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The current “consensus” order in which amino acids were added to the genetic code
is based on potentially biased criteria, such as the absence of sulfur-containing amino
acids from the Urey—Miller experiment which lacked sulfur. More broadly, abiotic
abundance might not reflect biotic abundance in the organisms in which the genetic
code evolved. Here, we instead identify which protein domains date to the last uni-
versal common ancestor (LUCA) and then infer the order of recruitment from devia-
tions of their ancestrally reconstructed amino acid frequencies from the still-ancient
post-LUCA controls. We find that smaller amino acids were added to the code eatlier,
with no additional predictive power in the previous consensus order. Metal-binding
(cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids
were added to the genetic code much earlier than previously thought. Methionine and
histidine were added to the code earlier than expected from their molecular weights
and glutamine later. Early methionine availability is compatible with inferred early
use of S-adenosylmethionine and early histidine with its purine-like structure and
the demand for metal binding. Even more ancient protein sequences—those that had
already diversified into multiple distinct copies prior to LUCA—have significantly
higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine, and
histidine) and lower frequencies of valine and glutamic acid than single-copy LUCA
sequences. If at least some of these sequences predate the current code, then their
distinct enrichment patterns provide hints about earlier, alternative genetic codes.

origins of life | astrobiology | early life | phylostratigraphy | translation

The modern genetic code was likely assembled in stages, hypothesized to begin with “early”
amino acids present on Earth before the emergence of life (possibly delivered by extrater-
restrial sources such as asteroids or comets) and ending with “late” amino acids requiring
biotic synthesis (1, 2). For example, the Urey—Miller experiment (3) has been used to
identify which amino acids were available abiotically and are thus likely to have come
earlier than those requiring biotic synthesis. The order of amino acid recruitment, from
early to late, was inferred by taking statistical consensus among 40 different rankings (4),
none of which constitute strong evidence on their own. On the basis of this ordering,
Moosmann (5) hypothesized that the first amino acids recruited into the genetic code
were those that were useful for membrane anchoring, then those useful for halophilic
folding, then for mesophilic folding, then for metal binding, and finally for their antiox-
idant properties. However, a late role for metal-binding amino acids is puzzling; many
metalloproteins date back to the last universal common ancestor’s (LUCA)’s proteome,
where they are presumed to be key to the emergence of biological catalysis (6).

Indeed, the late status of some amino acids is disputed (7). For example, the Urey—Miller
experiment (3) did not include sulfur, and so should not have been used to infer that the
sulfur-containing amino acids cysteine and methionine were late additions. Methionine
and homocysteine (a product of cysteine degradation) were detected in hydrogen sulfide
(H,S)-rich spark discharge experiments, suggesting that methionine and cysteine could
be abiotically produced (8). A nitrile-activated dehydroalanine pathway can produce
cysteine from abiotic serine that is produced from a Strecker reaction (9), further demon-
strating the possibility of its early chemical availability.

Histidine’s classification as abiotically unavailable also contributed to its annotation as
late (4). While histidine can be abiotically synthesized from erythrose reacting with forma-
midine followed by a Strecker synthesis reaction (10), the reactant concentrations might
have been insufficient in a primitive earth environment (11). More importantly, because
histidine resembles a purine, even if histidine were abiotically unavailable, it might have had
cellular availability at the time of genetic code construction (12), in an organism that biot-
ically synthesized ribosomes, and that might also have already utilized amino acids and
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peptides. Indeed, histidine is the most commonly conserved residue
in the active site of enzymes (13).

To directly infer the order of recruitment from protein
sequence data, without reference to abiotic availability argu-
ments, we consider that some of LUCA’s proteins were born
prior to the completion of the genetic code (14). We predict
that ancestrally reconstructed sequences from this era will be
enriched in early amino acids and depleted in late amino acids.
Previous analyses relied on conserved residues within a small
number of LUCA proteins (15, 16). Here, we classify a larger
set of protein-coding domains that date back to LUCA, rather
than being more recently born, e.g., de novo from noncoding
sequences or alternative reading frames (17, 18). We compare
reconstructed ancient amino acid frequencies of the most
ancient vs. moderately ancient protein cohorts, to deduce the
order in which amino acids were incorporated into the
genetic code.

We take advantage of gene-tree species-tree reconciliation
methods (19) to infer LUCA’s protein sequences. Previous anal-
yses focused on the age of orthologous gene families (20-22);
ours infers which protein domains date back to LUCA. Protein
domains are the basic units of proteins, that can fold, function,
and evolve independently (23). Proteins often contain multiple
protein domains, each of which might have a different age
(Fig. 1). For the purpose of inferring ancient amino acid usage,
what matters is the age of the protein domain, not that of the
whole protein that it is part of. We use protein domain anno-
tations from the Pfam database (24). We recognize Pfams pres-
ent in LUCA by trimming horizontal gene transfer (HGT)
events, and by exploiting long archaeal-bacterial branches
(Fig. 2; see Materials and Methods for details).

Results

Ancient Protein Domain Classifications Agree with Whole-Gene
Classifications. We classify 969 Pfams and 445 clans (sets of one
or more Pfams that are evolutionary related) as present in LUCA
(Fig. 3 A and B; detailed lists in Datasets S1 and S2). We compare
these to the 3,055 Pfams and 1,232 clans that we classify as
ancient but post-LUCA (including last bacterial common ancestor
(LBCA) and last archaeal common ancestor (LACA) candidates).
Encouragingly, 88.6% of Pfams that we annotate as pre-LUCA
or LUCA are contained within genes annotated by Moody et al.
(21) as present in LUCA with more than 50% confidence, when
present in their dataset (Fig. 3C). This level of agreement far
exceeds earlier works (22).

