squire’s theorem (Squire 1933), according to which the most
unstable modes should be two dimensional, which is valid for dusty flows as well (Sozza
et al. 2022). To solve the system, we utilize a standard approach of normal mode analysis.
Since the linearized equations (4.2) are homogeneous in x and ¢, we assume a normal
mode form for the solutions as {&, v, p, i} = {u, v, p, n}(y) exp(i(kx — wt)), to obtain the
eigenvalue system, similar to the one in Saffman (1962) (see Appendix A). Here k is the
non-dimensional wavenumber in the x direction (scaled by /) and w is the non-dimensional
angular frequency (scaled by I"). The complex wave speed is defined as ¢ = cg + ic; =
w/k. For temporal stability analysis (real valued k), the real part Re(c¢) = cg determines the
phase speed of the wave propagation and the imaginary part Im(w) = c;k = o determines
the growth rate. If Im(w) < 0, the mode is stable, while if Im(w) > 0, it is unstable. We
need to solve the linear eigenvalue system equations (A2), seeking the eigenvalues ¢ (or
w) and eigenfunctions {ity, ity, p, Ux, Uy, 1}, where # = i, X + i,y and ¥ = 0, % + 0,).

Note that the particle velocity disturbance field influences the evolution of perturbation
number density, although there is no feedback from number density perturbations to other
quantities. To simplify the analysis, (4.2a,c,d) can be combined to obtain a single equation
by eliminating variables iy, p, v, and v,. Following the approach outlined by Saffman
(1962), Asmolov & Manuilovich (1998), this can be achieved in the modal space to obtain
a simplified nonlinear eigenvalue system involving only two variables i, and 7 as

[U(D* = k*) —U" )ity + MD[(U — ¢) AN'iiy] = 0, (4.3a)
ik(U — ¢) A + DINA*]aiy = 0, (4.3b)

where U = (U — ¢)(1 + MN A) denotes a modified base state velocity, and the damping
factor A = (1 + ik St(U — ¢))~! describes the averaged frequency response of the particle
phase to fluctuations in fluid velocity. We use D(-) or (-)’ to represent the differential
operator ddy, where generally the former one is reserved for perturbation quantities and the
latter one reserved for base state quantities. Equation (4.3a) represents a modified form of
the Rayleigh equation in the context of instability of dusty rectilinear flows, which we will
now refer to as the ‘dusty Rayleigh equation’ or DRE for short. Note that the compact form
of (4.3a) may misdirect the reader that the curvature of the number density field (i.e. N”)
plays a role in the instability. However, the terms containing N” exactly cancel out and do
not have any role, which will be apparent from the form given in (A4a). A derivation
of (4.3) can be found in Appendix A. These equations differ from those in Saffman
(1962) in that the latter considers a uniform base state number density field, leading to
the absence of terms containing gradients of particle concentration. Additionally, they
consider a viscous case with finite Reynolds number effects. However, we consider an
inviscid scenario and non-uniform particle distribution, resulting in DRE (4.3a) instead of
the modified Orr—Sommerfeld equation obtained by Saffman (1962).

4.2. Linear stability analysis for inertialess (St = 0) particles and the dusty Rayleigh
criterion

In this section we show that the instability is present even in the vanishing particle inertia
limit, so the origin of the instability is attributed to the mass loading, which quantifies the
two-way coupling. In the inertialess limit, i.e. St = 0, the damping factor is A = 1 and the
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modified velocity becomes a linear mapping of the actual base flow as it/ = (U —¢)(1 +
MN). Thus, (4.3) can be reduced to

p[(U—o)(D* — k) = Uiy + p/'[(U — )D — U']ty, = 0, (4.4a)
ik(U — )i+ N'ity = 0, (4.4b)

where we denote p := 1 + MN. The term p is the equivalent of a variable density, where
its variation contributes to the inertial term, leading to the generation of non-Boussinesq
baroclinic vorticity. Moreover, the same (4.4) can also be derived from linearization and
normal mode analysis of the single-fluid model (see Ferry & Balachandar 2001; Rani &
Balachandar 2003), as in the limit of St — 0, the two-fluid model reduces to a stratified
incompressible fluid system as we have seen in § 3.

The dusty Rayleigh criterion: the classic Rayleigh equation results in a necessary
criterion for instability known as the inflection point theorem, which states that the
base state velocity profile should exhibit an inflection point within the domain, meaning
that the quantity U” should change sign somewhere within the flow domain. The
equivalent criterion in the context of (4.4a) is that the quantity ¥ = D[pU’] should
change sign within the flow domain. We have already seen the same term X in (3.6),
which generates vorticity disturbances and, thus, instability. A derivation of the modified
Rayleigh criterion/dusty Rayleigh criterion can be found in Appendix B. An equivalent
statement for piecewise linear base state profiles is that the two interfaces must exhibit
opposite-signed jumps in (oU’) across them.

