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Abstract
We consider a collection of fully coupled weakly interacting diffusion processes mov-
ing in a two-scale environment. We study the moderate deviations principle of the
empirical distribution of the particles’ positions in the combined limit as the number
of particles grow to infinity and the time-scale separation parameter goes to zero simul-
taneously. We make use of weak convergence methods, which provide a convenient
representation for the moderate deviations rate function in a variational form in terms
of an effective mean field control problem. We rigorously obtain equivalent represen-
tation for the moderate deviations rate function in an appropriate “negative Sobolev”
form, proving their equivalence, which is reminiscent of the large deviations rate func-
tion form for the empirical measure of weakly interacting diffusions obtained in the
1987 seminal paper by Dawson–Gärtner. In the course of the proof we obtain related
ergodic theorems and we consider the regularity of Poisson type of equations associ-
ated to McKean–Vlasov problems, both of which are topics of independent interest. A
novel “doubled corrector problem” is introduced in order to control derivatives in the
measure arguments of the solutions to the related Poisson equations used to control
behavior of fluctuation terms.
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1 Introduction

The purpose of this paper is to study the moderate deviations principle (MDP) for
slow–fast interacting particle systems. In particular, we consider the system
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0 ) = (ηx , ηy) (1)

on a filtered probability space (�,F ,P, {Ft }) with {Ft } satisfying the usual condi-
tions, where b, c, σ, f , g, τ1, τ2 : R × R × P2(R) → R, Bi

t , W i
t are independent

standard 1-D Ft -Brownian motions for i = 1, . . . , N , and (ηx , ηy) ∈ R
2. Here and

throughout P2(R) denotes the space of probability measures on R with finite second
moment, equipped with the 2-Wasserstein metric (see Appendix 4). με,N is defined
by

μ
ε,N
t = 1

N

N∑
i=1

δXi,ε,N
t

, t ∈ [0, T ]. (2)

In (1), Xi,ε,N and Y i,ε,N represent the slow and fast motion respectively of the i th

component. Note that classical models of interacting particles in a two-scale potential,
see [4, 16, 20, 38], can be thought of as special cases of (1) with Y i,ε,N = Xi,ε,N /ε.

Assume that ε(N ) → 0 as N → ∞. In our case, moderate deviations amounts to
studying the behavior of the empirical measure of the particles, i.e., of με,N in the
regime between fluctuations and large deviations behavior. In particular, if we denote
by L(X) the process at which με,N converges to (the law of the averaged McKean–
Vlasov Eq. 25) and consider the moderate deviation scaling sequence {a(N )}N∈N
such that a(N ) > 0,∀N ∈ N with a(N ) → 0 and a(N )

√
N → ∞ as N → ∞, the

moderate deviations process is defined to be

Z N
t := a(N )

√
N (μ

ε,N
t − L(Xt )), t ∈ [0, T ]. (3)

The goal of this paper is to derive the large deviations principle with speed a−2(N )

for the process Z N
t , which is the moderate deviations principle for the measure-valued

process μ
ε,N
t . Notice that if a(N ) = 1 then we get the standard fluctuations process
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whose limiting behavior amounts to fluctuations around the law of large numbers,
L(Xt ), whereas if a(N ) = 1/

√
N then we would be in the large deviations regime.

We remark here that due to the effect of multiple scales, it turns out that a relation
between ε and N is needed. So beyond requiring a(N ) → 0 and a(N )

√
N → ∞, we

also require that there exists ρ ∈ (0, 1) and λ ∈ (0,∞] such that a(N )
√

Nε(N )ρ → λ

as N → ∞. Note that this should be viewed as a restriction on the scaling sequence
a(N ), not on the relationship between ε and N , and in some regimes we expect this
assumption can be weakened. See Remark 6.2.

