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ABSTRACT  Bacillus subtilis is an important industrial and environmental microorganism
known to occupy many niches and produce many compounds of interest. Although it
is one of the best-studied organisms, much of this focus including the reconstruction
of genome-scale metabolic models has been placed on a few key laboratory strains.
Here, we substantially expand these prior models to pan-genome-scale, representing
481 genomes of B. subtilis with 2,315 orthologous gene clusters, 1,874 metabolites, and
2,239 reactions. Furthermore, we incorporate data from carbon utilization experiments
for eight strains to refine and validate its metabolic predictions. This comprehensive
pan-genome model enables the assessment of strain-to-strain differences related to
nutrient utilization, fermentation outputs, robustness, and other metabolic aspects.
Using the model and phenotypic predictions, we divide B. subtilis strains into five groups
with distinct patterns of behavior that correlate across these features. The pan-genome
model offers deep insights into B. subtilis’ metabolism as it varies across environments
and provides an understanding as to how different strains have adapted to dynamic
habitats.

IMPORTANCE As the volume of genomic data and computational power have increased,
so has the number of genome-scale metabolic models. These models encapsulate the
totality of metabolic functions for a given organism. Bacillus subtilis strain 168 is one
of the first bacteria for which a metabolic network was reconstructed. Since then,
several updated reconstructions have been generated for this model microorganism.
Here, we expand the metabolic model for a single strain into a pan-genome-scale model,
which consists of individual models for 481 B. subtilis strains. By evaluating differences
between these strains, we identified five distinct groups of strains, allowing for the rapid
classification of any particular strain. Furthermore, this classification into five groups aids
the rapid identification of suitable strains for any application.
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Authority (7), the bacterium has been widely used as a probiotic supplement for both
humans (8) and animals (9).

Moreover, B. subtilis produces a number of antimicrobial compounds (10), which have
been shown to protect against pathogens, such as Pseudomonas syringae in Arabidopsis
roots (11), Rhizoctonia cerealis in wheat (12), Streptomyces in potatoes (13), and bulb
rot disease in Fritillaria lilies (14). Thus, its array of antimicrobial compounds and safety
in mammals has garnered its interest as a prophylactic antibiotic alternative to reduce
the need for antibiotics in animal industries and thereby slow the spread of antibiotic
resistance (15). The potential use of Bacillus in the human built environment to control
the spread of pathogens is also an area of active research (16).

The metabolism of B. subtilis — what substrates it may grow on, and what products
it may synthesize under different conditions — is therefore of significant interest to both
basic sciences and industry. To this end, genome-scale metabolic models (GEMs) have
been reconstructed and deployed to analyze and predict B. subtilis metabolism. GEMs
are composed of a list of reactions associated with the enzymes and transporters found
in a given organism’s genome, connected into a comprehensive metabolic network
(17). When provided with constraints on reaction rates to reflect the reversibility of
reactions and exchange reactions to represent the availability of nutrients in the media,
the models predict the fluxes through each reaction that optimize the growth of the
organism. GEMs integrate -omics data and known growth phenotypes to refine and
validate the network, enabling them to contextualize data and make further predictions
(18).

The first GEM for B. subtilis, iYO844 (19), one of the first GEMs reconstructed for
any organism, has been expanded and refined over time. iBSU1103 (20) increased the
number of reactions from 1,250 to 1,437 and corrected the reversibility of hundreds
of others. iBSU1209 (21) further increased the scope to 1,948 reactions. These models
have been used to inform metabolic engineering strategies for the production of
menaquinone-7 (21), asparaginase enzyme (22), and riboflavin (23). These B. subtilis
GEMs have mainly centered around the strain B. subtilis 168; however, B. subtilis strains
have been known to exhibit high genomic diversity (24). Thus, secretion of antimicrobial
compounds (25) and secondary metabolites (26) can vary significantly between strains.

To investigate the role of B. subtilis strains in producing valuable compounds, in
interacting with its hosts or microbial communities, and in fighting pathogens, it is
therefore important to consider the multitude of strains. Thus, in this work, we expan-
ded the previous GEMs into a pan-genome-scale metabolic model representing 481
strains, thereby capturing the metabolic diversity and secretion capabilities of B. subtilis.
Similar pan-genome-scale metabolic models have been previously deployed to analyze
strain-level differences and patterns of metabolic capabilities in E. coli (27), Salmonella
(28), Staphylococcus aureus (29), and fungi (30). We subsequently analyzed the predicted
metabolic features of each strain of B. subtilis to utilize different carbon, nitrogen, and
sulfur sources, their potential to produce four key antimicrobial compounds, and used
unsupervised machine learning techniques to divide the strains into five distinct groups.

RESULTS
The diversity of Bacillus subtilis’ pan-genome and pan-reactome

To construct the pan-genome, we followed the protocol of Norsigian et al. (31),
starting with gathering and re-annotating publicly available B. subtilis genomes. We
then grouped their annotated protein sequences into clusters of orthologous genes
to reduce redundancy and identify similar genes across strains (28, 31-33). In total,
481 genomes were incorporated into the pan-genome after filtering for quality (Table
S1). The sequence clustering resulted in 20,315 orthologous gene families, reduced
from 2*10° individual sequences. These genes can be partitioned into “core” features
present in over 99% of strains and “accessory” genes present less frequently. A cutoff
of 99% allows for more error tolerance than the frequently used 100%, as erroneous
omissions from single genomes will not change the classification (33). Accessory genes
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are further subdivided into soft core genes (95%-99% of strains), shell genes (15%-95%),
and cloud genes (up to 15%) (Fig. 1). We did not enumerate unique genes, as these can
be anomalies of sample size. The core genome therefore identifies features shared by
almost all strains, representing the unifying features of B. subtilis strains. In the B. subtilis
pan-genome, we identified 2,367 core genes and 17,948 accessory genes (Fig. 1). On
average, any two strains share 3,556 genes or 85% of their genetic content. The number
of genes observed vs strains is still increasing (Fig. 1A), indicating that the pan-genome is
still open and would continue to benefit from additional high-quality genomes.