We investigate the stability of a particle-laden simple shear flow, corresponding to the
EL simulation in §2.2, where an unbounded simple shear flow interacts with particles
localized within a band, as illustrated in figure 1. The respective non-dimensional form of
the linear base state velocity profile is U = y and the piecewise constant top-hat number
density profile is

1, if —3<y<3,

4.5
0, otherwise, “.5)

N(y) ={

where, as mentioned earlier, the inverse shear rate (I"~!) is used as the time scale and the
width of the band (%) is used as the length scale. In our case of a simple shear flow, the
DRE stated above simplifies to a sign change for N’ in the flow domain, i.e. the gradient of
the base state number density profile must exhibit a sign reversal for instability. In another
sense, for the piecewise profile in (4.5), the instability criterion requires opposite-signed
jumps in pU’ (or N here) at the interfaces y = =1/2, which is satisfied here. While the
number density profile N(y) defined in (4.5) is discontinuous, its form supports sharp
gradients at the locations y = #1/2, across which the sign flip occurs. It may be easier
to visualize this sign flip if we smooth the number density profile, as we will see in (4.9)
and figure 7. Overall, the base state meets the essential conditions for instability. However,
instability is only assured once explicitly proven, as the dusty Rayleigh criterion serves as a
necessary condition rather than a sufficient one. This section aims to analytically establish
the presence of instability and pinpoint the parameter ranges where it manifests.

For the linear velocity profile and top-hat number density profile, the stability equations
(4.4a) reduce to (D* — kz)ity = 0 for all y values except at the two locations where the
number density profile has a discontinuity, i.e. at the interfaces y = +1/2. The solution to
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Figure 5. (a) The variation of the cutoff wavenumber ke, at which the instability disappears, and the
optimum wavenumber kj,y, at which the maximum growth occurs, are plotted against the Atwood number
for a top-hat number density profile. (b) The variation of the maximum growth rate ¢,,,,, corresponding to
kmax, With At is shown for the same number density profile.

this equation can be obtained analytically and is expressed piecewise for each layer as

Ale_ky’ y > 1/2’
By = { Ased + Age ™, |yl < 172, (4.6)
AZka, y < _1/2’

where the unknown constants A; to A4 need to be obtained from appropriate boundary
conditions. Note that the decaying boundary condition for i, at far field is already
accounted for in the solution, i.e. #t,(y — £o00) = 0, assuming k > 0. The kinematic
criterion requires the continuity of i, across the interfaces, ensuring the continuity of
interface displacements (7)), as they are related through ik(U — ¢)7) = ity. Additionally,
integrating (4.4a) across the discontinuous interfaces provides corresponding dynamic
conditions. For a detailed derivation, see Appendix C. Together, these conditions yield
a system of four equations involving the unknowns A to A4 and c, as

1 0 —e& —17r14 0

0 1 =1 =—e|]A 0
a; 0 ek —ar | |A3| T |0 @.7)
0 o3 —04 a4ek Ay 0

where o] = k(1/2 —¢c) — M, aa =k(1/2 — )1+ M), a3 =k(1/2+¢c) — M and o4 =
k(1/2 + ¢)(1 + M). For a non-trivial solution to the system of (4.7), the determinant of
the coefficient matrix must be zero, leading to the dispersion relation

1 [(k—2A02 —Af2(2 4 k)2e—2k
2k 1 — Ar2e—2k

c==% , (4.8)
where the Atwood number (At = (Omax — Pmin)/ (Pmax + Pmin)) 1s related to the mass
loading as At = M /(M + 2). Note that the eigenvalues ¢ appear in pairs, especially when
Im(c) # 0, they manifest as complex conjugates. Therefore, for instability to occur, Im(c)
should not be zero. Equation (4.8) indicates the presence of a cutoff wavenumber (kcuroff),
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Figure 6. Dispersion relation for the St = 0 case, for two different mass loadings (M = 1 — orange and M = 2
— blue), obtained analytically (for a top-hat number density profile) and numerically (for two different smooth
number density profiles: m = 1 and m = 4): (a) growth rate o (imaginary part of w) vs k, (b) real part of w
vs k.

below which only the instability can occur, i.e. long-wave instabilities. This critical
wavenumber can be determined as the solution of the transcendental equation M(2 —
k+ (2 + k)e %) — 2k = 0. The variation of keurofr With At is shown in the figure 5(a).
For instance, for a mass loading of M =1 (or At = 1/3), the critical wavenumber
can be obtained as ke &~ 1.028. The resulting unstable modes are stationary since
the corresponding Re(c) = 0. Conversely, the modes are neutrally stable propagating
waves for shorter wavelengths, i.e. when k > kcyo. In the limit of small k values,
instability is always present but with a lower growth rate, as evidenced by the scaling
w ~ ik AT/ (1 + Af).

Upon substituting the solution for ¢ in (4.8) back into (4.7), the amplitudes A| to A4
can be determined, as detailed in Appendix C. The dispersion relation (4.8) is plotted
in figure 6, using continuous lines, for two different mass loading values. It can be
observed from figure 6(a) that, for k < kcyrfr, the growth rate of the modes increases
until reaching a maximum and then decreases for any given mass loading. Consequently,
an optimal wavenumber (kjqy) exists at which the maximum growth (o,,4y) occurs. This
optimal wavenumber can be obtained by solving the transcendental equation e?*(k —
2A0) +2A°7(1 +2A1) (1 — At + k) + e K Ar*(2 + k) = 0, derived from (4.8) using the
optimization criteria d(ck)/dk = 0. Figure 5(a) displays the variation of k;,,, with Az while
figure 5(b) shows the variation of oy,,, with Az. For instance, for M = 1(or At = 1/3), the
non-dimensional wavenumber corresponding to the maximum growth rate is ky,q, =~ 0.504
and the maximum growth rate is 0,4y = kpax Im(c(kppax)) ~ 0.244.

