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Significance statement

According to the nearly neutral theory of molecular evolution, selection is less able to distinguish
between similar alleles in species with lower population size. We identify which amino acids are
subject to such weak preferences — these tend to be less costly to make, to use GC-rich codons
easily destroyed by mutation, and to be enriched in thermophiles relative to mesophiles. The latter
agrees with theories of marginal protein stability under mutation-selection-drift balance.

Abstract

Nearly neutral theory predicts that species with higher effective population size (N.) are better at
purging slightly deleterious mutations. We compare evolution in high-N. vs. low-N. vertebrates to
reveal subtle selective preferences among amino acids. We take three complementary approaches.
First, we fit non-stationary substitution models using maximum likelihood, comparing the high-N.
clade of rodents and lagomorphs to its low-N. sister clade of primates and colugos. Second, we
compared evolutionary outcomes across a wider range of vertebrates, via correlations between
amino acid frequencies and N.. Third, we dissected which amino acids substitutions occurred in
human, chimpanzee, mouse, and rat, as scored by parsimony — this also enabled comparison to a
historical paper. All methods agree on amino acid preference under more effective selection.
Preferred amino acids are less costly to synthesize and use GC-rich codons, which are hard to
maintain under AT-biased mutation. These factors explain 85% of the variance in amino acid
preferences. Parsimony-induced bias in the historical study produces an apparent reduction in
structural disorder, perhaps driven by slightly deleterious substitutions in rapidly evolving regions.
Within highly exchangeable pairs of amino acids, arginine is strongly preferred over lysine,
aspartate over glutamate, and valine over isoleucine, consistent with more effective selection
preferring a marginally larger free energy of folding. Two of these preferences (K—R and [-V),
but not a third (E—D) match differences between thermophiles and mesophilic relatives. These
results reveal the biophysical consequences of mutation-selection-drift balance, and demonstrate
the utility of nearly neutral theory for understanding protein evolution.

Introduction

Tomoko Ohta (1973) proposed that there is evolutionarily significant variation among
species in the ability of selection to purge weakly deleterious mutations. According to Ohta’s
nearly neutral theory of evolution, species with small “effective population sizes” (Ne) are less able
to purge slightly deleterious mutations and will thus retain more of them. By estimating N. from
neutral genetic diversity, Lynch and Conery (2003) used the nearly neutral theory to explain why
species with smaller effective population sizes have more bloated genomes. Species with larger
effective population sizes also show stronger synonymous codon usage bias due to selection
(Akashi, 1996; Galtier et al., 2018; S. Subramanian, 2008; Weibel et al., 2024). Here we ask
whether differences among species in amino acid frequencies can similarly be explained by the
nearly neutral theory of evolution, and if so, what this tells us about the biophysical basis of
intrinsic selective preferences.
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63 We use three complementary approaches to test, for the first time, whether differences
64 among species in the effectiveness of selection can predict amino acid frequencies. First and
65 primarily, we fit non-stationary amino acid substitution models on the basis of maximum
66 likelihood (ML). This is a major departure from assumptions of stationarity built into most models
67  of amino acid substitution (Bui et al., 2021; Dang et al., 2022; Le et al., 2012; Le & Gascuel, 2008;
68  Whelan & Goldman, 2001). To reduce the number of fitted parameters, we hold the
69  exchangeability matrix constant at previously estimated values (Qmammal; Bui et al., 2021), while
70  fitting different equilibrium amino acid frequencies for different parts of the tree (Supplementary
71 Figure 1). We fit all 20 amino acid frequencies, going beyond previous work that allowed variation
72 in only one (Mufloz-Gomez et al., 2022) or two (Groussin et al., 2013) parameters to summarize
73  changing amino acid frequencies. We are able to get all amino acid frequencies because the
74 cogent3 code base (Kaehler et al., 2015; Schranz et al., 2008; Verbyla et al., 2013) enables us to
75  group branches together, avoiding the need to estimate 19 free parameters for every branch. We
76  then compare the fitted equilibrium amino acid frequencies within high-N, (Phifer-Rixey et al.,
77  2012) Glires branches (including both Rodentia and Lagomorphs) to those within low-N. (Tenesa
78 et al., 2007) Primatomorpha branches (including Primates plus colugos). A difference in the
79  effectiveness of selection between these two sister clades is well supported (Edry et al., 2010;
80  Halligan et al., 2010; Keightley et al., 2005), and genome data is high-quality.
81
82 Second, we look at a broader species range (all vertebrates), to confirm that results from
83  our substitution model method are driven by N, rather than by other idiosyncrasies of Glires and/or
84  Primatomorpha biology. We examine whether current proteome-wide amino acid frequencies are
85  correlated with N.. We quantify N, using a recently developed metric, the Codon Adaptation Index
86  of Species (CAIS; Weibel et al., 2024). CAIS captures the fraction of synonymous sites within the
87 genome for which selection is able to overcome drift. Because the distribution of selection
88  coefficients is likely to be similar for different vertebrate species, CAIS estimates N.. CAIS uses
89  Kullback-Leibler divergence to quantify the degree to which codon bias departs from that expected
90 from the %GC content of the species. It is calculated with respect to a standardized set of amino
91 acid frequencies and therefore, by construction, also avoids confounding with amino acid
92  frequencies. Weibel et al. (2024) found that high-CAIS species have higher proteome-wide
93 intrinsic structural disorder, demonstrating the metric’s utility for revealing how the effectiveness
94  of selection shapes fundamental physical properties of macromolecules. Conveniently, CAIS
95  requires only a single complete genome for its estimation, unlike traditional N, estimates which
96  require data on polymorphisms and mutation rate. CAIS directly measures the property of interest,
97 namely the degree to which weak selection is able to exert subtle selective preferences within a
98  species.
99

100 Third, noting that our ML method only captures net amino acid frequency change, we use

101  parsimony to count instances of change, to determine which amino acid pairs obey detailed balance

102  vs. contribute to overall amino acid frequency change. This parsimony approach is also partially

103  motivated by resolving a historical controversy, after Jordan et al. (2005) used a similar approach

104  to claim universal patterns of amino acid gains and losses across the tree of life, dating back to the

105  origins of the genetic code.

106

107 The findings of Jordan et al. (2005) were subject to intense criticism on three counts. First,

108 the method assumed that all derived alleles were substitutions, when some instead could be
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109  polymorphisms — many of them slightly deleterious — segregating in the population (Hurst et al.,
110  2006; McDonald, 2006). Our analysis filters out polymorphic sites to obtain a dataset of true
111  substitutions (Figure 1A), something it was not possible to do at the time Jordan et al. (2005) was
112 published. Removing contamination by slightly deleterious polymorphisms should better reveal
113  any true universal trends. To ensure the availability of polymorphism data, we restrict our analysis
114  to two pairs of sister species. We compare recent fluxes in the primates Homo sapiens and Pan
115  troglodytes to a shared set of sequences in the rodents Rattus norvegicus and Mus musculus.

