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Monthly Crop Water Consumption of Irrigated Crops in the
United States From 1981 to 2019

Gambhir Lamsal' ©© and Landon T. Marston!

'Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract Irri gated agriculture depends on surface water and groundwater, but we do not have a clear picture
of how much water is consumed from these sources by different crops across the US over time. Current
estimates of crop water consumption are insufficient in providing the spatial granularity and temporal depth
required for comprehensive long-term analysis. To fill this data gap, we utilized crop growth models to quantify
the monthly crop water consumption - distinguishing between rainwater, surface water, and groundwater - of the
30 most widely irrigated crops in the US from 1981 to 2019 at 2.5 arc min. These 30 crops represent
approximately 95% of US irrigated cropland. We found that the average annual total crop water consumption for
these 30 irrigated crops in the US was 154.2 km>, 70% of which was from irrigation. Corn and alfalfa accounted
for approximately 16.7 and 24.8 km® of average annual blue crop water consumption, respectively, which is
nearly two-fifths of the blue crop water consumed in the US. Surface water consumption decreased by 41.2%,
while groundwater consumption increased by 6.8%, resulting in a 17.3% decline in blue water consumption
between 1981 and 2019. We find good agreement between our results and existing modeled evapotranspiration
(ET) products, remotely sensed ET estimates (OpenET), and water use data from the US Geological Survey and
US Department of Agriculture. Our data set and model can help assess the impact of irrigation practices and
water scarcity on crop production and sustainability.

1. Introduction

Irrigation increases crop yields and enables crop production in places where growing crops would be infeasible or
less profitable with rainfall alone. In the United States, irrigated croplands contribute half of total US crop sales,
despite being only a quarter of the total agricultural land being irrigated (USDA, 2019b). Irrigated crop production
is responsible for approximately three-fourths of human-related water consumption in the United States (Marston
etal., 2018). Though irrigation is essential in supporting food, fuel, and fiber production, we lack a temporally and
spatially detailed understanding of where and when water is used for irrigation, its source, and how much is
applied to each crop. Accurately assessing the magnitude, location, and timing of crop water demand is critical for
understanding the sustainability of agriculture (Chiarelli et al., 2020), which has implications for water and crop
management and policy.

Crops extract water within their root zone, and this water can come from rainfall (i.e., green water) or from
groundwater or surface water sources (i.e., blue water). Estimates of crop water consumption (CWGC; i.e., direct
water footprint) should distinguish between green and blue water since these water sources have different uses
and implications for both ecosystems and society (Hoekstra, 2019). Different approaches have been used to
estimate crop blue and green water demand since actual measurements (e.g., water meters, lysimeters, flux
towers) are rare.

Crop water demands are often estimated using farmer surveys, models, and remote sensing. In the United States,
state and federal agencies have surveyed farmers to estimate irrigation applications (Dieter et al., 2018;
USDA, 2019b). However, agricultural surveys and census are costly and time-consuming. Moreover, relying
solely on input from farmers introduces the potential for errors and inconsistencies in the data collected since on-
farm metering is very uncommon and farmers employ different methods to estimate their water use. Recently,
researchers have utilized satellite observations to estimate actual evapotranspiration (ET) from croplands
(Anderson et al., 2007; Melton et al., 2022; Senay, 2018). One notable example is OpenET (Melton et al., 2022), a
data product that combines six models to generate an ensemble ET at 30 m resolution across the western US since
2016. These remotely sensed data products offer water use estimates across wide geographic regions using a
consistent approach and data. It is important to note, however, that estimates of ET from remote sensing products
do not represent a direct measurement of crop ET. Instead, satellite readings are transformed by different models
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to produce ET estimates, with each model potentially diverging significantly from the others (Zipper et al., 2024).
Furthermore, these methods do not differentiate between blue and green water, nor can they estimate CWC for
hypothetical scenarios. On the other hand, utilizing crop growth models provide an alternative means to estimate
CWC consistently across large geographical areas, while also allowing for the partitioning of water use into blue
and green components. These models encompass a range of approaches, from simple methods that utilize a
combination of reference evapotranspiration and crop coefficients, to more complex simulations that consider
crop growth dynamics based on climatic variables, soil parameters, crop characteristics, and various management
strategies. However, these models can pose computational challenges, particularly with more complex simula-
tions at large geographical scales. Additionally, CWC estimates are sensitive to input parameters, and small errors
in these inputs can lead to significant variations in estimates (Zhuo et al., 2014).

There are several crop modeling studies that have estimated CWC for specific countries, as well as globally. The
earliest of these studies used simplistic models to estimate annual CWC at the global (Postel et al., 1996),
continental (Shiklomanov & Gleick, 1993), or country (Seckler et al., 1998) scale. Modeled estimates of CWC are
becoming more spatially refined and are often provided at 5 arc min grid cells. For example, Siebert and
Doll (2010) quantified the average blue and green CWC for 26 crop classes between the years 1998-2002 at a
spatial resolution of 5 arc min Mekonnen and Hoekstra (2011) expanded crop coverage to 126 crops and used
longer average climate conditions (1996-2005) to quantify the average annual blue and green CWC at 5 arc min.
These studies, however, neglected the effects of inter- and intra-annual climate variations on CWC, which can
significantly influence the water demand of crops (Chiarelli et al., 2020). They have either used long-term average
climate data or focused on short-term periods to estimate annual CWC. They have also not shown how CWC
changes within a year by only giving annual estimates. Chiarelli et al. (2020) improved on these studies by
evaluating monthly green and blue CWC for 5 crops, as well as annual green and blue CWC for 26 crops, for 2000
and 2016 globally. Long-term trends of CWC cannot be evaluated, however, with results for only 2 years. Ruess
et al. (2024) extended the time span of CWC estimates for 20 crops in the US from 2008 to 2020. Their county-
level CWC estimates report annual water withdrawals, which are scaled to align with irrigation withdrawals
reported by the United States Geological Survey (Dieter et al., 2018; Maupin et al., 2014). However, they do not
provide sub-annual or sub-county estimates of crop water consumption. More recently, Mialyk et al. (2024)
provided annual estimates of green and blue CWC globally at 5 arc min resolution from 1990 to 2019. Although
they provide estimates at 5 arc min for 175 crops, it's notable that their crop simulation was performed at a much
coarser resolution of 30 arc min, and was limited to just 55 crops. Additionally, they provide annual estimates,
which means that intra-annual variations in CWC cannot be analyzed.

In this study, we utilize AquaCrop-OS (version 5.0a) (Foster et al., 2017), an open source version of state-of-the-
art crop growth model AquaCrop (version 5.0) (Steduto et al., 2009), to estimate the monthly CWC for 13 major
irrigated crops in the contiguous US (CONUS) from 1981 to 2019 at a spatial resolution of 2.5 arc min. In
addition, we used a simplistic crop model (Marston et al., 2020; Siebert & D&ll, 2010) to estimate the monthly
CWC for 17 additional crops that currently cannot be readily represented by AquaCrop-OS. A key outcome of this
research is the first publicly available time series of monthly green and blue CWC, further partitioned into
groundwater and surface water, of the 30 most widely irrigated crops in the CONUS. This data set, which we call
MIrAg-US (Modeled Irrigated Agriculture of the United States) (Lamsal & Marston, 2024c), allows us to answer
the following research questions: (a) How does crop-specific average CWC vary spatially across the CONUS and
monthly across the year? (b) How does crop-specific annual CWC vary in space and time from 1981 to 2019? We
also rigorously assessed our CWC estimates against other crop model estimates, government records of water use,
and remotely sensed evapotranspiration estimates.

