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Abstract Agriculture is the dominant source of anthropogenic nitrous oxide (N,O) —a greenhouse gas and a
stratospheric ozone depleting substance. The US Corn Belt is a large global N,O source, but there remain large
uncertainties regarding its source attribution and biogeochemical pathways. Here, we interpret high frequency
stable N,O isotope observations from a very tall tower to improve our understanding of regional source
attribution. We detected significant seasonal variability in 8'°Ny, ;. (6.47-7.33%o0) and the isotope site
preference (8'°NSF = §'"N"-5'°NP, 18.22-25.19%o0) indicating a predominance of denitrification during the
growing period but of nitrification during the snowmelt period. Isotope mixing models and atmospheric
inversions both indicate that indirect emissions contribute substantially (>35%) to total N,O emissions. Despite
the relatively large uncertainties, the upper bound of bottom-up indirect emission estimates are at the lower
bound of the isotopic constraint, implying significant discrepancies that require further investigation.

Plain Language Summary Increasing use of synthetic nitrogen fertilizers for agricultural production
is causing higher atmospheric nitrous oxide (N,O) concentrations. Nitrous oxide is a long-lived greenhouse gas
and degrades the protective stratospheric ozone layer. Using tall tower N,O isotope observations from within
the US Corn Belt, we examine how different processes (denitrification vs. nitrification) and sources (corn fields
vs. wetlands, rivers, and streams) contribute to variations in atmospheric N,O. The findings indicate that a
substantial amount of nitrogen leakage from agricultural crops contributes to N,O emissions via indirect sources
such as drainage networks. These findings can help inform mitigation strategies targeting nitrogen use and
leakage pathways from agricultural systems.

1. Introduction

Nitrous oxide (N,O) is the third most important long-lived greenhouse gas and a major contributor to strato-
spheric ozone depletion (Montzka et al., 2011; Ravishankara et al., 2009). The most recent N,O budget
assessment suggests that global anthropogenic emissions (3.8 Tg N y™!) increased by 30% from 1980 to 2016,
with direct agricultural emissions accounting for up to 87% of the change (Tian et al., 2020). Over the same
period, North American agricultural N,O emissions are estimated to have increased from 0.38 to 0.58 Tg N y™".
In the US Corn Belt, tall tower and airborne measurements combined with atmospheric inverse analyses suggest
that emissions are 2 to 9-fold greater than bottom-up estimates (Chen et al., 2016; Del Grosso et al., 2022; Eckl
et al., 2021; Griffis et al., 2013; Kort et al., 2008; Miller et al., 2012), implying large uncertainties in source
contributions (e.g., from direct vs. indirect N,O emissions, episodic emissions associated with freeze-thaw cycles
and rain events) and in the underlying biogeochemical processes that regulate N cycling (Chen et al., 2016; Del
Grosso et al., 2022; Hu et al., 2024; Turner et al., 2015). Direct agricultural N,O emissions are derived from
fertilized soils (predominantly crop fields in the Upper Midwestern United States), while indirect emissions are
associated with deposition of reactive nitrogen volatilized from synthetic fertilizers and manure, leaching and
runoff of fertilizer and manure N, and transport of terrestrially derived N,O to streams via groundwater. It is now
recognized that indirect N,O emissions from leaching and runoff represents an important source of global
emissions (Beaulieu et al., 2008, 2011). Further, a body of studies incorporating flux measurements from streams,
stream modeling, and tall tower inverse analyses contend that direct N,O emissions are well constrained and that
indirect N,O emissions have been underestimated in the Upper Midwest United States (Chen et al., 2016; Fu
et al., 2018; Turner et al., 2015, 2016). However, recent work portends that direct N,O emissions dominate (i.e.,
represent 94%) the regional budget (Lu et al., 2022) and that these emissions have been underestimated in regional
assessments because poorly drained agricultural field observations have been inadequately represented
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(Lawrence et al., 2021). These contrasting views, and large uncertainties, highlight the need for developing better
constraints on regional N,O emissions.