116

117 A second potential problem with this parsimony-based method is that even a set of true
118  substitutions will be enriched for slightly deleterious substitutions (McDonald, 2006). This is
119  because the brevity of their fixed status makes them more likely to survive ascertainment bias
120  when in the derived state than when in the ancestral (Figure 1B). According to this argument,
121 removing slightly deleterious polymorphisms should retain the direction of flux while reducing its
122 magnitude; slightly deleterious polymorphisms should mirror slightly deleterious fixations. A
123 similar argument applies with respect to equilibrium amino acid frequencies; a rare amino acid is
124  comparable to a deleterious allele (McDonald, 2006), explaining earlier, similar results by
125  Zuckerkandl et al. (1971), who observed an apparent increase in rare amino acids.

126

127 Goldstein and Pollock (2006) noted a third artifact that depends on the pattern of branch
128  lengths, combined with rate heterogeneity (Figure 1C). In their simulations, the length of the
129  branch between sister species relative to their branch with the outgroup affected which types of
130  substitutions were parsimony-informative and thus detectable. This bias in detection can produce
131 the appearance of strong net flux, even in simulations of a stationary and time-reversible model of
132 protein evolution, for which net flux is by definition zero. Because Jordan et al. (2005) selected
133 their triplets of species on the basis of similar branch length patterns (sister taxa pairwise amino
134  acid divergence <15%, outgroup <25%), as do we, the same branch-length artifact will appear
135  within any trends shared across different species triplets. Our approach is to statistically
136  differentiate taxonomically specific patterns in flux from “shared flux” values that capture both
137  this artifact and that from slightly deleterious fixations, as well as any true universal trends.

138
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140  Figure 1: Artifacts of the parsimony net flux method and our approaches to them. Every color

141  change along a branch represents a substitution at a focal site. (A) We removed polymorphisms.
142 (B and C) Deleterious substitutions and branch length issues are expected to affect rodent and
143 primate branches similarly. We therefore subtracted flux that was seen in both rodent and primate
144  branches, leaving a metric that describes how rodent flux differs from primate flux (Figure 3C).
145  V—Cis used as an example of a slightly deleterious mutation prone to reversion, while V—L and
146 VS are used as examples of effectively neutral substitutions. On the left side of (C), when sister
147  branch lengths are short, there will be greater sampling of fast-evolving sites, and when sister
148  branch lengths are long, it is easier to detect slow-evolving sites, because they are less prone to
149  multiple events, both within the long sister branches and in the still longer outgroup branch.

150

151 Here we fit non-stationary models of amino acid evolution to discover which amino acids
152  are favored by weak selection that is effective only in higher N. species. We compare to parsimony-
153  based results to resolve a historic controversy, and to obtain a detailed picture of which amino acid
154  substitutions contribute to the non-stationarity. We confirm these flux results across a broader
155  taxonomic range by describing how amino acid frequency outcomes correlate with Ne.

156

157  Results

158  Low N, results in costly amino acids produced by mutation bias

159 Cheaper (Figure 2A, Pearson’s R?=0.76, p = 7x107) amino acids are at higher equilibrium
160  frequencies in the higher N. clade, according to our maximum likelihood method. GC-rich amino
161  acids are also retained to a greater degree under more effective selection (Pearson’s R? = 0.40, p =
162  0.003). The latter is consistent with greater effective selection being necessary to overcome the
163  pervasive AT bias of mutation (Haag-Liautard et al., 2008; Hershberg & Petrov, 2010; Lynch,
164  2010; Lynch et al., 2008), including but not limited to methyl-cytosine deamination, which makes
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165 theretention of GC-rich amino acids difficult (although GC-biased gene conversion might partially
166  counter this). GC-rich amino acids are also favored in highly expressed (R?=0.27, p=0.02; Jansen
167 & Gerstein, 2000) and slowly evolving (R? = 0.20, p = 0.05; Cherry, 2010) proteins. However,
168  across all 20 amino acids, we do not find a significant correlation between our ML equilibrium
169  difference scores and these papers’ estimates of amino acid enrichment as a function of expression
170  or evolutionary rate.

171

172 We expect a stronger mutation bias toward AT (and/or weaker counteracting GC-biased
173  gene conversion in low-recombination genomic regions) to create a stronger relationship between
174  an amino acid having GC-rich codons and being used more by higher N. species. Indeed, as shown
175 in Supplementary Figure 2, the relationship is stronger when we analyze only the third of genes
176  with the lowest %GC at synonymous sites in humans (0.21 < synonymous GC < 0.43, Spearman’s
177 R? = 0.47), than in the middle quantile (0.43 < synonymous GC < 0.54, R? = 0.44) or high-GC
178  quantile (0.54 < synonymous GC < 0.90, R* = 0.31). It is notable that the direction of the
179  relationship does not flip, but only weakens, when the analysis is restricted to high-GC genes. This
180 is compatible either with high-GC amino acids being intrinsically superior, or as discussed in
181  Weibel et al. (2024), that local GC content is less informative than global GC content, because
182  local GC content changes rapidly relative to the amino acid biases studied.

183

184 Other predictors of equilibrium frequency differences are significant on their own but drop
185  out of multiple regression models. Most notably, the degree to which an amino acid promotes
186  structural disorder is predictive on its own (Figure 2C, Pearson’s R? =0.57, p = 0.0001), but drops
187  out of a multiple regression (R? = drops from 0.88 to 0.85 when disorder is removed; p = 0.09 in
188  multiple regression, disorder slope falls from 0.48 to 0.14 in single vs. multiple regression) that
189  retains cost (p = 0.0002, slope drops in magnitude from -0.008 to -0.006) and %GC (p = 0.009,
190  slope falls from 0.47 to 0.21). Disorder is confounded with cost (Pearson’s R? = 0.48, p = 0.0007),
191  making causation hard to pin down.