2. Materials and Methods

We estimated the monthly CWC of 13 major irrigated crops (see Table S1 in Supporting Information S1) from
1981 to 2019 at a spatial resolution of 2.5 arc min in the US using the AquaCrop-OS model, which we describe in
Section 2.1. These 13 crops represent approximately 69% of total irrigated croplands (USDA, 2019a), and 56% of
irrigation use for all crops in 2012 (Marston et al., 2018). Additionally, we estimated the monthly CWC of 17
irrigated crops using a simple crop growth model (Marston et al., 2020; Siebert & D611, 2010), as crop parameters
required to run the AquaCrop-OS model were not available. We describe these steps in Section 2.2. Together,
these 30 crops in our study represent approximately 94% of US irrigated cropland (USDA, 2019b) and 95% of
irrigation water consumption (Marston et al., 2018). We further divided the blue CWC into groundwater and
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surface water CWC using county-level water withdrawal data (Dieter et al., 2018; Hutson et al., 2004; Kenny
et al., 2009; Maupin et al., 2014; Solley et al., 1988, 1993, 1998) as described in Section 2.3. While the focus of
this paper is on the irrigation consumption of actual irrigated croplands, MIrAg-US provides CWC for all grid
cells in the CONUS regardless of whether the crop is grown or not. This allows researchers to use this data set to
compute volumetric crop water consumption for hypothetical scenarios by combining CWC with hypothetical
harvested area data sets. We then computed crop-specific volumetric CWC (VCWC) for each 2.5 arc min grid by
multiplying CWC depth with the corresponding harvested area (Lamsal & Marston, 2024a, 2024b) as described in
Section 2.4. We note that this VCWC is masked using actual crop growing areas provided by HarvestGRID
(Lamsal & Marston, 2024a, 2024b), a gridded data set that provides crop-specific irrigated harvested areas for
30 crops in the US at a spatial resolution of 2.5 arc min from 1981 to 2019. HarvestGRID combines county-level
harvested area records from USDA and gridded remotely sensed data products, including the Cropland Data
Layer (Han et al., 2012), LANID (Xie et al., 2021), and other land use data sets (Sohl et al., 2014, 2016). We
assessed our model output by comparing our CWC estimates with existing data sources including modeled CWC
estimates (Chiarelli et al., 2020; Mekonnen & Hoekstra, 2011; Siebert & Doll, 2010), remotely sensed estimates
from OpenET (Melton et al., 2022), and irrigation estimates from state and federal agencies (Dieter et al., 2018;
Hutson et al., 2004; Kenny et al., 2009; Maupin et al., 2014; Solley et al., 1988, 1993, 1998; USDA, 2014;
USDA, 2019a). We describe these intermodal comparisons in Section 2.5. A schematic overview of the devel-
opment of the data products is shown in Figure 1.

2.1. CWC Using AquaCrop-OS

We use AquaCrop-OS, an open source version of AquaCrop, to estimate CWC for 13 irrigated crops. AquaCrop-
OS provides more realistic crop growth and water consumption than the crop models used in many other studies
(Chiarelli et al., 2020; Mekonnen & Hoekstra, 2011; Siebert & Do6ll, 2010), by separating evapotranspiration into
evaporation and transpiration, thereby removing the confounding effect of nonproductive water consumption
(i.e., evaporation) (Steduto et al., 2009). Additionally, these studies (Chiarelli et al., 2020; Mekonnen & Hoek-
stra, 2011; Siebert & D611, 2010) use static crop growth length regardless of climatic conditions, while AquaCrop-
OS dynamically adjusts crop growth length using growing degree days. Models commonly used in previous
studies provided a more simplistic representation of crop growth, often using seasonal crop coefficients to es-
timate CWC (Steduto et al., 2009). In contrast, there are some studies (Montoya et al., 2018; Tang et al., 2018;
Umair et al., 2017) that use more sophisticated and accurate models, such as DSSAT (Jones et al., 2003) or
CropSyst (Malek et al., 2017), to represent crop growth and CWC at the field or watershed scale. However, these
models are often more complex and difficult to parameterize at large scales (Foster et al., 2017). AquaCrop-OS
balances accuracy, simplicity, and robustness, allowing us to better represent crop growth and CWC than previous
large-scale CWC estimates (Steduto et al., 2009; Zhuo et al., 2016), but it is generalizable enough to scale
nationally, unlike more complex models.

2.1.1. Crop Model and Inputs

AquaCrop-OS simulates soil water balance and crop growth processes as a function of climate, soil, crop, and
management parameters at a daily time step (Figure 1a). AquaCrop is a crop model evolved from Doorenbos and
Kassam (1979) that relates relative yield reduction to relative reduction in evapotranspiration (ET). The original
model developed by Doorenbos and Kassam (1979) underpins several studies that estimate crop water con-
sumption (e.g. (Chiarelli et al., 2020; Mekonnen & Hoekstra, 2011; Siebert & Doll, 2010)) but AquaCrop im-
proves on this model by removing the confounding effect of the nonproductive consumptive use of water (E) by
separating ET into E (evaporation) and Tr (transpiration), estimating Tr using simple canopy growth and
senescence model and estimating yield as a function of biomass (Steduto et al., 2009). Since the focus of our study
is on the water consumption of major crops in the US over the last four decades, we selected the AquaCrop model
because it is water-driven, that is, transpiration is calculated first and translated to biomass using biomass water
productivity (Steduto et al., 2009) and it has been widely used in the scientific literature (e.g. (Chukalla
etal., 2015; Nouri et al., 2019; Zhuo et al., 2016)). Additionally, we opted for the open-source version, AquaCrop-
OS, as it allows parallel execution across multiple CPUs on high-performance computing systems simulta-
neously, unlike the standard standalone AquaCrop application. We used the default crop parameters provided in
the AquaCrop manual (Steduto et al., 2012) for our simulations. These parameters include growing degree days
required for various growth stages, temperature thresholds related to pollination and transpiration stresses, root
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Figure 1. (a) Crop water consumption (CWC) was computed using the AquaCrop-OS (Foster et al., 2017) model. We used detailed climate, soil, crop, and management
parameters as input to the model. CWC was partitioned into blue and green components using the soil moisture accounting approach (Chukalla et al., 2015;
Hoekstra, 2019; Nouri et al., 2019). (b) CWC was estimated using a simple crop growth model using climate and crop parameters, and the CWC was partitioned into

blue and green components using effective

precipitation (Marston et al., 2020; Siebert & Doll, 2010). (c) Blue CWC was partitioned into surface water and groundwater

CWC using surface water fraction derived from county level water withdrawal data (Dieter et al., 2018; Hutson et al., 2004; Kenny et al., 2009; Maupin et al., 2014;
Solley et al., 1988, 1993, 1998). (d) We compared our estimates of total CWC and blue CWC against other modeled estimates, remote sensing estimates, and

government records.

water extraction limits, canopy growth coefficients, water productivity values, and soil water depletion thresholds
that impact canopy expansion, stomatal closure, pollination, and other processes. More detailed information on
model parameters can be found in the AquaCrop manual (Steduto et al., 2012). We note that we use different
planting dates than those provided in the default parameters. We describe the source and methods used to obtain
planting dates below. The model was parallelized and run on a high-performance computing system. AquaCrop-
OS is capable of simulating crop growth in thermal time (i.e., growing degree days (GDD)) and in calendar days
(CD). We generally model crop growth using GDD method since the model will dynamically adjust each growing
season based on temperature, whereas using CD method relies on predefined growth timelines, regardless of
weather conditions. However, we use the CD approach in areas where cold temperatures limit simulation in GDD
mode. The initial model output was daily CWC at 2.5 arc min, which we then processed and aggregated to
monthly level as described in the following sections.

