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Abstract—As machine learning (ML)-based detectors become
increasingly prevalent in identifying phishing websites, attack-
ers are also exploiting their vulnerabilities through evasion
techniques. By subtly manipulating phishing websites, attackers
can evade detection. The threats posed by evasion attacks
necessitate proactive robustness testing of these detectors prior
to deployment. Traditional red teaming efforts, where security
experts manually emulate attacker behaviors, are labor-intensive
and limited in scalability. To address this challenge, we pro-
pose an automated red teaming framework leveraging action-
masked reinforcement learning (RL) to realistically emulate
evasion attacks and evaluate the robustness of ML-based phishing
website detectors. Our RL agent is equipped with HTML
manipulation techniques commonly used by human attackers.
Additionally, action masking ensures the RL agent selects only
evasion actions that are feasible for a given website and prevents
compromising website rendering. We evaluate our approach by
testing the robustness of three ML-based detectors: Logistic
Regression, Random Forest, and Convolutional Neural Networks.
Experimental results demonstrate that our approach achieves
high evasion capabilities and efficiency in converting detectable
phishing websites into well-rendered evasion ones, thus effectively
testing the robustness of the detectors.

Index Terms—Red Teaming, Phishing, Reinforcement Learn-
ing, Adversarial Machine Learning

I. INTRODUCTION

Phishing is a pervasive form of cybercrime, and phishing
website is one of the most common modalities of phishing at-
tacks. In such attacks, attackers design fraudulent websites that
mimic legitimate ones to deceive users and illegally acquire
sensitive information. According to the Anti-Phishing Working
Group (APWG), millions of unique phishing websites were
reported in 2024, with numbers ranging from 260,000 to
370,000 per month [1]. To counteract these threats, defenders
turn to machine learning (ML) to develop defense mecha-
nisms [2]-[5]. However, ML-based detectors are vulnerable to
evasion attacks. Attackers can manipulate phishing websites
using evasion techniques to trick less robust detectors into
misclassifying phishing sites as legitimate [6], [7]. Therefore,
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before deploying ML detectors, it is essential to proactively
examine their robustness against such evasion attacks.

To conduct such examinations, security experts commonly
employ red teaming, where ethical attackers emulate potential
attack behaviors as realistically as possible without causing
actual harm [8]. Traditional red teaming practices are primarily
manual, requiring significant human effort and limiting the
scale of potential attack behaviors explored. Therefore, in
this study, we propose an automated red teaming approach
using reinforcement learning (RL) to reduce human effort
and conduct large-scale emulation of phishing evasion. This
approach incorporates human attackers’ knowledge of ma-
nipulating HTML file code into the RL action space. The
RL learns to make optimal decisions on selecting evasion
techniques to manipulate the code of phishing websites, trans-
forming detectable versions into well-rendered evasive ones.
Additionally, the variety of web development methods results
in diverse code structures among phishing websites, leading
to different feasibility of evasion techniques for each unique
site. To address this, we implement action masking to “mask
out” invalid evasion techniques based on the observations of
HTML, preventing the RL agent from recommending tech-
niques that cannot be executed or that might disrupt website
rendering.

With our action-masked RL approach, we can effectively
emulate human attackers’ behaviors and assess the robustness
of ML detectors by how easily they can be evaded. The
remainder of this paper is organized as follows: First, we
review related work on phishing website detection, evasion
attacks, and the application of reinforcement learning in adver-
sary emulation. Next, we present our proposed automated red
teaming approach. We then discuss our experimental results,
followed by conclusions.

II. RELATED WORK

Existing literature has demonstrated the effectiveness of
machine learning in phishing website detection. Many studies



leverage security knowledge and representation learning to
extract features from URLs and HTML source code, which are
then fed into either traditional machine learning models, such
as Logistic Regression (LR), or deep learning classifiers, such
as Convolutional Neural Network (CNN), to classify websites
as phishing or benign [9].