192

193 Similarly, amino acids preferred in the higher N, clade also tend to have smaller volume
194  (Pearson’s R? = 0.57, p = 0.0001), to be dietarily non-essential for animals (using Costa et al.,
195  2015’s conservative list of essential amino acids) (Figure 2A; t-test p = 0.02), and to have
196  somewhat lower “stickiness,” an empirical measure of an amino acid’s tendency to be in protein-
197  protein interfaces rather than in non-interface surfaces (Pearson's R = 0.36, p = 0.005; Levy et al.,
198  2012) and higher polarity (Pearson’s R*=0.29, p=0.01). They have more positive marginal fitness
199  effects when expressed as part of a random peptide in the Escherichia coli experiments of Neme
200 et al. (2017), as inferred by Kosinski et al. (2022) (Pearson’s R> = 0.39, p = 0.003), as expected
201 given the dependence of these marginal fitness effects on size and disorder, both predictive of
202  themselves. These variables drop out of multiple regressions that also have cost as an independent
203  variable, but because they are also confounded with cost, this does not indicate that they are not
204  causal with respect to selection. Nevertheless, the strongest statistical support is for weak selection
205  against more expensive amino acids.

206
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208  Figure 2: The amino acids preferred in Glires vs. Primatomorpha evolution are cheaper, higher
209  %GC, and more prone to structural disorder. The y-axis “Frequency difference (ML)” indicates
210  equilibrium logit(Glires frequencies) — logit(Primatomorpha frequencies) estimated under a non-
211  stationary model of amino acid substitution (numbers in Supplementary Table 1). This model was
212 fitted by maximum likelihood to an aligned set of orthologs, with one set of equilibrium amino
213 acid frequencies fitted to branches within a clade of 12 Glires species, another to branches within
214  a sister clade of 16 Primatomorpha species, and a third to their shared root (see Methods). The
215  time-reversible exchangeability matrix (Q.mammal; Bui et al., 2021) was held constant. Error bars
216  show + 1 standard error; R and p-values on figure panels are for Pearson’s R correlation. (A)
217  Biosynthetic cost in Saccharomyces cerevisiae under aerobic conditions, as a count of high-energy
218  phosphate bonds (Raiford et al., 2008); we obtain similar R? = 0.77 and p = 4x107 for aerobic cost
219  ona linear scale. Colors show essentiality in animals (Costa et al., 2015). (B) Disorder propensity
220  (Theillet et al., 2013). (C) %GC, calculated as average %GC for each amino acid’s set of codons
221  in the standard genetic code.

222
223 Parsimony fluxes shared by rodents and primates are likely driven by artifact
224 According to our parsimony method, mice and rats have very similar net amino acid fluxes

225  to each other (Supplementary Figure 3), as do humans and chimpanzees. This is expected, since
226 %GC content, effective population size, and many other possible influences are similar within
227  each closely related species pair. We therefore calculated “rodent” flux values by combining the
228 amino acid gain and loss counts for mouse and rat branches, and “primate” flux values by
229  combining the counts for human and chimpanzee branches (numbers in Supplementary Table 2).
230

231 While our rodent and primate net fluxes are similar to those of Jordan et al. (2005), they
232 are generally of smaller magnitude, particularly in primates (Figures 3A and 3B). We interpret this
233 as a weaker version of the same bias toward slightly deleterious mutations within our fluxes
234 compared to those of Jordan et al. (2005). As discussed in the Introduction (Figure 1B), fixation
235  events scored by parsimony are also expected to be biased toward slightly deleterious mutations.
236 This is because slightly deleterious mutations might sometimes reach fixation but will revert
237  relatively quickly to a less deleterious state along subsequent branches, and therefore will be scored
238  incorrectly.

239

240 The main difference between our method and that of Jordan et al. (2005) is that we exclude
241 polymorphisms. Our primate species pair is more closely related than our rodent species pair, i.e.
242 it has fewer true substitutions. If we assume similar levels of polymorphisms in both, the smaller
243 true divergence in primates means that removing polymorphism has a proportionately larger

6
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244 impact on primate fluxes than rodent fluxes. This is compatible with the observed greater deflation
245  in net flux magnitudes that we see for primates (Figure 3A) than for rodents (Figure 3B).
246
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247
248  Figure 3: Removing polymorphisms reduces the magnitude of parsimony flux, especially for

249  primates (A and B). Net fluxes depend less on taxon when calculated by parsimony (C) than by
250 maximum likelihood (D). The parsimony-based net flux for each amino acid = (# gains — # losses)
251  / (# gains + # losses), making values greater than 0 indicate a tendency towards gain. Error bars
252  show = 1 standard error; R? and p-values on figure panels are for Pearson’s R correlation. (A and
253  B) Black diagonal lines show y = x, shaded areas show sign reversal. (C) Red line shows the fit of
254  atype II linear regression (y = 0.664x — 0.0154). Shared flux and flux difference are calculated
255  from this regression line, as discussed in the main text.

256

257 Remaining artifacts in our polymorphism-free version of the parsimony method should be
258  shared between rodents and primates (in addition to true universal trends, if any). In contrast,
259  differences in net parsimony fluxes may reflect the more effective selection in rodents relative to
260 the mutation bias that overwhelms selection in primates. By statistically isolating shared vs.
261  species-specific patterns in flux, any universal trend or artifact should be reflected in the shared
262  component, while the species-specific component will allow us to estimate the degree to which
263  each of the 20 amino acids is favored vs. disfavored in more effectively adapted rodents relative
264  to less well adapted primates. To do this, we fit a type-II linear regression model (Figure 3C, red
265 line) and calculated the projection along the model line (“shared flux™) for each amino acid, as
266  well as the shortest distance from that line (“flux difference”). The shared component thus reflects
267  fluxes that are common to both rodents and primates, and the flux difference reflects subtle
268  differences between the patterns of fluxes in the two groups. The sign we give to the flux difference
269 allows it to be interpreted as a rodent-driven component, i.e., a positive value indicates that the
270  amino acid is gained in rodents to a greater degree (or lost to a lesser degree) than in primates.
271

272 As expected for a successful partition, the shared component of parsimony fluxes has a
273  strong positive relationship with Jordan et al.’s (2005) average flux (Figure 4A), while the flux
274  difference component has none (Pearson’s R? = 0.03, p = 0.4). Results are similar albeit slightly
275  weaker for Jordan et al.’s (2005) more complex gain/loss rate metric. Shared flux captures the gain
276  of lower-frequency amino acids (Figure 4B) expected from regression to the mean, as observed by
277  Zuckerkandl et al. (1971).

278

279 Jordan et al. (2005) claimed that the universal trend represented the slow gain of amino
280 acids added late to the genetic code. We find the same relationship between shared flux and a
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281  hypothetical order of amino acid recruitment into the genetic code from Trifonov (2000; Pearson’s
282  R%?=0.24, p = 0.03) that Jordan et al. found for their universal trend. However, when we used the
283  revised order of amino acid recruitment inferred by Wehbi et al.’s (2024) “LUCA usage”, we find
284  no correlation with the results of Jordan et al. (2005), nor with our shared flux (p = 0.7 for both,
285  weights based on standard errors on LUCA usage). This is unsurprising given that not all protein-
286  coding sequences can be traced back through recognizable sequence homology to the early days
287  ofthe genetic code (James et al., 2021; Van Oss & Carvunis, 2019; Wehbi et al., 2024).