To reconstruct the pan-genome-scale metabolic model, we followed the protocol of
Thiele and Palsson (17), utilizing the representative pan-genome sequences as the input
genome. The resulting pan-model, which contains the totality of metabolic reactions
across all strains, has 2,315 gene clusters and 1,874 metabolites across the cytosol and
extracellular space associated with 2,239 reactions. We also generated a matrix encoding
which strains are capable of which reactions, determined by combining the gene-strain
and reaction—gene associations (Tables S2 to S4). This matrix is used to transform the
central model into one representing any particular strain. When viewed strain by strain,
the average strain model has only 64 fewer reactions than the pan-model, at 2,175, an
increase of 24% from iBSU1209. A total of 92% of this model’s reactions are core features
(Table 1), which is notably higher than the 11% core genes (Fig. 1C and D). A randomly
selected gene has only a 20% chance of appearing in any given strain, but a gene utilized
in the model has a 48% chance of being in any strain’s genome. Furthermore, this is
a larger percentage than the 71% of core reactions in the E. coli pan-genome (27) and
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FIG 1 The distribution of the genes and reactions within the pan-genome model across the individual strains. (A) Heap's
law analysis of the pan-genome contents. The top curve represents how the number of observed orthologous gene clusters
increases with the number of strains. The bottom curve shows how the number of conserved gene clusters (those present in
all strains seen so far) decreases. As results vary with the order of the strains, these curves were calculated 1,000 times with
randomly permuted strains. The thick, colored lines show the median result, whereas dashed lines represent the 5th and 95th
percentiles. The median curves are fit to equations y = ax". (B) Each bar shows how many reactions of the pan-model are
associated with each major category of the metabolite. The colors then show how they are divided into core and accessory
reactions. (C) Gene commonality by strain. Each vertical bar represents one strain, ordered by its number of genes. Genes were
partitioned by how often they appear in other strains, with the following definitions used in the Roary pipeline (33): Core,
99%-100% of strains; Soft Core, 95%-99%; Shell, 15%-95%; and Cloud, 0%-15%. Note that the genes in any two Core bars will
be nearly identical, while those in any two Cloud bars will have little overlap. (D) Reaction commonality by strain. The cutoffs

and definitions are the same as in (C). Exchange reactions were removed from this analysis.
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TABLE 1 Model contents

Feature Pan-model Core (99+%)  Accessory (<99%) Average strain model
(standard deviation)

All reactions 2,239 2,067 172 2,175(12)
Metabolic reactions 1,568 1,386 182 1,514 (11)
Transport reactions 321 273 48 310(3)
Gene clusters 2,315 697 1618 1,108 (13)
Metabolites 1,847 1,741 106 1,808 (6)

82% in the Salmonella genus reconstruction (28). Among the major pathways, reactions
associated with amino acids showed the highest variability between strains, whereas
nucleic acids showed the least (Fig. 1B).

Our model was gap filled to ensure that the individual strains could grow in known
growth conditions of B. subtilis, including specific defined media (34), prior Biolog
experiments for strain 168 (19), and conditions determined by our Biolog experiments for
eight additional strains (Experimental model refinement). To fill a strain-specific gap, the
most common reactions from the pan-reactome were iteratively added until the model
could grow, then trimmed away until a minimal set of new reactions was found (see
“Gap filling,” below). Thus, our model presents the most up-to-date reconstruction of B.
subtilis metabolism, built upon and expanding those that came before it to represent 481
genomes. The final pan-model is available as Table S4 (reactions) and S5 (metabolites)
and at GitHub (Data availability).

Experimental model refinement

For further model refinement, we utilized the Biolog PM1 phenotypic array (35) and
determines the capabilities of eight selected strains of B. subtilis (i.e. KO7, N2-2, 3NA, SMY,
PS832, PY79, SU+IIl, and JH642) to utilize 80 sole carbon sources. These plates, run in
triplicate, provided a greatly expanded base of experimentally validated growth or no
growth phenotypes at the strain level. The experimental conditions were considered to
show growth if the change in OD7g was at least 0.05 above the control, and therefore
above the detection limit of the plate reader. The corresponding model simulation was
checked for a growth rate above 0.01/h to show growth (see “Biolog carbon source
experiment and analysis,” below). Adding new pathways and reactions informed by the
experiments to correct false predictions refined the model and achieved a predictive
accuracy of 92% and a Matthews correlation coefficient of 0.84 across these eight strains.
Across 640 data points, the model predicts 398 positive results of which only 17 (4%) are
false, in addition to 242 negative predictions of which 32 (13%) are false.

Of the 80 carbon sources tested, only eight showed variability between the strains.
These eight metabolites did not represent a particular metabolite class but instead
included two amino acids, two carbohydrates, three fermentation products, and one
nucleobase. The 32 false positives and 17 false negatives were similarly distributed
among varied classes. The full Biolog results are shown in Table S6.