On the offensive side, researchers have explored methods to
evade ML-based detectors. Several studies have successfully
generated evasive URLs using Wasserstein GAN with gradient
penalty (WGAN-GP) [10]. However, realistically emulating
evasion attacks that target detectors utilizing HTML features
presents a greater challenge. It requires manipulating HTML
source code while preserving the website’s rendering. Most
existing studies focus on adding theoretical noise to feature
vectors of detectors to create evasive feature vectors, with-
out directly manipulating the HTML code to produce fully
functional evasive websites [11]. As a result, these approaches
are less representative of real-world threats posed by human
attackers, who typically lack access to the internal components
of detectors and rely primarily on modifying website code.

Apruzzese et al. [6] and Montaruli et al. [7] are pioneers
in proposing evasion attacks that directly employ evasion
techniques used by real attackers to manipulate HTML source
code, resulting in well-rendered evasive phishing websites.
However, Apruzzese et al. [6] utilized only two evasion
techniques for HTML manipulation and did not model the
decision-making process for optimally selecting these tech-
niques. Montaruli et al. [7] introduced 16 evasion techniques,
significantly expanding the evasion action space. However,
their decision-making process relies on continuous decision
scores from detectors. This information is typically inacces-
sible to most real attackers who can only know whether
their websites are detected or not. Therefore, there is a need
for a more realistic evasion emulation method that incorpo-
rates a broad range of evasion techniques and mimics hu-
man decision-making to optimally select and execute evasion
techniques. Such a method should efficiently generate well-
rendered evasive phishing websites without requiring internal
knowledge of ML detectors.

Reinforcement learning (RL) can model an autonomous
agent to take sequential actions optimally, with little or no
prior knowledge of the environment, making it particularly
adaptable and effective in adversarial contexts [12]. Although
RL has not yet been adapted in the context of phishing
evasion, model-free RL approaches have proven successful
in adversary emulation within other cybersecurity domains,
such as evading malware detectors [13] and conducting cyber-
physical systems (CPS) attacks [14]. Additionally, Huang et
al. [15] theoretically demonstrated the efficiency of action
masking to “mask out” invalid actions.

III. METHODOLOGY

Building on the literature, we propose an action-masked RL
approach in this study for the automated emulation of evading
HTML-based ML phishing website detectors (Figure 1). Our
study framework comprises three primary components: (A)

Data Collection, (B) Action-Masked RL Agent for Adversar-
ial Phishing Website Generation, and (C) Evaluation. Each
component is detailed in the subsequent subsections.

A. Data Collection

We developed a crawler to harvest phishing and benign web-
sites. For phishing data, the crawler ran daily, collecting newly
reported phishing URLs verified by PhishTank, a community-
driven phishing verification platform. GNU Wget was used
to visit the URLs, retrieving and downloading all necessary
files to reproduce the rendering of these websites. For benign
websites, we collected URLs and associated rendering files
from the top 10,000 websites on Tranco [16], a research-
oriented website ranking list hardened against adversarial ma-
nipulation for security experts. This ensured a clean, reliable
benign dataset. The collection was conducted in a sandboxed
environment on Jetstream2 [17].

With the collected data, we established two datasets. Dataset
1 is used to train and test the detector. It includes 10,000
phishing websites from PhishTank collected between May and
July 2024, and 10,000 benign websites from Tranco. The
dataset is split into 80% for training and 20% for testing.
Dataset 2 is used for evasion experiments. It comprises 10,000
phishing websites collected from PhishTank between August
and October 2024. Of these, 5,000 are used to train RL agents
to accumulate experience in manipulating HTML source code
to evade a certain detector. The remaining 5,000 are used to
test the evasion performance of the trained RL agents and
the robustness of target detectors. Importantly, our RL agents,
acting as attackers, have no access to Dataset 1, emulating
realistic attack scenarios where adversaries lack knowledge of
the detectors’ training data.