From figure 6(b), it is evident that for k > ke, the waves propagate in opposite
directions and attain a speed of w ~ £(k/2 — At) as k — oo (shown as asymptotes in the
figure for M = 1 in grey). This implies that the waves propagate without any interaction, as
they are well separated by the distinct interfaces on which they exist. As we discussed the
instability mechanism in § 3, we obtained the same dispersion relation earlier for isolated
waves at the interface. The natural phase speed matching of the isolated left and right
propagating waves occurs at k = 2 At, as indicated by the crossing of these asymptotic
lines in the dispersion curve. However, in practice, this matching occurs at ke > 2 At
due to their interaction, as seen from the figure.

For the linear velocity profile and the top-hat number density profile, (4.4b) simplifies
to (y — ¢)in = 0 everywhere except at the interfaces y = £1/2. For the discrete modes
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N(©) X/M=N'(y)

Figure 7. (a) The smooth base state number density profile corresponds to the generalized Gaussian for various
smoothness parameters m. (b) The corresponding parameter X' (scaled with mass loading M) in the background
simple shear flow, which determines the stability, is plotted in the flow domain.

(which corresponds to y #c), this equation yields 7 = 0 everywhere except at the
interfaces. Considering the interface discontinuity and conservation of the total number of
particles, one finds that ffooo ndy = 0, which implies that 7 o< §(y — 1/2) — 8(y + 1/2).

To verify the analytical results, we numerically solved the linear eigenvalue differential
equation (4.4a) using a standard Chebyshev spectral collocation method. To avoid issues
arising from the discontinuity of the base state number density profile, we employed a
smooth generalized Gaussian profile for the number density:

2m
N(y) = exp {— (yy—*> } . withm e N. (4.9)

Herey* = 2I'(1+1/ em) !, ensuring that the normalization yields ffooo N(y)dy =1;
I' (-) denotes the gamma function and m is the smoothness parameter. The number density
profile exhibits maximum smoothness for small integer values of m, whereas for larger
values of m, it develops sharp variations. As m tends to infinity, the profile approaches
the singular top-hat profile described in (4.5), as ensured by the normalization. The plots
in figure 7 depict the variation of the smooth base state number density profile and
the corresponding stability-determining quantity X' for various smoothness parameters
m within the flow domain. The Chebyshev collocation points ranging fromy € [—1, 1] are
transformed to y € [—R, R], where R is chosen to be sufficiently large to mimic infinity. To
enhance the efficiency of the numerical method by capturing the sharp variations near the
interfaces more effectively, we use the transformation as in Govindarajan (2004), which
ensures that more collocation points are clustered near y = 0. Since the base state profiles
are now smooth, there is no need to apply interface conditions. Instead, only the far-field
decay of the eigenfunctions needs to be enforced.

Figure 6 illustrates the corresponding dispersion relation obtained for two different
smooth profiles corresponding to the smoothness parameter m = 1 (Gaussian) and m = 4,
depicted using dotted and dashed lines, respectively. Figure 6(a) shows that the smooth
variation in the number density profile also causes instability. The trend of the dispersion
curves remains the same, with a maximum growth rate at some optimum wavenumber.
However, the symmetry of the curve before and after this wavenumber is compromised for
smooth profiles. Also, the cutoff wavenumber k,1of at which the instability ceases to exist
differs as the index m changes. Note that, for the largest value of m = 4, the numerical
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results compare well with the analytical results, with a better match expected for larger
values of m.

Figure 6(b) displays the variation of Re(w) with k, indicating the emergence of
counterpropagating edge waves once the system is in the stable regime. The curves
displayed are only for the analytical dispersion relation obtained for a top-hat number
density profile. For smooth number density profiles, stable discrete modes are absent. The
spectrum is purely continuous. The smooth variation of N’ in this case, as opposed to the
zero N’ for a top-hat profile everywhere except the jump location, results in a logarithmic
branch point at the critical layer (y = c¢), as in the case of the continuous spectrum
of inhomogeneous shear flows (Balmforth & Morrison 1995). The vorticity continuous
spectrum eigenfunctions would be a combination of a delta-function singularity and
a non-local Cauchy principal-value singularity (see Van Kampen 1955; Case 1959).
However, the mechanistic picture of the interaction between edge waves offered earlier
would persist despite the absence of discrete modes in the stable regime for smooth
profiles. Interestingly, for smooth profiles with sufficiently ‘steep’ transition regions
(m > 1), a wave packet comprised of the continuous spectrum modes camouflages as
a discrete mode known as a quasimode or a Landau pole (Schecter et al. 2000). The
quasimodes at each transition region can then interact and lead to instability, as seen
previously in the computed growth rates for the smooth number density profile cases.

4.3. Effect finite particle inertia (St #0)

For any finite St, one must solve (4.3) for simple shear flow (U = y). However, it is
an analytically cumbersome task even for the top-hat number density profile in (4.5).
This complication is due to the modified velocity ¢/ and the damping factor A. A small
St perturbation analysis can be performed to obtain asymptotic solutions in terms of
Whittaker functions. However, solving the equivalent linear eigenvalue system of (A2)
numerically for a smooth number density profile would be more feasible. After eliminating
i, and p from (A2a,c,d), the system can be reduced to the form

[ Mk ik2MN

oy oy 0

: ! ! ity D=k 0 0 07 [
——D L U’ 0 Oy | _ 0 i 0 0]

kSt 1= 0 0 i of|o]|
1y, I o | LA 0 0 0 i]lLn

St
0 kN b ikU |

(4.10)

with the eigenvalues  and the eigenfunctions ({ity, Uy, 0y, 71}. Here [} = (kU —
iMN/StH)D? — iMN'/St)D — k(U" 4+ k*U — ikMN/St), I = N' + ND and I3 = ikU +
1/St. We solve the system of (4.10) numerically for a simple shear flow (U = y) with
a smooth base state number density profile as given by (4.9), with decaying boundary
conditions for all eigenfunctions in the far field.