The N,O molecule is linearly asymmetric (NB = N*-0) with two stable N isotopes (N and 'N) and three stable
oxygen isotopes (**0, 70, and '*0) (Coplen, 2011). Measurements of these N,O isotopes, including its iso-
topologues (e.g., "*“N'*N'®0 and "*N'*N'0) and isotopomers (e.g., "*N'*N'60 and '>N'*N'°0), provide a useful
tool to examine the origin and cycling mechanisms of N,O (Ostrom & Ostrom, 2017; Toyoda et al., 2017; Yu,
Harris, Henne, et al., 2020). By convention, the bulk N and O isotopic composition of N,O is reported using delta
(8) notation (8'°Ny,y, and §'°0), where 8 = (Rympie/Ryangara — 1) X 1,000, reported in per mil (%o). The site-
specific N isotope measurements of N,O include 8'°N* and &' NP; the difference between these is the site
preference BPNSP = §N-5"°NP (%0)) (Toyoda & Yoshida, 1999) and represents a powerful tracer for
differentiating between oxidative and reductive N,O formation pathways (i.e., nitrification and denitrification) as
well as partial N,O reduction (Toyoda et al., 2017).

Stable isotope measurements within the atmospheric boundary-layer (ABL) have the potential to improve our
understanding of N,O source attribution and partitioning (Harris et al., 2017, 2021, 2022) and have been applied
broadly to other scalars including carbon dioxide (Bowling et al., 2001; Griffis, 2013) and water vapor (Griffis
et al., 2016; Wang et al., 2010). Because microbial N,O turnover is strongly controlled by environmental factors
(e.g., N availability, temperature, and redox condition), N,O emissions from different environmental niches and
emission sectors can contain distinct isotopic signatures (Snider et al., 2015a, 2015b). For example, previous work
has demonstrated that the global atmospheric SISNbu,k signal has decreased since 1940 because of increased use of
synthetic N fertilizers and increased microbial activity that stimulate emissions of isotopically lighter N,O (Park
et al., 2012).

Our recent work based on extensive sampling in an agricultural river network within the US Corn Belt has shown
that N,O emissions from agricultural streams and rivers have significantly higher 515NSP values (ie.,
22.5 + 1.5%0) (Hu et al., 2024) than is typically found for direct soil N,O emissions (i.e., 7.2 = 3.8%o0) (Snider,
Thompson, et al., 2015; Wolf et al., 2015). These high 8'NSP values for stream-emitted N,O are attributed to the
delivery of soil-produced N,O to streams via preferential flow paths draining soil macropores (e.g., pores
associated with desiccation cracks, fissures, root channels, and earthworm burrows), where high oxygen avail-
ability may increase nitrification-based N,O production compared to the bulk soil matrix (Hu et al., 2024; Yu
et al., 2023). Therefore, measurements of N,O isotopes in the ABL offer the potential for a powerful top-down
constraint on sources and dynamics of N,O emissions—beyond what can be obtained from bulk N,O concen-
tration measurements alone. However, due to technical challenges, few studies have measured N,O isotopes at the
high temporal resolution needed to characterize N,O cycling complexity at landscape to regional scales—that is,
the scales most pertinent to resolving anthropogenic and climatic controls on N,O source variability (Butterbach-
Bahl et al., 2013).

Recent laser spectroscopy advances have enabled the development of commercially available analyzers capable
of resolving N,O isotopologues and isotopomers at high time resolution (Clar & Anex, 2022; Harris et al., 2020).
Harris et al. (2020) provide a comprehensive review of the available commercial analyzers, including perfor-
mance characterization and workflow recommendations for reducing measurement artifacts and for improving
data quality, reproducibility, and intercomparability. Here, we apply a cavity ring-down spectrometer (CRDS) to
measure the isotope composition of N,O (615Nbu]k, 8"°N% 8'°NP, and 5'°N5P) in the ABL at the University of
Minnesota Tall Tower Trace Gas Observatory (TGO)—a very tall tower (244 m) within the US Corn Belt. The
N,O isotope measurements are used to reveal processes contributing to regional N,O emissions and to constrain
N,O emissions from characteristic high emission periods (e.g., those following snowmelt and fertilizer appli-
cation) into direct and indirect pathways. The isotope partitioning approach is supported using independent scale
factor Bayesian inverse analyses (SFBI) to examine which sources contribute most to the regional budget.