In agreement with the Moody et al. (21) classification of LUCA
metabolism, almost all Pfams associated with enzymes in hydrogen
metabolism, assimilatory nitrate and sulfate reduction pathways,
and the Wood-Ljungdahl pathway date back to LUCA
(81 Appendix, Table S1). Our results also support a post-LUCA,
bacterial origin of nitrogen fixation (21, 34) (SIAppendix,
Table S1). We assign to LUCA the complete set of amino
acid-tRNA synthetase-associated anti-codon binding domains
found in modern prokaryotes. Here, focusing on complete genes
would have been problematic because accessory amino acid-tRNA
synthetase-associated domains (e.g., PF04073 and PF13603,
which deacylate misacylated tRNA) were sometimes added later.

We also checked the antiquity of the cofactor/cosubstrate
S-adenosylmethionine (SAM) (35), both with respect to SAM
biosynthesis and SAM usage. In agreement with past work attrib-
uting the SAM biosynthesis enzyme methionine adenosyltrans-
ferase to LUCA (36, 37), we assign its single Pfam (PF01941)
to LUCA [the corresponding COG1812 is not analyzed by
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Fig. 1. The evolutionary history of a protein domain may date back further in time than that of the whole-gene ortholog that it is part of. Multidomain genes
3 and 4 originated around the same time. However, they are made up of two protein domains (blue and orange boxes) that emerged and diverged at different

points in time—domain 1 is older than domain 2.
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Moody etal. (21)]. In agreement with past work attributing
SAM-dependent methyltransferases to LUCA (38), Moody et al.
(21) assign the RsmB/RsmF family (COG0144), which meth-
ylates 16S rRNA, more than 75% confidence of being present
in LUCA, and we also classify its SAM-binding Rossman fold
Pfam (PF01189) as LUCA. In agreement with (39, 40), Moody
etal. (21) assign the SAM-binding tRNA methylthiolase
(COG0621) to LUCA with more than 75% confidence, and we
confirm the pre-LUCA status of its associated Radical SAM,
TIM-barrel-related Pfam (PF04055). In agreement with attri-
bution of polyamines to LUCA (41), we assign to LUCA the
one Pfam (PF02675) of S-adenosylmethionine decarboxylase,
which acts on SAM in the first step of polyamine synthesis; the
antiquity of corresponding COG1586 is not further confirmed
by Moody et al. (21).

Hydrophobic Amino Acids Are More Interspersed within Ancient
Proteins. Interspersion of hydrophobic amino acids away from one
another along the primary sequence is believed to mitigate risks from
protein misfolding, while still enabling correct folding (42—44). Older
sequences have previously been found to have greater interspersion
among their hydrophobic residues, indicating more sophisticated
protein folding (14, 45), likely due to survivorship bias (46). Our
Pfam age classifications confirm the antiquity of this trend, previously
observed only for animal sequences. LUCA Pfams show even more
hydrophobic interspersion than the still-ancient “post-LUCA” Pfams
that include LACA candidates and LBCA candidates (S/ Appendix,
Fig. S1; Wilcoxon rank-sum test; P = 0.02). Post-LUCA Pfams in
turn have more hydrophobic interspersion than “modern” Pfams
that are specific to particular prokaryotic supergroups (Wilcoxon
rank-sum test; P = 0.02).
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Proteobacteria
Terrabacteria
Asgard
Euryarchaeota
TACK

LUCA’s Protein Sequences Were Depleted in Larger Amino
Acids. Clans present in LUCA were born before the divergence
of Archaea and Bacteria, some potentially prior to the completion
of the genetic code. If newly recruited amino acids were added
slowly, the contemporary descendants of LUCA clans will show
signs of ancestral depletion in amino acids that were added late
to the genetic code. We first focus on clans present in one copy
in LUCA (denoted “LUCA clans”), excluding those that had
already duplicated and diverged into multiple surviving lineages
(denoted “pre-LUCA clans”). We score ancestral amino acid
enrichment and depletion as relative to still-ancient post-LUCA
clans, which represent amino acid usage from the standard
genetic code of all 20 amino acids, plus any ascertainment biases.
This ratio, reflecting ancient amino acid usage, is not confounded
with the effects of temperature, pH, oxygen tolerance, salinity,
GC content, or transmembrane status on amino acid frequencies
(ST Appendix, Fig. S2 A-F). Indeed, LUCA usage is similar in
the very different biophysical context of a transmembrane site
(SI Appendix, Fig. S3).

Smaller amino acids are enriched in LUCA (Fig. 44; weighted
R* = 0.48, P = 0.0005). Results are similar using a restricted set
of Pfams validated by Moody et al. (21) (weighted R =0.44,P=
0.001). As a negative control for methodological artifacts, the
ancestral amino acid usage of post-LUCA clans relative to modern
clans is not correlated with molecular weight (P = 0.9).