The results obtained are presented in figure 8. Figure 8(a) depicts the growth rate versus
the k curve for various St values, considering a smooth number density profile with m = 4,
for two different mass loading values. The corresponding curve for St = 0 with a top-hat
number density profile is also displayed for comparison. It is evident that as St increases,
the growth rate decreases for all mass loading values and wavenumbers. Furthermore, the
cutoff wavenumber k. decreases with increasing St. However, upon closer inspection,
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Figure 8. (a) Growth rate o vs k for two different mass loadings, M = 1 (orange) and M = 2 (blue), for various
St values obtained numerically for a smooth number density profile (m = 4). The analytical result for the St = 0
case with a top-hat number density profile is also shown for comparison. (b) The difference in growth rate for a
finite St case from the St = 0 case, plotted versus St for various combinations of M and k. Here, & is chosen to be
approximately the optimum wavenumber to the respective M value. Continuous lines represent the numerical
results for a smooth profile (m = 4), while dashed lines represent the analytic asymptotes for a top-hat profile.

it is observed that with a finite Stokes number, the instability persists for k > keuoff,
albeit with a significantly lower growth rate. In figure 8(b) the deviation of the growth
rate corresponding to finite St from the St = 0 case is plotted as a function of Stokes
number for various mass loading values. The wavenumbers are chosen to correspond
to the fastest-growing modes for the corresponding mass loading values. The results are
obtained numerically for a smooth number density profile of m = 4. Analytically obtained
asymptotes (using a small St perturbation analysis) for the respective cases with top-hat
number density profiles are plotted for comparison. The figure demonstrates that the
growth rate decreases as the Stokes number increases.

Figure 9(a) presents a contour plot of the growth rate in the k vs St plane for a mass
loading M = 2, obtained numerically, for a smooth number density profile of m = 4. The
plot illustrates that the growth rate decreases with St and increases with M. This implies
that particle inertia stabilizes the instability, whereas the mass loading (representing the
two-way coupling strength) has a destabilizing effect. This qualitative trend would also
hold for other mass loading values, though they are not shown here. In figure 9(b) the
variation of growth rate with mass loading is depicted for various combinations of k and
St. This plot reiterates the deduction about the dampening of instability by St and the
strengthening of instability by M. It is important to note that the instability persists even
in the limit of St = 0, whereas it vanishes in the M = 0 limit (i.e. in the one-way coupling
case). The analysis presented in this section confirms the existence of an instability in the
system under consideration. The source of instability is attributed to the two-way coupling
between the particles and the fluid, and it is observed that the instability can be dampened
by the particle inertia.

5. Comparison of EL results with LSA results

In the previous sections we demonstrated the existence and mechanism of the instability
using a linearized continuum model for the system. What remains is a quantitative
comparison of the predictions from LSA with fully nonlinear EL simulations.
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Figure 9. (a) A contour plot of growth rate o in the k vs St plane for a mass loading of M = 2. (b) The
variation of growth rate versus mass loading for various combinations of k and St values: the dotted line
represents St = 1073, the continuous line represents St = 102 and the dashed line represents St = 10~!. The
results are obtained numerically for a smooth base state number density profile with m = 4.

We conducted a series of EL simulations across various parameter ranges to obtain
the dispersion curve. The simulation set-up is similar to that in § 2.2. The dimensional
quantities are set to: pr = 1.0 Kg m~3, r=1.5x 109 Kgm~!s™!, I'=12.65s71,
dy, =4.62 um and p, = 1000 Kg m~3. As a result, in these simulations, the Stokes
number (S7) was kept constant at 10~3 and the density ratio was fixed to p,/por =
1000. To ensure a fair comparison with the inviscid LSA, the EL simulations were
conducted with a fixed Rey, ~ 5000, which is sufficiently high to make viscous effects
negligible. The simulation domain size was set as Ly = 16 666d,, L, = 3L, and L, =
3d,. The average volume fraction (¢,) of particles within the band was adjusted
among 1073 and 2 x 1073 to achieve various mass loading values, M =1 and M = 2,
respectively. To confine only one wave within the domain in the x direction, we fixed
the dimensional wavelength to be 4 = L,. By adjusting the bandwidth s, we obtained
different non-dimensional wavenumber values, ranging from £ = 0.125 to 1.6, where the
non-dimensional wavenumber k = 2mh/A. In all selected cases, the ratio //d, was set to