B. Action-masked RL Approach

Our RL approach consists of four components (Figure
1): (a) the environment, comprising phishing samples, the
rendering checker, and the target detector, which provides
feedback on the success or failure of evasion attempts; (b) the
state space, capturing the current status of the manipulated
HTML source code; (c) the action space, offering the RL
agent a repertoire of evasion techniques; and (d) the RL model,
guiding the decision-making and learning of the RL agent.

a) Environments: To emulate interactions between real
attackers and target detectors, we built an environment that
allows RL agents to manipulate the HTML of detectable
phishing websites. The environment integrates three compo-
nents: detectable phishing websites, a target detector, and a
rendering checker. In each interaction step, the RL agent
selects an evasion technique to modify the HTML source code
of a phishing website. After each manipulation, the detector
classifies the website as phishing or benign. The rendering
checker captures and compares screenshots of the website
before and after manipulation at the pixel level to ensure
visual consistency. If rendering breaks, the manipulation is
withdrawn, and the evasion technique causing the break is
“masked out” to prevent future selection for that website.
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PERFORMANCE OF TARGET DETECTORS ON TEST SET OF DATASET 1

TABLE I

Detector | Accuracy | Precision | Recall | FI AUC True Positive | False Positive | True Negative | False Negative

RL 0.7916 0.7699 0.8317 | 0.7996 | 0.7916 | 1650 493 1492 334

RF 0.9365 0.9279 0.9466 | 0.9371 | 0.9365 | 1878 146 1839 106

CNN 0.9098 0.8757 0.9551 | 0.9137 | 0.9098 | 1895 269 1716 89
e . which encode or encrypt phishing content to hinder detector
1 - analysis; and (3) Techniques for updating sensitive informa-
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Fig. 1. Action-masked RL Approach

The environment provides a reward of 10 to the RL agent
if the detector is misled into classifying the phishing website
as benign while maintaining proper rendering. Otherwise, the
reward is 0. This reward design emulates realistic scenarios
where attackers only receive binary classification results from
detectors and must verify whether their websites render prop-
erly after deployment. Considering the cost of evasion attacks,
attackers are unlikely to manipulate websites indefinitely.
Therefore, we set interaction budget as 10, limiting the number
of interactions the RL agent can have with the detector to
manipulate one phishing website.

b) State Space: At each interaction step, the RL agent
relies on an observation s of the HTML structure to deter-
mine the evasion technique. Since the HTML source code is
organized by elements in a tree structure, we train a Graph
Convolutional Autoencoder (GCAE) to represent each element
in the HTML as a node embedding. This representation
captures both the intrinsic features of the elements (such as
element name, attribute names, attribute values, and textual
content) and their relational positioning within the Document
Object Model (DOM) tree. Consequently, the HTML source
code of a website is represented as a matrix, where each
row corresponds to the embedding of an individual HTML
element. This matrix serves as the state input for the RL agent,
providing comprehensive contextual information to guide its
decision-making process.

¢) Maskable Action Space: The action space equips our
RL agent with a set of evasion techniques commonly used
by real attackers. It comprises three categories: (1) Injection
techniques, which insert invisible benign content into URLSs
and HTML source code, disrupting the semantics and structure
of the original phishing content; (2) Obfuscation techniques,

tion, replacing attribute values that may trigger detection with
alternative execution methods. These attributes often make
malicious code invisible to users, such as “visibility:hidden”,
“display:none” and “javascript:void(0)”. Compared to Mon-
taruli et al. [7], our evasion technique set incorporates more
injection techniques, enabling the RL agent to inject both text
information and JavaScript code. In total, the action space
includes 17 evasion techniques: eight injection techniques,
one obfuscation technique, and eight techniques for replacing
sensitive attribute values (see Appendix).

At each interaction step, the RL agent recommends an
evasion technique a from the action space. However, due to the
varied web development practices in phishing websites, not all
evasion techniques are applicable to every HTML code file.
Some techniques may lack an identifiable execution location,
while others may break the website’s rendering, leading to
action withdrawal in the previous step. Therefore, before each
interaction, by scanning the current HTML structure and the
rendering check result from the prior step, a mask vector
m € {0,1}'7 is given, which masks out inapplicable actions.

1, if a; is applicable,
m; = . .. .
0, if a; is inapplicable,

where i denotes the i evasion technique in the action space.

d) Action-masked RL model: To integrate the action
masking into RL models, we need to zero out the probabilities
of invalid actions when the RL models predict the cumulative
rewards to recommend actions. Therefore, for value-based
components such as the Q network of Deep Q-Network (DQN)
and the Critic network of Soft Actor-Critic (SAC),

Q(S7 ai)a

—0Q,

if a; is applicable,
Qmasked(37 ai) = . .. .
if a; is inapplicable.