Revised Order of Amino Acid Recruitment. Fig. 4C visualizes
how LUCA’s amino acid enrichments compare to Trifonov’s
consensus order (4). While they are correlated (weighted R -
0.37, P=0.003), this association disappears in a weighted multiple
regression with both molecular weight (P = 0.03) and Trifonov’s
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Fig. 2. Criteria for (A) LUCA Pfam annotation, (B) identifying HGT to be filtered, and (C) pre-LUCA Pfam annotation. Details are in Methods, with a brief summary
here. (A) Pruning HGT between archaea and bacteria reveals a LUCA node as dividing bacteria and archaea at the root. Colored circles are indicated just upstream
of the most recent common ancestor (MRCA) of all copies of that Pfam found within the same taxonomic supergroup. We recognize a total of five bacterial
supergroups [FCB, PVC, CPR, Terrabacteria, and Proteobacteria (25, 26)] and four archaeal supergroups [TACK, DPANN, Asgard, and Euryarchaeota (27, 28)]; only
4 out of 5 bacterial supergroups and 3 out of 4 archaeal supergroups are shown. The yellow diamond indicates LUCA as a speciation event between archaea
and bacteria. We do not assume that the LUCA coalescence timing was the same for every Pfam (29). Prior to HGT pruning, PVC sequences can be found on
either side of the two lineages divided by the root. After pruning intradomain HGT, four MRCAs are found one node away from the root, and three more MRCAs
are found two nodes away from the root, fulfilling our other LUCA criterion described in the Methods, namely the presence of at least three bacterial and at
least two archaeal supergroup MRCAs one to two nodes away from the root. (B) Criteria for pruning likely HGT between archaea and bacteria (see Materials and
Methods for details). We partition into monophyletic groups of sequences in the same supergroup; in this example, there are four such groups, representing
two bacterial supergroups and one archaeal supergroup. There is one “mixed” node, separating an archaeal group (HG1) from a bacterial group (HG2). It is also
annotated by GeneRax (19) as a transfer “T.” The bacterial nature of groups 3 and 4 indicates a putative HGT direction from group 2 to group 1. Group 2 does not
contain any Euryarchaeota sequences, meeting the third and final requirement for pruning of group 1. If neither Proteobacteria nor Euryarchaeota sequences
were present among the other descendants of the parent node, both groups 1 and 2 would be considered acceptors of a transferred Pfam and would both be
pruned from the tree. (C) Pre-LUCA Pfams have at least two nodes annotated as LUCA.
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Fig. 3. Pfams (A) and clans (B) classified as ancient are well validated by
the whole gene annotations of Moody et al. (21) (C). (A) Ancient post-LUCA
Pfam classifications include 285 LACA candidates and 2,770 LBCA candidates
(more analysis would be required to rule out extensive HGT within archaea or
bacteria). Modern Pfams are distributed among the prokaryotic supergroups
as follows: 9 CPR, 210 FCB, 942 Proteobacteria, 51 PVC, 1,111 Terrabacteria,
2 Asgard, 49 TACK, and 177 Euryarchaeota. In addition to supergroup-
specific modern Pfams, we classified another 1,097 Pfams, present in exactly
two bacterial supergroups, as modern post-LBCA. We deemed 15 Pfams
unclassifiable due to high inferred HGT rates, 397 due to uncertainty in
rooting, and 198 due to ancient rooting combined with absence from too
many supergroups (Materials and Methods). (B) Pre-LUCA clans contain at
least two LUCA-classified Pfams or one pre-LUCA Pfam, whereas LUCA clans
contain exactly one LUCA Pfam. Ancient post-LUCA clans contain no LUCA,
pre-LUCA, or unclassified Pfams; they include an ancient post-LUCA Pfam
or at least two modern Pfams covering at least two supergroups from only
one of either bacteria or archaea. Modern clans include Pfams whose root is
assigned at the origin of one supergroup. Finally, unclassifiable clans did not
meet any of our clan classification criteria, e.g., because they included both
post-LUCA and unclassifiable Pfams. (C) 98% of our pre-LUCA Pfams and 87%
of our LUCA Pfams are present in genes annotated by as present in LUCA
with more than 50% confidence, when present in their dataset. We mapped
all Clusters of Orthologous Genes (COGs) (30) in Moody et al. (Supplementary
Table 1 in ref. 21 to UniProt IDs (31) using the EggNOG 5.0 database (32). We
then identified their associated Pfams using the “Pfam-A.regions.uniprot.tsv”
file downloaded from the Pfam FTP site (https://pfam-docs.readthedocs.io/
en/latest/ftp-site.html#current-release) (24) on May 28th, 2024. Our protein
to Pfam ID mappings are available in “Protein2Domain_mappings” in ref. 33.

(4) order (P = 0.9) as predictors (weighted R = 0.48). This is
also true using Trifonov’s revised 2004 order based on 60 metrics
(50) (weighted R = 0.34, P = 0.006 on its own; P = 0.9 when
molecular weight is also a predictor of LUCA usage). This suggests
that some of Trifonov’s 40 to 60 metrics made his estimates of the
order of recruitment worse rather than better. We use enrichment
in LUCA to reclassify VGIMTAHEPC as early and depletion to
classify KSDLNRFYQW as late. More precise estimation of the
order of recruitment, with SE, is given in Table 1.

