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Abstract—As machine learning (ML)-based detectors become
increasingly prevalent in identifying phishing websites, attack-
ers are also exploiting their vulnerabilities through evasion
techniques. By subtly manipulating phishing websites, attackers
can evade detection. The threats posed by evasion attacks
necessitate proactive robustness testing of these detectors prior
to deployment. Traditional red teaming efforts, where security
experts manually emulate attacker behaviors, are labor-intensive
and limited in scalability. To address this challenge, we pro-
pose an automated red teaming framework leveraging action-
masked reinforcement learning (RL) to realistically emulate
evasion attacks and evaluate the robustness of ML-based phishing
website detectors. Our RL agent is equipped with HTML
manipulation techniques commonly used by human attackers.
Additionally, action masking ensures the RL agent selects only
evasion actions that are feasible for a given website and prevents
compromising website rendering. We evaluate our approach by
testing the robustness of three ML-based detectors: Logistic
Regression, Random Forest, and Convolutional Neural Networks.
Experimental results demonstrate that our approach achieves
high evasion capabilities and efficiency in converting detectable
phishing websites into well-rendered evasion ones, thus effectively
testing the robustness of the detectors.

Index Terms—Red Teaming, Phishing, Reinforcement Learn-
ing, Adversarial Machine Learning

I. INTRODUCTION

Phishing is a pervasive form of cybercrime, and phishing

website is one of the most common modalities of phishing at-

tacks. In such attacks, attackers design fraudulent websites that

mimic legitimate ones to deceive users and illegally acquire

sensitive information. According to the Anti-Phishing Working

Group (APWG), millions of unique phishing websites were

reported in 2024, with numbers ranging from 260,000 to

370,000 per month [1]. To counteract these threats, defenders

turn to machine learning (ML) to develop defense mecha-

nisms [2]–[5]. However, ML-based detectors are vulnerable to

evasion attacks. Attackers can manipulate phishing websites

using evasion techniques to trick less robust detectors into

misclassifying phishing sites as legitimate [6], [7]. Therefore,

before deploying ML detectors, it is essential to proactively

examine their robustness against such evasion attacks.

To conduct such examinations, security experts commonly

employ red teaming, where ethical attackers emulate potential

attack behaviors as realistically as possible without causing

actual harm [8]. Traditional red teaming practices are primarily

manual, requiring significant human effort and limiting the

scale of potential attack behaviors explored. Therefore, in

this study, we propose an automated red teaming approach

using reinforcement learning (RL) to reduce human effort

and conduct large-scale emulation of phishing evasion. This

approach incorporates human attackers’ knowledge of ma-

nipulating HTML file code into the RL action space. The

RL learns to make optimal decisions on selecting evasion

techniques to manipulate the code of phishing websites, trans-

forming detectable versions into well-rendered evasive ones.

Additionally, the variety of web development methods results

in diverse code structures among phishing websites, leading

to different feasibility of evasion techniques for each unique

site. To address this, we implement action masking to “mask

out” invalid evasion techniques based on the observations of

HTML, preventing the RL agent from recommending tech-

niques that cannot be executed or that might disrupt website

rendering.

With our action-masked RL approach, we can effectively

emulate human attackers’ behaviors and assess the robustness

of ML detectors by how easily they can be evaded. The

remainder of this paper is organized as follows: First, we

review related work on phishing website detection, evasion

attacks, and the application of reinforcement learning in adver-

sary emulation. Next, we present our proposed automated red

teaming approach. We then discuss our experimental results,

followed by conclusions.

II. RELATED WORK

Existing literature has demonstrated the effectiveness of

machine learning in phishing website detection. Many studies
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leverage security knowledge and representation learning to

extract features from URLs and HTML source code, which are

then fed into either traditional machine learning models, such

as Logistic Regression (LR), or deep learning classifiers, such

as Convolutional Neural Network (CNN), to classify websites

as phishing or benign [9].