be large (of the order of 3 x 10? to 4 x 10%), ensuring that fluctuations caused by discrete
particle forcing remained well below the viscous dissipation scale. This configuration
enabled fluid—particle coupling primarily through collective particle dynamics at scales
comparable to A, rather than discrete effects at inter-particle distances. Since Ly is fixed,
varying h leads to a change in the ratio L,/h across the range from 1.25m to 16m.
However, L, remains sufficiently large in all these cases to avoid any possible interactions
with other periodic simulation boxes in the y direction. Though the domain size in the
spanwise (z) direction is limited (L, = 3d,), the randomness in particle distribution can
induce perturbations in the spanwise direction. However, as mentioned earlier in § 4.1.1,
an equivalent of Squire’s theorem for the Euler—Euler model for particle-laden flows
suggests that the disturbance with the maximum growth rate would be two dimensional.
We presume the same applies to EL simulations, with the fastest-growing modes in the
flow (x) and gradient (y) directions. Therefore, we restrict our study to a limited spanwise
domain size. Additionally, we maintain a large //d, ratio in all the simulations, meaning
that discrete effects are negligible. Only collective effects (or fluctuations on the scale of
hundreds of particles) matter.
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The initial conditions of the numerical simulations consist of a combination of the base
state (a simple shear flow with a top-hat number density profile) and perturbations. Unlike
in §2.2, here, the initial perturbation is selected differently by using the eigenmodes
obtained from LSA. To perturb our system, we utilize the analytic expressions for the
eigenmodes of the velocity field obtained for the corresponding St = 0 case. The initial
particle number density field is left unperturbed since the eigenmodes are theoretically
singular Dirac delta functions. Although this initial arrangement may not correspond
precisely to an eigenmode of the system under consideration (due to the omission of
finite St aspects and perturbations in the number density field), it will closely resemble the
eigenmode. As time progresses, the applied perturbations are expected to excite the most
unstable mode, i.e. the respective eigenmode of the system. The initial perturbation fields
can be visualized in the leftmost panels of figure 10. To ensure that the simulations capture
the linear regime described by LSA and to delay any nonlinear effects, the perturbations
are initialized with a small relative amplitude ¢ = 10~2. The location of the particles are
randomly initialized within each cell inside the particle band, defined by |y| < /2.

Figure 10 illustrates the time evolution of the perturbation vorticity field (scaled by
its initial maximum value) in the top panels and the particle number density field in the
bottom panels, for a case with M = 1 and St = 1073. The results are shown for three
different non-dimensional wavenumbers: k = 0.25, k = 0.5 and k = 1.2. As before, the
snapshots are zoomed in and cropped around the particle band for better visualization.
The initial evolution of the perturbation fields confirms the excitation of the respective
eigenmodes. For the case of smaller wavenumber k = 0.25 (panels a—e), it can be seen
that the perturbations grow over time and the vorticity field amplifies and spreads across a
larger region, indicating the presence of instability. For k = 0.5 (panels f—j), the instability
becomes more pronounced and transitions to the nonlinear regime rapidly, as expected
theoretically, since the maximum growth corresponds to a non-dimensional wavenumber
closer to k = 0.5. The theory predicts no linear instability for the larger wavenumber
k = 1.2 (panels k—0), which is also evident from the snapshots where there is minimal
growth of the vorticity field. It can be observed that, in all the cases, although the
number density field is initially not perturbed, eventually, the eigenmodes are getting
excited. The early evolution of the number density is linear, as predicted; however,
as time progresses, nonlinear effects become apparent. However, at all times and for
all wavenumbers, the evolution of the number density field remains coherent with the
corresponding perturbation vorticity field. This correspondence also holds theoretically
for a top-hat profile, as we have already seen using LSA that the vorticity perturbation
and number density perturbation fields are both Dirac delta functions. The number density
snapshots show that the case with wavenumber & = 0.5 transitions to the nonlinear regime
much faster than the others.

In order to determine the total perturbation growth rates from the present simulations,
we calculate the disturbance kinetic energy associated with the perturbations as

E=/%(u— U)-(u—U)dv, (5.1)

where U = I'yx, the base state simple shear flow, is subtracted from wu, the total fluid
velocity obtained from EL simulations, to obtain the disturbance fluid velocity. The
integration is performed over the entire volumetric domain of the periodic simulation box.

Figure 11(a) shows the evolution of total perturbation energy (E), scaled with the initial
value (E(t = 0) = Eyp), computed from EL simulations, presented in a semi-logarithmic
scale for various non-dimensional wavenumbers k, corresponding to a mass loading
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Figure 10. Panel (a) show the time evolution of the perturbation vorticity field g, (scaled by €I"), while (c)
depicts the total particle number density field ¢, /(¢,). The results are from a two-way coupled simulation with
M =1and St =103, examining three sets of non-dimensional wavenumbers: (a—e) k = 0.25, (f—j) k = 0.5
and (k—o) k = 1.2. The x coordinate is scaled with the wavelength A and the y coordinate is scaled with the
band width / in the plots. The snapshots are zoomed in and cropped to focus on the particle band.

of M = 1. The plots exhibit a linear trend at initial times, indicating an exponential
dependence on time. If the growth rate of velocity perturbations is denoted as o, then
the growth rate of energy perturbations would be 20. Based on this argument, one may
derive an expression to assess the growth rate o from EL simulations as

1 dE
o=——.

2FE dt
Figure 11(b) shows the time evolution of the growth rate estimated for EL simulation
results using the expression given in (5.2). Unlike the prediction from LSA, which
suggests a constant value, the instability growth rate exhibits variation over time in EL

simulations. The figure indicates that the growth rate peaks between t =0 and ¢ = 2,
depending on the seeded mode. The initial transient behaviour may be attributed to
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Figure 11. The evolution of () total perturbation energy E (normalized by its initial value) and (b) the estimate
for the instantaneous growth rate with time, obtained from EL simulations, for mass loading M = 1, for various
k values.

imperfections in the initial conditions. The time window surrounding the peak growth
rate in figure 11(b) corresponds to the exponential growth of kinetic energy observed in
figure 11(a), thereby closely aligning with the dynamics predicted by LSA. Eventually, the
growth rate decreases as the perturbation kinetic energy saturates, with the possibility of a
later increase due to nonlinear effects. An estimate for comparison with LSA would be the
peak value of the growth rate for EL simulations obtained from (5.2). The non-dimensional
growth rates o are thus obtained and plotted against the corresponding non-dimensional
wavenumber k for two different mass loading values in figure 12(a), represented by
circle markers. The growth rate numerically obtained from LSA for a smooth number
density profile (m = 4) is also compared. The results show good agreement, although
some discrepancies are observed in the numerical values. Considering that we are
comparing completely different simulation classes: fully nonlinear EL simulations with
LSA of the Euler—Euler model for the system under consideration, these differences
are expected. Furthermore, the growth rate obtained from EL simulations indicates that
energy perturbations decay beyond the critical wavenumber, contrary to what linear theory
predicts. This could be attributed to the viscous effects in EL simulations.