288
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290  Figure 4: The slightly deleterious mutations artifactually captured by the parsimony method tend
291  to reduce intrinsic structural disorder. (A) Jordan et al. (2005) capture something similar to our
292 shared flux metric. (B) Shared flux describes an increasing frequency of low-frequency amino
293 acids. Frequency is measured as the average of human and chimpanzee amino acid frequencies,
294  with similar results (Pearson’s R? = 0.30, p = 0.01) for the average of mouse and rat amino acid
295  frequencies. (C) Shared flux describes substitutions that reduce structural disorder. Disorder
296  propensities of amino acids were measured by Theillet et al. (2013) on the basis of
297  overrepresentation in disordered vs. well-folded proteins and protein regions. Error bars show + 1
298  standard error; R? and p-values on figure panels are for Pearson’s correlation.

299
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300 If the shared flux reflects the slightly deleterious substitutions artifact of Figure 1B, we
301  expect it to correlate with markers of being slightly deleterious from Figure 2, in particular cost
302 and %GC. However, shared flux does not predict cost or %GC, and a correlation between a marker
303  of being slightly deleterious and primate-specific flux could cause an artifact from Jordan et al. to
304 fail to load onto shared flux.

305

306 Shared flux does describe decreasing disorder (Figure 4C; Pearson’s R? = 0.62, p = 4x10-
307 ), and the related measures of increasing stickiness (Pearson’s R? = 0.40, p = 0.003), increasing
308 mean relative solvent accessibility (RSA) (Pearson’s R? = 0.37, p = 0.004; Tien et al., 2013), and
309 increasing polarity (R? = 0.31, p = 0.01). We turn then to the more subtle branch length
310 ascertainment bias illustrated in Figure 1C. If the shared component of parsimony flux
311  preferentially represents fast-evolving sites (Figure 1C), we note that these are enriched in
312 disordered regions, where slightly deleterious mutations will tend to decrease disorder through
313  regression to the mean. The fact that Jordan et al.’s average flux corresponds to falling disorder is
314  thus consistent with the artifact of Figure 1C, or with synergy between the two artifacts of Figures
315 1Band 1C.

316
317  Three methods agree on which amino acids are preferred by selection
318 The slopes of amino acid frequencies as a function of effective population size

319  (Supplementary Table 3) describe outcomes rather than fluxes, across a larger range of vertebrate
320  species. We use the Codon Adaptation Index of Species (CAIS) to measure effective population
321  size, capturing the proportion of codons subject to effective selection, while controlling for GC
322 and amino acid frequencies (see Methods). Supplementing the among-species evidence for the
323  species-wide CAIS measure given by Weibel et al. (2024), we show in Figure 5 that CAIS, when
324  measured for genes rather than species, correlates better with the expression level of highly
325  expressed genes than does the more commonly used Codon Adaptation index (CAI; Sharp et al.,
326 2010; Sharp & Li, 1987).
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329 Figure 5: The CAIS of highly expressed mouse genes is better predicted by expression level than

330 the CAl is. Generalized additive models (gray line; R function geom_ smooth) were fit in order to visually
331  determine a threshold for high expression (10'~), above which a linear model (black line) was fit. Pearson’s
332 R?and p values are shown for the linear model.

333

334 Our three different metrics of selective preferences among amino acids are in good
335 agreement (Figure 6). They also reveal selective preferences between biophysically similar and
336  highly exchangeable amino acids (pairs joined by arrows in Figure 6, discussed in detail below).
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337  Our CAIS-based vertebrate preference measure will tend, by construction, to amplify selective
338  preferences between similar amino acids, accounting for the steepness of the slopes of these lines
339 in Figure 6B, which reduces Pearson’s R?.

340

341 As is the case for our main metric of selective preference (ML equilibrium frequency
342  difference; discussed above), codon %GC predicts parsimony flux difference (Pearson’s R?>=0.23,
343  p=0.03) and preference in vertebrates (Pearson’s R? = 0.69, p = 5x10°). Preference in vertebrates
344 s also predicted by mean entropic penalty of folding (Pearson’s R? = 0.23, p = 0.03; Doig &
345  Sternberg, 1995) and marginal fitness in E. coli (Pearson’s R? = 0.38, p = 0.004). However, the
346 latter is only explained by Kosinski’s model residuals (Pearson’s R? = 0.22, p = 0.04) — unlike ML
347  frequency difference, neither preference in vertebrates nor parsimony flux difference is
348  significantly predicted by cost or %GC. These results are consistent with our ML measure being
349  superior to the other two, but given broad agreement, we nevertheless use the other two metrics to
350  conduct follow-up analyses not easily possible via ML.
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353  Figure 6: Three distinct methods with different biases recover similar selective preferences among
354  amino acids. “Preference in vertebrates” indicates slopes from linear regressions of amino acid
355  frequency on CAIS. “Flux difference (parsimony)” indicates the shortest distance of an amino acid
356  to the model II fit shown in Figure 2. “Frequency difference (ML)” indicates logit transformed
357  equilibrium Glires frequencies — logit transformed equilibrium Primatomorpha frequencies
358 estimated under a non-stationary model of amino acid substitution. Error bars show + 1 standard
359  error; R? and p-values are for Pearson’s correlation. Connected pairs are biophysically similar,
360  highly exchangeable amino acids for which all metrics show a marked preference in the same
361  direction.
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362
363  Different kinds of protein domains have mostly similar amino acid preferences
364 Applying our CAIS method separately to subsets of the data shows that vertebrate amino

365 acid preferences are similar in ancient vs. recently born Pfam (Mistry et al., 2021) domains (Figure
366  7A). Partial exceptions are preferences against lysine and glutamic acid, and preferences for
367 leucine and glycine, both of which are stronger in young than in old Pfams. Transmembrane vs.
368 non-transmembrane domains also have similar amino acid preferences, despite operating in
369  different biophysical contexts (Figure 7B). However, there are minor differences between the two
370  with respect to the strength of preferences for leucine, valine, glycine, and arginine. In high CAIS
371  species, transmembrane proteins also avoid phenylalanine more strongly than non-transmembrane
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372  domains do, consistent with its role in increasing both membrane permeability and heteromeric
373  interactions in transmembrane domains (Kwon et al., 2016; Perkins & Vaida, 2017).
374
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376  Figure 7: Vertebrate amino acid preferences (from our CAIS method) are similar in different
377  groups of protein domains. Error bars show + 1 standard error; R? and p-values on figure panels
378  are for Pearson’s correlation. Domain ages were taken from James et al. (2021), in which Pfam
379 domains were assigned a date of evolutionary origin using TimeTree (Kumar et al., 2017). (A)
380  Vertebrate protein domains that emerged prior to the last eukaryotic common ancestor (LECA) are
381  categorized as “old”, and protein domains that emerged after the divergence of animals and fungi
382  from plants as “young”. (B) Transmembrane vs non-transmembrane status was determined by
383  James et al. (2021) using the program tmhmm (Krogh et al., 2001). In both panels, the black y=x
384 lines indicate equal effects in the two sets of Pfam domains. Presence in an off-diagonal, shaded
385 quadrant indicates that an amino acid trend has different signs for the two subsets of the data. Error
386  bars indicate +/- one standard error.