On the offensive side, researchers have explored methods to

evade ML-based detectors. Several studies have successfully

generated evasive URLs using Wasserstein GAN with gradient

penalty (WGAN-GP) [10]. However, realistically emulating

evasion attacks that target detectors utilizing HTML features

presents a greater challenge. It requires manipulating HTML

source code while preserving the website’s rendering. Most

existing studies focus on adding theoretical noise to feature

vectors of detectors to create evasive feature vectors, with-

out directly manipulating the HTML code to produce fully

functional evasive websites [11]. As a result, these approaches

are less representative of real-world threats posed by human

attackers, who typically lack access to the internal components

of detectors and rely primarily on modifying website code.

Apruzzese et al. [6] and Montaruli et al. [7] are pioneers

in proposing evasion attacks that directly employ evasion

techniques used by real attackers to manipulate HTML source

code, resulting in well-rendered evasive phishing websites.

However, Apruzzese et al. [6] utilized only two evasion

techniques for HTML manipulation and did not model the

decision-making process for optimally selecting these tech-

niques. Montaruli et al. [7] introduced 16 evasion techniques,

significantly expanding the evasion action space. However,

their decision-making process relies on continuous decision

scores from detectors. This information is typically inacces-

sible to most real attackers who can only know whether

their websites are detected or not. Therefore, there is a need

for a more realistic evasion emulation method that incorpo-

rates a broad range of evasion techniques and mimics hu-

man decision-making to optimally select and execute evasion

techniques. Such a method should efficiently generate well-

rendered evasive phishing websites without requiring internal

knowledge of ML detectors.

Reinforcement learning (RL) can model an autonomous

agent to take sequential actions optimally, with little or no

prior knowledge of the environment, making it particularly

adaptable and effective in adversarial contexts [12]. Although

RL has not yet been adapted in the context of phishing

evasion, model-free RL approaches have proven successful

in adversary emulation within other cybersecurity domains,

such as evading malware detectors [13] and conducting cyber-

physical systems (CPS) attacks [14]. Additionally, Huang et

al. [15] theoretically demonstrated the efficiency of action

masking to “mask out” invalid actions.

III. METHODOLOGY

Building on the literature, we propose an action-masked RL

approach in this study for the automated emulation of evading

HTML-based ML phishing website detectors (Figure 1). Our

study framework comprises three primary components: (A)

Data Collection, (B) Action-Masked RL Agent for Adversar-

ial Phishing Website Generation, and (C) Evaluation. Each

component is detailed in the subsequent subsections.

A. Data Collection

We developed a crawler to harvest phishing and benign web-

sites. For phishing data, the crawler ran daily, collecting newly

reported phishing URLs verified by PhishTank, a community-

driven phishing verification platform. GNU Wget was used

to visit the URLs, retrieving and downloading all necessary

files to reproduce the rendering of these websites. For benign

websites, we collected URLs and associated rendering files

from the top 10,000 websites on Tranco [16], a research-

oriented website ranking list hardened against adversarial ma-

nipulation for security experts. This ensured a clean, reliable

benign dataset. The collection was conducted in a sandboxed

environment on Jetstream2 [17].

With the collected data, we established two datasets. Dataset

1 is used to train and test the detector. It includes 10,000

phishing websites from PhishTank collected between May and

July 2024, and 10,000 benign websites from Tranco. The

dataset is split into 80% for training and 20% for testing.

Dataset 2 is used for evasion experiments. It comprises 10,000

phishing websites collected from PhishTank between August

and October 2024. Of these, 5,000 are used to train RL agents

to accumulate experience in manipulating HTML source code

to evade a certain detector. The remaining 5,000 are used to

test the evasion performance of the trained RL agents and

the robustness of target detectors. Importantly, our RL agents,

acting as attackers, have no access to Dataset 1, emulating

realistic attack scenarios where adversaries lack knowledge of

the detectors’ training data.

B. Action-masked RL Approach

Our RL approach consists of four components (Figure

1): (a) the environment, comprising phishing samples, the

rendering checker, and the target detector, which provides

feedback on the success or failure of evasion attempts; (b) the

state space, capturing the current status of the manipulated

HTML source code; (c) the action space, offering the RL

agent a repertoire of evasion techniques; and (d) the RL model,

guiding the decision-making and learning of the RL agent.

