
An Efficient Federated Learning Framework for IoT
Intrusion Detection

Yushen Chen1, Fang Fang1,2, Boyu Wang1, and Lan Zhang3
1Department of Computer Science, Western University, London, Canada

2Department of Electrical and Computer Engineering, Western University, London, Canada
3Department of Electrical and Computer Engineering, Clemson University, Clemson, USA

Emails: {yche2692, fang.fang}@uwo.ca, bwang@csd.uwo.ca, and lan7@clemson.edu

Abstract—The exponential growth of the Internet of Things
(IoT) ecosystems has raised significant cybersecurity concerns.
Deep learning (DL)-based methods have shown promising per-
formance in detecting potential cyber threats in IoT networks.
However, as these methods often involve data centralization,
they can pose serious data privacy issues for IoT users and
increase the communication burden of local networks. Feder-
ated learning (FL), as a distributed learning paradigm, enables
privacy-preserving training of IoT intrusion detection models
by requiring only model updates from IoT devices. However,
the resource-constrained nature of IoT devices can significantly
decrease FL training efficiencies, such as increased training
latency and delayed convergence speed. Moreover, the data
heterogeneous issues of IoT devices can also impact the accuracy
and robustness of the trained model. To address these challenges,
we propose an efficient FL framework, FedKD-Prox, based on
federated proximal (FedProx) and knowledge distillation (KD).
To improve the prediction accuracy within a limited time budget,
the proposed framework aims to efficiently exploit the compu-
tation capability of the IoT trainers, reduce the communication
overhead of FL, and alleviate the impact of heterogeneous data
issues. The simulation results show that FedKD-Prox achieves
higher accuracy and improves the robustness of the trained
intrusion detection model.

Index Terms—Intrusion detection, Internet of Things, feder-
ated learning, knowledge distillation, federated proximal.

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) devices
and its expanding ecosystem creates a broader surface for
potential cyber threats. Deep learning (DL) approaches have
increasingly gained attention in recent years as they pro-
vide intelligence and insights from the gathered data of the
source nodes. The performance has been proven by various
literature such as [1]–[3]. However, these methods may not
be suitable for IoT networks. Due to the sensitive nature of
the private data stored in IoT devices, a centralized training
process could compromise data security and result in serious
privacy concerns. Moreover, training DL models, especially
for intrusion detection, often require a large amount of training
data. Uploading these data could burden the communication
resources of IoT devices.

Federated learning (FL) has been introduced to address data
privacy issues and reduce communication costs. It allows the
training devices to keep their data private and communicate
through model updates. Existing research has applied FL in
developing intrusion detection systems to various network

applications, such as slicing network [4], vehicle-to-vehicle
network [5], unmanned aerial vehicles network [6], and energy
harvesting [7]. Despite these promising solutions, the IoT
devices still pose challenges to FL due to their resource-
constrained and distributed nature, including increased training
time and data heterogeneity. However, none of the above works
thoroughly considered them.

Extensive research has been conducted to tackle the afore-
mentioned challenges. Existing works addressing training la-
tency mainly focus on methods based on client selection,
such as staleness-based client prioritizing scheme [8] and
availability-based client assessment [9]. However, these meth-
ods could pose biases to the trained model if the dropped
devices have certain data characteristics. Other latency opti-
mization works emphasize the FL communication overhead,
such as model pruning [10] and updates significance ranking
[11]. However, these methods might induce potential errors in
the trained model and cause under-utilization of computation
resources. To handle data heterogeneity, a variety of methods
have been proposed since the emergence of FL, such as cluster-
based [12], personalized-based [13], and data augmentation-
based [14] methods. However, these methods generally require
intensive client-side computation and communication, so they
are unsuitable for resource-constrained IoT devices.