2. Methodology
2.1. Study Site

The N,O isotope measurements described here were initiated in late summer 2022 at the University of Minnesota
TGO (KCMP, radio tower, 44° 41" 19” N, 93° 40’ 22” W; 290 m ASL), which is a 244 m communications tower
(Griffis et al., 2017). TGO has been instrumented with meteorological and trace gas sensors since April 2007.
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Carbon dioxide, water vapor, nitrous oxide, and methane (CH,) are measured at sample heights of 100 and 185 m.
The N,O isotope air samples were collected at a height of 100 m above the ground surface using Teflon tubing
(TPHO0308-063 PFA 3/8”ID x 1/2”0D, Jensen Inert Products, Coral Springs, FL, USA). Teflon filter holders
(12009-4m-147-4m pfa filter 47 mm x 1/4"MNPT x 1/4"MNPT Tefzel clamp, Jensen Inert Products) were
installed at the inlets on the tower and before the sub-sample manifold located upstream of the N,O analyzer.
Sample lines were insulated with dense foam and heated using heat tape (Chromalox SRL, UT, USA) from the
base of the tower to the manifold that was housed in a climate-controlled building to prevent condensation.

2.2. Isotope Measurement System

The isotope measurement system consists of a CRDS analyzer (model G5131-i, Picarro, Inc., Santa Clara,
California, USA) and custom-built manifolds for routine air sampling and calibration. Figure S1 in Supporting
Information S1 shows a schematic of the air sampling and calibration setup. The sampling system consisted of
three manifolds (15481-4 EV/ET 4-Valve, Manifold, #10-32, Clippard, Cincinnati, OH, USA) and 9 valves (EV-
2M-12; Way Electric Valve, Normally Closed, Manifold Mount, Wire Leads, 12 VDC, Clippard, Cincinnati, OH,
USA). Two manifolds were used for online mixing and delivering calibration isotope standards and for quan-
tifying the effects of CH, interference. One manifold was used for introducing the calibration gas matrix, a long-
term check tank (ambient) standard, and the tall tower 100 m air subsample to the CRDS analyzer. Three mass
flow controllers (MC-50SCCM-D, Alicat Scientific Inc., Tucson, Arizona, USA) were used for automated span
gas calibration and for setting the base subsample flow for the CRDS analyzer. Automated valve switching and
control of the mass flow controllers was performed using a data logger (CR5000, Campbell Scientific Inc., Logan,
Utah, USA). All data were archived using the CR5000 and CRDS computer system at 0.4 Hz.

2.3. Preparation and Measurement of Calibration Gases

A detailed description of the preparation and measurement of calibration gases is provided in the Supporting
Information (Text S1 in Supporting Information S1). Briefly, we prepared three calibration gases (i.e., Cal 1 to 3)
in 29.5 L aluminum cylinders by diluting N,O isotope reference materials, USGS51 and USGS52 (Ostrom
et al., 2018), and a newly established reference material, RM3A (Mohn et al., 2022) (Table S1la in Supporting
Information S1) using purified dry ambient air. As a result, the prepared calibration gases have different N,O
isotope composition than the parent reference materials but contain CH, at ambient level, which minimizes
correction for the CH, interference effect (Harris et al., 2020). The prepared calibration gases were subsampled
and measured for 8'°Ny ., 8'%0, 8'°N%, §'°NP, and 8'°NSF using an isotope ratio mass spectrometer (Elementar
Isoprime precision, Germany) coupled with a preconcentration unit (Elementar iso FLUX GHG, Germany).
These measurements were calibrated using undiluted USGS51, USGS52, and RM3A. The final calibration values
of the three calibration gases are shown in Table S1b in Supporting Information S1.

2.4. Tall Tower Sampling and Isotope Calibration

The tall tower 100 m inlet was subsampled continuously for two 11-hr periods each day that were bookended by
calibration periods. A 1-hr calibration cycle was performed twice per day (0230 and 1430 LST) and consisted of
the following steps: (a) a “check tank” filled with ambient air was first sampled for 8 min to correct any mea-
surement drift prior to calibration; (b) standard cylinder Cal 1 was then sampled for 8 min; (c) standard cylinder
Cal 2 was sampled for 8 min; (d) standard cylinder Cal 3 was sampled using three different ultra zero air dilutions
optimized to bracket the ambient N,O mixing ratio. Each Cal 3 dilution was sampled for 8 min, and combined,
these measurements of diluted Cal 3 were used to correct for any potential dependence of the isotope mea-
surements on N,O concentration. The remaining time within the 1-hr calibration cycle was used to re-sample the
check tank. The tall tower 100 m inlet subsampling then resumed until the next calibration cycle. Figure S2 in
Supporting Information S1 provides an example of the air sample and calibration routine, showing a long-term
(several days) and a magnified (~1 day) view. A description of the post processing routine is provided in the
Supporting Information (Text S2 in Supporting Information S1).