The presence of multiple scales is a common feature in a range of models used in
various disciplines ranging from climate modeling to chemical physics to finance, see
for example [7, 26, 29, 42, 52, 74] for a representative, but by no means complete
list of references. Interacting diffusions have also been the central topic of study in
science and engineering, see for example [6, 34, 35, 43, 51, 53] to name a few. In the
absence of multiple scales, i.e., when ε = 1, law of large numbers, fluctuations and
large deviations behavior as N → ∞ has been studied in the literature, see [9, 16,
17]. Analogously, in the case of N = 1, the behavior as ε ↓ 0, have been extensively
studied in the literature, see for example [1, 23, 30, 32, 44, 56–58, 60, 61, 66–68, 71,
72].

Homogenization ofMcKean–Vlasov equations (equations that are the limit of N →
∞ with ε fixed) has also been recently studied in the literature, see e.g., [5, 40, 48,
65]. These results can be thought of as looking at the limit of the system (1) when first
N → ∞ and then ε → 0. Large deviations for a special case of (1) has been recently
established in [4] and in the absence of multiple scales in [9]. In [59] the author studies
large deviations for interacting particle systems in the absence of multiple scales but
in the joint mean-field and small-noise limit. In the absence of multiple scales, i.e.,
when ε = 1, moderate deviations for interacting particle systems have been studied
in [10].

The contributions of this work are fourfold. Firstly, we investigate the combined
limit N → ∞ and ε → 0 for the fully coupled interacting particle system ofMcKean–
Vlasov type (1) through the lens of moderate deviations. In order to do so, we use
the weak convergence methodology developed in [22] which leads to the study of
(appropriately linearized) optimal stochastic control problems of McKean–Vlasov
type, see for example [13, 31, 50]. The first main result of this paper is Theorem 3.2
which provides a variational representation of the moderate deviations rate function.

Secondly,we rigorously re-express the obtained variational formof the rate function
in the “negative Sobolev” form given in Theorem 5.1 of the seminal paper byDawson–
Gärtner [17] in the absence of multiple scales. Hence, we rigorously establish the
equivalence of the two formulations in themoderate deviations setting, see Proposition
4.3. A connection of this form was recently established rigorously for the first time in
the large deviations setting in [4].

Thirdly, in the process of establishing the MDP, we derive related ergodic theorems
for multiscale interacting particle systems that are of independent interest. Due to
the nature of moderate deviations, we need to consider certain solutions of Poisson
equations whose properties are considered for the first time in this paper. In particular,
we must control a term involving a derivative in the measure argument of the solution
to the Poisson Eq. (22) (known as the Cell-Problem in the periodic setting). Such terms
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are unique to slow–fast interacting particle systems and slow–fast McKean–Vlasov
SDEs, and thus do not appear whatsoever in proofs of averaging in the one-particle
setting. Thus, the “doubled corrector problem” construction, (63), and the method of
proof of Proposition 6.3 are novel ideas here, see also [5].

Fourthly, in contrast to [10], in this paper the coefficients of the model need not
depend on the measure parameter in an affine way. We allow the coefficients of the
interacting particle system (1) to have any dependence on the measure μ, so long that
it is sufficiently smooth- see Corollary 3.4 and Remark 3.5. This is thanks to Lemma
D.7, which is inspired by Lemma 5.10 in [19], and allows us to see that with sufficient
regularity of a functional on P2(R), the L2 error of that functional evaluated at the
empirical measure of N IID random variables and the Law of those random variables
is O(1/N ) as N → ∞.

In Sect. 4.2, we make our general results concrete for a popular model of interact-
ing particles in a two-scale potential, see also [38] for a motivating example in this
direction. In addition, we present in Sect. 3 a number of concrete examples where the
conditions of this paper hold.

The identification of the optimal change of measure in the moderate deviations
lower bound through feedback controls together with the equivalence proof between
the variational formulation and the “negative Sobolev” form of the rate function, open
the door to a rigorous study of provably-efficient accelerated Monte–Carlo schemes
for rare events computation, analogous to what has been accomplished in the one
particle case, see e.g., [24, 57]. Exploring this is beyond the scope of this work and
will be addressed elsewhere.