Motivated by the aforementioned challenges in this paper,
we propose FedKD-Prox, an enhanced distributed learning
framework for IoT intrusion detection models based on the
integration of knowledge distillation (KD) and federated prox-
imal (FedProx). KD [15] can improve the accuracy of a stu-
dent/simple model by supplying the distilled knowledge from a
teacher/complex model. We propose to utilize the knowledge-
transferring process in KD to optimize the communication
overhead between the server and IoT devices in FL, enabling
efficient model updates without interrupting the primary tasks
of the IoT devices. On the other hand, since IoT devices are
normally designed to handle specific tasks, they have diverse
network traffic data, which results in heterogeneous training
data. To address this, we propose to use FedProx [16] to
alleviate the impact of data heterogeneity by penalizing the
deviation between the local model and the server global model.
It also reduces the training latency by incorporating stragglers
to perform partial training. As shown in the simulation results,
incorporating FedProx significantly improves the robustness of

979-8-3315-1778-6/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 1
00

th
 V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
24

-F
al

l)
| 9

79
-8

-3
31

5-
17

78
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
24

-F
al

l6
31

53
.2

02
4.

10
75

74
88

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

FedKD-Prox

L
oc

al
 M

od
el

 lo
gi

ts

G
lo

ba
l M

od
el

 lo
gi

ts

A
g
g
re

g
at

ed
 l

o
g
it

s

G
lo

b
al M

o
d
el lo

g
its

Server Global Model

Local Model

Fig. 1. FedKD-Prox over IoT network

the trained IoT intrusion detection models and minimize the
intensity of local model drifting. Furthermore, we develop a
knowledge-based FedProx to reduce the computation cost for
model penalty calculation and enable an adaptive penalization
tuning for each device. Our simulations demonstrated that
FedKD-Prox outperforms other state-of-the-art FL algorithms
in terms of intrusion detection accuracy and convergence speed
within the time budget.

II. PROPOSED FEDKD-PROX FRAMEWORK

FedKD-Prox essentially consists of three components. Bi-
directional knowledge distillation (BKD) allows the IoT de-
vices and server to communicate with each other by sharing
their model knowledge. Secondly, knowledge-based FedProx
enables clients to compute model penalization via the dis-
tilled model knowledge instead of entire model parameters.
Lastly, knowledge-based penalty tuning enables the server to
adaptively adjust the strength of model penalization on each
device’s local model.

A. System model

Fig. 1 shows the architecture of FedKD-Prox in training IoT
intrusion detection models. We describe the function of each
layer as follows:

• Intrusion detection layer deploys the trained intrusion
detection model on IoT devices and is responsible for
buffering the traffic data as the model training data.

• Model training layer enables IoT devices to train their
local models, extract local model knowledge, and send it
as local updates to the server.

• Communication layer manages the traffic between IoT
devices and the server during the training process. It

detects potential malicious IoT devices and activities
proposed in [17].

• Aggregation/server layer aggregates the model updates,
extracts global knowledge to the clients, guides the
training process of each IoT device, and improves the
utilization of devices’ computation resources.

B. BKD

As shown in fig.1, there are two communication steps
involved in FL for training IoT intrusion detection models:
devices transmit local updates to the server; the server dis-
tributes the aggregated model to the devices. We apply the
standard KD in each communication step to enable each step
to communicate via distilled model knowledge.

KD is essentially a model compression technique. It aims
to train a student model with a simple structure to mimic
the behaviours of a complex teacher model. To produce class
probabilities for classification problems, a DL neural network
generally uses its softmax/output layer to convert logits zi into
a soft targets qm, which can be expressed as

qi =
exp(zi/C)∑M
j=1 exp(zj/C)

, (1)

where m = 1, · · · ,M is the number of classifications, and
the temperature hyperparameter C controls the smoothness of
soft targets over the classes probability distribution.

In KD, by collecting the logits before the softmax layer,
we define Z = [z1, · · · , zm]T as the knowledge of a trained
model. For each data batch, the process in which a student
model uses a teacher’s model knowledge Zt to regularize its
original loss function is called distillation. Specifically, the
student model learns the teacher’s knowledge by comparing
its student knowledge Zs with Zt using the Kullback-Leibler
divergence denoted by KL. We express this distillation pro-
cess as

LKD = KL(Zs, Zt)× C2, (2)

where the authors in [15] suggested to scale the distillation
loss LKD by C2. Finally, the student model uses a joint loss
function hs(·) weighted by α

min
w
hs(w) = αFs(w) + (1− α)LKD, (3)

where Fs(·) is the student model’s original loss function that
minimizes its model parameters w.