2.5. Isotopic Constraints on Emission Sources

A Miller-Tans mixing model (SI Text 3) was used with the tall tower N,O isotope observations to estimate the
isotope composition of the regional net N,O emissions (F6'°N and F8'°N5%) during the growing season (J. B.
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Miller & Tans, 2003). We did not use measured &'*O values for this analysis because the inherent complexity of
oxygen isotope exchange reactions during N,O production makes the 5'0 source signatures of N,O less well
quantified compared to 8'°N, ;. and 8'°N¥ (Lewicka-Szczebak et al., 2016). Similar mixing model approaches
(e.g., Keeling plot, flux ratio plot) have been used to estimate the isotope composition of CO, and water vapor
exchange at the same tall tower site (Griffis et al., 2010, 2016; Keeling, 1958). Here, the mixing line analysis was
applied to relatively high frequency intervals (i.e., every 15 min; 30 min; 1 hr; 3 hr; 6 hr; etc.) for each day. This
multi-timescale approach was applied to help assess the uncertainty in estimating the isotope composition of net
N,O emissions (Figure S9 in Supporting Information S1). The mixing line analysis was restricted to the snowmelt
and growing season period when N,O emissions were sufficiently large to enhance the signal (i.e., buildup) of
ABL N,0. The end member estimates from the Miller-Tans approach were filtered from further analysis if they
exceeded the range of individual source signatures reported in the literature (Table S2 in Supporting Informa-
tion S1) and when the regression correlation coefficient was less than 0.5. From Figure S9 in Supporting In-
formation S1, we used the median values and uncertainty (95% confidence intervals) within a Monte Carlo
approach to partition the net regional N,O emissions into direct versus indirect emissions (described below).

The isotope composition of regional emissions and end member values for direct (i.e., emissions from fertilized
farm fields) and indirect (defined here as the offsite emissions associated with leaching and runoff) N,O emis-
sions (Table S2 in Supporting Information S1) were used within a simple two-member isotope mixing model to
determine the relative partitioning between these two major source types. A Monte Carlo approach allowed
random sampling (n = 100,000 iterations) from the distribution of the isotope end members (Table S2 in Sup-
porting Information S1) and isotope composition of the net flux (Figure S9 in Supporting Information S1). In this
way, the isotope partitioning approach accounted for the uncertainty in the isotope composition of the regional net
flux and associated end members. This isotope partitioning result was then compared with an atmospheric inverse
modeling approach, described below.

2.6. Atmospheric Inverse Analyses

Following our previous work, we used the tall tower hourly observations (100 m level) within a SFBI approach
(Chen et al., 2016; Kim et al., 2013) to constrain the regional N,O budget and to estimate direct and indirect
emissions during spring 2023. Previously published results for 2010-2015 derived using the same methodology
(Griffis et al., 2017) are also reported here to provide context for the 2023 findings. The salient details of the SFBI
approach are provided in the supporting information (Text S4 in Supporting Information S1).