387
388  Marked preferences between evolutionarily exchangeable pairs of amino acids
389 Selection on subtle differences between similar amino acids may be informative regarding

390 the biophysics of what is preferred. We selected amino acid pairs that have exchangeability values
391 > 2 in the long-timescale BLOSUMG62 matrix, > 1 in the short-timescale BLOSUMO90 matrix
392  (Henikoff & Henikoff, 1992), and > 1 in the short-timescale PAM60 matrix (Dayhoff, 1972).
393  These pairs are [R,K], [V.,I], [D,E], [Q,E], [Y,F] and [M,L]. We further focus on the three pairs for
394  which our three methods agree on the direction of preference: [R,K], [D,E], and [V,I]. These pairs
395 are connected by grey lines in Figure 6. In all three cases, the CAIS method amplifies the subtle
396  difference within the pair to reveal a substantial preference, while the substitution model shows a
397 difference of smaller magnitude. In all three cases (structures shown to the left of Figure §), the
398  side chain of the preferred amino acid has fewer degrees of rotational freedom, a biophysical
399  difference known to impact protein stability (Cupo et al., 1980; Tang & and Dill, 1998).

400

401 In the Figure 8 clamshell diagrams, we use the parsimony method to display net flux within
402  these pairs, and from each member of the pair to the other 18 amino acids. Considering first the
403  preference of arginine (R) over lysine (K), we note that these are the only two amino acids with
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404  sidechains that are positively charged at neutral pH. Both amino acids are basic and aliphatic, with
405  positively charged functional groups on an alkyl side chain, and both form salt bridges and other
406  non-covalent interactions in protein tertiary structure. The parsimony flux data shows not only that
407  rodents gain R and lose K, but more specifically that K residues are replaced with R (Figure 8A
408 left clamshell). Out of all ancestral rodent K residues that we observed substitutions away from,
409  48% became R (1452 of 3037 ancestral Ks), and 35% of derived rodent R residues came from K
410 (1452 of 4126 derived Rs). This pattern is also found to a lesser degree in primates (113 of 526
411 and 705, or 21% and 16%, respectively; Figure 8A, right clamshell). Data can be found in
412 Supplementary Table 4.

413

414 Chemical differences between the two otherwise similar amino acids may explain the
415  preference — K has the largest median hydrophobic water-accessible surface area in folded
416  proteins, much larger than R (47 vs. 20 A%; Lins et al., 2003). In other words, at sites where an
417  exposed K residue is replaced by an R, the exposed hydrophobic surface area is likely to be greatly
418  reduced. This may increase the marginal stability of the folded protein. In further support of
419  selection for stability, R can form more hydrogen bonds than K, which could have stabilizing
420  effects enthalpically in the formation of secondary and tertiary structure, and entropically in the
421  ordering of water molecules at the protein’s surface. Taking into account protein interactions rather
422  than folding alone, we note that K is underrepresented in protein-protein interfaces relative to non-
423  interface surfaces (Levy et al., 2012), while R is about equally likely to be in either. Similar
424  considerations might also apply to protein-lipid and protein-nucleic acid interactions. Interface
425  effects may explain the paucity of X—K substitutions: introducing K can destroy an interface and
426  thus be strongly deleterious. X—R substitutions might be far more numerous because R is tolerated
427  equally well in multiple contexts.

428

429 Between the two amino acids that are negatively charged at neutral pH, aspartate (D) is
430  preferred over glutamate (E), with E—D substitutions again the predominant net flux in rodents
431  but not primates (Figure 8B). Both amino acids bear a carboxylic acid functional group on alkyl
432 chains of different lengths, and like R and K, both form non-covalent interactions such as salt
433  bridges in protein tertiary structure. Like K—R substitutions, E—D substitutions entail a large
434  reduction in hydrophobic surface area (20 — 11 A?). E—D substitutions also reduce the site’s
435  contribution to the entropic penalty of protein folding (-1.46 — -0.78 kcal/mol; Doig & Sternberg,
436 1995).

437

438 The small hydrophobic amino acid valine (V) is preferred over isoleucine (I), with [-V
439  substitutions again the predominant net flux in rodents but not primates (Figure 8C). Isoleucine is
440  very harmful in random peptides in E. coli (Kosinski et al., 2022), where it is more than twice as
441  deleterious as the next most harmful amino acid. V and I have similar median hydrophobic surfaces
442  areas (5 and 4 A2, respectively). However, V side chains have a smaller entropic penalty upon
443  protein folding than I or the structurally similar alternative, L (-0.43 vs. -0.76 vs. -0.71 kcal/mol).
444  Such a small but fundamental effect on stability, given other similarities, could explain the
445  preference for V as an alternative to 1.

446

447 We note that in both [R,K] and [V,]I] pairs, the less-preferred amino acid has an A or T
448  nucleotide whereas the more-preferred one has a G or C (although [D,E] has evenly balanced
449  %GC). Rodents have slightly higher %GC than primates (42% vs. 41%; Weibel et al., 2024), so if
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450  the corresponding shift in mutation bias is still in process of shifting amino acid frequencies, a
451  recent increase in %GC could contribute to preferences between similar amino acids inferred from
452  flux. However, we observed the same preferences using our CAIS approach, which is corrected
453  for %GC.