Applying KD in server-to-devices and devices-to-server
communication steps in FL can be considered as a BKD
paradigm. The server and devices no longer need to transmit
the entire model to each other as required in the traditional
FL framework. Instead, they transmit the model knowledge.
To enable BKD, the server and devices additionally use a
shared/proxy dataset to perform KD [18]. This shared dataset
can be requested from devices or retrieved from a publicly
available repository before training. In the following, we
describe how BKD can be applied in FL for training IoT
intrusion detection models:

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

• Devices-to-server: Assuming there are multiple devices as
active trainers, each IoT device trains its student model
using its local data and the model knowledge received
from the server via (3). For local data, each local training
batch in the device consists of a part of the device’s
private data and one batch of the shared dataset. Upon
completing local training, each device acts as a teacher
to extract the model logits, or batch knowledge, from each
data batch of the shared dataset. These individual batch
knowledge components are then aggregated to form the
overall model knowledge, which is sent to the server as
model updates.

• Server-to-devices: The server aggregates the received
model updates by averaging the model knowledge from
all devices. Then, the server computes its model logits for
each batch of the shared dataset and uses the aggregated
knowledge to calculate the distilled loss for each batch.
Finally, the server trains its model using the distilled loss
via (3) and acts as a teacher to extract the model knowl-
edge. Lastly, the server broadcast the model knowledge
to all devices.

These two KD-based communication steps repeat until the stop
criteria are met.

C. Knowledge based FedProx

Besides the network traffic delay, devices with insufficient
computing resources will cause training delay in FL. One
solution is to selectively drop certain devices to improve
the overall training speed, but it will reduce the prediction
accuracy. This is because dropping the stragglers will also
drop their stored data. As a result, the trained model will be
biased towards the characteristics of the device selection policy
[16]. To address this issue, FedProx can be used to incorporate
the contributions of non-qualified/dropped devices by allowing
them to perform partial training rather than completed training.

Assuming there are K devices, FedProx allows the device
k = 1, 2, · · · ,K to find inexact model parameters for each
FL round. Specifically, FedProx compares the difference in
the rate of change between the local objective function hk(w)
and the local objective function hk(wt). Here, w is the locally
trained model parameters of the device k at the current local
training epoch, whereas wt is the global parameters initially
received from the server. We consider the local parameters to
be good enough if

‖∇hk(w)‖ ≤ σk‖∇hk(wt)‖, (4)

where ∇ denotes the gradient operator, and ∇hk(w) =
∇Fk(w). Here, σk ∈ [0, 1] scales the inexactness of w and
is associated with the client k’s available computing resources

However, due to the distributive nature of IoT devices,
their data, particularly traffic data, are often non-independent
and identically distributed. Involving too many model updates
trained by non-IID data will decrease the accuracy and ro-
bustness of the trained model. To address the issue, FedProx

adds a proximal term that regularizes the impact of each local
update on the global model, which can be expressed as

min
w
hk(w,w

t) = Fk(w) +
µ

2
‖w − wt‖2, (5)

where µ is a penalty constant that scales the proximal term
µ
2 ‖w − w

t‖2.
To obtain this proximal term, the device must iterate and

determine the parameter deviation of each network layer
between the local and global models. This process will cause
an additional computation burden to the device. To address this
issue, we propose a knowledge-based FedProx that obtains the
proximal term only through model knowledge. For each batch
b = 1, 2, · · · , B in B training batches, we replace w and wt

in the proximal term with the device’s batch knowledge Zs,b
and server’s batch knowledge Zt,b as

min
w
hk(w) = Fk(w) +

µ

2
‖Zs,b − Zt,b‖2. (6)

Using (8) can accelerate the computation of the proximal term
since the size of model knowledge only depends on the number
of logits in the last layer. Instead of iterating all the parameters
of network layers of the local and global model in each data
batch, only one layer is sufficient to obtain the proximal term.

D. Adaptive model penalty tuning

However, the performance of FedProx highly depends on
the value of µ that applies to all the training devices. That
is, a large µ may constrain the local model to be closely
aligned with the initially received model, whereas a small µ
would have negligible impact. A fixed µ might be unfair to
the local model trained using balanced data. It receives the
same penalization as those trained using unbalanced data. The
original FedProx lacks a mechanism to adaptively determine
the value of µ for each trainer.