Daily climatic data (reference evapotranspiration (ETo), precipitation, and minimum and maximum air tem-
perature) were obtained from gridMET (Abatzoglou, 2013) at a spatial resolution of 2.5 arc min. GridMET
combines temporally rich data from North American Land Data Assimilation System Phase 2 (Mitchell
et al.,, 2004) and spatially rich data from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM (Daly et al., 2008)) to produce a spatially and temporally complete data set (Abatzoglou, 2013).
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We obtained soil texture (% of sand, % of clay and % of organic matter) data at multiple depths (0, 5, 15, 30, 60,
100, and 200 cm) from SoilGrids (Hengl et al., 2017) at a spatial resolution of 250 m. We averaged the soil texture
data at each depth to 2.5 arc min grids to match the climate data. We assume that the soil characteristics remain
temporally static throughout the simulation period.

Crop water consumption estimates are highly sensitive to planting dates; delaying planting by 30 days lead to
approximately 20% reduction in total CWC and 40% reduction in blue CWC (Zhuo et al., 2014). Regional or
country-level planting dates often used by other studies (Mekonnen & Hoekstra, 2011; Siebert & D611, 2010) may
lead to inaccurate CWC estimates. Therefore, we derived likely planting dates for each crop every year at the
2.5 arc min resolution to match our other data inputs. We derived high-resolution planting dates using crop-
specific, sub-monthly progress data for each state obtained from the United States Department of Agriculture
(USDA (USDA, n.d.)). The progress data provides the percentage of a crop planted within each state by a given
date each year. Missing records were estimated using either interpolated values from neighboring years for the
same area or records from the same year but from neighboring states within the same climate region. If planting
dates were not available for other years or states, national planting dates were used for less widely grown crops
without detailed records. Next, state level planting progress was changed to gridded planting dates by making the
following assumptions: (a) crop planting occurs earlier in areas with warmer temperatures than areas in the state
with colder temperatures, and (b) crop planting is less likely to occur when soils are wet since this will cause soil
compaction and other issues that may reduce crop performance (Sacks et al., 2010; Zuber et al., 2015). We define
soils as being too wet to plant when precipitation exceeds 30 mm/week. We note that selecting a different
threshold would have a minor impact on the spatial distribution of planting dates across grids within a state, which
would, in turn, result in different crop water consumption (CWC) estimates. Still, the sum of grid-scale planting
areas each week always match state-level records and if a grid cell is not designated as growing a crop due to rain,
it is highly likely to have its planting date in the following week.

Crop and irrigation management parameters in the model include mulching and different irrigation technologies
(e.g., furrow, center pivot, drip). Less than 0.4% of US irrigated croplands use any form of mulching
(USDA, 2019a); therefore, we do not assign mulching within our model. AquaCrop-OS models irrigation
technology by parameterizing wetted surface area and irrigation efficiency. Estimates of irrigation efficiencies
and wetted surface area for different irrigation technologies come from FAO (Brouwer et al., 1989) and Chukalla
et al. (Chukalla et al. (2015), respectively. We used the crop-specific number of acres irrigated by different
irrigation technologies from the Farm and Ranch Irrigation Survey (USDA, 2004; USDA, 2010a, 2010b, 2014)
and Irrigation and Water Management Survey (USDA, 2019a) to determine the average irrigation efficiency and
percentage of surface area wetted for each crop at the state level. Together, the typical efficiency and wetted
surface area of an irrigation technology and the amount of area dedicated to this irrigation technology were
combined to provide an area-weighted-average irrigation efficiency and percent of wetted surface area for each
crop, state, and year pairing. We note that the assigned irrigation efficiency and wetted surface area is more
important when estimating applied water than it is when estimating consumptive water use, the latter being the
focus of this study.

Following Nouri et al. (2019), the model was initialized by simulating soil moisture for 2 years preceding our
study period. The soil moisture content at the beginning of our study period (i.e., 1981) was thus the final soil
moisture at the end of the 2-year model runup period.

2.1.2. Soil Water Balance Accounting

We separated the total CWC into blue and green components by keeping track of incoming and outgoing moisture
at the rootzone using a soil water balance accounting framework (Chukalla et al., 2015; Hoekstra, 2019; Nouri
et al., 2019). The accounting framework is a physically based tracing method that partitions CWC to blue and
green components more accurately than simpler methods such as those that assume irrigation is the difference
between the water consumption of rainfed crop production and optimally irrigated crop production (Hoek-
stra, 2019). Equations 1-5 describe the soil water balance accounting method used in this study, with additional
details provided by Hoekstra (2019).

t t—1

S
- (D" +E +Tr) x 2= )

s =81 4+ P —S0 x _
Sl‘l

green green P+
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where S (soil moisture), P (precipitation), / (irrigation), SO (surface runoff), D (deep percolation), E (evapora-
tion), and 7T'r (transpiration) on day z. Blue, green, and total water consumption are each tracked according to the
index values shown in 1-5. We obtain equation variables as an output from the AquaCrop-OS model at a daily
time step. We aggregated daily total CWC and daily blue CWC to the monthly level. The blue water fraction at the
monthly level is defined as the ratio of blue CWC and total CWC as shown in Equation 6.

CWR,
CWR™

total

(©)

Blue water fraction™ =

where blue water fraction refers to the fraction of total CWC that is blue. Index m,y represent month and year.

We assumed that all blue water drains from the soil after the growing season and is not available for the next
growing season (i.e., all soil moisture at the beginning of each growing season is from green water). We also
assumed that farmers aim to maximize crop yield (English et al., 2002) and that irrigation (i.e., blue water) is
applied when rainfall is insufficient to achieve maximum yield. While this is a common assumption across nearly
all large-scale crop models (e.g. (Chiarelli et al., 2020; Mekonnen & Hoekstra, 2011; Siebert & Doll, 2010)),
individual irrigators may apply less (deficit irrigation) or more irrigation than the optimal. Without detailed
metered records of irrigation and field measurements of actual crop water demand, we cannot assess whether
over- or under-irrigation is more common, though evidence exists that both occur (e.g. (Deines et al., 2019;
USDA, 2019a)). We reemphasize that this study deals with crop water consumption, which may differ from actual
crop water application. This potential discrepancy is because (a) applied irrigation is greater than irrigation water
transpired by the crop since nonproductive evaporation and runoff occur and (b) irrigation is not only a function of
climate, soil, and crop parameters but also the discretion of farmers, which varies and is unknown. In our model,
irrigation is triggered when soil moisture is 70% of plant available water, which is measure of soil moisture within
the root zone.