454

455 To better understand the effects of mutation bias, we note that they should be most
456  pronounced at CpG sites. Four of the six R codons start with a CpG. C—T deamination at the first
457  position would yield a cysteine (C), tryptophan (W), or stop codon, none of these being aligned
458  with the direction of selective preference. In agreement with an expected greater relative role for
459  mutation bias over selection in low N, species, we see more frequent R—C and R—W
460  substitutions in the raw primate parsimony flux data than in the rodent (Supplementary Table 5).
461 T—>M, A—V, P-L, and S—L can also result from CpG deamination, and of these, T—M and
462 P—L are both more common in primates than in rodents, and both are counter to selective
463  preference (supported by all three metrics in Figure 6). There is no preference for A vs. V or S vs.
464 L under more effective selection, and these CpG substitutions are more common in rodents than
465  in primates. This demonstrates that although methyl-cytosine deamination at CpG sites is a
466  pervasive mutational force regardless of the effectiveness of selection, more effective selection is
467  needed to prevent the fixation of less-preferred amino acids resulting from CpG mutations.

468
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Rodent Primate

A. lysine to
arginine
substitutions

B. glutamic
acid to
aspartic acid
substitutions

C. isoleucine
to valine
substitutions

469
470  Figure 8: Net substitutions involving biophysically similar pairs of amino acids in rodent and

471  primate lineages. Arrows represent all net substitutions involving (A) K and R, (B) E and D, or
472 (C) I and V. Edge weights represent net flux between each pair (i.e. the number of K—R
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473  substitutions minus the number of R—K substitutions), normalized according to the total number
474  of substitutions in that species pair (52,431 for rodents and 9,313 for primates). To give a sense of
475  scale, in rodents there is 1 net substitution from K to V, 179 from Q to R, and 793 from K to R. In
476  primates there is 1 net V—K substitution, 9 Q—R, and 57 K—R. Colors are for visual aid only
477  and represent amino acid chemical properties: hydrophobic amino acids are blue, positively
478  charged are red, polar non-charged are pink, negatively charged are gold, and other, “special case,”
479  amino acids are charcoal. Note that the time non-reversibility shown should not be taken as a
480  representation of the non-stationary amino acid frequencies — departures from stationarity are
481  represented in Figure 6.

482
483  Discussion
484 Cheaper amino acids are selected for under higher N,. Retaining amino acids that require

485  high GC, in the face of AT-biased mutation, also requires high N,. There are particularly striking
486  preferences between highly exchangeable pairs of amino acids, with high N, species preferring
487  arginine over lysine, aspartate over glutamate, and valine over isoleucine. We find similar
488  preferences in old vs. young and in transmembrane vs. non-transmembrane protein domains.

489

490 We used three complementary methods: two capturing amino acid composition evolution
491  between rodents vs. primates (based on maximum likelihood and on parsimony), and one capturing
492  amino acid frequency outcomes in a broader range of vertebrate species (based on correlation with
493  codon adaptation as a metric of N,, a metric for which our Figure 5 analysis provides additional
494  support). Our correlation approach is vulnerable to different sites being present in different taxa,
495  while our flux and frequency approaches avoid this by using aligned orthologs. Parsimony flux is
496  in theory highly vulnerable to the possibility that the effects of high N. of rodents and/or the low
497 N, of primates on amino acid frequencies have already reached equilibrium. The fact that results
498  agree with our maximum likelihood frequencies suggests that this is not the case, in agreement
499  with literature findings of recent changes in N, (Deinum et al., 2015; Jing et al., 2014; Lynch et
500 al.,2023; Rajabi-Maham et al., 2008). Agreement between the methods, with their different biases,
501 gives us greater confidence. Our strongest results came from maximum likelihood, with the
502  parsimony approach providing more fine-grained information about which substitutional paths
503 drive amino acid frequency change, and the correlation approach providing validation across a
504  broader species range.

505

506 The parsimony flux method has been much criticized. We removed polymorphisms, which
507 are likely to contaminate substitution counts with non-fixed slightly deleterious mutations. This
508 improvement kept the direction but shrunk the magnitude of the flux patterns observed by Jordan
509 et al. (2005). This is compatible with shared patterns being artifacts from slightly deleterious
510 fixations and/or a phylogenetic tree that results in better ascertainment at faster evolving sites.
511  Whatever is responsible, the parsimony method universally produces gain of common amino acids
512 and loss of disorder-promoting amino acids. Slightly deleterious substitutions may be enriched for
513  those promoting order, and/or substitutions in rapidly evolving disordered regions may be subject
514  to a higher ascertainment rate.

515

516 Despite its weaknesses, the unique granularity of the parsimony flux method revealed that
517  within pairs of highly exchangeable amino acids, rodents exhibit a pronounced net flux from the
518 less favored member of the pair to the more favored, in a manner not found in primates (Figure 8).
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519 It also revealed selection’s ability to maintain CpG sites better in rodents than in primates. Our
520 maximum likelihood method would have required an excessive number of free parameters to
521 achieve this; it instead held the exchangeability matrix constant at values estimated for mammals
522 as a whole. Improved methods for inferring individual substitutions (Monit & Goldstein, 2018)
523 can avoid parsimony biases, but are potentially vulnerable to a misspecified amino acid
524  substitution model.

525

526 A traditional view of structural biology might be skeptical of the value of information that
527 is restricted to amino acid frequencies. However, it is striking the degree to which amino acid
528 frequencies alone, absent information about amino acid ordering, are able to predict many
529  properties of a polypeptide, including translational efficiency, folding kinetics, and local protein
530  structure (Buhr et al., 2016; Saunders & Deane, 2010; Zarin et al., 2017, 2021). It is encouraging
531 that the direction of selective preference within [K, R], [D,E], and [I, V] pairs is consistent with
532  expected selection on protein folding and stability, as supported by differences in median
533  hydrophobic surface area, hydrogen bonding capacity, and entropic penalty of folding. Note that
534  the preferences for R over K, E over D, and V over | are statistical tendencies; the opposite might
535  still hold at (a minority of) individual sites. Because most proteins must fold (and unfold, and fold
536  again), it is not surprising that the thermodynamics of folding would be subject to selection
537 detectable at the level of amino acid frequencies. The specific biophysical hypotheses suggested
538 by our observational work could be experimentally tested by aggregating data on arginine vs.
539 lysine, aspartate over glutamate, or valine vs. isoleucine mutations across a set of model proteins,
540 where the effect of each mutation on the thermodynamics and kinetics of folding could be
541  measured using multiplexed assays (Atsavapranee et al., 2021; Markin et al., 2021; Tsuboyama et
542 al., 2023).

543

544 Our observation of among-species variation in proteome-wide amino acid composition
545  shows different patterns from previous work on within-proteome variation. Some trends are
546  similar: like high-N, species, highly expressed, slowly evolving proteins are enriched in amino
547  acids that are cheaper to synthesize (Akashi & Gojobori, 2002). However, more generally, amino
548 acids preferred in highly expressed proteins are not the same ones preferred under more effective
549  selection at the species level. Highly expressed proteins are enriched in A, G, V, R, and K (Jansen
550 & Gerstein, 2000), while slowly evolving proteins are enriched in A, G, V, D, I, M, N, Y and
551  depleted in R (Cherry, 2010), neither of which correlates with amino acid preference under more
552  effective selection. Disagreement may be because highly expressed proteins have different
553  structural and functional requirements than the proteome as a whole.