To address the problem, we propose Remark 1 to dynam-
ically tune the model penalty based on model knowledge. It
first identifies which device’s local model requires additional
or less penalization by comparing its model knowledge with
that of the server model. Then, the server adjusts the penalty
constant µk for each device k, either increasing or decreasing
it based on the assessment.

Before aggregating local knowledge, the server utilizes
Remark 1 to assess the knowledge received from each device.
This process identifies the local knowledge that significantly
deviates from the server’s model knowledge. Specifically, the
server determines which clients necessitate penalty adjust-
ments by comparing its previously extracted server knowledge
with that received from each device.

Remark 1 (Outlier client identification): For each received
device’s model knowledge, the server calculates the Eu-
clidean distance between the device’s model knowledge and
the server’s model knowledge from the previous FL round.
Then, we use the interquartile range (IQR) to determine a
lowerbound and upperbound among these norms

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 : FedKD-Prox
1: Input: Initial µ; Shared dataset D; Warm-up rounds U ;

FL rounds T ; Devices k ∈ K
2: for each warm-up round u = 0, 1, · · · , U do
3: Devices download initial model parameters
4: Devices train local models and send model updates
5: Server evaluates the computing power of each device
6: Server aggregates the local updates
7: end for
8: Server sets σk to each device k (using 4)
9: for each FL round t = 0, 1, · · · , T do

10: Devices download server model knowledge
11: Devices train local model (using 7)
12: Devices extract the knowledge using D and send it to

the server
13: Server adjusts µk for each device k (Remark 1)
14: Server aggregates local knowledge
15: Server trains the global model using D and extracts

the model knowledge
16: Server sends the model knowledge to all devices
17: end for
18: Devices deploy the trained intrusion detection model

For each device below the lowerbound, the server decreases
the value of µ for the device because the local model is
over-penalized. It is too close to the initial model and might
not be able to reflect sufficient local data variance. For each
device above the upperbound, the server increases µ because
the local model is under-penalized. It is too far from the
initial model and could bias the trained FL model. We set
the adjustment amount to be ±50% of the current value of µ.
Authors in [19] also utilized IQR to determine outlier devices
in FL. Their approach aims to quantify the deviation of training
data among heterogeneous clients but can expose potential
risks on data privacy. Finally, we define a joint local objective
function as a summation of the original local loss, KD loss,
and the adaptive proximal term, which can be expressed as

min
w
hk(w) =

α(Fk(w) +
µk
2
‖Zs,b − Zt,b‖2) + (1− α)LKD.

(7)

E. FedKD-Prox algorithm

By combining the three aforementioned components, we
summarize FedKD-Prox in Algorithm 1. Firstly, the server
builds the shared dataset by requesting shareable data from
each device or retrieving it from a public repository. Prior
to executing BKD, the server and devices exchange regular
model updates and perform standard FL. Each device performs
a uniform amount of training, and the server assesses the com-
puting capabilities of each device by measuring the response
times.

Following this initialization phase, each device k receives
a specific σk from the server that allows it to solve its local
objective partially. After that, the server and devices engage
in BKD and perform FL through knowledge-based FedProx.

TABLE I
DATASETS SUMMARY

Samples Categories Features Devices
CICIoT 46,239,784 33 46 105

CICIoMT 7,160,831 19 49 40
CICIDS 2,937,876 16 45 12

TABLE II
TRAINING SETUP

Hyperparameters Value
Shared dataset 1% of each device’s dataset
Training data 90% of sampled dataset
Testing data 10% of sampled dataset
Number of trainers 50
Time budget (FL rounds) 30
Local iteration threshold 40
Initial penalty constant (µ) 0.01
Device model hidden layers 2
Nodes per hidden layers 500
Batch size 128
Learning Rate 0.01
Optimizer Stochastic Gradient Descent
Criterion Cross Entropy Loss

Finally, the trained intrusion detection model is deployed
across the devices.

III. SIMULATION

We implement the proposed Algorithm 1 and compare it
with FedAvg and vanilla FedProx.