We then curated the model against the carbon, nitrogen, phosphorous, and sulfur
Biolog data provided with the original B. subtilis strain 168 model iYO844, gap filling to

TABLE 2 Growth rates and acetate secretion’

Growth rate (h™") Acetate secretion Biolog
(mmol/gDW/h) accuracy
Experimental data (34) 0.67 £ 0.02 4,28 +£0.29 N/A®
Average strain model 0.66 = 0.02 434+0.78 N/A
Strain 168 (in this model) 0.67 3.79+0.58 0.75
Strain 168 (iYO844) 0.61 4.82+0.96 0.73
Strain 168 (iBSU1209) 0.84 0.70 £0.70 0.71

“The bold indicates one standard deviation.
®N/A, not applicable.

November 2024 Volume 9 Issue 11

mSystems

10.1128/msystems.00923-24 4



Research Article

improve the accuracy of the strain 168 model and others, achieving a higher prediction
accuracy than the prior models (Table 2). We also compared the results of this model
to the others in a defined glucose medium with experimentally determined uptake
values for strain 168 (34, 36) (Table 2). The minimal glucose medium contains glucose,
ammonium, sulfate, phosphate, water, and minerals. Glucose and oxygen were provided
at up to 8.7 and 18 mmol/gDW/h to match experimental uptake rates (34, 36). All other
components were provided at 100 mmol/gDW/h (Table S4 - see exchange reaction
bounds). The growth rate for our model and prior ones were calculated, as well as
the variability in the acetate secretion at 95% optimum growth (see “Secretion rates,’
below). Our pan-genome derived model for strain 168 achieved more accurate and
precise growth and acetate secretion rates in this condition than previously reported
models (Table 2), showing an increased model performance in these important model
features (growth rates and acid production) on glucose, which is central to carbohydrate
metabolism as a whole. Thus, our model presents the most accurate and up-to-date
reconstruction of the type strain 168 amongst 480 new strain-specific models.

Strains of B. subtilis cluster by nutrient utilization profiles

Next, we deployed the models to investigate the ability of each strain to grow utilizing
every potential sole carbon, nitrogen, and sulfur source (Fig. 2A).

We calculated growth rates on 316 potential carbon sources, 187 nitrogen sources,
and 53 sulfur sources. In each condition, the minimal medium was modified by replacing
either glucose, ammonium, or sulfate with another nutrient at a maximum uptake of
10 mmol/gDW/h and leaving the rest of the medium unchanged (Fig. 2A). Of these 316,
93 carbon sources could be used by every strain, incuding the monosaccharides glucose
and fructose, 19 individual amino acids or short peptides, and malic acid, which B. subtilis
is known to prefer over other many carbon sources (37). Moreover, 65 nitrogen sources
could be used by all strains; in line with previous experimental characterization, these
included a wide range of amino acids (38), various nucleobases (39, 40), and ammonium,
nitrate, nitrite, and urea (41).

With these results, we categorized nutrients for B. subtilis into core and accessory
nutrients, defined identically to the core and accessory genes: if at least 99% of the
strains grow using a particular nutrient (predicted growth rate >0.01 h™), it is considered
a core nutrient; otherwise, it is considered an accessory nutrient (Fig. 2B). These core
nutrients, similar to the core genes, therefore identify compounds that an overwhelm-
ing majority of B. subtilis strains may use, forming a set of unifying and identifying
features. The diversity of growth rates is proportionally higher than that of the reactions,
whereas ~92% of reactions were in the core reactome, only 80% of carbon sources
and 71% of sulfur sources were in the core set of nutrients. The remaining 8% of
reactions that comprise the accessory reactome are therefore enriched in likelihood
to be impactful in whether a given strain can utilize each nutrient, in contrast to the
reactome as a whole. A high proportion of the accessory reactions are involved in
transport and the initial steps in metabolizing these diverse compounds and not, for
example, in the synthesis of secondary metabolites uninvolved in growth.

Many of the variable carbon sources are di- and tripeptides, with their use being
dependent on the presence of specific peptidases. Other carbon sources that showed
variability between strains include the carbohydrates arabinose and glucose-6-phos-
phate and the fermentation products acetate and tartrate. Thus, although many carbon
sources form a conserved basis of metabolic possibilities, B. subtilis still shows variability
in the utilization of simple carbohydrates and bacterial fermentation products. This is
indicative of potential differences in how the strains interact with their environments,
as different strains may compete with other microbial community members for these
carbohydrates or utilize their byproducts differently.

Therefore, we next investigated whether these variations are uncorrelated, or if
there are distinct patterns of growth phenotypes within the strains. We first performed
dimensionality reduction via t-stochastic neighbor embedding (t-SNE) generated from
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FIG 2 Analyses of the predicted growth rates of the individual strains. (A) Predicted growth rates on various carbon sources
(with or without oxygen), nitrogen sources (N), and sulfur sources (S). Of all sources in the model, only the 50 with the highest
standard deviation of growth rates are shown. The default carbon, nitrogen, and sulfur sources were glucose, NHg, and SOy;
the indicated source replaced only one of these at a time to act as the sole source of the indicated type. The strains and
sources have been sorted using agglomerative hierarchical clustering. (B) Carbon, nitrogen, and sulfur sources partitioned
based on the proportion of strains that could utilize them for growth. (C) t-SNE based on the predicted growth rates across
all carbon, nitrogen, and sulfur sources. The colored groups were assigned by k-means clustering on the original data. (D) The
data from A, averaged by the strain groups identified in (C). (E) A decision tree trained to predict the strain groups based on
growth rate predictions. (F) Prediction accuracy of decision trees on a 50:50 train/test split against the complexity of the tree.