In order to quantify the contribution of a specific wave mode k to the overall dynamics,
we compute the kinetic energy associated with this mode using Fourier decomposition as

L Ly
E = f / Oz - iy 2, 0 dydz, (53)
L.2J)-1,22

where (-) denotes complex conjugation and & is the Fourier amplitude of the perturbation
velocity field, given by

L./2
e (y,z,1) = Nir / Lxﬂ(u — U) exp(—ikx) dx. (5.4)

The normalization for the Fourier amplitude is chosen such that Plancherel’s identity
yields [ Ey dk = E. The peak growth rate corresponding to the seeded eigenmode can thus
be extracted using (5.3) with (5.2), and are also shown in figure 12 using diamond markers.
These growth rates are also adequately consistent, qualitatively and quantitatively, with
the LSA results. Additionally, the figure shows an average estimate of the growth rate
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Figure 12. The growth rate o obtained from EL simulations for particles with St = 10~ is plotted () against
k for two mass loadings M = 1 (orange colour) and M = 2 (blue colour), and (b) against M for k = 0.5.
Various estimates for the growth rate are indicated by different markers: o denotes the peak value of the growth
rate (max(c)) estimated from the total perturbation energy, L] represents the average value of the growth
rate (avg(o)) in a time window Ar = (.5 about the peak growth rate of the total perturbation energy, and ¢
indicates the peak growth rate obtained from the energy of the seeded mode (max(oy)). For comparison, the
corresponding curves numerically obtained from LSA for a smooth number density profile of m = 4 are also
shown using dotted lines.

over a non-dimensional time window Af¢ = (.5 centred around the peak value of total
perturbation energy, depicted using square markers, which also compares well with the
LSA results. The differences between these various growth rate estimates can also be
observed to be very small.

Figure 12(b) displays the growth rate estimates from EL simulations for the k = 0.5 case
plotted for various mass loading values. As the mass loading increases, the growth rate also
increases, indicating that the strength of the two-way coupling determines the strength of
the instability. The trend in growth rate aligns well with the LSA results (shown as a dotted
curve). Below a critical mass loading, however, the EL simulations show damped modes
instead of the neutral modes observed in LSA, likely due to the inherent viscous nature of
EL simulations, as mentioned earlier.

6. Conclusion

In this study we have investigated a novel type of instability arising from the interaction
between a simple shear flow and a non-uniform distribution of particles. Individually, each
component is stable; a simple shear flow remains stable against infinitesimal perturbations
and a localized band of particles is stable without any gravitational or buoyancy effects.
However, when considering the system as a whole, the momentum feedback from the
particles to the fluid phase renders the system unstable. We utilized EL simulations to
show the existence of instability, treating the fluid phase as a continuum and the particles as
discrete using Eulerian and Lagrangian descriptions, respectively. The two-way coupling
between the fluid and particle phases is crucial for the observed instability. The strength of
the momentum feedback from particles to the fluid is directly proportional to the particle
mass fraction and inversely proportional to particle inertia. Consequently, increasing the
particle mass fraction enhances the instability while increasing particle inertia suppresses
it. The simulations were conducted at high Reynolds numbers, indicating that the
instability originates from inviscid effects. Moreover, we conducted simulations where
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we disabled the momentum feedback from particles to the fluid, while retaining the
momentum exchange from the fluid to the particle phase. As anticipated, the system
remained stable under these conditions, with particles solely advected by the shear flow.

Furthermore, a continuum model of the particle phase is employed to illustrate this
instability’s modal nature and explain its generation mechanism. In the semi-dilute limit
the particle phase can be modelled as a separate pressureless fluid. The model adopts an
Eulerian approach for particle and fluid phases, known as the two-fluid model. Linear
stability analysis of this model was conducted under the St = 0 and St < 1 limits to
quantify the growth rate of instability, utilizing analytical and numerical techniques. The
analytical investigation primarily focused on a simple top-hat distribution of particles,
while a numerical treatment was reserved for smooth, localized particle distributions.
In both scenarios, the analysis demonstrated that instability emerges as the momentum
feedback from particles to the fluid phase is considered. Surprisingly, the instability
persists even in the St — 0 limit, suggesting that although it originates from particle
inertia, its existence does not solely depend on inertia when the fluid—particle coupling
is accounted for. However, increasing St results in a damping effect on the growth rate
of instability. The growth rate estimates from EL simulations matched the LSA results
reasonably well.