2.2. CWC Using Simple Crop Model

We used a simple crop growth model (Marston et al., 2020; Siebert & Dall, 2010) to estimate CWC for 17
irrigated crops. We acknowledge several limitations of this model compared to the AquaCrop-OS model. For
instance, this simple model uses a static crop growth cycle to represent crop development. Once the crop is
planted, it is assumed to progress through various developmental stages at fixed time intervals, irrespective of
weather conditions. In contrast, the AquaCrop-OS model dynamically adjusts the length of the growing season
based on growing degree days, which are influenced by temperature and crop type. We obtained planting dates
using USDA plant progress data as described earlier in Section 2.1.1. The length of the growing season was
obtained using FAO (Allen et al., 1998) and CUP + model (Orange et al., 2003). We partitioned the growing
season for each crop into four crop developmental stages (initial, developmental, middle, and late), each with their
corresponding crop coefficients (kc) following Allen et al. (1998). We then calculated daily CWC as the product
of reference evapotranspiration (ETo) and crop coefficient (kc). We obtained daily ETo from gridMET while kc
was obtained using crop coefficient curves derived from FAO (Allen et al., 1998) and the CUP + model (Orange
et al., 2003). For alfalfa, which has multiple growth cycles in a single year, we assumed that the growing period
started on the first day of the year where temperatures remained above —4 degree Celsius in the first half of the
year and ended on last day of the year where temperatures consistently fell below —4 degree Celsius in the second
half of the year (Allen et al., 1998; Ruess et al., 2023). Alfalfa was assumed to grow all year where temperatures
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never fell below this temperature threshold. We then constructed a coefficient curve for alfalfa using the length of
developmental stages from FAO. We note that the developmental stages for the first growth cycle are longer than
those for subsequent cycles. Additionally, because we lack sufficient information to identify the initial year of
planting, we assume that alfalfa is replanted annually to maintain water use comparability across years. We
acknowledge that this assumption is a limitation of our study, as it may not accurately reflect real-world planting
practices and could influence the estimated water use for alfalfa. We assumed that the CWC for alfalfa and other
hay are similar. We partitioned the total CWC into green and blue components assuming that irrigation is applied
when crop demand exceeds effective precipitation (Marston et al., 2020). We used USDA Soil Conservation
Service (Kent, 1968) method to compute effective precipitation, with daily precipitation averaged over a moving
10 days window to account for soil moisture storage (Marston et al., 2020; Siebert & Doll, 2010). The daily
precipitation values were obtained from gridMET.

2.3. Surface Water/Groundwater Decomposition

The blue CWC was further divided into surface water and groundwater components by using the surface water
fraction derived from county-level irrigation withdrawal data (Dieter et al., 2018; Hutson et al., 2004; Kenny
et al., 2009; Maupin et al., 2014; Solley et al., 1988, 1993, 1998), as shown in Equation 7. If the surface water
fraction was unavailable for a year, we used the same fraction from the nearest year. We assume that the relative
proportion of groundwater and surface water consumption is similar to the proportion of total irrigation with-
drawals from groundwater and surface water within a county. Furthermore, this approach assumes that each crop
relies on groundwater and surface water in the same proportion throughout a county and year, which may not
always be the case. Thus, we caution against making crop-specific conclusions on surface water or groundwater
consumption within a single grid cell. The surface water CWC is calculated by taking the product of blue CWC
and the surface water fraction, as shown in Equation 8. The difference between blue CWC and surface water
CWC is the groundwater CWC, as shown in Equation 9.

Withdrawal
1 tion® = SW , 7
surface water fraction Withdrawally, + Withdrawall,, M
CWRgy = CWR,?> X surface water fraction” ®)
CWRGy = CWRy, — CWRG) ©

where, withdrawal and surface water fraction represent annual county-level withdrawal values from USGS and
fraction of blue CWC that is surface water, respectively. Index SW and GW represent surface water and
groundwater.

2.4. Volumetric CWC

We computed volumetric CWC (VCWC) by multiplying CWC depth by the corresponding irrigated crop har-
vested area (Area) using Equation 10. We obtained annual irrigated harvested area for these 30 crops from Lamsal
and Marston (2024a); Lamsal and Marston (2024b) at 2.5 arc min.

VCW. ;1112 = CWR,';I;{) X Area” (10)

where, type represents type of CWC which can be total, blue, surface water or groundwater.

2.5. Intermodal Comparison

We assessed MIrAg-US by comparing our total CWC with published estimates of US CWC (Chiarelli et al., 2020;
Mekonnen & Hoekstra, 2011; Siebert & Doll, 2010) and remotely sensed evapotranspiration estimates from
OpenET (Melton et al., 2022). In addition, we compared our blue CWC to applied irrigation estimates from state
and federal agencies (Dieter et al., 2018; Hutson et al., 2004; Kenny et al., 2009; Maupin et al., 2014; Solley
et al., 1988, 1993, 1998; USDA, 2014; USDA, 2019a), which we describe in detail in Section 2.5.3. We only
compared our estimates against these original data products; derivative products of one of these data sets were not
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Table 1

List of Data Sources, Spatial and Temporal Units of Comparison, Number of Crops Compared, and Other Metrics Used for Comparison

Spatial Crop (# of crops

Source Temporal unit unit compared) Unit Metric Type
Mekonnen and Hoekstra (Mekonnen & Hoekstra, 2011) Average of 5 arc min Specific crops (25) Depth Consumption Total
1996-2005
Siebert and Doll (Siebert & Doll, 2010) Average of 5 arc min Specific crops (17) Depth Consumption Total
1998-2002
WATNEEDS (Chiarelli et al., 2020) 2000 and 2016 5 arc min  Specific crops (17) Depth Consumption Total
FRIS (USDA, 2014; USDA, 2019a) 2012 and 2017 State Specific crops (12) Depth Applied water Blue
USGS (Solley et al., 1988; Solley et al., 1993, 1998; Hutson 1985, 1990,... County  Aggregated Volume Withdrawal Blue
et al., 2004; Kenny et al., 2009; Maupin et al., 2014; Dieter 2015
et al., 2018)
OpenET (Melton et al., 2022) 20162022 30 m Specific crops (30) Depth Consumption Total

MIrAg-US (Lamsal & Marston, 2024c)

1981-2019 2.5arc  Specific crops (30) Depth and volume Consumption Total
min

Note. We note that our study, MIrAg-US, provides crop water consumption (CWC) estimates for 30 crops at the monthly level from 1981 to 2019 at a spatial resolution
of 2.5 arc min. We perform several data transformations as required before comparing with other data sets.

compared against our estimates (e.g., Marston et al. (2018) is based on Mekonnen and Hoekstra (2011); Ruess
et al. (2024) is scaled to match USGS (Dieter et al., 2018; Maupin et al., 2014)).

Table 1 lists references for each comparison data set, their temporal and spatial resolution and coverage, and the
variables used for comparison. Since our data set is generally at a finer spatial and temporal resolution and covers
a longer time period than most studies, we resolved MIrAg-US and other data products to the same spatial scale
and temporal resolution/period before comparison. Other data transformations were required for some data
products (described in more detail below) to more accurately compare different data products.