Number of splits

The accuracy plateaus after six decisions—increasing the tree size past this point would likely lead to overfitting.

the combined growth rate data for carbon, nitrogen, and sulfur sources (Fig. 2C). This
generated five clusters of strains, labeled in order of size (Table S7). When the k-means
with five groups was applied to the original growth rate data, the group assignments
were the same, and thus the division was not an artifact of t-SNE. The average growth
rates in each group show distinct variations, with groups 4 and 5 growing on fewer
nutrients overall, groups 1-3 varying in their utilization of glucose-6-phosphate and
tartrate, and 41 compounds showing at least 1% variability between groups (Fig. 2D).
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Although t-SNE produces clean separation, it lacks interpretability—one cannot
extract which features lead to which group assignment. To extract which differences
cause these groups to separate, we utilized decision trees. Decision trees divide data
based on a flowchart of one property at a time, making them readily interpretable,
though at a cost of reduced accuracy. Despite the simplicity of decision trees, a tree
with only seven splits yielded a 95% prediction accuracy (Fig. 2E and F). Therefore,
the divisions between the strains can be cleanly explained by their growth on a few
nutrients. This method also achieved an accuracy score of 80% when only considering
binary growth or no growth predictions. The defining metabolites include tartrate as
a carbon source, which is utilized by only a few B. subtilis strains among all Bacillus
or genera of any bacteria (42). Another key metabolite is methionine sulfoxide, the
utilization of which is associated with motility and redox balance in Bacillus cereus (43).

Secretion potential is related to growth phenotypes

Having defined five groups based on growth rate data, we then examined differences
in the end points of metabolism, i.e.,, which metabolites can be secreted, determined
by examining which metabolites could have an efflux into the medium in the model.
We simulated each model in minimal glucose medium, then identified the potentially
secreted metabolites through flux variability analysis. The growth rate was then fixed
to be at least 95% of its maximum to capture optimal and suboptimal network states
(44, 45). This value was selected as it allowed for the same set of reactions to be active
as when no growth was required, yet still requires growth to be near optimal. Then,
to assess which metabolites could be produced and in what amounts, we optimized
each strain model with each exchange reaction as the objective (see “Secretion rates,’
below). As GEMs generally have a wide range of fluxes possible at or near the optimal
growth rate (46), they do not make specific predictions for secretion rates. Thus, these
values represent the maximum potential secretion rates. For all strains, the metabolites
with the highest secretion rates were water, carbon dioxide, and acetate. The most
variable secreted metabolites by standard deviation included ethanol, which is known
to be consumed by bacteria in many different environments, including soil and the
human digestive system (47-49). Various amino acids followed ethanol as the most
variable. Thus, these results help outline how different strains of B. subtilis may impact
their environment through producing different metabolites in addition to consuming
different nutrients.

We then averaged these secretion rates by the groups defined by the nutrient
utilization profiles (Fig. 3A). These groups, defined on growth rates, still visibly separate
based on secretion rates. Distinct differences between the groups also emerge with
respect to the secretion of the four antimicrobial compounds bacillaene, fengycin, iturin,
and surfactin (Fig. 3B). Groups 4 and 5 lack the genes to produce bacillaene at all,
whereas group 3 could produce the most bacillaene without sacrificing its growth rate.
Other differences are present, but the effect size is smaller compared to these. Thus, the
ability to utilize different nutrients is correlated to the ability to produce these antimicro-
bials. Other differences were observed between the groups among the complete set
of potentially secreted compounds, allowing for the groups to be separated with high
prediction accuracy (Fig. 3C). In particular, group 2 lacks the pathways necessary to
secrete many metabolites the other groups could produce, whereas other groups could
be separated by their ability to produce certain amino acids, including alanine, lysine,
and phenylalanine.

Essential pathways and reactions predict growth phenotypes

As shown in Fig. 1C and D, the number of genes and reactions varies significantly
between strains. Moreover, some groups of strains utilize fewer nutrients (Fig. 2),
suggesting that some strains have fewer functional pathways available to them. To
investigate this further, we performed flux sampling on all 481 individual models to
assess which had the most potentially active pathways. The term “pathway” typically
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FIG 3 Metabolite secretion predictions. (A) Z-scores of maximum secretion rates by group. Only metabolites with a non-zero
standard deviation are shown. (B) Mean maximum secretion of the antimicrobial compounds in the model by group. (C) A
decision tree showing how the previously defined groups, although built from growth rates, can be readily predicted by

secretion capabilities as well.

refers to a semi-arbitrary collection of associated reactions, but here, we use a quan-
titative definition for “pathway” similar to that of Bordbar et al. (50). Specifically, a
pathway is defined as a linearly independent set of reaction rates (Fig. 4A) achievable
within the metabolic network. Importantly, we define them to be linearly independent
so that potential pathways constructed by merging two or more other pathways or
taking an existing pathway in the reverse direction are not counted. The overall number
of pathways thus provides a direct measure of the number of metabolic choices the
organism has available to it, as well as an indirect measure of its robustness and
metabolic adaptability.