In addition, [16] remarks that phase transitions can occur at the level of fluctuations
for interacting particle systems. Since the moderate deviations principle is essentially
a large deviations statement around the fluctuations, the results obtained in this paper
can potentially be related to phase transitions and allow to characterize them further.
This dynamical systems direction is left for future work as it is also outside the scope
of this paper.

In contrast to large deviations, the main difficulty with moderate deviations lies in
the tightness proof, where we use an appropriate coupling argument, as well as in the
fact that the space of signed measures is not completely metrizable in the topology
of weak convergence (see [18] Remark 1.2, as well as [63] Remarks 2.2 and 2.3 for
further discussion on related issues). Thus, as we will see, we will have to study Z N

as a distribution-valued process on a suitable weighted Sobolev space. In addition, the
presence of the multiple scales complicates the required estimates because the ergodic
behavior needs to be accounted for as well. The coupling argument used in the proof of
tightness is non-standard in that the IID particle systemused as an intermediary process
between the empirical measure με,N from Eq. (2) and its homogenized McKean–
Vlasov limit L(X) from Eq. (25) is not equal in distribution to X . Instead, it is an IID
system of slow–fast McKean Vlasov SDEs—see Eq. (57). Thus our proof of tightness
is in a sense relying on the fact that the limits N → ∞ and ε ↓ 0 for the empirical
measure (2) commute at the level of the law of large numbers. For a further discussion
of this, see Remark 5.1 and the discussion at the beginning of Sect. 7.

The rest of the paper is organized as follows. In Sect. 2, we introduce the appropriate
topology for Z N and lay out our main assumptions. We also introduce a quite useful
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multi-indexnotation thatwill allowus to circumvent notational difficultieswith various
combinations of mixed derivatives that appear throughout the paper. The derivation of
the moderate deviations principle is based on the weak convergence approach of [22]
which converts the large deviations problem to weak convergence of an appropriate
stochastic control problem. The main result is presented in Sect. 3, Theorem 3.2.
In Sect. 4 we prove an alternative form of the rate function. This form provides a
rigorous connection in moderate deviations between the “variational form” of the
rate function for the empirical measure of weakly interacting particle systems proved
in Theorem 3.2 to the “negative Sobolev” form given in Theorem 5.1 of the seminal
paper by Dawson–Gärtner [17]. Corollaries 3.4 and 4.6 specialize the discussion to the
setting without multiscale structure and thus generalizes the results of [10]. Specific
examples are presented in Sect. 4.2. Section5 formulates the appropriate stochastic
control problem.

Sections 6–10 are devoted to the proof of Theorem 3.2. Due to the presence of the
multiple scales, ergodic theorems are needed to characterize the behavior as ε ↓ 0 of
certain functionals of interest for the controlled multiscale interacting particle system;
this is the content of Sect. 6. Tightness of the controlled system is proven in Sect. 7.
In Sect. 8 we establish the limiting behavior of the controlled system. The Laplace
principle lower bound is proven in Sect. 9. Section10 contains the proof of the Laplace
principle upper bound as well as compactness of level sets. Conclusions and directions
for future work are in Sect. 11. Appendix 1 provides a list of technical notation used
throughout the manuscript for convenience. A number of key technical estimates
are presented in the remainder of the appendix. In particular, Appendix 2 contains
moments bounds for the controlled system. Appendix 3 presents regularity results
for the Poisson equation needed to study the fluctuations. Even though related results
exist in the literature, the fully coupled McKean–Vlasov case is not covered by the
existing results, and therefore Appendix 3 contains the appropriate discussion of the
necessary extensions. Lastly, Appendix 4 contains necessary results on differentiation
of functions on spaces of measures.