a) Environments: To emulate interactions between real

attackers and target detectors, we built an environment that

allows RL agents to manipulate the HTML of detectable

phishing websites. The environment integrates three compo-

nents: detectable phishing websites, a target detector, and a

rendering checker. In each interaction step, the RL agent

selects an evasion technique to modify the HTML source code

of a phishing website. After each manipulation, the detector

classifies the website as phishing or benign. The rendering

checker captures and compares screenshots of the website

before and after manipulation at the pixel level to ensure

visual consistency. If rendering breaks, the manipulation is

withdrawn, and the evasion technique causing the break is

“masked out” to prevent future selection for that website.
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TABLE I
PERFORMANCE OF TARGET DETECTORS ON TEST SET OF DATASET 1

Detector Accuracy Precision Recall F1 AUC True Positive False Positive True Negative False Negative

RL 0.7916 0.7699 0.8317 0.7996 0.7916 1650 493 1492 334

RF 0.9365 0.9279 0.9466 0.9371 0.9365 1878 146 1839 106

CNN 0.9098 0.8757 0.9551 0.9137 0.9098 1895 269 1716 89

Fig. 1. Action-masked RL Approach

The environment provides a reward of 10 to the RL agent

if the detector is misled into classifying the phishing website

as benign while maintaining proper rendering. Otherwise, the

reward is 0. This reward design emulates realistic scenarios

where attackers only receive binary classification results from

detectors and must verify whether their websites render prop-

erly after deployment. Considering the cost of evasion attacks,

attackers are unlikely to manipulate websites indefinitely.

Therefore, we set interaction budget as 10, limiting the number

of interactions the RL agent can have with the detector to

manipulate one phishing website.

b) State Space: At each interaction step, the RL agent

relies on an observation s of the HTML structure to deter-

mine the evasion technique. Since the HTML source code is

organized by elements in a tree structure, we train a Graph

Convolutional Autoencoder (GCAE) to represent each element

in the HTML as a node embedding. This representation

captures both the intrinsic features of the elements (such as

element name, attribute names, attribute values, and textual

content) and their relational positioning within the Document

Object Model (DOM) tree. Consequently, the HTML source

code of a website is represented as a matrix, where each

row corresponds to the embedding of an individual HTML

element. This matrix serves as the state input for the RL agent,

providing comprehensive contextual information to guide its

decision-making process.

c) Maskable Action Space: The action space equips our

RL agent with a set of evasion techniques commonly used

by real attackers. It comprises three categories: (1) Injection

techniques, which insert invisible benign content into URLs

and HTML source code, disrupting the semantics and structure

of the original phishing content; (2) Obfuscation techniques,

which encode or encrypt phishing content to hinder detector

analysis; and (3) Techniques for updating sensitive informa-

tion, replacing attribute values that may trigger detection with

alternative execution methods. These attributes often make

malicious code invisible to users, such as “visibility:hidden”,

“display:none” and “javascript:void(0)”. Compared to Mon-

taruli et al. [7], our evasion technique set incorporates more

injection techniques, enabling the RL agent to inject both text

information and JavaScript code. In total, the action space

includes 17 evasion techniques: eight injection techniques,

one obfuscation technique, and eight techniques for replacing

sensitive attribute values (see Appendix).

At each interaction step, the RL agent recommends an

evasion technique a from the action space. However, due to the

varied web development practices in phishing websites, not all

evasion techniques are applicable to every HTML code file.

Some techniques may lack an identifiable execution location,

while others may break the website’s rendering, leading to

action withdrawal in the previous step. Therefore, before each

interaction, by scanning the current HTML structure and the

rendering check result from the prior step, a mask vector

m ∈ {0, 1}17 is given, which masks out inapplicable actions.

mi =

{

1, if ai is applicable,

0, if ai is inapplicable,

where i denotes the ith evasion technique in the action space.

d) Action-masked RL model: To integrate the action

masking into RL models, we need to zero out the probabilities

of invalid actions when the RL models predict the cumulative

rewards to recommend actions. Therefore, for value-based

components such as the Q network of Deep Q-Network (DQN)

and the Critic network of Soft Actor-Critic (SAC),

Qmasked(s, ai) =

{

Q(s, ai), if ai is applicable,

−∞, if ai is inapplicable.

In addition, for the policy-based components such as the Actor

network of SAC, we set the logits of invalid actions to a very

large negative value as well,

Zmasked(ai|s) =

{

Z(ai|s), if ai is applicable,

−∞, if ai is inapplicable.