Flux sampling yields a large data matrix of possible sets of fluxes, where each row is
a sampled metabolic state, and each column is a reaction; this captures the variability in
all the reaction rates. Then, the number of linearly independent pathways may be found
by calculating the rank of this matrix. We computed these values for all strains in minimal
glucose medium and in a complete medium with all modeled extracellular metabolites
available in unlimited quantities (see “Pathway enumeration,” below). In each case, the
variability in the number of pathways was proportionally higher than that in the number
of reactions. For the number of pathways, the coefficients of variation (mean divided
by standard deviation) were 0.0143 and 0.0105 for the glucose and complete medium,
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respectively; for the number of reactions, it is 0.0051. Each variable reaction is on average
associated with two or three new pathways, meaning these accessory reactions tend
to be positioned at branch points within the metabolic network, with the potential to
create multiple new options for the cell to utilize.

Once again, we examined if these pathway-level differences correlate with the five
previously defined groups of strains (Fig. 4B and C). These data aligned well with the
previously defined groups despite them being built on entirely different data. The
number of pathways was significantly different (P < 0.001) in both conditions between
almost all pairs of groups. Group 4, which showed growth on the fewest nutrients, had
the lowest number of pathways. Its median value was below 93% of values from other
groups. Similarly, the median of group 3 was higher than 86% of all other data points.
These values in combination with the growth data help to characterize the strains of B.
subtilis as generalists or specialists, with some having many more metabolic capabilities
and potentially utilizable nutrients available to them.

The number of essential reactions provides another way of assessing metabolic
robustness. We determined gene essentiality through single reaction deletions on every
reaction in every strain model in minimal glucose medium. If the growth rate was
reduced below 0.01 h™' by the deletion of a reaction, it was labeled as essential for that
strain model (Table S8). Of the 186 reactions that were essential for at least one strain,
156 were essential for at least 99% of strains. These reactions define the core set of
metabolic transformations that all B. subtilis strains are dependent on. When considering
reactions that when deleted reduce the growth rate by 1% or more, there are 216
impactful reactions of which 185 are core reactions.
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FIG 4 Pathway enumeration statistics by group. (A) An example of the calculation of independent pathways. Active reactions
are shown in blue. Visually, there are four main network states: metabolite D can be produced from either the upper or lower
set of reactions (V7 or V5), both sets at once (V3), or both can be inactive and no D can be produced (V4). However, V3 and
V4 can be expressed as combinations of the other two pathways, and therefore are not linearly independent. Thus, there are
only two pathways present here per our definition. This can be found easily by calculating the rank of the data matrix of fluxes
found in different instances. No matter what linear combinations of these pathways appeared in the flux matrix, and no matter
how many samples there were, the rank would always be two. (B) A scatter plot of the number of reactions and number of
independent pathways, colored by group. Note that group 4 lags behind the others on both axes, whereas groups 2 and 3
are at the higher end. Although the number of reactions and number of pathways are predictive of each other (R* = 0.74),
some reactions open multiple pathways and provide no new options to the organism, requiring examination of the full model
to calculate this emergent property. (C) Boxplots of the number of pathways in each group in the glucose medium and the
complete medium (all exchanges open). All except for groups 1 and 2 in the glucose condition are statistically different from
each other at a significance level of 0.001.
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In addition, there are reactions that are consistently essential for strains in spe-
cific groups. Reactions S-ribosylhomocysteine lyase (RHCYS), methylenetetrahydrofolate
reductase (MTHFR3), and S-adenosylhomocysteine nucleosidase (AHCYSNS ) are each
essential for most strains in every group, except group 3. Citrate synthase and pyruvate
carboxylase are essential for all members of group 4. The other groups have fewer
distinguishable essential reactions with smaller effect sizes, but there are still differences
present.

Diverse phenotypic features predict consistent group assignments

Given that data regarding every metabolic feature correlated back to the groups defined
by growth rates on different nutrients, we quantified just how predictive these different
features are of the group assignment. To measure this, we built decision trees to predict
the group assignment based on each of several data types one at a time. After training
the tree with a random selection of half the strains, we used the tree to predict the
labels on the remaining half. Then, we calculated the number of true and false positives
and negatives for each group. These were then combined into the Matthews correlation
coefficient (MCC) to represent the overall accuracy of the predictions (Fig. 5). The MCC
performs better than other measures of prediction accuracy (such as sensitivity and
specificity) when the group sizes are imbalanced (4), which is of relevance here as the
largest group is four times larger than the smallest.

As expected, the growth rate predictions performed the best, as the group assign-
ments were built on the growth data. However, the remaining data sources still
had significant predictive power. Decision trees built using reaction presence/absence
yielded MCC values above 0.90; gene presence information achieved an average of 0.85
across the groups. Examining only the secretion rates allowed for separation of all groups
except 2, with an average MCC of 0.65. Surprisingly, focusing only on the secretion of the
four antimicrobial compounds reduced the MCC by a few percent. Finally, the reaction
essentiality was the most variable, with nearly 100% predictive power for group 4, as its

Matthews Correlation coefficient of decison tree predictions

Group number
w

5
A O
o x& o0 o o 3 &0 ‘.\a\\‘! %(\éo«‘
\ﬂ" Q\ea <O () (A °X
&© & ° :
'\(,‘0 c\,\o
< &
(\‘—\
Data type

FIG 5 Matthews correlation coefficient (MCC) values from the predictions of each group based on decision trees built from
each data type. The data types are sorted by average MCC value. A column built on uniform random data is appended for
reference. The values shown are the averages across 100 replicates with randomly assigned 50/50 train/test splits.
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strains had many essential reactions the others did not rely on, but an MCC of only 0.22
for group 2.

Thus, these groups that emerged from predicted growth rates are deeply related with
all of these other features. No matter which of these features are considered, similar
groupings emerge, and strains that have certain characteristics when viewed from one
perspective are highly likely to vary in the same ways when viewed from any other. Thus,
we propose to divide these strains into the five groups, characterized by these defining
metabolic traits.