2 Notation, topologies, and assumptions

In order to construct an appropriate topology for the process Z N from Eq. (3), we
follow the method of [10, 39, 49]. Denote by S the space of functions φ : R → R

which are infinitely differentiable and satisfy |x |mφ(k)(x) → 0 as |x | → ∞ for all
m, k ∈ N. On S, consider the sequence of inner products (·, ·)n and ‖·‖n defined by

(φ,ψ)n :=
n∑

k=0

∫
R

(1+ x2)2nφ(k)(x)ψ(k)(x)dx, ‖φ‖n := √
(φ, φ)n (4)

for each n ∈ N. As per [36] p. 82 (this specific example on p. 84), this sequence of
seminorms induces a nuclear Fréchet topology on S. Let Sn be the completion of S
with respect to ‖·‖n and S−n = S ′

n the dual space of Sn . We equip S−n with dual norm
‖·‖−n and corresponding inner product (·, ·)−n . Then {Sn}n∈Z defines a sequence of
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nested Hilbert spaces with Sm ⊂ Sn for m ≥ n. In addition we have for each n ∈ N,
there exists m > n such that the canonical embedding S−n → S−m is Hilbert–

Schmidt. In particular, this holds for m sufficiently large that
∑N

j=1

∥∥∥φm
j

∥∥∥
n

< ∞,

where {φm
j } j∈N is a complete orthonormal system of Sm . This allows us to use the

results of [55] to see that {Z N }N∈N is tight as a sequence of C([0, T ]; S−m)-valued
random variables for sufficiently large m. In particular, we will require m > 7 to be
sufficiently large so that the canonical embedding

S−7 → S−m is Hilbert-Schmidt. (5)

In the proof of the Laplace Principle, we will also make use of w > 9 such that

S−m−2 → S−w is Hilbert-Schmidt. (6)

When proving compactness of level sets of the rate function, we will in addition make
use of r > 11 sufficiently large that the canonical embedding

S−w−2 → S−r is Hilbert-Schmidt. (7)

It will be useful to consider another system of seminorms on S given, for each
n ∈ N, by

|φ|n :=
n∑

k=0

sup
x∈R

|φ(k)(x)| (8)

Via a standard Sobolev embedding argument, one can show that for each n ∈ N, there
exists C(n) such that:

|φ|n ≤ C(n) ‖φ‖n+1 , ∀φ ∈ S. (9)

Let X and Y be Polish spaces, and (�̃, F̃ , μ) be a measure space. We will denote
by P(X) the space of probability measures on X with the topology of weak con-
vergence, P2(X) ⊂ P(X) the space of square integrable probability measures on
X with the 2-Wasserstein metric (see Definition D.1), B(X) the Borel σ -field of
X , C(X;Y) the space of continuous functions from X to Y , Cb(X) the space of
bounded, continuous functions from X to R with norm ‖·‖∞, and L p(�̃, F̃ , μ) the
space of p-integrable functions on (�̃, F̃ , μ) (where if �̃ = X and no σ -algebra
is provided we assume it is B(X)). For μ ∈ P(X), ν ∈ P(Y), we will denote the
product measure induced by μ and ν on X × Y by μ ⊗ ν. We will at times denote
L2(X× X, μ⊗μ) by L2(X, μ)⊗ L2(X, μ). We will denote by L1

loc(X, μ) the space
of locally integrable functions on X . For U ⊆ R

d open, we will denote by C∞
c (U )

the space of smooth, compactly supported functions on U . Ck
b (R) for k ∈ N will

note the space of functions with k continuous and bounded derivatives on R, with
norm | · |k as in Eq. (8), and C1,k

b ([0, T ] × R) will denote continuous functions ψ
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on [0, T ] ×R with a continuous, bounded time derivative on (0, T ), denoted ψ̇ , such
that ‖ψ‖C1,k

b ([0,T ]×R)
:= supt∈[0,T ],x∈R |ψ̇(t, x)| + supt∈[0,T ] ‖ψ(t, ·)‖Ck

b (R) < ∞.

Ck
b,L(R) ⊂ Ck

b (R) is the space of functions inCk
b (R) such that all k derivatives are Lip-

schitz continuous. For φ ∈ L1(X, μ), μ ∈ P(R) we define 〈μ, φ〉 := ∫
X φ(x)μ(dx).