3. Results and Discussion
3.1. Isotope Composition of the Atmospheric Boundary-Layer

The seasonality of the N,O isotope composition and “clean air” values are summarized in Figure 1. Examining all
valid daytime and nighttime data collected over the measurement period (DOY 1 to DOY 360, 2023) we find
median (+1 s.e. of the median) values of: N,O = 342.48 (+0.06) nmol mol™', §'°N® = 418.94 (+0.05)%o,
8NP = —3.67 (20.03)%0, 8" Ny = 7.33 (£0.03)%o and 8'°NSF = 22.65 (+0.12)%o (Figure 1). These values
differ substantially from global (i.e., background) values, 336.58 nmol mol™", +15.8, —2.3, 6.45, and 18.1%o,
respectively (Ghosh et al., 2023; Liang et al., 2022; Park et al., 2012) and recent (July 2014 to February 2016)
measurements reported for Diibendorf, Switzerland (Harris et al., 2017). These differences may be driven by
regional circulation patterns over the 1-year measurement period and by variations in sources and biogeochemical
pathways contributing to the N,O signal. We estimated clean air (i.e., low source emission conditions) values as
the lower tenth percentile of all N,O observations. These values were: N,O = 338.09 (+0.02) nmol mol™",
8" N* = 416.6 (£0.07)%0, 8NP = —2.44 (+0.10)%o0, 8" N, . = 6.88 (£0.07)%0 and 5" NSF = 19.05 (+£0.12)%o
and were in better agreement with the global background values. Below, we show how these signals vary across
different temporal scales, which allows interpretation of systematic changes more carefully as the results are not
affected by potential offsets between laboratories.

Freeze-thaw conditions are an important driver of global N,O emissions (Wagner-Riddle et al., 2017). The
snowmelt period (approximately DOY 50 to DOY 100) has been associated with significant N,O emissions in the
Upper Midwestern United States, accounting for about 35% of the annual budget (Griffis et al., 2017). Median
snowmelt values were: N,O = 341.83 (0.07) nmol mol™", §'N* = 19.91 (£0.06) %0, 5"°NP = —4.73 (£0.13) %o,
8" Ny = 7.25 (£0.06)%o, and 8"°NF = 25.19 (+£0.20)%o, respectively. The relatively large increase in 5'° NP
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Figure 1. Seasonal changes in the N,O isotope composition of the atmospheric boundary-layer at the University of Minnesota Tall Tower Trace Gas Observatory in
2023. Also shown are “clean air” values estimated as the lower tenth percentile of the N,O concentrations. Note that some extreme outliers are revealed in the violin
plots that were associated with advection of smoke from Canadian wildfires including events on DOY 132 to DOY 143 and DOY 170 to DOY 176.

(2.5% higher than annual values; 6.1%o higher than clean air values) and the small change in 8'°N,,, relative to
the annual or clean air values implies that there was enhanced nitrification during the snowmelt period. It is well
established that nitrification causes elevated 8'°NSF whereas denitrification acts to lower 8'°N°F (Toyoda
et al., 2017). Here, we hypothesize that microbial cell lysis during snowmelt released labile organic compounds
that promoted rapid mineralization followed by nitrification. Cao et al. (2023) have shown that snowmelt N,O
emissions were highly correlated with the presence of the nitrification genes amoA and amoB, supporting the
hypothesis that nitrification dominates N,O production during these periods.

Large regional emissions (55% of the annual budget) have also been associated with the early to mid-growing
period (DOY 150 to DOY 200) following fertilizer application (Griffis et al., 2017). The median values dur-
ing this period were: N,O = 346.57 (+0.15) nmol mol ™', 8" N* = +15.92 (+0.21)%o, 8'°NP = —2.68 (£0.09) %o,
8" Npun = 6.47 (£0.11)%o, and 5'N5P = 18.22 (+0.28)%o. These values indicate substantial enhancement of the
N,O mixing ratios driven by regional emissions. The relative depletion of 8'°N“ (i.e., a decrease of ~3%o,
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0.68%0), 8"°N°F (i.e., a decrease of ~4.4%o, 0.80%0), and 815Nbulk (i.e., a decrease of ~1%o, 0.41%0), when
compared to the annual or clean air values, is consistent with the contribution of N,O emissions derived from
relatively '°N depleted sources. The isotope composition of N,O emissions derived from agricultural soils and
rivers have been shown to be depleted in the heavy isotopes, leading to isotopically light ABL concentrations
(Table S2 in Supporting Information S1). For example, the bacterial denitrification pathway is associated with
strong kinetic fractionation resulting in isotopically depleted emissions (e.g., 8'°N,;, ranges from —50%o to
+5%0) and a &!5NSP value near 0%o (Sutka et al., 2006; Toyoda et al., 2017; Yu, Harris, Lewicka-Szczebak,
et al., 2020).