This ensures the softmax of the Actor network

πmasked(a|s) =
exp(Zmasked(a|s))

∑

a′ exp(Zmasked(a′|s))

assigns zero for the predicted probabilities of invalid actions.
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TABLE II
PERFORMANCE OF TARGET DETECTORS AFTER ATTACKS ON DATASET 2

Target Detector Evasion Agent Interaction Budget Evasive phishing websites
After Attack

Evasion Efficiency
Recall TP FN

LR
Random 10 734 0.7688 3844 1156 0.018
Maskable DQN 10 1793 0.557 2785 2215 0.057

Maskable SAC 10 1671 0.5814 2907 2093 0.055

RF
Random 10 3224 0.3166 1583 3417 0.131
Maskable DQN 10 238 0.9138 4569 431 0.005
Maskable SAC 10 4288 0.1038 519 4481 0.524

CNN
Random 10 3732 0.2326 1163 3837 0.151
Maskable DQN 10 4406 0.0978 489 4511 0.594
Maskable SAC 10 4404 0.0982 491 4509 0.686

C. Evaluation

To evaluate the performance of our proposed action-masked

RL approach, using Dataset 1, we replicated three HTML-

based ML detectors from Apruzzese et al. [6] as target

detectors. These detectors leveraged Logistic Regression (LR),

Random Forest (RF), and Convolutional Neural Network

(CNN) as classifiers, respectively. Their performance on the

test set of Dataset 1 is summarized in Table I.

In our evasion experiments, we compare the evasion perfor-

mance of Maskable DQN and Maskable SAC agents trained on

the training set of Dataset 2, as well as random agents that do

not optimally select evasion techniques. Our evaluation metrics

assess two dimensions of performance: evasion capability

and evasion efficiency. For evasion capability, as evasion

attacks primarily affect the detection of phishing websites,

we compare the True Positive (TP), False Negative (FN), and

recall of the detectors before and after the attacks on the test

set of Dataset 2. These metrics directly reflect the number

of detectable phishing websites successfully transformed into

evasive ones. We measure evasion efficiency as:

Evasion efficiency =
# of evasive phishing websites

Total number of Interactions
∈ [0, 1].

Higher values, approaching 1, indicate that the agent can

generate evasive phishing websites with fewer interactions,

demonstrating greater evasion efficiency.

IV. EXPERIMENT RESULTS

Before conducting evasion attacks, we evaluated the original

performance of our target detectors on 5,000 phishing websites

from the test set of Dataset 2. Out of these 5,000 websites,

LR detected 4,578 phishing websites, achieving a recall of

0.9156, with 422 false negatives. RF identified 4,807 phishing

websites, achieving a recall of 0.9614 and 193 false negatives.

CNN achieved the highest performance, correctly detecting

4,895 phishing websites with a recall of 0.979 and only 105

false negatives. All three detectors showed high performance

in detecting phishing websites before the evasion attacks.

Then we trained Maskable DQN and Maskable SAC agents

against each detector using the training set of Dataset 2 until

convergence. Subsequently, these trained RL agents, along

with a random agent, were used to deploy evasion attacks

on the test set of Dataset 2. The results of these evasion

experiments are presented in Table 2. We have three key

findings from the results. First, all agents, including the

random agent, were able to generate well-rendered evasive

phishing websites, demonstrating the effectiveness of our

evasion techniques in the action space. Second, most RL

agents outperformed the random agent in evasion performance.

The RL agents transformed more detectable phishing websites

into evasive ones, significantly reducing the detectors’ recall.

Additionally, RL agents exhibited higher evasion efficiency,

requiring fewer interactions with detectors to achieve suc-

cessful evasion. Third, comparing performance degradation

across detectors revealed that although the original detection

performance of LR was lower than that of RF and CNN,

LR demonstrated greater robustness against evasion attacks.

The best-performing evasion agent reduced LR’s recall from

0.9156 to 0.557, whereas RF’s recall dropped from 0.9614 to

0.1038, and CNN’s recall fell from 0.979 to 0.0978.