Similarly, for Z ∈ S−p, φ ∈ Sp, we will denote the action of Z on φ by 〈Z , φ〉. For
a, b ∈ R, we will denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. C will be used
for a constant which may change from line to line throughout, and when there are
parameters a1, . . . , an which C depends on in an important manner, will denote this
dependence by C(a1, . . . , an). For all function spaces, the codomain is assumed to be
R unless otherwise denoted.

In the construction of the controlled system, we will also make use of the space of
measures onRd ×[0, T ] such that Q(Rd ×[0, t]) = t,∀t ∈ [0, T ].Wewill denote this
space MT (Rd).We equip MT (Rd)with the topology ofweak convergence ofmeasures
(thus making MT (Rd) a Polish space by [22] Theorem A.3.3). See also the proof of
Lemma 3.3.1 in [22] for the fact that MT (Rd) is a closed subset of finite positive Borel
measures on Rd × [0, T ]). For when dealing with the occupation measures as defined
in Eq. (56), we will in particular take d = 4 and will interpret Q(dx, dy, dz, dt) as x
denoting variable representing the first coordinate in R4, y the second, and z the third
and fourth.

For a mapping ϑ : [0, T ] → P(Rd), it will be useful to define an element of
MT (Rd) induced by ϑ by

νϑ(A × [0, t]) :=
∫ t

0
ϑ(s)[A]ds,∀t ∈ [0, T ], A ∈ B(Rd). (10)

Due to the nature of the space we consider the sequence {Z N }N∈N to live on, it
is natural that we will have to restrict the growth of the coefficients which appear in
Eqs. (1) and (25) in x . We will also need to ensure that the derivatives of the Poisson
equation which appear in the definition the limiting coefficients in Eq. (23) exist and
that the homogenized drift and diffusion coefficients in Eq. (24), which determine
the limiting McKean–Vlasov Equation Xt from Eq. (25), are well-defined. In doing
so, will be controlling many mixed derivatives of functions in the Lions sense [11]
and in the standard sense, it will be useful for us to borrow the multi-index notation
proposed in [15] and employed in [14]. For the reader’s convenience, we have included
in Appendix 4 a brief review on differentiation of functions on spaces of measures.
For a more comprehensive exposition on this, we refer the interested reader to [13]
Chapter 5.

Furthermore, since we prove the moderate deviations principle via use of the con-
trolled particle system (55), we will only have up to second moments of the controlled
fast system (see Appendix 2). It will be important to make sure that terms which the
controlled fast process enters in the intermediate proofs of tightness, so naturally we
will need some assumptions on the rate of polynomial growth in y of the coefficients
which appear in Eqs. (1) and (25) (See Remark 2.7). We thus extend the multi-index
notation from the aforementioned papers to track specific collections of mixed partial
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derivatives, and to give us a clean way of tracking the rate of polynomial growth in y
for those mixed partials in the coming definitions.

Definition 2.1 Let n, l be non-negative integers and β = (β1, . . . , βn) be an
n−dimensional vector of non-negative integers. We call any ordered tuple of the form
(n, �,β) a multi-index. For a function G : R × P2(R) → R, we will denote for a
multi-index (n, �,β), if this derivative is well defined,

D(n,l,β)G(x, μ)[z1, . . . , zn] = ∂β1
z1 ...∂βn

zn
∂ l

x∂
n
μG(x, μ)[z1, . . . , zn],

As noted in the Remark D.3, for such a derivative to be well defined we require for
it to be jointly continuous in x, μ, z1, . . . , zn where the topology used in the measure
component is that of P2(R).

We also define δ(n,l,β)G(x, μ)[z1, . . . , zn] in the exact same way, with the Lions
derivatives ∂μ replaced by linear functional derivatives δ

δm ; see Appendix 4 for differ-
entiation of functions on spaces of measures.