554

555 Amino acid substitutions during the evolution of thermophily do, however, parallel some
556  of our observations for more effective selection. This is expected because both more effective
557  selection and hotter temperature are expected to favor greater protein stability. We note that
558  proteins tend to evolve only marginal stability at mutation-selection-drift balance (Bloom, Raval,
559 et al., 2007), with greater stability improving robustness to mistranscription and mistranslation
560 (Drummond et al., 2005; Drummond & Wilke, 2008, 2009; Serohijos et al., 2012; Wilke et al.,
561  2005), and potentially also mutation (Bloom, Lu, et al., 2007). In agreement with congruence
562  between high temperature and high effective population size, Lecocq et al. (2021) found that
563  thermophiles in the archaeal order Methanococcales use R more often, and that K—R substitutions
564  accompany transitions to higher optimal growth temperature while R—K substitutions accompany

16


https://doi.org/10.1101/2023.02.01.526552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526552; this version posted May 10, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

565 transitions to lower growth temperature. In thermophilic species of filamentous fungi, Van Noort
566  etal. (2013) similarly found an excess of K—R substitutions, but also a puzzling excess of D—E.
567  Fontanillas et al. (2017) similarly found an excess of R—K, E—D, and V—I substitutions during
568 a shift to cold adaptation of hydrothermal vent-dwelling polychaete worms. Results are thus
569 congruent for [R,K] and [V.,I], but not for [D,E]. Cold-adapted branches also had higher
570  substitution rates and slightly higher dN/dS ratios, suggesting relaxed selection/reduced constraint
571  relative to hot-adapted species.

572

573 Pinney et al. (2021) identified protein sites at which amino acid identity correlated with
574  optimal growth temperature across the bacterial domain. Opposite to our work and the studies
575 reviewed above, at these sites, K and I are strongly associated with high growth temperature in
576  bacterial enzymes, while R and V show no association with temperature. Interestingly, hot-adapted
577  enzymes are also enriched in I-I, K-K, and I-K spatial interactions, and K-E salt bridges are also
578  significantly enriched in hot-adapted enzymes, while R-D salt bridges are enriched in cold-adapted
579 enzymes (K-D and R-E salt bridges were not significant). Perhaps against a background that is
580 generally depleted in K and I by adaptation to hot conditions, the importance of the remaining K
581 and I interactions becomes more important. In other words, the few K and I residues remaining
582  may have important site-specific functions.

583

584 Proteome-wide amino acid frequencies are shaped by some combination of protein domain
585  birth, death, and tinkering. Differential rates of domain loss and duplication (James et al., 2023)
586 shift animal proteomes toward amino acid compositions favoring lower intrinsic structural disorder
587  (James et al., 2021). This is counterbalanced by de novo birth (Wilson et al., 2017). Our work here
588 instead focuses on descent with modification, which is likely to operate on faster timescales. This
589 focus is strictly enforced in both our parsimony and our likelihood-based flux analyses, by
590 considering only homologous sites shared by all four species. Our outcome results with CAIS also
591  suggest descent with modification, given that controlling for Pfam identity was not statistically
592  supported for individual amino acids (see Methods), and that similar results were previously found
593 for intrinsic structural disorder in which this control was included (Weibel et al., 2024).

594

595 Amino acids have distinctive biophysical properties, and selective preference among these
596 may be universal. The concordance of our mammalian study with previous results on random
597  peptides in E. coli supports the idea that for amino acid composition, “anything found to be true
598 of E. coli must also be true of Elephants” (Monod & Jacob, 1961). Sometimes the demands on a
599  position within a protein are different, e.g. for alpha helix vs. beta sheet vs. intrinsic disorder, for
600 surface vs. buried, for acid vs. base, or for lesser vs. greater rotameric degrees of freedom, but
601  given a particular demand, there are subtle preferences among amino acids that can deliver similar
602  things. This is what we have quantified. This is nearly neutral theory, as applied to the essence of
603  biochemistry.

604

605  Materials and Methods

606  Maximum likelihood equilibrium frequency estimates under a non-stationary amino acid
607  substitution model

608 From the concatenated alignment of 5162 orthologous mammalian genes from (Wu et al.,
609  2018), we retained all 16 primates, all 12 rodents, two lagomorph species that are sister to rodents
610 (rabbit and pika) and one that is sister to primates (colugo). This results in one Glires clade
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611  (Rodents plus Lagomorphs) and one Primatomorpha clade (Primates plus colugo), as illustrated in
612  Supplementary Figure 1.

613

614 We used the cogent3 code base (Kaehler et al., 2015; Schranz et al., 2008; Verbyla et al.,
615  2013) to fit a non-stationary model of amino acid substitutions, given a fixed topology of the
616  species tree taken from the maximum clade credibility consensus tree from Vertlife (Upham et al.,
617  2019). Branch lengths were fitted by the model, but we did not model rate heterogeneity among
618  sites. We used the QMammal exchangeability matrix (Bui et al., 2021), combined with three
619  different equilibrium amino acid frequency vectors. One vector describes the long-term
620  equilibrium frequency along Primatomorpha branches, another along Glires branches, and a third
621  describes frequencies at the root. Inferred frequencies are given in Supplementary Table 1. The
622  substitution rate matrix within a branch is then the product of the exchangeability matrix times the
623  vector of equilibrium frequencies.

624

625 To draw out the difference between high-N, Glires and low-N, Primatomorpha, we first
626  perform a logit transform on each equilibrium amino acid frequency, to reduce the
627  heteroscedascity that is inherent to frequency measures (Warton & Hui, 2011). We then analyze
628  differences in the logit, with (logit(Glires frequency) — logit(root frequency)) -
629  (logit(Primatomorpha frequency) — logit(root frequency)) = Glires difference — Primatomorpha
630 difference. We call this transformed quantity the “equilibrium frequency difference (ML)”.