A. Dataset

As shown in Table I, we evaluate our proposed framework
based on real intrusion classification datasets conducted by the
Canadian Institute for Cybersecurity, which are CICIoT2023
[1], CICIoMT2024 [20], and CICIDS2017 [21]. These datasets
are well-developed based on executing a real topology of IoT
devices in dedicated networks.

Due to the large size of the original datasets, we extract
1 × 106 samples from each dataset. In addition, the original
datasets are imbalanced regarding the deficiency between the
majority and minority classes. We apply the synthetic minority
oversampling technique (SMOTE) to generate a considerable
amount of synthetic samples to reduce the potential model bias
in addition to the simulated data heterogeneity.

B. FL scenarios setup

First, we propose an ideal federated learning scenario where
devices are equally powerful and each contains identically
independent distributed (IID) data. Since the objective function
of FedKD-Prox includes two regularization terms (distilled
loss and proximal term), both model accuracy and convergence
speed may be affected in this ideal FL scenario. This setup
serves as an ablation study to verify the performance of
FedKD-Prox. Conversely, we propose a practical FL scenario
in which devices vary in power and each holds heterogeneous
or non-IID data.

To simulate this ideal environment, each client performs
the same training iterations and stores equally partitioned

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

Global Round Global Round Global Round

A
cc

u
ra

cy
A

cc
u
ra

cy
A

cc
u
ra

cy

CICIoT-2023 CICIoMT-2024 CICIDS-2017
2
0
%

 S
tr

a
g
g
le

rs

5
0
%

 S
tr

a
g
g
le

rs

8
0
%

 S
tr

a
g
g
le

rs

–·–· FedProx · · · FedAvg ––– FedKD-Prox

Fig. 2. Testing accuracy under practical FL scenario

data. If our baselines perform better than FedKD-Prox in the
ideal scenario but less favorable in the practical scenario, this
contrast will confirm the effectiveness of FedKD-Prox.

To simulate data heterogeneity in the practical FL scenario,
the intention is that each device will have limited knowledge
of the overall data distribution. Thus, the trained local model
can exhibit biases toward their own local data. To achieve this,
each device has the data associated with a random number of
attack classes/labels.

To simulate imbalanced computing power among IoT de-
vices in FL, we conduct simulations with different numbers of
stragglers, ranging from 20%, 50%, and 80% of total number
of devices. To reflect (6), we assign a random number of train-
ing iterations to each device to represent the maximum training
work that the device can perform within the time budget. Then,
we set a maximum iteration threshold for all devices, with
stragglers performing training below the threshold while non-
stragglers perform the maximum iteration. FedAvg employs
client-selection methods to improve training speed. We assume
the server drops a device if it does not perform sufficient local
training iterations. We set this dropping baseline to be 50% of
the iteration threshold. With these setups, the time budget can
be reflected in the total number of FL training rounds. We set
the time budget to be 30.

C. Model implementation

We implement the three algorithms using Pytorch [22] and
adapt them to the same training setup shown in Table II. We
use a simple artificial neural network (ANN) for each device

with only two hidden layers to simulate the IoT computing
constraints. The server has a more complex ANN model with
five hidden layers. It performs training tasks only in FedKD-
Prox.

IV. EVALUATION OF FEDKD-PROX

We evaluate the performance of FedKD-Prox by comparing
the prediction accuracy and convergence speed with baselines
under the two FL scenarios.

A. Model performance evaluation

As shown in Fig. 2, when devices have limited resources
and store heterogeneous data, FedKD-Prox significantly out-
performs FedAvg and FedProx in testing accuracy and conver-
gence speed. In this case, FedAvg can not be able to converge
within the given time budget. Although FedProx overall has a
higher prediction rate and shows some signs of converging by
involving all the stragglers, its performance fluctuates when
exposed to different numbers of stragglers. This is caused by
a fixed penalty term µ held by all clients and used throughout
the training process. That is, a fixed µ might not effectively
regulate the local models, as it could lead to either excessive
or inadequate penalization for some clients.