Definition 2.2 For ζ a collection of multi-indices of the form (n, l,β) ∈ N×N×N
n ,

we will call ζ a complete collection of multi-indices if for any (n, l,β) ∈ ζ ,
{(k, j,α(k)) ∈ N × N × N

k : j ≤ l, k ≤ n,α(k) = (α1, . . . , αk), ∃β(k) =
(β(k)1, . . . , β(k)k) ∈ (

β
k

)
such that αp ≤ β(k)p,∀p = 1, . . . , k} ⊂ ζ . Here for a

vector of positive integers β = (β1, . . . , βn) and k ∈ N, k ≤ n, we are using the
notation

(
β
k

)
to represent the set of size

(n
k

)
containing all the k-dimensional vectors

of positive integers which can be obtained from removing n − k entries from β.

Remark 2.3 Definition 2.2 is enforcing that if collection of multi-indices contains
a multi-index representing some mixed derivative in (x, μ, z) as per Definition
2.1, then it also contains all lower-order mixed derivatives of the same type. For
example, if ζ is a collection of multi-indices containing (2, 0, (1, 1)) (correspond-
ing to ∂z1∂z2∂

2
μG(x, μ)[z1, z2]) then, in order to be complete, it must also contain

the terms (2, 0, (1, 0)), (2, 0, (0, 1)), (2, 0, 0), (1, 0, 1), (1, 0, 0), and (0, 0, 0) (corre-
sponding to the terms ∂z1∂

2
μG(x, μ)[z1, z2], ∂z2∂

2
μG(x, μ)[z1, z2], ∂2μG(x, μ)[z1, z2],

∂z∂μG(x, μ)[z], ∂μG(x, μ)[z], and G(x, μ) respectively). This is a technical require-
ment used in order to state the results in Appendix 1 in a way that allows the inductive
arguments used therein to go through.

Using this multi-index notation, it will be useful to define some spaces regard-
ing regularity of functions in regards to these mixed derivatives. We thus make the
following modifications to Definition 2.13 in [14]:

Definition 2.4 For ζ a collection of multi-indices of the form (n, l,β) ∈ N×N×N
n ,

we define Mζ
b(R × P2(R)) to be the class of functions G : R × P2(R) → R such

that D(n,l,β)G(x, μ)[z1, . . . , zn] exists and satisfies

‖G‖Mζ
b (R×P2(R))

:= sup
(n,l,β)∈ζ

sup
x,z1,...,zn∈R,μ∈P2(R)

|D(n,l,β)G(x, μ)[z1, . . . , zn]| ≤ C . (11)

123



Stoch PDE: Anal Comp (2024) 12:1265–1373 1273

We denote the class of functions G ∈ Mζ
b(R× P2(R)) such that:

|D(n,l,β)G(x, μ)[z1, . . . , zn] − D(n,l,β)G(x ′, μ′)[z′1, . . . , z′n]|

≤ CL

(
|x − x ′| +

N∑
i=1

|zi − z′i | +W2(μ,μ′)
)

(12)

for all (n, l,β) ∈ ζ and x, x ′, z1, . . . , zn, z′1, . . . , z′n ∈ R, μ, μ′ ∈ P2(R) by

Mζ
b,L(R × P2(R)). We define Mζ

b(P2(R)) and Mζ
b,L(P2(R)) analogously, where

instead here ζ is a collection of multi-indices of the form (n,β) ∈ N × N
n , and we

take the l = 0 in the above multi-index notation for the derivatives.
Wewill alsomake use of the class of functionsMζ

p(R×R×P2(R))which contains

G : R×R×P2(R) → R such that G(·, y, ·) ∈ Mζ
b(R×P2(R)) for all y ∈ R, with

all derivatives appearing in the definition of Mζ
b(R × P2(R)) jointly continuous in

(x, y,W2), and for each multi-index (n, l,β) ∈ ζ ,

sup
x,z1,...,zn∈R,μ∈P2(R)

|D(n,l,β)G(x, y, μ)[z1, . . . , zn]| ≤ C(1+ |y|)qG (n,l,β), (13)

where qG(n, l,β) ∈ R. Similarly,Mζ
p,L(R×R×P2(R)) is defined as G ∈ Mζ

p(R×
R×P2(R)) such that Eq. (12) holds for G(·, y, ·) for each y ∈ R, where CL(y) grows
at most polynomially in y.