DISCUSSION

Here, we present a comprehensive model of B. subtilis, containing new reactions
and features when compared with previous models, including the synthesis of four
antimicrobial compounds. Furthermore, we extended the model to a pan-genome of
481 strains of B. subtilis. We have thus expanded its predictive capabilities beyond the
core laboratory strain 168 to yield analysis of strain-to-strain differences in resource
usage, growth rates, and secretion. These differences reflect how different strains have
adapted to their environments, providing mechanistic insights into the distribution of
the ubiquitous B. subtilis. B. subtilis strain-level differences reflect their adaptations to
environmental differences in nutrient availability and microbial community composition.

We found that B. subtilis naturally divides into five groups based on simple rules
for which nutrients it can or cannot use. The specific metabolites that divided these
groups have been previously identified to be of importance to the genus Bacillus (42,
43). Arabinose, utilized efficiently by group 4 and poorly by group 1, has been shown
to be impactful on the activity of sporulation pathways (51). Group 1 is distinguished
by its ability to utilize 5-methyl-D-ribose for sulfur, whereas group 4 distinctly lacks this
ability (Fig. 2E). This metabolite is associated with the starvation response in B. subtilis
(52). Moreover, it can be produced by E. coli, Clostridium pasteurianum, and Saccharomy-
ces cerevisiae — important members of gut and environmental microbiomes. 5-methyl-
D-ribose is also consumed by the soil and human bacterium Klebsiella pneumoniae
(53); this metabolic difference therefore provides an avenue for differences in response
to sulfur starvation in B. subtilis strains and their metabolic competition with other
prominent microbes. Flux through glucose 6-phosphate has been shown to improve
riboflavin production in B. subtilis (54), adding relevance to group 2's high efficiency at
utilizing this substrate. Isoleucine usage is variable across groups both as a carbon and
nitrogen source, whereas its utilization has been shown to alter fatty acid production
and membrane composition in B. subtilis (55). Finally, differences between groups in
consumption of dietary compounds or bacterial products, such as mannitol and acetate,
have implications for that group’s ability to compete and exchange nutrients with the
surrounding community.

The five groups defined here consistently align well with other key metabolic features,
including which compounds each strain may secrete and which reactions are essential
for their growth, allowing us to thoroughly characterize the groups in multiple ways.
Group 3 has relatively high hallmarks of robustness, having the fewest essential reactions
and many of the highest growth rates assessed; group 4 meanwhile was the least
robust by these measures, and group 1 members exhibited reduced growth on many
carbohydrates. Strains of group 5 could use the fewest sulfur sources, but produced
the most surfactin and propionate by a wide margin. Group 2 strains were catabolic
generalists, capable of utilizing the most nutrients. However, strains in this group did not
have especially high growth rates and could produce the fewest compounds. This aligns
with previous work suggesting that being a generalist in one feature may come with
trade-offs limiting breadth in others (56). Additional trade-offs in nutrient utilization,
motility, and spore quantity and quality have previously been observed in studies on
evolution in B. subtilis (57-59).

Thus, the diversity of B. subtilis strains can be condensed into features that separate
these five groups. These strain differences likely reflect the abundance of strains in
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microbial communities and thus the models can provide a mechanistic basis to unravel
the role of B. subtilis in various microbiomes.

MATERIALS AND METHODS
Pan-genome generation

The B. subtilis pan-genome was generated using the BGCFlow (60) pan-genome software
pipeline. This pipeline is a composition of several established genome analysis functions,
which streamlines the pan-genome assembly and annotation. The accession numbers
for all publicly available genomes from NCBI labeled as B. subtilis as of 20 October
2022 were gathered as the input into the pipeline. Within the pipeline, the genomes
were given CheckM (61) quality scores. Only “high” and “medium” quality genomes with
completeness above 98%, contamination below 3%, and fewer than 100 contigs were
kept. This resulted in 481 genomes in the final list (Table S1).

The genomes were then annotated using Prokka (62) to assign functions to the
genome sequences. These annotated sequences were then fed into Roary (33) using
95% similarity for clustering. The result of this was the final gene-strain association
matrix, identifying which of the final 20,315 gene clusters were found in which of the
481 genomes. Roary also produced a list of 20,315 representative sequences, one for
each cluster, which was used in all the further analysis as the pan-genome for BLAST and
other purposes (Table S9). The annotation for each cluster representative was chosen by
selecting the most frequent annotation among the cluster constituents.