V. CONCLUSIONS

Our study makes several contributions to the field of adver-

sarial machine learning and phishing website detection. First,

we propose an automated red-teaming approach using action-

masked reinforcement learning (RL) to emulate realistic eva-

sion attacks against ML-based phishing website detectors. Our

approach effectively integrates human attackers’ knowledge of

HTML manipulation into the RL action space, allowing the

agent to optimally select and apply evasion techniques without

compromising website rendering. Second, our study demon-

strates the necessity of proactively evaluating the robustness

of ML-based phishing website detectors before deployment,

as higher detection performance in non-adversarial settings

does not guarantee higher detector reliability. In the future,

we aim to expand our testbed to include a broader range

of detectors that utilize different training datasets, feature

extraction methods, and machine learning classifiers.

APPENDIX

EVASION TECHNIQUES

17 evasion techniques (Table III) are incorporated into

the action space of the RL agent. For each technique, we

predefined both the manipulation method and the manipulation

location. With this set of evasion techniques, we can manipu-

late elements, attributes, text information, JavaScript code, and

the DOM structure of the HTML.
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TABLE III
EVASION TECHNIQUES

Category Evasion Techniques Manipulation method Manipulation Location

Injection
(Links, Text,
JavaScript)

InjectIntAnchorElem
(IIAE)

Injecting 10 internal links by <a> elements
in body/footer

Appending to the first element in the body
or footer as a sibling

InjectIntLinkElem (IILE)
Injecting 10 internal links by <link> ele-
ments head/body/footer

Appending to the first element in the head,
body or footer as a sibling

InjectExtAnchorElem
(IEAE)

Injecting 10 external links by <a> elements
in head/body/footer

Appending to the first element in the body
or footer as a sibling

InjectFakeFavicon (IFF)
Injecting a fake favicon by <link> ele-
ment

Appending to <head>

InjectTextElem (ITE) Injecting a <p> element
Appending to the first element in the body
or footer as a sibling

InjectSpaceInText (ISIT) Injecting 10 zero-width no-break space
Except for <script>, <style>,
<noscript>, injecting within the first
element that has text information

InjectFakeCopyright
(IFC)

Injecting a fake copyright by <p> element. Appending to <body>

InjectJSElem (IJSE) Injecting a <script> element
Appending to the first element in the head,
body or footer as a sibling

Obfuscation ObfuscateJS(OJS)
Encoding functions within a <script>

element
Encoding the first <script> element

Update
Sensitive
Information
(AttrsValue,
TitleText)

UpdateExtLink (UEL)

Replacing external links in body’s elements
by internal links, and adding a <script>
to put external links back by JavaScript at
execution time

The first <img>, <link>, <a>,
<sound>, <video>, or <form> element
that has external links

UpdateForm (UF) Replacing action attribute value of forms
The first <form> element that has sensitive
“hidden” values

UpdateIntAnchors (UIA) Replacing “href” attribute value of anchors
The first <a> element that has sensitive
“hidden” values

UpdateHiddenDivs
(UHD)

Replacing style’s attribute value of <div>
elements.

The first <div> element that has sensitive
“hidden” values

UpdateHiddenButtons
(UHB)

Removing disabled attribute of <button>
elements, and adding a <script> to put
disable attribute back by JavaScript at exe-
cution time

The first <button> element that has dis-
abled attribute

UpdateHiddenInputs
(UHI)

Replacing type attribute value of <input>
elements or removing the “disabled” at-
tribute of <input> elements and adding a
<script> to put the “disabled” attribute
back by JavaScript at execution time.

The first <input> element that has sensi-
tive “hidden” values

UpdateIframe (UI)
Replacing style’s attribute value of
<iframe> elements.

The first <iframe> element that has sen-
sitive “hidden” values

UpdateTitle (UT)

Replacing the original title with domain
name and adding a <script> to put the
original title back by JavaScript at execution
time.

<title> element
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and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” arXiv preprint arXiv:1806.01156, 2018.

[17] D. Y. Hancock, J. Fischer, J. M. Lowe, W. Snapp-Childs, M. Pierce,
S. Marru, J. E. Coulter, M. Vaughn, B. Beck, N. Merchant et al.,
“Jetstream2: Accelerating cloud computing via jetstream,” in Practice

and Experience in Advanced Research Computing, 2021, pp. 1–8.

293