We place glutamine (Q or Gln) as the second last amino acid,
much later than Trifonov (4) inferred. Consistent with its late
addition, Gln-tRNA synthetase (GInRS) is either absent in prokar-
yotes or acquired via HGT from eukaryotes (53). Prokaryotes that
lack GInRS perform tRNA-dependent amidation of Glu mis-
charged to GIn-tRNA by GIuRS, forming Gln-acylated Gln-tRNA
via amidotransferase. The core catalytic domain (PF00587), shared
between the GInRS and GIuRS paralogs, is present in LUCA and
can indiscriminately acylate both GIn-tRNA and Glu-tRNAs with
Glu (54).

https://doi.org/10.1073/pnas.2410311121
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Fig. 4. LUCA is enriched for smaller amino acids, with subtle differences
between single-copy LUCA vs. multicopy pre-LUCA sequences. Ancestrally
reconstructed amino acid frequencies in LUCA and pre-LUCA clans are
shown relative to those in ancient post-LUCA clans. (A) LUCA clans and (B)
pre-LUCA clans are enriched for amino acids of smaller molecular weight.
Weighted model 1 regression lines are shown in black with 95% CI gray
shading. Error bars indicate SE. (C) Character colors show the assignments
of Moosmann (5); colored circles indicate our reassignments. We reclassify
F because phenylalanine is enriched in proteins in mesophiles compared to
their orthologs in thermophiles and hyperthermophiles (47). We reclassify D
because the surfaces of proteins within halophilic bacteria are highly enriched
in aspartic acid compared to in the surfaces of nonhalophilic mesophilic and
thermophilic bacteria, in a manner that cannot be accounted for by the
dinucleotide composition of the halophilic genomes (48). The brown circle
around M highlights that while methionine might not be utilized against
reactive oxygen species, it might once have been against ancient reactive sulfur
species. (D) Model 2 Deming regression [accounting for SE in both variables,
implemented in deming() version 1.4-1 (49) in blue shows that pre-LUCA
enrichments are not more extreme versions of LUCA enrichments, lying on
the wrong side of the y = x red line. We include the imidazole-ring-containing H
as aromatic. Asterisks (*) indicate statistically different amino acid frequencies
between pre-LUCA and LUCA (Welch two-sample t test, P < 0.05 and P < 0.01).

Metal-Binding and Sulfur-Containing Amino Acids Were Added
Early to the Genetic Code. Methionine (M), cysteine (C),
and histidine (H) are all enriched in LUCA, despite previous
annotation as late additions to the genetic code (Fig. 4C). C
and H are the most frequently used amino acids for binding
iron, zinc, copper, and molybdenum, and H, aspartic acid (D)
and glutamic acid (E or Glu) for binding manganese and cobalt
[Fig. 2D of (55)]. Binding can either be to a metal ion or to iron-
sulfur (FeS) clusters, the latter usually via C but sometimes via H
or D (56). Binding these transition metals is key to catalysis (57).
Fig. 44 is incompatible with C, H, D, or E being late additions,
and indeed H is more enriched than one would expect from its
molecular weight.

C and M are the only sulfur-containing amino acids in the
contemporary genetic code. Contemporary prokaryotes living in
H,S-rich environments use more C and M than matched species
(SI Appendix, Fig. S4); LUCA’s C and M enrichment might thus
reflect an environment rich in H,S.

Moosmann (5) classified M, tryptophan (W), and tyrosine (Y)
as antioxidants because he believed them to protect the overall pro-
tein structure from oxidative stress via sacrificial oxidization. For
instance, surface M residues can be reversibly oxidized to form
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methionine sulfoxide (58). This might have driven isoleucine recod-
ing to methionine in mitochondria (59, 60). However, proteins in
aerobes are enriched in W and Y but not in M (61). Our results
also separate early M from late Y and W (Fig. 4). We speculate that
methionine, abundant due to early life’s use of SAM, might have
protected against reactive sulfur species such as sulfide (S*), which
were present in early, H,S-rich environments (62). Our results are
then partially compatible with Granold et al.’s (63) view that Y and
W (but not M) were added to complete the modern genetic code
after reactive oxygen species became the main oxidizing threat.

Pre-LUCA Clans Hint at More Ancient Genetic Codes. We
expected pre-LUCA enrichments and depletions to be more
extreme than for LUCA, but only H fits this prediction
(Fig. 4D), with significantly higher frequencies in pre-LUCA
than in LUCA. There is nevertheless a strong overall correlation
between LUCA and pre-LUCA usages (R’ = 0.51, P = 0.0003).
Pre-LUCA, like LUCA, is strongly depleted in Q, supporting the
inference that Q, not Y, was the 19th amino acid recruited into
the standard genetic code. Pre-LUCA usage does not correlate
with Trifonov’s consensus order (4) (P = 0.2), and correlates
more weakly with molecular weight (Fig. 4B) (weighted R -
0.33, 2 =0.007).

H is one of six amino acids with significantly different frequencies
in pre-LUCA vs. LUCA. All three of the canonical, benzene-ring
bearing, aromatic amino acids [W, Y, and phenylalanine (F)], as

Table 1. LUCA and pre-LUCA clans’ ancestral amino
acid frequencies are divided by post-LUCA clan’s ances-
tral amino acid frequencies to produce measures of rel-
ative usage

LUCA Pre-
LUCA usage LUCA Pre-LUCA
Amino acid usage SE usage usage SE
Vv 1.12 0.0241 1.04 0.0205
G 1.1 0.0283 1.09 0.0241
| 1.1 0.0325 1.07 0.0351
M 1.08 0.0386 1.1 0.0383
A 1.07 0.0317 1.03 0.0297
T 1.07 0.0369 1.05 0.0362
H 1.04 0.0416 1.17 0.0486
E 1.03 0.0357 0.911 0.0357
C 1.01 0.0722 1.03 0.0844
P 1.01 0.0282 1.04 0.0255
K 0.974 0.038 0.901 0.0334
S 0.972 0.0265 1.02 0.0239
D 0.968 0.027 0.988 0.0363
L 0.942 0.0256 0.962 0.032
N 0.934 0.0374 0.996 0.0432
R 0.916 0.0265 0.915 0.0271
F 0.895 0.032 1.02 0.0394
Y 0.858 0.0341 0.982 0.0309
Q 0.827 0.031 0.847 0.0304
w 0.649 0.0476 0.865 0.0526