Our study is unique in that most large-scale crop models do not make such comprehensive comparisons against
other existing models and/or against other available data. These comparisons are made to demonstrate the
agreement, or lack thereof, among existing modeling approaches. Our models, as well as all other national US
crop irrigation models, cannot be fully validated since we lack robust validation data - namely, actual ET and
irrigation measurements - for the US. Nonetheless, MIrAg-US is generally in agreement with other data products.

2.5.1. Comparison With Existing Models

We performed a crop-by-crop, grid-by-grid comparison of total CWC from our model with total CWC from three
existing models (Chiarelli et al., 2020; Mekonnen & Hoekstra, 2011; Siebert & Doll, 2010). We resampled the
existing models to 2.5 arc min from 5 arc min by assuming that the outputs are uniform over the entire 5 arc min
region. We aggregated our monthly results to produce yearly estimates and compared our results to the years for
which data was available for these studies, as detailed in Table 1.

2.5.2. Comparison With OpenET

To further evaluate the accuracy of our model, we performed a comparison with the OpenET data product.
OpenET provides daily estimates of actual evapotranspiration (ETa) in the western US from 2016 onward using
multiple models that rely on remote sensing products (Gorelick et al., 2017). Most of the models that constitute the
OpenET ensemble ET are based on either the full or simplified surface energy balance approach. Though the
individual models can vary significantly between themselves, utilizing diverse ET models improves reliability by
overcoming limitations of any single model (Melton et al., 2022). Still, the mean absolute error (MAE) of
OpenET's mean ensemble ET was 0.74 mm/day when compared to flux towers (21.8% error), with individual
models reporting MAE values significantly higher (Melton et al., 2022).

We accessed the OpenET data in Google Earth Engine, and applied an agricultural mask using Cropland Data
Layer (Han et al., 2012), and irrigation mask using Landsat-based Irrigation Data set (Xie et al., 2021) as OpenET
provides ETa estimates for all land parcels (including non-irrigated lands and non-agricultural lands).
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Additionally, as MIrAg-US estimates CWC for the crop growing season, we restricted the OpenET data to the
same temporal range, excluding ET occurring outside of the growing season. We then calculated the county-level
average ETa (mm) from OpenET for each irrigated crop during the growing season and compared it with the
corresponding estimate from our model. We note that OpenET provides actual ET estimates constrained by water
availability, whereas our modeled estimates, as well as the other crop models we compare against, assume no such
limitation. We make comparisons at the county level because of computational limitations; the number of ag-
gregation limits in Google Earth Engine did not allow us to compare at a finer spatial resolution.

2.5.3. Comparison With County and State Records

We compared our results with county-level irrigation water withdrawal volumes reported every five years from
1985 to 2015 by the United States Geological Survey (USGS) (Dieter et al., 2018; Hutson et al., 2004; Kenny
et al., 2009; Maupin et al., 2014; Solley et al., 1988, 1993, 1998). The USGS compiles estimates of total irrigation
withdrawals (i.e., not crop specific) at the county-level provided by each state. Rarely are irrigation withdrawals
metered and states employ a variety of different, often undisclosed, methods for estimating irrigation withdrawals
(Marston et al., 2022). Methods employed by each state to estimate irrigation withdrawals vary in their degree of
sophistication and accuracy. Nonetheless, this is one of the most widely cited products that USGS publishes,
indicating its importance to the scientific community.

To compare MIrAg-US to USGS irrigation estimates, we summed all volumetric blue CWC for all crops within
each county for each year matching the USGS reporting years. We divided the aggregated volumetric blue CWC
by the county's average irrigation efficiency for the given year to obtain comparable irrigation withdrawal values.
The average irrigation efficiency for each county was calculated by taking the weighted average of county-level
irrigated area for micro, surface, and sprinkler irrigation technologies. Instead of calculating crop-specific, state-
level irrigation efficiency as described in the irrigation management parameter above, we compute irrigation
efficiency at the county level here since these values come from the USGS data source we are comparing against,
thus offering a more direct comparison.

We also compared our model estimates with crop-specific applied irrigation depth records from the Farm and
Ranch Irrigation Survey (USDA, 2014) for 2013 and the Irrigation and Water Management Survey
(USDA, 2019a) for 2018. These estimates come from farmer surveys; however, it is not always clear the method
used by farmers to estimate their irrigation application since metering is uncommon in the sector. Though these
data specify the depth of irrigation applied by crop type and irrigation technology, values are only reported at the
state level. Therefore, we must aggregate our results to the state level as well. We computed the weighted average
blue CWC depth for each state by taking the product of blue CWC and harvested crop area for each grid cell
within the state and dividing the resultant product by the total area of that crop in the state. Crop water applied by
each irrigation technology was obtained by dividing the weighted average blue CWC by the efficiency of that
irrigation technology.

3. Results

We computed blue, green, and total CWC for 30 major irrigated crops at the monthly level from 1981 to 2019
using crop models at the spatial resolution of 2.5 arc min for the CONUS. Here, we first present the average
monthly and annual CWC (3.(a), and annual CWC (3.(b) for irrigated crop production across the CONUS.
Finally, we show how our model estimates compare against other existing estimates in Section 3.3.

3.1. Average Monthly and Annual Crop Water Consumption Across the US

The average annual total CWC for irrigated production of 30 major crops in the US amounted to 154.3 km?, with
approximately 70% (107.9 km®) derived from blue water sources (see Table S2 in Supporting Information S1).
The remaining 30%, equivalent to 46.4 km>, was sourced from green water. The six primary crops—alfalfa
(24.8 km>), corn (16.6 km?>), other hay (12.4 km?), cotton (11.9 km?), soybean (9.1 km?), and winter wheat
(5.3 km?)—constituted roughly three-quarters of the average annual blue CWC. One of these six crops consumed
the largest share of blue water in more than 90% of the counties in the CONUS (Figure S1 in Supporting In-
formation S1). Corn ranked as the most or second-most irrigated crop by total volume in nearly half of these
counties. Regionally, corn and soybeans were the dominant crop in the eastern states, while alfalfa and other hay
were more dominant in the western states.
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Figure 2. The average annual (a) blue volumetric crop water consumption (VCWC; km?), (b) surface water VCWC, and (c) groundwater VCWC for major irrigated
crops for each state in the CONUS.

California had the highest average annual blue VCWC among the states, totaling approximately 22.5 km? as
shown in Figure 2. This accounted for over 20% of the average annual blue VCWC across the CONUS, despite
California comprising only about 5% of the CONUS land area. Approximately 60% of the average annual blue
VCWC in California came from surface water. Collectively, alfalfa, cotton, grapes, almonds, other hay, and rice
accounted for more than three quarters (17.4 km?) of California's blue VCWC. Other states with significant
average annual blue VCWC included Texas, Nebraska, Idaho, Colorado, Arkansas, and Kansas, as shown in
Figure 2. Cotton consumed the most blue water in Texas, representing more than two-fifths of the average annual
blue VCWC. Corn and soybeans were the two major crops in Nebraska, accounting for approximately 58% and
22% of the average annual blue VCWC, respectively. Soybeans, rice, and cotton accounted for approximately
2.8 km®, 1.8 km®, and 0.8 km® of average annual blue CWC, respectively in Arkansas, representing more than
90% of the state's average annual blue VCWC. Notably, about 90% of the average annual blue CWC came from
groundwater sources in Texas, Kansas, and Nebraska.