During summer 2023, Canadian wildfires significantly impacted air quality in Minnesota (Figure S9 in Sup-
porting Information S1). We observed that biomass burning exerted a significant influence on the isotope
composition of N,O and that these variations correlated with large increases in the EPA-reported air quality index
(AQI). From DOY 132 to DOY 143, N,O mixing ratios were significantly elevated and enriched in '°N relative to
background air (Figure S9 in Supporting Information S1). The median values were: N,O = 343.79 (£0.003)
nmol mol™!, §"°N® = +19.50 (£0.006)%0, 8"°NP = —3.97 (+0.006)%0, 8"° Ny, = 7.55 (£0.005)%o, and
8'°NSP = 23.96 (+0.008)%0. Similarly, over the period DOY 170 to DOY 176, we observed elevated values
associated with the advection of wildfire smoke into the region and relatively high AQI values. The median values
were: N,O = 346.83 (+0.01) nmol mol™', 8N = +29.08 (+£0.03)%0, 8'°NP = —5.26 (+0.03)%o,
8" Ny = 12.21 (£0.03)%o, and 8'°N5F = 36.04 (+£0.04)%o. These wildfire outliers are evident in the violin plots
shown in Figure 1. The influence of biomass burning on N,O isotope composition has not been thoroughly
studied. Agricultural biomass burning experiments, conducted under controlled laboratory conditions, have
demonstrated relative small impacts on the isotope composition of N,O (Table S2 in Supporting Information S1)
with 8'°N,,,,. signatures that were depleted in '>N relative to that of crop residue N (Ogawa & Yoshida, 2005).
However, key differences in nitrogen substrate in forests and variations in fire temperature under field conditions
could substantially influence the extent of isotope effects during N,O production and thermal destruction.

3.2. Isotope Composition of Regional N,O Emissions

Here, we present three estimates of the isotope composition of regional N,O emissions. First, the a priori isotope
composition of the regional N,O emissions was estimated from the WRF-STILT source footprint modeling, N,O
emission inventory data, and the mean isotope composition of these sources (Table S2 in Supporting Informa-
tion S1, Figure 2). This simple footprint-weighted estimate was performed April through September in 2016,
2019, and 2023. These footprint-weighted calculations resulted in a priori F6'°N and F8'°N°F median values of
—16.95 (£1 s.e. of the median, £0.02)%o and 13.72 (£0.16)%o, respectively. Figure 2 shows these footprint-
weighted values relative to other key sources.

Second, the isotope composition of regional N,O emissions was constrained for the snowmelt and growing season
using the Miller-Tans mixing model approach. The F8'°N and F&'°NS¥ median values for the entire period were
—11.1%0 (£1 s.e. of the median, 1.0%o) and 17.0%0 (£1.4%0) (Figure S10 in Supporting Information S1). These
values are similar to, or near the limits of, recent global source estimates (—12.0 to —10.0%¢ and 8.5 to 18%o,
respectively) derived from long-term isotopic observations and global budget analyses (Ghosh et al., 2023; Park
et al., 2012; Yu, Harris, Henne, et al., 2020). Deviations from the global values are expected given the intense
agricultural production and fertilizer use within the region and, therefore, increased denitrification/nitrification
where microbial activity favors the lighter isotopes.

Finally, we estimated the a posteriori isotope composition of regional N,O emissions based on the combination of
the optimized SFBI analyses and the reported isotope end members (Table S2 in Supporting Information S1) from
mass balance considerations. Here, a similar Monte Carlo approach was used to sample from within each
respective sample distribution (i.e., direct and indirect emissions from SFBI and isotope end members). These
analyses indicate that the simulated F3"N and F5"°NSF median values were —16.6%0 (£0.02%0) and 15.7%o
(£0.02%o), respectively (Figure S11 in Supporting Information S1). These values are within the range of esti-
mates determined using the tall tower observations and mixing line analyses and similar to the footprint-weighted

modeling (a priori) values. However, the optimized F&'°N5F

values were approximately 2%o higher than the a
priori values, implying a larger contribution from the indirect N,O emissions. Figure 2 supports that the tall tower
N,O isotope fingerprints depart appreciably from the global source values with regional F&'°N values approx-

imately 6%o lower and F&'°N®" weighted toward indirect emissions associated with leaching and runoff.
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Figure 2. Isotope composition of N,O emissions from different sources including regional estimates based on tall tower
observations and global budget analyses. The three tower-based estimates include: 1. Simple footprint-weighted estimate
(footprint-weighted); 2. Isotope mixing line analyses (tall tower source estimate); and 3. A posteriori estimate based on
atmospheric inverse analyses (inverse model). The three tall tower estimates are for the snowmelt to early growing season
period. Note that all estimates shown are based on nominal values and their standard deviation. The footprint-weighted
estimate is based on the nominal end member values and the overall uncertainty is represented as the range of computed
values.