The SE of the amino acid usages were calculated using an approximation derived from a
Taylor expansion of the ratio (51). For each of the 20 ancestral amino acid frequencies, the
SE of the weighted means across all the clans within the LUCA and pre-LUCA phylostrata
(weighted by the maximum number of ancestral sites across all Pfams in a given clan)
were calculated using the weighted_se() function in the diagis R package (52). See Materi-
als and Methods for more detail.
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well as the imidazole-ring containing H, are more common in
pre-LUCA than in LUCA (Fig. 4D, Welch 2-sample ¢ test; = 0.03,
0.001, 0.03, and 0.01, respectively; 2.4% vs 2.1% H, 1.2% vs 0.9%
W, 3.1% vs. 2.8% Y, and 4.1% vs. 3.7% F). Glutamic acid (E) and
Valine (V) are less common in pre-LUCA than in LUCA (Welch
2-sample # test; P = 0.01 and 0.004, respectively; 7.3% vs. 8.2% E,
7.5% vs. 8.1% V).

More W in pre-LUCA than LUCA is particularly surprising
because there is scientific consensus that W was the last of the
20 canonical amino acids to be added to the genetic code.
Therefore, we manually inspected the pre-LUCA Pfam with the
highest tryptophan frequency (3.1%): PF00133, the core cata-
lytic domain of the tRNA synthetases of leucine (L), isoleucine
(I), and valine (V). Each of these three synthetases has
well-separated archaeal and bacterial branches, confirming its
pre-LUCA dating (S Appendix, Fig. S5). Highly conserved tryp-
tophan sites regulate the size of the amino acid binding pocket,
allowing the synthetases to discriminate among I, L, and V (64).
‘There are also conserved I and V sites in the common ancestor
of the I and V tRNA synthetases, indicating that discrimination
between the two happened prior to the evolution of the syn-
thetases currently responsible for the discrimination (65). This
suggests that an alternative, more ancient system predated the
modern genetic code, and in particular predated the evolution
of superspecific, cognate aaRSs (65).

Discussion

The evolution of the current genetic code proceeded via stepwise
incorporation of amino acids, driven in part by changes in early
life’s environment and requirements. Contemporary proteins
retain information about which amino acids were part of the code
at the time of their birth, allowing us to infer the order of recruit-
ment on the basis of enrichment or depletion in LUCA's protein
domains. Smaller amino acids were added to the code first, and
when this is accounted for, there is no further information in
Trifonov’s (4) widely used “consensus” order based on 40 metrics,
some of dubious relevance. The sulfur-containing amino acids C
and M were incorporated earlier than previously thought, likely
because those metrics included experiments conducted in the
absence of sulfur. Q was added later than previously thought, in
agreement with evidence from glutamyl-tRNA synthetases. M
and H were added to the code earlier than expected from their
molecular weights, and Q later. Even more ancient amino acid
usage, in sequences that had already duplicated and diverged pre-
LUCA, shows significantly higher frequencies of the aromatic
amino acids W, Y, E and H, and significantly lower frequencies
of Eand V.

If LUCA lived in a H,S-rich environment (62, 66), M residues
could have protected proteins against sulfur-mediated oxidative
stress. M would furthermore have had high biotic availability as
the precursor (67) and product (68) of SAM, given our finding
that LUCA made and used SAM. The potentially sulfur-rich
nature of early terrestrial life is context for astrobiology investiga-
tions of sulfur-rich environments on Mars and Europa, with asso-
ciated biosignatures key to life detection (69).

An early role for H is compatible with a key role for metal
binding in early life. It also resolves the previous puzzle that the
ancestral, conserved region of all Class I aaRSs contains a
histidine-rich HIGH motif (70, 71). The lack of abiotic availa-
bility was key to H’s previous annotation as late, but biotic avail-
ability of H in an RNA-dominant biotic context would have been
sufficient. The importance of abiotic availability (72, 73) to the
origins of the genetic code remains unclear. We note that ongoing
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research on plausible prebiotic syntheses in cyanosulfidic environ-
ments (74) and alkaline hydrothermal vents (75) is reshaping our
understanding of which amino acids were accessible to early life.
Amino acid abundances obtained from asteroid sample returns
will also soon contribute (76).

Our results offer an improved approximation of the order
of recruitment of the twenty amino acids into the genetic code
under which contemporary protein-coding sequences were
born. This order need not match the importance or abundance
with which amino acids were used by still earlier life forms,
nor during the prebiotic to biotic transition. Instead of using
Trifonov’s assignments (4) to capture the order in which amino
acids were recruited into our genetic code, we recommend
using the LUCA amino acid enrichment values plotted on the
y-axis of Fig. 44, which can be found together with their SE
in Table 1.

More broadly, coding for different amino acids might have
emerged at similar times but in different biogeochemical environ-
ments. The temporal order of recruitment that we infer based on
LUCA sequences is not the temporal order for coding as a whole,
but for the ancestor of the modern translation machinery. Indeed,
HGT of the tRNAs coupled with their cognate aminoacyl tRNA
synthetases might have brought the diverse components of the
modern translation machinery together (77). This further empha-
sizes that the time of origin of the translation machinery’s com-
ponents need not match the time of their incorporation into the
surviving ancestral lineage.