Figure 3 shows the distribution of the average annual blue VCWC, surface water VCWC, and groundwater
VCWC for irrigated crops for each 2.5 arc min grid in the CONUS. There are notable concentrations of blue
VCWC, more specifically groundwater VCWC, around major aquifers such as the Central Valley Aquifer, High
Plains Aquifer, and Mississippi Embayment Aquifer. The irrigated croplands overlaying these three aquifers
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Figure 3. Average (1981-2019) annual (a) blue volumetric crop water consumption (VCWC), (b) surface water VCWC, (c) groundwater VCWC, and (d) cumulative
proportion of VCWC accounted for by cumulative proportion of 2.5 arc min grid cells across the contiguous United States. The black dotted line in panel (d) shows
hypothetical perfect equality (all grids account for equal amounts of VCWC), and the red dotted line shows hypothetical perfect inequality (a single grid accounts for all
VCWC). We are presenting the results at the grid level for visual purposes. We caution against drawing conclusions on a crop's water source for individual grid cells.

account for less than 10% of CONUS land area but make up 54.1 km? of blue VCWC (50.2%) and 42.0 km?> of
groundwater VCWC (69.2%). There are notable concentrations of surface water VCWC in California, and along
major rivers such as Snake River, Yellowstone River, Missouri River, and Platte River.

Figure 3d shows the Lorenz curve (Lorenz, 1905), illustrating the relationship between the cumulative proportion
of land area (represented by 2.5 arc min grid cells; x-axis) and the cumulative proportion of VCWC associated
with the land area (y-axis). We find that just 10% of irrigated croplands account for over 90% of irrigation volume
(i.e., blue VCWC). Additionally, we computed the Gini index to quantify the variability in VCWC across irri-
gated croplands in the US. The Gini index, a measure of statistical dispersion or inequality, ranges from zero
(perfect equality, i.e., all grid cells account for equal amounts of VCWC) to one (perfect inequality, i.e., only one
grid cell accounts for all VCWC). Our findings show the Gini index for blue VCWC, surface water VCWC, and
groundwater VCWC in the CONUS is equal to 0.93, 0.95, and 0.94, respectively, indicating large inequality in
VCWC across the grid cells. In other words, a small portion of land area is responsible for the vast majority of US
water consumption. The disproportionate water consumption, which serves as a proxy for crop production,
highlights the vulnerability of these areas to disruptions that could have significant implications for food security.
Furthermore, regions with high water consumption are likely to face challenges related to local water scarcity and
potential environmental degradation.

Figure 4 shows average monthly blue CWC for major irrigated crops in the CONUS. The majority of the CWC is
from April to October, which accounted for more than 90% of average monthly blue CWC. The CWC in July was
the highest, requiring more than 20% of annual blue CWC. Nationally, alfalfa consumes the most blue water

LAMSAL AND MARSTON

11 of 21

d ‘T STOT €L6LYY61

:sdyy wouy papeo|

ASULDI'] SuOWWO)) dANEa1) d[qedrjdde ayy £q pouIoA0T a1e Sa[oILIE () 28N JO SA[NI 10§ KIRIQIT dUI[UQ) A3[IA UO (SUORIPUOD-PUB-SULIA)/W0d" K] 1M’ KIeIqI[aur[uo//:sdiy) suonipuo)) pue suLd | oy 99 [Sz07/L0/ST] U0 A1eiqry aurjuQ Ad[IA\ ‘@imnsu] oIuydaik[od BIUISIA Aq HEE8E0UMPTOT/6T01 01/10p/WOod" KIm"



V od |
AGU

Water Resources Research 10.1029/2024WR038334
1el0
HEm Alfalfa
- m Corn
B mmm Cotton
é B Other crops
o 2.0 A I Other hay
6 - r— B Rice
IS Soybean
8 B Wheat
=]
o
O 154
g
g ]
z —
o
O 1.0
L
]
IS
2 ]
S 05
[0}
=
m
[ ]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 4. Average (1981-2019) monthly volumetric blue crop water consumption (VCWC; m?) for major crops in the
contiguous United States.

7 months a year, while corn is the most irrigated crop in June and August, and winter wheat is the most irrigated
crop in January. Cotton is the most irrigated crop in November and December due to late harvesting that can
extend to January in Texas (USDA, 2010a, 2010b), the largest consumer of blue VCWC for cotton.

3.2. Annual Crop Water Consumption Across the US

The annual blue VCWC of irrigated crop production in the US ranged from 93.1 km? in 1983 to 130.1 km® in 2012
as shown in Figure 5. The annual blue VCWC was equal to 116.3 km? in 1981, which decreased by approximately
17.5%-95.9 km? in 2019. This reduction in blue VCWC can be partially attributed to a 6.2% decline in irrigated
harvested area between 1981 and 2019. The remaining decrease in blue VCWC may be due to several other
factors, including changes in climatic conditions that reduce the need for blue water, the relocation of crop
cultivation to regions with lower blue water consumption, and a shift toward growing crops that consume less blue
water. Surface water VCWC decreased by approximately 40%, whereas groundwater VCWC increased by
approximately 7% between 1981 and 2019. We observe a sudden drop in surface water VCWC from 2013 on-
wards. This decrease in surface water is due to an increase in reliance on groundwater sources during droughts in
California (Marston & Konar, 2017), which accounted for the largest blue VCWC and surface water VCWC.

Crop-specific VCWRs have changed much more, in percentage terms, than the VCWRs for all the crops com-
bined. The annual blue VCWC for alfalfa decreased by approximately 6.0 km® (23%), and the total irrigated
harvested area decreased by approximately 10% between 1981 and 2019. This decline in blue VCWC is due to the
6.3 km® decline in annual surface water VCWC and 0.3 km® increase in annual groundwater VCWC. During the
same period, both the annual blue VCWC and the irrigated harvested area for winter wheat decreased by more
than three fifths. In contrast, the two most widely grown crops, corn and soybeans, showed an increasing trend in
annual blue VCWC. Corn accounted for approximately 15.2 km® of annual blue VCWC in 1981. The annual blue
VCWC increased by approximately 13%—17.2 km? in 2019, while the total irrigated harvested area increased by
approximately 30%. This increase in blue VCWC for corn is due to an increase in groundwater VCWC which
increased by approximately 2.8 km® between 1981 and 2019. Similarly, annual blue VCWC for soybeans more
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Figure 5. Time-series showing annual (a) blue, (b) surface water, and (c) groundwater CWC from 1981 to 2019 for 30 major irrigated crops in the CONUS.

than doubled from 4.9 km® in 1981 to 10.4 km® by 2019. More than 95% of this increase in blue VCWC for
soybeans is due to an increase in groundwater VCWC.

Figure 6 illustrates the annual time-series data depicting the distribution of blue, green, and total VCWC of
irrigated croplands for each state in the CONUS. In western states, such as Washington, Oregon, California, Utah,
Arizona, and Nevada, the overwhelming majority of total VCWC comes from blue water. In contrast, in the
eastern states, approximately half of the total VCWC of irrigated croplands is blue, with the remaining half being
green. Several states in the west exhibit a declining trend in VCWC, while states situated in the central region
show an increasing trend. For instance, between 1981 and 2019, Missouri, Arkansas, Mississippi, and Indiana
show nearly a doubling of VCWC, corresponding with a similar increase in irrigated crop area. Several states in
the east show large percent changes in the VCWC of irrigated croplands, but these states had relatively little
irrigated croplands and associated blue VCWC to begin with.