In addition, for the policy-based components such as the Actor
network of SAC, we set the logits of invalid actions to a very
large negative value as well,

Z(ass),
, if a; is inapplicable.

if a; is applicable,
Zmasked(ai|5) = o PP

This ensures the softmax of the Actor network

eXp(Zmasked (CL|S))
a eXp(Zmasked(a/ ‘ S))

T'masked (a|3) = Z

assigns zero for the predicted probabilities of invalid actions.
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TABLE II
PERFORMANCE OF TARGET DETECTORS AFTER ATTACKS ON DATASET 2

Target Detector | Evasion Agent Interaction Budget | Evasive phishing websites RecallA fterT/;ttack N Evasion Efficiency
Random 10 734 0.7688 | 3844 | 1156 | 0.018
LR Maskable DQN | 10 1793 0.557 2785 | 2215 | 0.057
Maskable SAC 10 1671 0.5814 | 2907 | 2093 | 0.055
Random 10 3224 0.3166 | 1583 | 3417 | 0.131
RF Maskable DON | 10 238 09138 | 4569 | 431 0.005
Maskable SAC 10 4288 0.1038 | 519 4481 | 0.524
Random 10 3732 0.2326 | 1163 | 3837 | 0.151
CNN Maskable DQN | 10 4406 0.0978 | 489 4511 | 0.594
Maskable SAC 10 4404 0.0982 | 491 4509 | 0.686

C. Evaluation

To evaluate the performance of our proposed action-masked
RL approach, using Dataset 1, we replicated three HTML-
based ML detectors from Apruzzese et al. [6] as target
detectors. These detectors leveraged Logistic Regression (LR),
Random Forest (RF), and Convolutional Neural Network
(CNN) as classifiers, respectively. Their performance on the
test set of Dataset 1 is summarized in Table I.

In our evasion experiments, we compare the evasion perfor-
mance of Maskable DQN and Maskable SAC agents trained on
the training set of Dataset 2, as well as random agents that do
not optimally select evasion techniques. Our evaluation metrics
assess two dimensions of performance: evasion capability
and evasion efficiency. For evasion capability, as evasion
attacks primarily affect the detection of phishing websites,
we compare the True Positive (TP), False Negative (FN), and
recall of the detectors before and after the attacks on the test
set of Dataset 2. These metrics directly reflect the number
of detectable phishing websites successfully transformed into
evasive ones. We measure evasion efficiency as:

Evasion efficiency — # of evasive phishing websites

€ [0,1].

Higher values, approaching 1, indicate that the agent can
generate evasive phishing websites with fewer interactions,
demonstrating greater evasion efficiency.

Total number of Interactions

IV. EXPERIMENT RESULTS

Before conducting evasion attacks, we evaluated the original
performance of our target detectors on 5,000 phishing websites
from the test set of Dataset 2. Out of these 5,000 websites,
LR detected 4,578 phishing websites, achieving a recall of
0.9156, with 422 false negatives. RF identified 4,807 phishing
websites, achieving a recall of 0.9614 and 193 false negatives.
CNN achieved the highest performance, correctly detecting
4,895 phishing websites with a recall of 0.979 and only 105
false negatives. All three detectors showed high performance
in detecting phishing websites before the evasion attacks.

Then we trained Maskable DQN and Maskable SAC agents
against each detector using the training set of Dataset 2 until
convergence. Subsequently, these trained RL agents, along
with a random agent, were used to deploy evasion attacks
on the test set of Dataset 2. The results of these evasion
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experiments are presented in Table 2. We have three key
findings from the results. First, all agents, including the
random agent, were able to generate well-rendered evasive
phishing websites, demonstrating the effectiveness of our
evasion techniques in the action space. Second, most RL
agents outperformed the random agent in evasion performance.
The RL agents transformed more detectable phishing websites
into evasive ones, significantly reducing the detectors’ recall.
Additionally, RL agents exhibited higher evasion efficiency,
requiring fewer interactions with detectors to achieve suc-
cessful evasion. Third, comparing performance degradation
across detectors revealed that although the original detection
performance of LR was lower than that of RF and CNN,
LR demonstrated greater robustness against evasion attacks.
The best-performing evasion agent reduced LR’s recall from
0.9156 to 0.557, whereas RF’s recall dropped from 0.9614 to
0.1038, and CNN’s recall fell from 0.979 to 0.0978.