To explain the different enrichments of pre-LUCA versus
LUCA sequences, as well as the surprising conservation of some
sites prior to the emergence of the aaRSs that distinguish the
relevant amino acids, we propose that some pre-LUCA sequences
are older than the current genetic code, perhaps even tracing back
to a peptide world at the dawn of precellular life (7). Stepwise
construction of the current code and competition among ancient
codes could have occurred simultaneously (78, 79). Ancient codes
might also have used noncanonical amino acids, such as norvaline
and norleucine (80) which can be recognized by LeuRS (81, 82).
Along with having different genetic codes, we speculate that
pre-LUCA and LUCA might have existed in different geochemical
settings. For instance, if pre-LUCA ancestors inhabited alkaline
hydrothermal vents, where abiotically produced aromatic amino
acids have been found (75), this would explain their enrichment
in pre-LUCA relative to LUCA. We note that abiotic synthesis of
aromatic amino acids might be possible in the water—rock interface
of Enceladus’s subsurface ocean, which is speculated to be analo-
gous to terrestrial alkaline hydrothermal vents (83). Pre-LUCA
enrichment in the four ring-containing amino acids is interesting
because these are among the best candidates for participation in
a hypothesized early, stereochemical era of genetic code assign-
ments based on direct binding of amino acids to nucleotide tri-
plets (84).

Perhaps the biggest mystery is how sequences such as the com-
mon ancestor of L/I/V-tRNA synthetase, which were translated
via alternative or incomplete genetic codes, ended up being
recoded for translation by the direct ancestor of the canonical
genetic code. Harmonization of genetic codes facilitated innova-
tion sharing via HGT, making it advantageous to use the most
common code, driving code convergence (85, 86). Only once a
common code was established did HGT drop to levels such that
a species tree became apparent, i.e., the LUCA coalescence point
corresponds to convergence on a code (85). Our identification of
pre-LUCA sequences provides a rare source of data about early,
alternative codes.

https://doi.org/10.1073/pnas.2410311121

Materials and Methods

Pfam Sequences. We downloaded genomes of 3562 prokaryotic species
from NCBI that were present in the Web of Life (Wol): Reference phylog-
eny of microbes (87) in August 2022. We classified them into five bacterial
supergroups [FCB, PVC, CPR, Terrabacteria, and Proteobacteria (25, 26) and
four archaeal supergroups [TACK, DPANN, Asgard, and Euryarchaeota (27, 28).
We included incomplete genomes, to enhance coverage of underrepresented
supergroups.

We assign ages not to whole proteins but to each of their protein domain
constituents. We used InterProScan (88) to identify instances of each Pfam
domain (24). We excluded Pfams with fewer than 50 instances across all down-
loaded genomes. We also excluded 9 Pfams marked “obsolete” starting July
2023. Among the remaining 8,282 Pfams, 2,496 Pfams had more than 1,000
instances. We downsampled these to balance representation across the two
taxonomic domains (archaea and bacteria). For instance, a Pfam with 2,000
bacterial and 500 archaeal instances was downsampled by retaining all 500
archaeal sequences plus a subset (randomly sampled without replacement) of
500 bacterial sequences.

The Pfam database includes annotations of “clans” of Pfams that share a com-
mon ancestor despite limited sequence similarity; for many analyses, we used
clans rather than Pfams to ensure independent datapoints. We treated Pfams
that were notannotated as part of a clan as single-entry clans, with clan ID equal
to their Pfam ID.

Pfam Trees. We aligned downsampled sequences for each Pfam using MAFFT
v.7 (89), to infer a preliminary tree with 1Q-Tree (90), using a time nonreversible
amino acid substitution matrix trained on the Pfam database (NQ.PFAM) (91),
and no rate heterogeneity among sites. Because most Pfams are too short for
reliable tree inference, we next reconciled preliminary Pfam trees with the Wol
prokaryotic species tree (87) using GeneRax (19). While there is no perfect species
tree for prokaryotes, reconciliation even with a roughly approximate tree can still
provide benefits. We ran GeneRax twice. The first run used the LG amino acid
substitution model, a gamma distribution with four discrete rate categories, and
a Subtree Prune and Regraft (SPR) radius of 3.The second run used the output of
reconciled trees from the first run as input, and switched to an SPR radius of 5,
and the Q.PFAM amino acid substitution model (92), which was trained on the
Pfam dataset. We did not use NQ.PFAM because time nonreversible models are
only implemented in 1Q-Tree (91), and not in GeneRax. In both runs, we used
the UndatedDTL probabilistic model to compute the reconciliation likelihood.
The second run of GeneRax reduced estimated transfer rates by an additional
7% (Welch two-sample t test, P = 107%), indicating continued improvements
to the phylogenies.

We re-estimated the branch lengths of the reconciled Pfam trees in 1Q-Tree
using the NQ.PFAM substitution model with no rate heterogeneity, then per-
formed midpoint rooting using the phytools R package (93) on these re-estimated
branch lengths. As alternative rooting methods, we also explored and rejected
minimum variance (94), minimal ancestral deviation (95), and rootstraps based
on time nonreversible substitution models (96). The first two methods work best
when deviations from the molecular clock average out on longer timescales,
which is not true for phylogenies in which evolution, e.g. at different tempera-
tures, causes sustained differences in evolutionary rate. Indeed, minimum var-
iance failed to resolve the prokaryotic supergroups as separate clades, in visual
inspection of PF00001, due to presumed genuine rate variation among taxa. The
latter produced very low confidence roots. In contrast, midpoint rooting largely
conformed to expectations for aaRSs once we implemented the procedure for
outlier removal described under "Classifying Pfam domains into ancient phy-
lostrata” below.