The dynamic µ adjustment in FedKD-Prox helps to alleviate
this issue by assigning each device with a proper µ. This
is one of the reasons that FedKD-Prox has stable prediction
performance regardless of different numbers of stragglers.
Another key factor is that the server incorporates a much more

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

CICIoT-2023 CICIoMT-2024 CICIDS-2017

Global Round Global Round Global Round

A
cc

u
ra

cy

A
cc

u
ra

cy

A
cc

u
ra

cy

–·–· FedProx · · · FedAvg ––– FedKD-Prox

Fig. 3. Test accuracy under ideal FL scenario

A
cc

u
ra

cy

A
cc

u
ra

cy

A
cc

u
ra

cy

Global Round Global Round Global Round

CICIoT-2023 CICIoMT-2024 CICIDS-2017

–·–· FedProx · · · FedAvg ––– FedKD-Prox

Fig. 4. Training loss under practical FL scenario with 80% Stragglers

TABLE III
NUMBER OF MODEL PARAMETERS TRANSMITTED

CICIoT CICIoMT CICIDS
Local model 540,034 533,515 540,034

Compressed to 456,960 215,040 255,360
Server model 1,291,534 1,285,019 1,285,015

Compressed to 456,960 215,040 255,360

complex model structure in KD that guides the training process
of all trainers.

Fig. 3 demonstrates the result of the ablation study. FedAvg
has a higher prediction accuracy than FedProx and FedKD-
Prox. This accuracy gap in the ideal FL scenario is associ-
ated with the model penalization mechanism in FedProx and
FedKD-Prox. It forces the local model to be close to the
starting point and makes the local model less impactful to the
global model. We find that a higher µ can result in a larger
model penalization, leading to a larger gap. Therefore, our
ablation study confirms the effectiveness of FedKD-Prox.

B. Communication cost reduction

FedKD-Prox reduces the communication overhead between
the server and devices. As shown in Table III, the algorithm
transmits significantly fewer parameters in both client-to-
server and server-to-client communication steps compared to
transmitting the entire model in FedAvg and vanilla FedProx.

In FedKD-Prox, the size of model updates is mainly deter-
mined by the number of attack classes/labels to be classified
and the size of the shared dataset. The reduction shown in
Table III is achieved using a shared dataset comprising 1% of
each device’s local data, which is assumed to be shareable.

This feature allows the server and devices to have a flexible
number of hidden layers. These layers do not add to the com-
munication burden as opposite to other FL algorithms. Thus,
the server and devices can train a more complex model to
produce a better result without exploiting the communication
resource.

C. Convergence analysis
As shown in Fig. 4, FedKD-Prox converges to the minimal

training loss rapidly with the presence of heterogeneous data
and constrained computing resources. This performance gap
can be attributed to two key factors. Firstly, FedKD-Prox
effectively addresses data heterogeneity and leverages the
contributions from stragglers. Secondly, the involvement of
the server in model training also plays a crucial role. More
importantly, by receiving a small fraction of local data from
each device as part of the shared dataset, the server gains a
broader view of the overall data distribution among devices.
This helps the server produce valuable model knowledge that
further reduces the impact of heterogeneous data in each
device and accelerates the model convergence.

However, requesting the local data might not be realistic
when data privacy is the top priority. A simple way is to
select and use a publicly available dataset as the shared
dataset. However, these datasets might not be well-generalized
and adapted to specific training environments. Thus, potential
future work lies in developing proper ways to obtain the shared
dataset in resource-constrained settings.

V. CONCLUSION

In this work, we propose FedKD-Prox to enhance the FL-
based intrusion detection model in IoT networks based on KD

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

and FedProx. The framework improves the detection rate of the
model under the limited resources budget by involving partial
trainers/stragglers. It also effectively mitigates the impact of
data heterogeneity through a knowledge-based model penaliza-
tion. Meanwhile, we propose a BKD paradigm to effectively
reduce the communication overhead in FL. Simulation results
have shown that FedKD-Prox can efficiently train intrusion
detection models with guaranteed convergence and accuracy
under resource-constrained and heterogeneous environments.
The proposed framework could be applied to other model
training settings that require privacy preservation and have
limited edge resources.

VI. ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery
Program under Grant RGPIN-2023-04082 and RGPIN-2020-
06547. The work of L. Zhang is partially supported by
the National Science Foundation under Grants CCF-2427316,
CCF-2426318. and CNS-2418308.

REFERENCES

[1] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-
scale attacks in iot environment,” Sensors, vol. 23, no. 13, 2023.