Changes in cropping patterns dramatically changed VCWC at the state level. In 1981, the annual blue VCWC for
California was 27.5 km®, which decreased by approximately 34% to 18.2 km® in 2019, as shown in Figure 6.
During the same period, the harvested irrigated area decreased by approximately 41% in California, which
suggests that farmers shifted to more water intensive crops or irrigated more intensely since the decrease in
irrigated area outpaced the decrease in irrigation demand. The blue VCWC for alfalfa and cotton decreased by
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Figure 6. Time-series showing annual blue (blue line), green (green line), and total (red line) CWC from 1981 to 2019 for each state in the CONUS. Here, the 5-year
rolling average is shown for visual clarity.

approximately 48% and 83%, respectively, while the blue VCWC for almonds increased by approximately 160%
between 1981 and 2019. The percentage changes in irrigated harvested area for each of these crops were similar to
the changes in VCWC. Soybeans in Nebraska accounted for 0.57 km? of annual blue VCWC in 1981, which
increased by approximately 398% to 2.8 km® by 2019. The annual blue VCWC for Arkansas increased from
3.1km?in 1981 to 5.7 km® in 2019. These increments in the annual blue VCWC can be attributed to soybeans and
cotton, which have increased by approximately 342% and 322%, respectively, between 1981 and 2019.

3.3. Intermodal Comparisons

We find that our CWC estimates are generally in agreement with other data sources; however, the degree of
agreement varies depending on crop type, models being compared, and geographical region. As shown by the
hexagonal binning plot in Figure 7, our model estimates of total CWC align with existing models: 67%, 91%, 74%,
and 89% of our estimates are within 50% of estimates from Siebert and Doll (2010), Mekonnen and Hoek-
stra (2011), WATNEEDS (Chiarelli et al., 2020), and OpenET (Melton et al., 2022), respectively. Most data
points lie close to the 1:1 line, indicating strong agreement between our model estimates and those of other
studies. Almost all the points are within the 1:2 line and 2:1 line, indicating general to more limited agreement
between our model and other studies. On average, less than 10% of our estimates fall below 1:2 line or above the
2:1 line when compared to each of the four different estimates of crop ET. We observe some heavy density points
away from the 1:1 line (Figures 7b and 7c); this is largely due to biases in crop-specific estimates rather than
biases related to location. For most crops, our estimates closely align with that of Mekonnen and Hoekstra (2011).
For instance, a significant percentage of our estimates are within 25% of estimates from Mekonnen and Hoek-
stra (2011) for cotton (80%), corn (70%), barley (80%), sugarbeets (95%), and soybeans (98%). Our CWC es-
timates for potatoes are lower than other studies, which can be explained by the relatively shorter growing season
used in our study. Our shorter growing period reflects the actual conditions where potatoes are grown instead of
general crop calendars used in other studies. For other crops, our estimates better align with estimates from
WATNEEDS. For instance, less than 15% of our estimates are within 25% of Mekonnen and Hoekstra (2011) for
rice, whereas more than 75% of our estimates are within 25% of WATNEEDS. Similarly, only about 40% of our
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Figure 7. Crop-specific comparisons of total CWC from current study (x-axis) with previous estimates (y-axis) form (a) Mekonnen and Hoekstra (2011),

(b) WATNEEDS (Chiarelli et al., 2020), (c) Siebert and D61l (2010), and (d) OpenET (Melton et al., 2022). The count of points is represented by the colorbar on the right
of each panel, where higher density of points is shown by darker shades of blue. Dotted black lines represent 1:1 line and dotted red lines represent 1:2 and 2:1 lines. Itis
important to note that the color bars have different data ranges across the panels to preserve the visibility of details, especially in panels with fewer data points. We are
presenting the results at the grid level for visual purposes. We caution against drawing conclusions on a crop's water source for individual grid cells.

estimates are within 25% of Mekonnen and Hoekstra (2011) for sunflowers, whereas almost 80% of our estimates
are within 25% of estimates from WATNEEDS. Crop-specific maps showing percentage difference between
current estimates and estimates from other process-based models are shown in Figures S2-S27 in Supporting
Information S1.

Methodological differences, as well as differences in input parameters, explain instances of disparities between
our results and modeled outputs reported in previous studies. For instance, we use climate data including daily
reference evapotranspiration from gridMET, while Mekonnen and Hoekstra (2011) use monthly long-term
average reference evapotranspiration from FAO. Similarly, WATNEEDS model uses monthly reference
evapotranspiration from Harris et al. (2014). Moreover, these previous studies generally relied on global input
data sets that are less detailed in either spatial or temporal resolution, or both, and often less accurate compared to
the US-specific input data used in our study. Notably, these studies (Chiarelli et al., 2020; Mekonnen & Hoek-
stra, 2011; Siebert & Doll, 2010) utilized MIRCA2000 (Portmann et al., 2010) for irrigated harvested area, which
disaggregates state-level USDA harvested area data into 5 arc-minute resolution. In contrast, our study employs
HarvestGRID, which uses county-level USDA harvested area data, along with 30-m resolution irrigated crop
area, to achieve a finer resolution of 2.5 arc min. By relying on finer administrative units (county-level) rather than
coarser ones (state-level), errors are confined to smaller regions, improving spatial accuracy. Additionally, the
WATNEEDS model (Chiarelli et al., 2020) uses the same harvested area for both 2000 and 2016, further limiting
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Figure 8. (a) Scatter plot comparing water withdrawals for each county based on the current study (x-axis) and USGS (Dieter
et al., 2018; Hutson et al., 2004; Kenny et al., 2009; Maupin et al., 2014; Solley et al., 1988, 1993, 1998) water use census
estimates of irrigation withdrawals (y-axis). (b) Scatter plot showing the relationship between water depth applied for each
crop based on current study (x-axis) and USDA estimates (USDA, 2014; USDA, 2019a) (y-axis) for three different irrigation
technologies. The red line shows the 1:1 line and the black line is the line of best fit in both panels.

its temporal specificity, while we use a time-series of harvested area records from HarvestGRID. Zhuo
et al. (2014) quantified uncertainties in CWC estimates stemming from uncertainties in various input parameters.
For instance, a 20% increase in ETo led to total CWC increases of 100%, 60%, 50%, and 40% for soybeans, wheat,
corn, and rice, respectively. Similarly, they found that delaying planting by 30 days resulted in a reduction of total
CWC by almost 35% in corn, while an increase of about 20% was observed in soybeans. This is why our
downscaled planting dates derived from sub-monthly observations distinguish our work from other studies that
use regional or country-level planting dates. Overall, Zhuo et al. (2014) show that CWC estimates are highly
sensitive to input parameters, and could potentially explain differences in estimates from the different studies.

Figure 8a shows the comparison of county-level water withdrawal estimates from our study with the withdrawals
estimated by USGS. We observe that our estimates align (+* = 0.88) closely with USGS estimates. However, the
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relative variance is larger when a county's irrigation withdrawals are small. Figure 8b shows the comparison of
crop-specific water depths for the three different irrigation technologies reported by the USDA, showing
reasonable agreement (r2 = (0.64). We note that our estimates are bounded between USDA and USGS estimates,
with our estimates often larger than those of USDA, while generally less than those of USGS. Again, notable
distinctions in estimation methods and contrast data inputs likely explain much of the differences found between
the data sets. Moreover, several transformations including spatial scaling, temporal scaling and averaging,
changing consumption to withdrawals, were needed before any meaningful comparisons could be made, which
may have made differences between the data sets more pronounced.