V. CONCLUSIONS

Our study makes several contributions to the field of adver-
sarial machine learning and phishing website detection. First,
we propose an automated red-teaming approach using action-
masked reinforcement learning (RL) to emulate realistic eva-
sion attacks against ML-based phishing website detectors. Our
approach effectively integrates human attackers’ knowledge of
HTML manipulation into the RL action space, allowing the
agent to optimally select and apply evasion techniques without
compromising website rendering. Second, our study demon-
strates the necessity of proactively evaluating the robustness
of ML-based phishing website detectors before deployment,
as higher detection performance in non-adversarial settings
does not guarantee higher detector reliability. In the future,
we aim to expand our testbed to include a broader range
of detectors that utilize different training datasets, feature
extraction methods, and machine learning classifiers.

APPENDIX
EVASION TECHNIQUES

17 evasion techniques (Table III) are incorporated into
the action space of the RL agent. For each technique, we
predefined both the manipulation method and the manipulation
location. With this set of evasion techniques, we can manipu-
late elements, attributes, text information, JavaScript code, and
the DOM structure of the HTML.



[3]

[6]

TABLE III
EVASION TECHNIQUES

Category Evasion Techniques Manipulation method Manipulation Location
InjectIntAnchorElem Injecting 10 internal links by <a> elements | Appending to the first element in the body
(ITAE) in body/footer or footer as a sibling
. . Injecting 10 internal links by <1ink> ele- | Appending to the first element in the head,
Injection InjectintLinkElem (IILE) mg:nts hiad/body/footer g b(f)(fy or f(%oter as a sibling
(Links, Text, InjectExtAnchorElem Injecting 10 external links by <a> elements | Appending to the first element in the body
JavaScript) (IEAE) in head/body/footer or footer as a sibling

InjectFakeFavicon (IFF)

Injecting a fake favicon by <link> ele-
ment

Appending to <head>

InjectTextElem (ITE)

Injecting a <p> element

Appending to the first element in the body
or footer as a sibling

InjectSpacelnText (ISIT)

Injecting 10 zero-width no-break space

Except for <script>, <style>,
<noscript>, injecting within the first
element that has text information

InjectFakeCopyright
(IFC)

Injecting a fake copyright by <p> element.

Appending to <body>

Inject]SElem (IJSE)

Injecting a <script> element

Appending to the first element in the head,
body or footer as a sibling

Obfuscation

Obfuscate]JS(OJS)

Encoding functions within a <script>
element

Encoding the first <script> element

UpdateExtLink (UEL)

Replacing external links in body’s elements
by internal links, and adding a <script>
to put external links back by JavaScript at

The first <img>, <link>, <a>,
<sound>, <video>, or <form> element
that has external links

Update execution time
SensmveA UpdateForm (UF) Replacing action attribute value of forms :l:h; ﬁrsa<form> element that has sensitive
Information hidden” values
(AttrsValue, s v . The first <a> element that has sensitive
TitleText) UpdateIntAnchors (UIA) Replacing “href” attribute value of anchors “hidden” values
UpdateHiddenDivs Replacing style’s attribute value of <div> | The first <div> element that has sensitive
(UHD) elements. “hidden” values
Removing disabled attribute of <button>
UpdateHiddenButtons elements, and adding a <script> to put | The first <button> element that has dis-
(UHB) disable attribute back by JavaScript at exe- | abled attribute
cution time
Replacing type attribute value of <input>
UpdateHiddenInputs el.e ments or removing the dlsabled. at The first <input> element that has sensi-
(UHI) tribute of <input> elements and adding a tive “hidden” values
<script> to put the “disabled” attribute
back by JavaScript at execution time.
Updatelframe (UT) Rgplacmg style’s attribute  value of The ﬁ‘r‘st. <if ,];’ame> element that has sen-
<iframe> elements. sitive “hidden” values
Replacing the original title with domain
- name and adding a <script> to put the :
UpdateTitle (UT) original title back by JavaScript at execution <title> element
time.
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