To gain a mechanistic view of the instability, we examine the regime of small particle
inertia (St — 0). In this limit, the two-fluid model simplifies into a single-fluid model
that describes the continuum evolution of a fluid with an effective density due to
the suspended particles. The non-uniformity in particle distribution is thus reflected in
the effective density of this fluid. The system now resembles a density stratified fluid
capable of supporting propagating edge waves at interfaces where vorticity or density
exhibits discontinuities. Our system has two density interfaces, which individually support
propagating edge waves generated due to non-Boussinesq baroclinic effects in isolation in
a background shear flow. Unlike in the case of classical edge waves, the baroclinic torque
arises from the misalignment between base state density stratification and disturbances
in fluid acceleration. The propagating waves at both interfaces feel each other’s presence
once brought closer, and they interact through phase locking and mutual amplification,
culminating in the instability observed.

The proposed mechanism effectively explains the generation of the novel instability,
showing that the effects arise from the local mass loading of particles in the finite layer and
not from particle inertia, i.e. as they behave as Lagrangian tracers. The particle inertia has
a modifying effect on instability, as evidenced by the LSA. The analysis assumes inviscid
conditions, meaning viscous dissipation plays no role in the instability’s generation. The
energy fueling its growth is however extracted from the infinite reservoir of the background
shear flow.

The present analysis has made several assumptions, and the relaxation of many of
those would augment the instability found in the present study. The background flow
is a simple shear flow, thus disallowing any shear instabilities that might arise (Drazin
& Reid 2004). We have also neglected the effects of gravitational settling, non-zero
fluid inertia, concentration-dependent viscosity and hydrodynamic interactions. As was
discussed earlier, in a simple shear flow of uniformly distributed negatively buoyant inertial
particles, velocity perturbations can lead to a preferential concentration of particles in
regions of low vorticity. Kasbaoui et al. (2015) showed that the variation of gravitational
force exerted on the suspension thus induced would result in an algebraic instability.
Ignoring gravitational effects, if the effects of fluid inertia were included instead, the
particles would experience lift forces. In 2.2 we provided justification for ignoring lift
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forces in the present study. However, with an increase in the shear Reynolds number, the
lift force would be non-negligible. In such scenarios, the observation of Drew (1975) that
there can be an instability in a bounded simple shear flow purely due to the lift force
needs to be further explored in the context of the two-way coupling instability observed
in the present study. A departure from the diluteness approximation would manifest first
as a concentration-dependent viscosity and then as non-zero particle pressure. With the
former physics, non-uniformity in particle concentration can lead to viscosity contrasts
in the suspension, potentially causing short-wave viscous instabilities (see, e.g. Hooper
& Boyd 1983; Hinch 1984; Sahu & Govindarajan 2011). The latter, particle pressure
due to hydrodynamic interactions, is responsible for shear-induced migration in dense
suspensions (Leighton & Acrivos 1987). Shear-induced migration would be absent in a
simple shear flow. However, the perturbation-induced migration could lead to a short-wave
instability depending on the importance of concentration-driven diffusion relative to
shear-induced migration (Goddard 1996). Coupling even some of the physics mentioned
above with the novel instability found in the present study would pave the way for a better
understanding of instabilities in dusty shear flows and how they can have fundamentally
different transition routes than their particle-free counterparts.
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Appendix A. Linearization and normal mode analysis
The linearized perturbation equations (4.2) can be expanded in component form as

%+% =0, (Ala)
ox ay
8—7~1+N<8—ﬁ’“-i-%)+6N’+U@:0 (A1b)
at ax  dy Y ax
8—;t"+Ua—;’)‘+ﬁ,U’=—a—i)+M(ﬁ — iiy) (Alc)
at ax 0 ax St Y
L —z—ly’ ey ), (Ald)
%+U%+6U’:w (Ale)
at ax 7 St
0y Ly =Dy (Alf)
ot 0x St

To analyse stability, we need to solve the system of (A1) for the perturbation quantities
{tty, Uty, D, Uy, Uy, 1}. Assuming a modal form for perturbations ({iiy, ity, p, VUx, Uy, N} =
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{fLy, ity, P, Uy, Uy, n}(y) exp{i(kx — wt)}, we obtain the linearized equations in modal space
as

R idi,
Uy = %d_’ (A2a)
y
) . do, . . .
ik(U—-c)n+ N d_y +ikvy ) + 0,N° =0, (A2b)
o /n . MN
ik (U — ¢) + U'ity = —ikp + ?(vx — Uy), (A2¢)
. dp MN , .
ikity (U — ¢) = —d—’; + 5 By — iy, (A2d)
c7 A /A ’:ix - ﬁx
kv, (U —c) + Uvy = T (A2e)
a ity — vy
lkUy(U — C) = T (A2f)

After eliminating &, and p from (A2c¢) using (A2a) and (A2d), we obtain a single equation
for the evolution of i, as

iMN\ d@,  iMN' diy y kMN .
U—-c— - — = (U +k°(U—-c)— iy
kSt ) dy> kSt dy St
MN dd, MN'_  ikMN
S by — )y = 0. (A3)

St dy T T Ty

Equations (A2e—f) can be solved simultaneously to obtain 0, and v, in terms of i,
and 1y as Oy = iy A — St U'ity A? and Dy = fiy A, where A(y) = (1 +ikSHU(y) — )~ L.
Substituting them into (A3) and (A2b) gives the nonlinear eigenvalue system

{(U = o)(1 + MNA)} D*iiy + {(U — )MN' A} Di,

—{v+ W =1+ MNA) + MD[N AU | ity =0, (Ada)

k(U — o)it + [AN' — 2ik St A*NU'|ity = 0. (Adb)