We then implemented the--enforce-gene-tree-root option in GeneRax, and
ran GeneRax in evaluation mode, with Q.PFAM+G as the substitution and rate
heterogeneity models, respectively. Evaluation mode re-estimates the reconcil-
iation likelihood and the duplication, transfer, and loss (DTL) rates on a fixed
tree, without initiating a tree search. Fifteen reconciled Pfam trees had inferred
transfer rates higher than 0.6, three times the seed transfer rate implemented
by GeneRax. We took this as a sign of poor tree quality and annotated these 15
Pfams as of unclassifiable age.
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Filtering Out HGT between Archaea and Bacteria. Exclusion of HGT between
bacteria and archaea facilitates the classification of a Pfam into LUCA (Fig. 24).To
achieve this, we divided sequences into "homogeneous groups,” meaning the
largest monophyletic group in the Pfam tree for which the corresponding species
all belong to the same prokaryotic supergroup. Each homogeneous group was
considered as a candidate for exclusion, via its "focal node"” separating it from its
sister group. To avoid overpruning, we do not consider deep focal nodes that are
two or fewer nodes away from the root.

To be excluded, we first require the focal node to be mixed, meaning its
descendants are found within both Bacteria and Archaea. We next require the
focal node to be labeled by GeneRax as most likely a transfer (T), rather than a
duplication (D) or speciation (S). Finally, to identify homogeneous groups likely to
be receivers rather than the donors of transferred sequences, we require the sister
lineage to contain no sequences presentin the same supergroup as that defining
the homogeneous group in question. An example of filtering is shown in Fig. 2B.

We ran the filtering process twice to address rare occasions of an intradomain
HGT nested within another intradomain HGT group. In the second filter, we apply
the third criterion after pruning the homogenous groups identified as HGT during
the first filter.

Classifying Pfam Domains into Ancient Phylostrata. We rerooted the HGT-
pruned Pfam trees using the midpoint.root function in the "phytools” R package
(93), before classifying them into phylostrata (i.e., cohort of sequences of similar
age). Classification was based on the locations of the MRCA of each supergroup.
Fora LUCA Pfam, we require the root to separate the MRCAs of all bacterial super-
groups from the MRCAs of all archaeal supergroups (Fig. 24).

If there were no horizontal transfer, and the tree of a Pfam present in one
copy in LUCA was error-free, then the MRCAs for the nine supergroups would
be two to four branches away from the root. This is true even if our Pfam tree
and/or species tree do not correctly capture the true phylogenetic relationships
among supergroups. However, we cannot ignore HGT; we did not filter out the
products of HGT between supergroups within Archaea or within Bacteria, only
that of HGT between Archaea and Bacteria. HGT from a more derived supergroup
to a more basal supergroup will move the inferred MRCA of the former further
back in time. Given rampant HGT, whether real or erroneously implied by Pfam
tree error, we required Pfams to have their supergroups' MRCA two branches
away from the root (Fig. 24).

Phylogenies with three or more basal bacterial supergroups and two or more
basal archaeal supergroups were classified as LUCA. In other words, we allow
the absence of up to two supergroups per taxonomic domain, as compatible
with ancestral presence followed by subsequent loss. Trees with three or more
basal bacterial supergroups but fewer than two basal archaeal supergroups, as
well as trees with two or more basal archaeal supergroups but fewer than three
basal bacterial supergroups, were classified as ancient but post-LUCA. These are
candidate Pfams for the LBCA and the LACA phylostrata, respectively, but the
necessary HGT filtering for sufficient confidence in this classification is beyond the
scope of the currentwork. If only one basal supergroup is present, then the Pfam
is classified into the corresponding supergroup-specific phylostratum, meaning
it emerged relatively recently (modern post-LUCA). If two basal bacterial super-
groups (and no archaeal supergroups) were present, the Pfam was classified as
post-LBCA which was also considered modern post-LUCA (younger than LBCA
but older than the supergroup-specific phylostrata). The remaining Pfams were
considered unclassifiable.

We also classify into a pre-LUCA phylostratum the subset of LUCA-classified
Pfams for which there is evidence that LUCA contained at least two copies that
left distinct descendants. This is motivated by the assumption that LUCA domains
that were born earlier are more likely to have duplicated and diverged prior to
the archaeal-bacterial split (97). We require that both the nodes that are only
one branch from the root be classified as LUCA nodes. This means that each of
these nodes should, after HGT filtering: i) split a pure-bacterial lineage from a
pure-archaeal lineage and ii) include as descendants at least three bacterial and
two archaeal basal MRCAs no more than two nodes downstream of the potential
LUCA nodes (Fig. 2C).

Assignment of a Pfam to a phylostratum is sensitive to the root's position.
Midpoint rooting is based on the longest distance between two extant sequences.
A single inaccurately placed sequence can yield an abnormally long terminal
branch, upon which the root is then based. This phenomenon was readily
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apparent upon manual inspection of rooted Pfam trees. To ensure the robust-
ness of age classifications to the occasional misplaced sequence, we removed the
Pfam instance with the longest root-to-tip branch length in each HGT-filtered tree
as potentially faulty, recalculated the midpoint root, and then reclassified each
Pfam. We repeated this for ten iterations and then retained only those Pfams
that were classified into the same phylostratum at least 7 out of 10 times. Our
HGT filtering algorithm does not act on nodes near the root, making it robust to
small differences in root position; we therefore did not repeat the HGT filtering
during these iterations.