631

632  Parsimony approach to amino acid flux

633 We used the 65 amniote vertebrates multiple genome alignment, available on Ensembl
634  (https://useast.ensembl.org/info/genome/compara/mlss.html?mlss=2041) (Yates et al., 2020). This
635 alignment was generated using the Mercator-Pecan pipeline, which effectively handles
636  rearrangements and duplications that have occurred during species’ evolutionary history by
637  organizing genomes into segments to create a homology map, prior to alignment (Paten et al.,
638  2008). We downloaded the aligned coding regions for our four focal species from the Ensembl
639  REST APIserver (https://rest.ensembl.org/, Ensembl 98, accessed during the months of November
640 and December 2019) using our own Python scripts, using the mouse reference genome to retrieve
641  alignment blocks based on mouse coding regions. To be included in our dataset, genomic regions
642  for all four of our focal species had to be present in the multiple genome alignment.

643

644 The locations of polymorphic sites to be excluded were taken from the Ensembl variation
645  database (Hunt et al., 2018). If a polymorphism reached a threshold minor allele frequency of 5%
646  in any of the populations in which it was reported, that site was masked in the multiple species
647  alignment. We note that due to the larger number of studies on human populations, there are more
648  human polymorphisms recorded in Ensembl, and thus masked in our data, and fewer for rats and
649  chimpanzees.

650

651 Aligned DNA sequences were then translated, and informative substitutions were
652 identified, using our own Python scripts. To be included in our analysis, an amino acid site had to
653  be identical in three species and different in the fourth, i.e., inferred by parsimony to occur on one
654  of the branches between mouse-rat or human-chimp. For each species in our quartet, the
655  normalized gain/loss ratio (flux) for each amino acid was calculated by the same method as Jordan
656  etal. (2005), where flux = (# derived — #ancestral) / (#derived + # ancestral). Net flux values and
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657  the shared and species-specific components are given in Supplementary Table 2. Data and scripts
658  for these analyses are in the folders Parsimony_analysis and Parsimony_flux.

659

660  Calculation of amino acid preference in vertebrates using CAIS

661 We use the CAIS values already calculated for 117 vertebrate species by Weibel et al.
662  (2024). To obtain regression slopes in that paper, each species was assigned a fixed effect on the
663  quantity of interest (in our case amino acid frequency), while controlling for Pfam identity (Mistry
664  etal., 2021) as a random effect. While previously supported for intrinsic structural disorder, in our
665  current analysis of amino acid frequencies, controlling for Pfam identity was not supported (p >
666  0.05 for all 20 amino acids). We therefore instead use the simple fractional content of each amino
667 acid in the data for each species. We then performed 20 weighted linear regressions to predict
668 amino acid frequencies from each species’ CAIS value, and then used the regression slopes to
669  summarize the degree of preference for each amino acid, together with the associated standard
670 errors on the slopes (Supplementary Table 3). Positive slopes indicate that species with more
671  effective selection (high CAIS) prefer that amino acid, negative that they avoid it.

672

673 We do not correct for phylogeny (Felsenstein, 1985) before estimating the slopes, because
674  phylogenetic correction amplifies differences between closely related taxa, whereas we are
675 interested in differences that have might evolved slowly during longer periods of relatively
676  consistent effective population size. Phylogenetic correction via phylogenetically independent
677  contrasts (PIC) removes the relationship between CAIS slopes and other metrics.

678

679 We did this both for the whole proteome, and for the set of annotated Pfam sequences.
680  Proteome-wide measurements yielded slopes with smaller total standard error. Where not
681  otherwise indicated, we therefore use the proteome-wide measurements. Comparison to CAIS
682  slopes for the subset of the proteome that belongs to a Pfam (which are subsetted in Figure 7) is
683  shown in Supplementary Figure 4. Relevant data and scripts are in the folder CAIS.

684

685  Pfam subsets

686 In the vertebrate genomes, Pfams that emerged prior to the last eukaryotic common
687  ancestor (LECA) are identified as “old”, and Pfams that emerged after the divergence of animals
688  and fungi from plants are identified as “young”, as annotated by James et al. (2021). Pfams were
689  assigned as either transmembrane or non-transmembrane by James et al. (2021) using the program
690 Tmhmm (Krogh et al., 2001). Amino acid frequencies were calculated for each Pfam subset in
691  each species.

692
693  Per-gene “CAIS” and CAI
694 We tested the relationship between CAIS and expression level, given that selection is

695  known to be more effective for highly expressed genes (Akashi & Gojobori, 2002; Cherry, 2010).
696  We used mouse codon frequencies from the Codon Statistics Database (K. Subramanian et al.,
697  2022) to calculate amino acid frequencies and GC content, and used these quantities in our
698  calculations of per-gene CAIS, as well as CAl, for all genes (ENSMUSP IDs from Ensembl 113,
699  accessed in September 2024) 100 codons or longer for which expression data was available.
700  Whole-organism integrated expression levels for mouse were pulled from PaxDB (Huang et al.,
701 2023).

702

19


https://doi.org/10.1101/2023.02.01.526552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526552; this version posted May 10, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

703 We calculated the CAI of a gene from relative synonymous codon usages (RSCUs) for
704  each codon i, where N; is the count of 7 in the gene, and n, is the number of codons that code for
705  the same amino acid as i:

706 RSCU; = i
o L1 Ny

707  The CAI for the gene’s L codons, where RSC Umax is the genome-wide maximum RSCU (1.27 for
708  mouse), is then:

1

1
709 CAIl = “_[ RSCU; ]Z
i=1 RS CUmax .
710
711
712 Adapting the region-specific method of Weibel et al. (2024) to calculate the “CAIS” of a

713 single gene g, we first consider the expected probability p; , of seeing codon i in a random
714 sequence sampled according to the observed frequency g, of G or C in gene g, where kg is the
715  count of G and C in the codon:

ggksc( _g_g)kAT

716 pi,g = 7 2
717
718  Given that amino acid a is found in gene g, the expected probability that it uses codon i is then:
b; ,d
719 Eig=cme —
Z j=1 Pj.g

720
721 We then calculated per-gene CAIS as the Kullback-Leibler divergence of the gene’s observed
722 codon frequencies from its expected codon probabilities:

64 Oig
723 CAIS(g) = Z O;glog|==).
i=1 E i,g
724  Data availability
725 Full substitution tables used to calculate equilibrium frequencies, fluxes, and CAIS slopes,

726  as well as the values themselves and all code, calculations, and supplementary data are available
727  at https://github.com/cyclase/aa_flux. A tutorial describing the calculation of maximum likelihood
728 amino acid frequencies under a non-stationary evolutionary model is available at
729  https://cogent3.org/doc/examples/nonstationary_inference.html#nonstationary-model-aa-

730 inference. All statistical modelling was done in R 3.5.1, 3.6.3, 4.2.1, or 4.3.1, and linear models
731 were implemented specifically with the Im() function, Imodel2 (Legendre & Oksanen, 2008), or
732 lme4 (Bates et al., 2015).
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