Metabolic model reconstruction

The metabolic model was made roughly following the workflow provided by Palsson et
al. (17). Unlike a typical reconstruction, the input genome used here was not that of the
individual organisms, but the pan-genome of 20,315 representative sequences. These
sequences were compared with the genes used in template models using protein BLAST.
The template models used included two prior reconstructions of B. subtilis, the core
original model iYO844 (19), and the more comprehensive iBSU1209 (21). Other templates
included the high-quality E. coli model iML1515 (63), two models of the Gram-positive
S. aureus [iSB619 (64) and iYS854 (65)], a model of the Gram-positive Lactococcus lactis
[INF517 (66)], and other high-quality models from the BiGG database (67). High-quality
draft models, such as iML1515, were included despite being Gram-negative to increase
the chances of finding all relevant reactions that would not be found in the limited
number and scope of manually curated Gram-positive reconstructions. All reactions
were later manually curated, removing erroneous reaction—-gene associations. In the final
reconstruction, only 176 metabolic reactions came solely from Gram-negative templates.
The BLAST parameters used were an E-value no greater than 107 and an identity of no
less than 30%. Any reactions for which all components of the GPR had a BLAST match
in the pan-genome were collected to form the first draft model. The biomass reaction
was taken from iYO844. Exchange reactions were added for each extracellular metabolite
in the model. Additional reactions were identified by finding pan-genome entries with
enzyme commission numbers that were not yet used in the GPR for any reactions. Then,
the pan-genome was then compared against entries from the Transport Classification
Database (68) using the same BLAST criteria to find additional potential transporters.
These automatically constructed GPRs were then manually curated, with the
proposed reaction associations compared with the annotations of the sequences or
functions established in the literature. Enzymes with multiple assigned reactions were
assumed to be capable of performing them all, unless refuted by literature or specificity
of EC number. Reactions with GPRs that apparently did not match were kept when
literature supported multifunctionality of the relevant enzymes. Reactions whose GPRs
involved proteins with vague names (e.g., “carbohydrate ABC transporter”) were kept but
noted as low confidence. Reactions involving the periplasmic space, which the Gram-
positive B. subtilis does not have, were mapped to the cytoplasm instead. The original
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model YO844 contained 117 metabolic reactions and transporters with no assigned
genes. Using the updated B. subtilis models and searching the abundance of biochemical
literature published since the original’s creation, we assigned new GPRs to many of them,
reducing the number of gaps. Finally, the reaction-strain association matrix was made
by identifying which strains had genes that could satisfy each of the GPRs. Strain-specific
models are made by removing reactions not associated with the strain of interest from
the overall pan-model.

The metabolites in the model were assigned formulas and full names by map-
ping them over from the template models, with priority given to the B. subtilis mod-
els’ information. The metabolite formulas were unified to ensure no reactions were
unbalanced. Reactions that were unclear or unbalanced by nature (such as R00991
in KEGG) were removed from the model. Reaction bounds were chosen by following
what the majority of template models used. Every reversible reaction was given default
bounds of £1,000 mmol/gdwt/h; irreversible reactions were given bounds of [0, 1,000]
mmol/gdwt/h. The default glucose uptake bound was set to 8.7, the value calculated
experimentally by Tannler et al. (34). Other exchanges for minerals, ammonium, and
oxygen were left fully open, with bounds of £1,000. All non-media exchange reactions
were given bounds of [0, 1,000] to allow any metabolite to leave the system.

Our model contains reactions representing the secretion of four antimicrobial
compounds: surfactin, bacillaene, fengycin, and iturin A. These were selected for being
some of the best studied and most important for competing with major pathogens.
All but bacillaene are non-ribosomally constructed lipopeptides, whereas bacillaene is a
polyketide. The genes and precursors required are known, but the step-by-step pathways
for producing these are not well characterized (10). They are therefore represented as
lumped reactions from precursors to the final product.

The oxidative phosphorylation reactions had to be modified to prevent infinite ATP
generation. The ATP synthase reaction was originally powered by extracellular hydro-
gens. However, many metabolic reactions and transporters from models without ATP
synthase create or transport hydrogen atoms, such as D_LACt2 and MTHFC. These
reactions can be used in conjunction with each other to create a cycle that generates
arbitrarily many extracellular hydrogen atoms. As individual hydrogen atoms are not
usually metabolically relevant, this does not usually cause any problems. However, when
the proton-driven ATP synthase is present, this allows for infinite energy generation.
To combat this, reactions that typically pump hydrogen for oxidative phosphorylation
purposes, such as cytochrome bd oxidase (CYTBD), were modified to instead create a
dummy metabolite “oxphosH,”" which may then be consumed by ATP synthase. This way,
the oxidative phosphorylation pathway remained functional without the need to edit
hundreds of reactions from various sources.

Biolog carbon source experiment and analysis

Metabolic characterization of eight B. subtilis strains obtained from the Bacillus Genetic
Stock Center (Columbus, OH) was carried out using Biolog PM1 plates obtained from
BIOLOG Inc. (Hayward, CA). Each strain was streaked on LB agar plates at 37°C, and
colonies were subcultured once on an additional plate before seeding, with Biolog plates
being prepared according to the manufacturer’s protocol for Gram-positive bacteria
using redox dye F (69). Once inoculated, the plates were incubated at 30°C for 48
h, with absorbance readings being taken at 592 nm to assess metabolic activity and
750 nm to assess cell growth at 0 and 48 h. Absorbance was measured using a Promega
GloMax-Multi + microplate reader (Madison, WI). Biolog plates were run in triplicate for
each strain, with B. subtilis strains K07, N2-2, 3NA, SMY, PS832, PY79, SU+IIl, and JH642
being evaluated.

Growth was determined by finding the change in ODys5p between the initial and
final time points. The change in ODys5q for the negative control was subtracted from
the change in ODy5q for each nutrient in the corresponding replicate and strain data.
If this value was above 0.05, the detection limit of the machine, in two or three of the
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triplicates, then that strain was considered to have shown growth on that nutrient. For
the corresponding in silico analysis, each nutrient was provided at a maximum uptake
rate of 10 mmol/gDW/h, replacing the currently active exchange reaction for that type of
source (C, N, P, and S). If the model then predicted a growth rate greater than 0.01, the
model was considered to show growth on this nutrient.