By defining & = (U — ¢)(1 + MN A), the system can be further simplified as in (4.3).
Integrating (4.3a) across a discontinuous interface y = a yields the interface boundary
condition as

0

at
[y U' — UDiry — (U — c)MN/Aﬁy]]iZf + 12 W =0, (A5)
g

where the last integral vanishes, assuming the discontinuity in U or N or both can never
—at

be more than a finite jump. Here [[-]]i ;Z_ denotes the difference of the quantity inside the

square bracket evaluated at infinitesimally above and below the interface y = a.
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Appendix B. The dusty Rayleigh criterion considering non-Boussinesq baroclinic
effects

Consider (4.4), which incorporates non-Boussinesq baroclinic effects but neglects
gravitational baroclinic effects. Divide throughout by (U — ¢), assuming U #c. After
rearranging and combining terms, we obtain

——— i, — K*pity = 0. (B1)
—C

After multiplying throughout by the complex conjugate ﬁ_y and integrating over the entire
y domain &, we get

=~ ~ D[pU’] ~
/ ity D[pDit,] dy — / (— +Kp | liy|* dy = 0. (B2)
7 2 \(U—o0)
Using integration by parts in the first integral, we have
= . . D[pU’] .
(G o011, - f pIDity > dy - f (— + &0 ) liylPdy =0, (B3)
2 2 \(U—-0)

where the first term in the square bracket needs to be evaluated at the boundaries,
and their difference needs to be taken. Since the perturbations should vanish at the
boundaries (whether the domain is bounded or unbounded), this term evaluates to zero.
After expanding ¢ = cg + icy, the imaginary part of the remaining integral terms yields

. D[pU"] . »
icy ——=|uy|“dy = 0. (B4)
/@w—d2 ’

For the integral to be satisfied, the only possibility is that the term D[pU’] should have a
sign change in the domain — a modified form of the Rayleigh criterion for instability. Note
that this will only be a necessary criterion and not a sufficient one.

When considering the gravitational baroclinic effects, using the same procedure, we
obtain that there should be a sign change for the quantity

28(U — cp)p’
(U —=cp)?+ c%

in the domain. Here g represents the acceleration due to gravity (appropriately scaled).
The real part of (B3) yields

D[pU'l + (B5)

!
| dsw-awinlay=- [ p{ipi?+0P)a. @0
9 1U—c| P

Since the right-hand side of the equation is clearly negative, the left-hand side integral
should also be negative, implying that among the integrands, (U — cg)D[pU’] should
be negative somewhere within the domain. However, upon expanding the integrand,
we already know that the integral term containing cg is zero when there is instability,
as shown by (B4). Thus, cg can be replaced by any arbitrary constant value without
affecting the result. However, the appropriate choice would yield a modified version
of the Fjgrtoft criterion for instability. Here, it would be U* = U(y™*), where y* is the
location in the flow domain where D[pU’] changes sign. Then, the modified version of the
Fjgrtoft criterion states that, for instability, the necessary (but not sufficient) criterion is
(U — U"(pU") < 0 somewhere within the flow domain.
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Appendix C. Linear stability analysis for St = 0 particles inside a top-hat band

For a simple shear background flow with a top-hat number density profile, the governing
equation (4.4) simplifies to

(y —o)(D* =KDty = 0, (Cla)
(y—on=0. (C1b)

For discrete modes, i.e. when y # c, the solutions of (Cla) take on exponential form, as
given in (4.5). The decaying boundary condition for the eigenfunctions i, at the far field
is already incorporated in this solution. We utilize the interface conditions to determine
the unknown amplitudes A; to A4 and the eigenvalue c. Generally, the rate of change
in the interface displacement perturbation 7 is responsible for the vertical fluid velocity
disturbance, i.e. ity = D15/Dt = 91)/3dt + Udn/dx. In modal space, this implies that i, =
ik(U — ¢)7. Here, since the background shear flow is continuous across the interface, this
relation demands the continuity of the vertical velocity perturbation as

A = +

[y =15~ =0, (C2a)
A =— +

[y =15~ =0. (C2b)

By integrating (B1) multiplied with (U — ¢), across each interface, we get the continuity
criteria for pressure as well as

~ ~ ) — +

[p {i,U' = (U = oD -, )5~ =0, (C3a)
N ~ — +

lp {i,U' = (U = oD V=" })3- = 0. (C3b)

After incorporating the solution from (4.5) into these criteria (C2) and (C3), we obtain a set
of four algebraic equations, as given in matrix form in (4.7). For a non-trivial solution, the
determinant of the coefficient matrix should be zero, which gives the dispersion relation
in (4.8). Since the system (Cla) is a homogeneous differential equation, the unknown
constants A to A4 cannot be uniquely determined. By fixing one of the amplitudes (let us
say A»), all others can be obtained by solving any three out of the four equations in (4.7).
For instance, we obtain

A _ k((c+1/2)k — At + Ate K ((c+1/2)k+ 1)

: (C4a)
A, At+ D (c+1/2)k
Ay __(c+1/pk—Ar_ (cab)
Ay At+ D (c+1/2)k
—k
Ay AteF(c+1/Dk+ 1) (a0

Ay A+ D (c+1/2)k

The value for ¢ should be used from the dispersion relation (4.8).

The trivial solution to (C1b) is 7 = 0 for any discrete modes, everywhere except at the
interfaces y = £1/2. Thus, the general form for the solution should be a combination of
Dirac delta functions about the interfaces. Using conservation of the total number density,
one can obtain . o< §(y — 1/2) — 8(y + 1/2).
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