We classified clans that contained at least two LUCA Pfams as pre-LUCA clans.
Clans that contained both ancient archaeal and ancient bacterial post-LUCA
Pfams (i.e., candidate LACA and LBCA Pfams) were classified as LUCA. Clans that
contained at least two different archaeal but no bacterial supergroup-specific
Pfams, or three different bacterial supergroup-specific Pfams but no archaeal
supergroup-specific Pfams, were classified as ancient post-LUCA clans. Clans that
meet neither of these criteria, and that contain at least one unclassified Pfam,
were considered unclassifiable due to the possibility that the unclassified Pfam
might be older than the classified Pfams present in the clan. All other clans were
assigned the age of their oldest Pfam.

For a more stringent analysis of amino acid usage, we restrict our Pfam
dataset to those present in proteins annotated by Moody et al. (21) as >75%
likely to be in LUCA. We then reclassified clan ages. Data on the likelihood of
Pfams being presentin LUCA, as annotated by Moody etal.(21), can be found in
"MoodyPfams_probabilities.csv" on GitHub.

Ancestral Amino Acid Usages. Ancestral sequence reconstruction (ASR) can
introduce a variety of biases. ASR methods do not resolve alignment gaps well,
toinferindel evolution, instead inferring ancestral sequences far longer than any
contemporary descendant. To avoid bias among amino acids regarding which
contemporary sequences appear in the ancestral sequence more often than they
should, we retain only sites where more than 50% of the sequences contain an
amino acid (i.e., no indel). This ensures that no amino acid can be double counted.

For Pfams classified as pre-LUCA or LUCA, we require that a given site contain
anamino acid and nota gap in at least five bacterial sequences and five archaeal
sequences. This additional filter helps ensure that the ancestrally reconstructed
sites were notinserted post-LUCA (even when the Pfam itself dates back to LUCA).
It also reduces the impact of any Pfams misclassified as ancient on the inferred
ancientamino acid usage.

Following these filters, we ran the remaining sites in each Pfam alignment
(prior to HGT filtering) through 1Q-Tree with the -asr option, the NQ.PFAM sub-
stitution model, and R10 rate heterogeneity. We then excluded low confidence
sites from subsequent analyses, based on the most likely amino acid having
an ancestral probability estimate <0.4. Combined with the other two filters
described above, the concatenated sequence length forall four phylostrata (pre-
LUCA, LUCA, post-LUCA, and modern) fell by ~11%, presumably preferentially
excluding rapidly evolving sites to a similar degree in all four cases, such that
amino acid exclusion biases cancel out when ratios are taken.

We then summed over the amino acid probability distributions at each site
at the deepest node, and divided by the number of sites, to obtain per-Pfam
estimated ancestral amino acid frequencies. For each clan, we took the ancestral
amino acid frequencies across Pfams, weighted by the number of ancestral sites
in the Pfams. For each phylostratum, we averaged across clans, weighted by the
maximum number of ancestral sites across all Pfams in a given clan. We calculated
a SE associated with each phylostratum mean using the weighted_se() function
in the diagis R package (52).

We divided ancestral amino acid frequencies for the LUCA and pre-LUCA phy-
lostrata by post-LUCA ancestral amino acid frequencies to produce measures of
relative usage. SE of each of these ratios L/P were calculated using an approxi-

mation derived from a Taylor expansion of the ratio: GTLZZ + Lz;’[z (51).These
were used in weighted linear model 1 regressions, using the Im() function with
the “weights” argument in the "stats” package in base R (98). Uncertainty in the
ancestral states arising over 4 billion years of evolution is expected to bring values
of L/P closer to one, without entirely erasing the signal. As a negative control for
bias, we calculate the relative amino acid usage of post-LUCA clans by dividing
the ancestral amino acid frequencies for post-LUCA clans by the ancestral amino
acid frequencies for modern clans.

https://doi.org/10.1073/pnas.2410311121
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SE in Trifonov's (4) average rank reflect but underestimate uncertainty; we
therefore treat Trifonov's (4) rankings as the dependent variable and use its
weights rather than errors on L/P to weight the regression model in Fig. 4C.
SE are not available for alternative results based on Trifonov's 2004 order (50).

Hydrophobic Interspersion. The degree to which hydrophobic are clustered
vs. interspersed along the primary sequence was calculated as a normalized
index of dispersion for each Pfam instance (44). This metric uses the ratio of
the variance to the mean in the number of the most hydrophobic amino acids
(leucine, isoleucine, valine, phenylalanine, methionine, and tryptophan) within
consecutive blocks of sixamino acids. The values of this index of dispersion were
then normalized, to make them comparable across Pfams with different lengths
and hydrophobicities. In cases where the Pfam length was not a multiple of 6,
the average across all possible 6-amino acid frames was computed, trimming
the ends as needed. For additional details, see Foy et al. (45) or James et al.
(14). For each Pfam, we then took the average across all its instances (prior to
downsampling species).

Transmembrane Annotation. We identified transmembrane sites within each
Pfam using DeepTMHMM (99) on a consensus sequence generated from the
original multiple sequence alignments (prior to HGT filtering) using the majority-
rule seq_consensus() function in the R package "bioseq” (100).
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