Gap filling

After the initial curation, the pan-model could grow. However, only about half of the
strain specific models could grow, so gap filling was required to make the metabolic
network functional. Most individual strains that could not grow were missing one or two
essential reactions. To identify and fill these gaps, an iterative method was used. Core
reactions identified as essential for growth in the pan-model were added one at a time
until the strain model could grow. These added reactions were then removed one at a
time, so that the minimal set of added reactions necessary for growth could be found.
By selecting from core reactions essential to the pan-model, we selected reactions with
a high likelihood of being present in any given B. subtilis strain, increasing the odds we
could find genetic support.

We then attempted to find genome support for these reactions. If none could be
found, these reactions were rejected, and gap filling was repeated with these reactions
excluded. If no genomic support could be found, then the smallest possible set of new
reactions was added without annotation. This set was found by adding every reaction
from the pan-model, regardless of frequency, then trimming away reactions starting with
the least common. These strain-specific gaps are marked in the GPRs as “strain_gap(x)” to
note that strain x required this reaction for gap filling.

Finally, we gap filled the selected strain-specific models so that they could reflect the
growth or no growth phenotypes found in our Biolog data, so that the strain 168 model
would best reflect the Biolog data provided with the iYO844 model.

Growth predictions

By default, the growth medium in thae model is unlimited minerals (Ca, Fe, K, Mg,
Na, and Pi), water, carbon dioxide, sulfate, and ammonium. To match experimentally
observed uptake rates, oxygen is provided at a rate of up to 18 mmol/gDW/h and
glucose at 8.7 mmol/gDW/h. The model file in the supplementary information is set to
these values. When assessing if a strain model could use a particular carbon source, the
uptake rate for glucose was set to 0. Then, the uptake rate for the source of interest
was set to 10 mmol/gDW/h and the model optimized with FBA. (“FBA = optimizeCbMo-
del(model)”). Then, the growth rate was extracted. If it was above 0.01, the model was
considered to have shown growth; otherwise, it was labeled as no growth. In this way,
all carbon sources tested were sole carbon sources. The process for nitrogen and sulfur
proceeded similarly, but with NH4 or SO4 being set to 0.

Clustering

The five groups were assigned based on t-SNE and k-means clustering. First, the matrix
representing the predicted growth rates of each strain using each nutrient (with carbon,
nitrogen, and sulfur data concatenated). A two dimensional t-SNE embedding was then
computed in MATLAB (“X = tsne(growth_data)”). The groups were then split b k-means
(“group = kmeans(X,5)"), which aligned perfectly with the groups observed in the plot.
Even on repeated recalculation, the same five visually distinct groups appeared, so no
analysis was done to optimize the number of groups. The group labels were sorted by
group size for organization.
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Decision trees

When performing any decision tree analysis, the data and group assignments were first
split into two randomly assigned halves for training and testing. First, the tree was
built using MATLAB's built-in function (“mdl = fitctree (training_data, training_labels,
‘MaxNumSplits, 10)"). Then, this tree was used to predict the group assignments of
the remaining data (“predicted_labels = mdl.predict(test_data)”). Prediction ability was
measured with the Matthews correlation coefficient for each group. Within each group,
the confusion matrix of true and false positives and negatives was computed. The MCC

was found by the formula MCC = M. All reported MCC values were the

average from 100 random train/test splits.

Secretion rates

We calculated the variability of the secretion rates near the optimal growth rate. To
calculate the secretion potential for a given strain, we first optimized the model in its
default minimal glucose medium. Then, we forced the growth rate to be within 95%
of the maximum (“model.Ib(strcmp(model.rxns,BIOMASS_BS_10")=0.95*growth_rate”).
This prevents the model from sacrificing its growth rate to produce more byprod-
ucts, and therefore only determining what the highest effluxes are close to the bio-
logically relevant growth rate. Then, the objective of the model was changed to be
the exchange reaction corresponding to the metabolite of interest (e.g., “model =
changeObjective(model, ‘EX_ac_e’)"), and the model was re-optimized. To identify the
minimum flux, the model was re-optimized to minimize the flux [e.g., FBA = optimizeCb-
Model(model/min’)].

Reaction essentiality

Reaction essentiality was performed in the COBRA Toolbox with the command relGrowth
= singleRxnDeletion(model). This removes each reaction from the model one at a time
and reoptimize it. Then, it returns the vector relGrowth, which is a series of numbers
between 0 and 1, indicating the ratio of the growth rate with the corresponding reaction
deleted to the “wild-type” growth rate with no deletions. These values for each strain
were then recorded in a matrix of relative growth rates for each strain and reaction for
further analysis. The cutoff for essentiality was a relative growth rate below 0.01.

Pathway enumeration

To perform the pathway analysis, we first had to do flux sampling. Because the flux
sampling methods are faster and more stable in the Python implementation, this was
performed in COBRApy, unlike the rest of the analysis. First, the strain models were
assembled in matlab and saved. Then, each strain model was loaded into COBRApy and
sampled with 2,000 samples (“S = cobra.sampling.sample(model,2000)"). This was done
in both the minimal glucose medium and with all exchanges open. The saved samples
were then loaded into MATLAB, and the rank was calculated. Experimentation showed
that the rank saturated after about 500 samples, as this was the dimensionality of the
solution space. Additionally, 2,000 was chosen to be entirely certain all possibilities were
represented.

Computation

Most model simulations were performed in MATLAB R2022b using the COBRA Toolbox
(70) version 3.4 and Gurobi 9.5.2, whereas flux sampling was performed in Python 3.10.12
COBRApy 0.27.0 (71), all in a UBUNTU 22.04.1 workstation.
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