[2] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[3] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated
deep learning for cyber security in the internet of things: Concepts,
applications, and experimental analysis,” IEEE Access, vol. 9, pp.
138 509–138 542, 2021.

[4] S. Wijethilaka and M. Liyanage, “A federated learning approach for
improving security in network slicing,” in IEEE GLOBECOM 2022,
2022, pp. 915–920.

[5] T. H. Ahmed, J. J. Tiang, A. B. Mahmud, and G. C. Chung, “Detection
and mitigation of sql and jamming attacks on switched beam antenna
in v2v networks using federated learning,” in IEEE ISIEA 2023, 2023,
pp. 1–6.

[6] X. He, Q. Chen, L. Tang, W. Wang, T. Liu, L. Li, Q. Liu, and J. Luo,
“Federated continuous learning based on stacked broad learning system
assisted by digital twin networks: An incremental learning approach for
intrusion detection in uav networks,” IEEE Internet of Things Journal,
vol. 10, no. 22, pp. 19 825–19 838, 2023.

[7] Q. Pan, J. Wu, A. K. Bashir, J. Li, W. Yang, and Y. D. Al-Otaibi, “Joint
protection of energy security and information privacy for energy har-
vesting: An incentive federated learning approach,” IEEE Transactions
on Industrial Informatics, vol. 18, no. 5, pp. 3473–3483, 2022.

[8] B. Wu, F. Fang, and X. Wang, “Joint age-based client selection and
resource allocation for communication-efficient federated learning over
noma networks,” IEEE Transactions on Communications, vol. 72, no. 1,
pp. 179–192, 2024.

[9] P. Agbaje, A. Anjum, Z. Talukder, M. Islam, E. Nwafor, and H. Olu-
fowobi, “Fedcime: An efficient federated learning approach for clients
in mobile edge computing,” in IEEE EDGE 2023, 2023, pp. 215–220.

[10] H. Liu, Y. Shi, Z. Su, K. Zhang, X. Wang, Z. Yan, and F. Kong, “Fedadp:
Communication-efficient by model pruning for federated learning,” in
IEEE GLOBECOM 2023, 2023, pp. 3093–3098.

[11] Y. Li, J. Bai, D. Li, and W. Li, “Communication-efficient federated
learning with an event-triggering strategy,” in IEEE DDCLS 2022, 2022,
pp. 347–352.

[12] Z. Li, Z. Guan, S. Yuan, N. An, and X. Liang, “Rocfl: A robust clustered
federated learning framework towards heterogeneous data,” in IEEE ICN
2023, 2023, pp. 259–264.

[13] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, no. 12, pp. 9587–9603, 2023.

[14] H. Zhang, Q. Hou, T. Wu, S. Cheng, and J. Liu, “Data-augmentation-
based federated learning,” IEEE Internet of Things Journal, vol. 10,
no. 24, pp. 22 530–22 541, 2023.

[15] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proceedings of
Machine Learning and Systems, vol. 2, 2020, pp. 429–450.

[17] G. Qiang, F. Fang, and X. Wang, “Security and efficiency enhancement
for split learning: A machine learning based malicious clients detection
approach,” in IEEE PIMRC 2023, 2023, pp. 1–6.

[18] P. Qi, X. Zhou, Y. Ding, Z. Zhang, S. Zheng, and Z. Li, “Fedbkd:
Heterogenous federated learning via bidirectional knowledge distillation
for modulation classification in iot-edge system,” IEEE Journal of
Selected Topics in Signal Processing, vol. 17, no. 1, pp. 189–204, 2023.

[19] Y. Jeong and T. Kim, “A cluster-driven adaptive training approach for
federated learning,” Sensors, vol. 22, no. 18, 2022.

[20] S. Dadkhah, E. C. P. Neto, R. Ferreira, R. C. Molokwu, S. Sadeghi,
and A. Ghorbani, “Ciciomt2024: Attack vectors in healthcare devices-
a multi-protocol dataset for assessing iomt device security,” Preprints,
February 2024.

[21] S. Iman, L. Arash, Habibi, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
ICISSP, 2018.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 30,2025 at 19:36:21 UTC from IEEE Xplore. Restrictions apply.