4. Conclusions

We quantified green and blue water consumption, including partitioning blue water into surface water and
groundwater, for major irrigated crops in the CONUS each month from 1981 to 2019 at the spatial resolution of
2.5 arc min. Our findings indicate that the average blue VCWC of irrigated crop production in the CONUS is
approximately 108 km?/year. This figure is nearly equivalent to the maximum storage capacity of the three largest
man-made reservoirs in the US. Additionally, our study reveals distinct regional trends in VCWC within the
CONUS: there is generally a decreasing trend in the western states and an increasing trend in the eastern states.
Our publicly available models and MIrAg-US enable researchers and policymakers to assess historical crop water
consumption, as well as investigate hypothetical scenarios and testing of different strategies to identify optimal
irrigation practices without relying solely on lengthy and expensive field experiments. Researchers and water
managers can integrate the CWC estimates from this study with economic data, such as crop costs and profits, to
identify opportunities for crop switching that reduce water consumption while maintaining economic value.

The data set, MIrAg-US, provides estimates of CWC that can be used to aid in water budgets, hydrologic as-
sessments, benchmarking that is, obtaining initial estimate of how much water is required to grow a crop in a
particular area, and regional crop water demand estimates, among other purposes. However, it should not be used
for regulating water use or assessing the irrigation use of a specific individual since local conditions, including
water availability, farm management, technology, and other circumstances, may lead to irrigation applications
that differ from our modeled values. Notably, farm management and irrigation practices vary widely across
farmers and these diverse behaviors could not be fully accounted for in our model due to limitations of the model
and data availability. Therefore, we reiterate that MIrAg-US represents the amount of water required to grow a
given crop under the specified conditions and assumptions of this study, not necessarily the amount of water a
specific farmer used within a given month.

The magnitude of crop water consumption (CWC) for a state or specific grid has significant implications for water
resource management, agricultural productivity, and sustainability. Regions with higher CWC indicate elevated
irrigation demands, which can strain local water supplies and contribute to environmental degradation. Since
water consumption often serves as a proxy for crop production, areas with high water use typically correspond to
regions of substantial agricultural output. Notably, a small percentage of land in the U.S. accounts for the majority
of water consumption and, by extension, food production. Any disruption to water supplies in these critical
regions—whether due to severe drought, infrastructure failure, or water reallocation—could have profound
consequences for food security.

While our data set provides valuable insights, several uncertainties are associated with the results due to limi-
tations in the models, input data sets, or both. Our estimates of CWC are derived from two models: AquaCrop-OS
and a simple crop growth model—each with varying levels of accuracy and uncertainty. Additionally, un-
certainties in input data sets, including climate data, irrigated harvested area, crop parameters, and irrigation
management parameters, are reflected in our results. We also made several assumptions during the analysis, such
as assuming a uniform surface water fraction across all grids within a county for all crops. Furthermore, due to
data unavailability, we used surface water fraction values from other years to fill gaps, which may introduce
additional uncertainty when partitioning blue CWC into surface water CWC and groundwater CWC. The crop
models used in this study have several limitations, including the inability to capture observed farm management
practices, such as actual irrigation frequency and duration. Instead, our model employs a simplistic representation
of irrigation application, assuming optimal scheduling and uniform practices, which may not align with real-
world variability. The model also does not account for the impacts of pests, diseases, or variations in fertilizer
application, which can also influence crop growth and water use.
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Figure 9. Maps illustrating (a) total CWC (mm), (b) total VCWC (m?), (¢) blue CWC (mm), (d) blue VCWC (m?), (e) surface water CWC (mm), and (f) surface water
VCWC (m?) for corn within each 2.5 arc-minute grid cell. Data shown here are for the year 2010.

To demonstrate the advancements made by our study and to transparently show the degree modeling choices and
input data shape CWC estimates, we compared our model estimates against some of the most widely cited CWC
data products. First, we compared total CWC depth with modeled estimates from previous global CWC models
and OpenET. Second, we then compared blue CWC depth with records from USDA and volumetric blue CWC
with records from USGS. We find that our crop estimates are generally in agreement with other data sources;
however, the degree of agreement varies depending on crop type, models being compared, and geographical
region. These differences highlight the complexities and uncertainties associated with estimating CWC and
emphasize the need for further research and refinement in this area, particularly as it relates to validation data.
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Table 2
Overview of the Data Products

Variable Description

Total CWC The depth of water (mm) required to support crop growth in each

2.5 arc min grid cell by month from 1981 to 2019 for the CONUS.

The volume of water (m>) required to support crop growth in each
2.5 arc min grid cell by month from 1981 to 2019 for the CONUS.

Total VCWC

Blue water fraction The fraction of blue water required to fulfill the total CWC. The

remaining total CWC comes from green water.

Surface water fraction The fraction of the blue water consumption fulfilled by surface water.

The remaining blue water consumption comes from groundwater.

Note. All data can be retrieved from the data repository HydroShare (Lamsal & Marston, 2024c¢). It can also be retrieved
through the following link https://www.hydroshare.org/resource/8134f362b45147d8aebf02b71253213e/.

Future research should explore opportunities for combining estimates from process-based models, like the one
used in this study, with remotely sensed data. Actual ET estimated from satellites can constrain ET estimates from
process-based models, while the process-based model can partition remotely sensed estimates into irrigation
components (i.e., blue CWC) and the precipitation component (i.e., green CWC).

We demonstrate that the crop growth models are effective tools for estimating CWC, utilizing detailed and unique
data sets available for the US to produce high-resolution spatial and temporal CWC estimates. The modeling
framework developed in this research can be applied to other geographical regions or different time periods
to produce similar estimates. Additionally, the detailed data set produced from this research provides valuable
insights into spatial and temporal variations in crop water consumption across the US, offering critical infor-
mation that can aid policymakers and water managers in promoting sustainable water management practices.
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Data Availability Statement

This research provides four data sets: (a) total CWC, (b) total VCWC, (c) blue water fraction, and (d) fraction of
blue water from surface water, which are publicly available through the data repository Hydroshare (Lamsal &
Marston, 2024c). The information on each crop is provided using a NetCDF4 file. Each NetCDF4 crop file has
two spatial coordinates (lat, lon), two temporal coordinates (month, year), and four variables (Total CWC, Total
VCWC, blue water fraction, and surface water fraction). Total CWC (Figure 9a) and total VCWC (Figure 9b) can
be partitioned into blue and green components when multiplied by the corresponding blue water fraction; this
yields the blue CWC (Figure 9¢) and the blue VCWC (Figure 9d). Subtracting the blue component from the total
CWC (or VCWC) yields the green component. Similarly, blue CWC or blue VCWC can be partitioned into
surface water and groundwater when multiplied by the corresponding surface water fraction; this yields the
surface water CWC (Figure 9e) and surface water VCWC (Figure 9f). Subtracting the surface water component
from the blue component yields the groundwater component. An overview of the data products and description of
each data product is available in Table 2.
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