Using the Monte Carlo isotope mixing model approach, we constrained the relative partitioning of N,O emissions
(Figure 3). The F8'°N and F5"° NS mixing models yielded different partitioning results. Partitioning based on
F8'> NS indicates that indirect N,O emissions during the 2023 growing season were 64% (IQR = 51-75%) of
total emissions. This relatively large indirect emission estimate might be caused by an F&'’NSF end member value
that is weighted toward a nitrification signal or stems from underrepresentation of regional watersheds. The
F8' N partitioning indicates that indirect emissions accounted for about 35% (IQR = 20%—-55%), which repre-
sents the upper bound of current bottom-up inventory estimates (25%—-30%) (Chen et al., 2016). Both estimates
are substantial, but exhibit relatively large uncertainties, bracketing the estimates derived from atmospheric in-
verse analyses (Figure 3) for 2023 and for the period 2010 to 2015. For example, in spring 2023, the SFBI an-
alyses yielded a partitioning of 47.8 Gg N,O-N and 48.4 Gg N,O-N for direct and indirect emissions,
respectively. Multi-year monthly SFBI analyses suggest that indirect emissions accounted for 41%-58% of
agricultural emissions (Chen et al., 2016; Griffis et al., 2017).

These independent lines of evidence (e.g., multiple isotope fingerprints and SFBI analyses) suggest that indirect
N,O emissions represent a substantial component (at least 35%) of regional emissions. However, the uncertainties
associated with source partitioning based on isotope observations or SFBI analyses remains very large (>100%).
New efforts are currently underway within the US Corn Belt to expand tall tower observations, as well as bottom-
up direct and indirect flux measurements using eddy covariance and chamber observations. These new obser-
vations are being made possible through the United States Inflation Reduction Act (https://www.whitehouse.gov/
wp-content/uploads/2023/11/National GHGMMISStrategy-2023.pdf) and offer a new opportunity to improve
constraints on regional top-down N,O emissions and the upscaling of direct/indirect emissions. Further, we
propose that improved observations of the N,O isotope end members in combination with a dual isotope inverse
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Figure 3. Constraining regional N,O emissions into direct versus indirect emissions using independent isotope tracers
(8" Ny and 8'°N5P) and scale factor Bayesian inverse analyses. The isotope partitioning is shown for the growing season
of 2023. The inverse analyses are based on previously published values from 2010 to 2015 (Chen et al., 2016; Griffis

et al., 2017).

modeling approach could provide improved constraints on N,O source attribution. We expect these new research
efforts will help reduce the large uncertainties associated with regional N,O partitioning.

4. Conclusions

The isotope composition of N,O was measured at the University of Minnesota Tall Tower Trace Gas Observatory
over an annual cycle using a cavity ring-down spectroscopy technique. Seasonal variations in the isotope signals
were associated with the snowmelt and early growing season periods. The changes in 8'°N,,, and 8'°N5¥ showed
relative depletion in the heavier isotopes during the early growing season, which is consistent with emissions
associated with agricultural sources. The seasonal variability in 8'°Ny;, and 8'°N®F indicated a predominance of
denitrification during the growing period but of nitrification during the snowmelt period. Multiple approaches
were used to differentiate between the two major N,O sources including direct and indirect emissions. Scale
factor Bayesian inverse analyses and two different N,O isotope fingerprints suggest that indirect emissions can
account for 35%—64% (mean of 51%) of the snowmelt and growing season budget. We find that the upper bound
of bottom-up indirect emission estimates are at the lower bound of the isotopic constraint.

Data Availability Statement

The data set (Tall Tower N20 Isotopes 2023; Griffis et al., 2024) presented here is publicly available and will be
published at ESS-DIVE (Deep Insights for Earth Science Data).
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