We also defineMζ
b([0, T ] ×R×P2(R)) to be the class of functions G : [0, T ] ×

R× P2(R) → R such that G(·, x, μ) is continuously differentiable on (0, T ) for all
x ∈ R, μ ∈ P2(R) with time derivative denoted by Ġ(t, x, μ), G(t, ·, ·) ∈ Mζ

b(R×
P2(R)) for all t ∈ [0, T ],with (11) holdinguniformly in t , andG, Ġ, and all derivatives
involved in the definition ofMζ

b(R×P2(R)) are jointly continuous in time, measure,

and space. We define for G ∈ Mζ
b([0, T ] × R× P2(R))

‖G‖Mζ
b ([0,T ]×R×P2(R))

:= sup
t∈[0,T ]

‖G(t, ·)‖Mζ
b (R×P2(R))

+ sup
t∈[0,T ],x∈R,μ∈P2(R)

|Ġ(t, x, μ)|.

We denote the class of functions G ∈ Mζ
b([0, T ] ×R× P2(R)) such that (12) holds

uniformly in t byMζ
b,L([0, T ]×R×P2(R)). Again, we defineMζ

b([0, T ]×P2(R)),

Mζ
b,L([0, T ] × P2(R)), and Mζ

p([0, T ] × R× R× P2(R)) analogously.

At times we will want to consider Lions Derivatives bounded in L2(R, μ) rather
than uniformly in z. Thus we define M̃ζ

b(R × P2(R)) to be the class of functions
G : R× P2(R) → R such that D(n,l,β)G(x, μ)[z1, . . . , zn] exists and satisfies

‖G‖M̃ζ
b (R×P2(R))

:= sup
(n,l,β)∈ζ

sup
x∈R,μ∈P2(R)

∥∥∥D(n,l,β)G(x, μ)[·]
∥∥∥

L2(μ,R)⊗n
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= sup
(n,l,β)∈ζ

sup
x∈R,μ∈P2(R)

(∫
R

...

∫
R

|D(n,l,β)G(x, μ)[z1, . . . , zn]|2μ(dz1)...μ(dzn)

)1/2

≤ C . (14)

We also define M̃ζ
b([0, T ]×R×P2(R)) analogously toMζ

b([0, T ]×R×P2(R)),

M̃ζ
p(R×R×P2(R)) analogously toMζ

p(R×R×P2(R)), and M̃ζ
p([0, T ]×R×R×

P2(R)) analogously toMζ
p([0, T ]×R×R×P2(R)). We will denote the polynomial

growth rate for G ∈ M̃ζ
p(R × R × P2(R)) and (n, l,β) ∈ ζ as in Eq. (13) but with

the L2(R, μ)⊗n-norm by q̃(n, l,β) ∈ R to avoid confusion with polynomial growth
of the derivatives in the uniform norm. That is:

sup
x∈R,μ∈P2(R)

(∫
R

...

∫
R

|D(n,l,β)G(x, μ)[z1, . . . , zn]|2μ(dz1)...μ(dzn)

)1/2

≤ C(1+ |y|)q̃G (n,l,β). (15)

Lastly, we defineMζ
δ,b(R× P2(R)) andMζ

δ,p(R×R× P2(R)) in the same way as

Mζ
b(R×P2(R)) andMζ

p(R×R×P2(R)) respectively, butwithwith D(n,l,β) replaced
by δ(n,l,β). We also extend this in the natural way when the spatial components are in
higher dimensions (i.e. taking gradients and using norms in R

d ).

Let us now introduce the main assumptions that are needed for the work of this
paper to go through.

(A1) 0 < λ− ≤ τ 21 (x, y, μ) + τ 22 (x, y, μ) ≤ λ+ < ∞, ∀x, y ∈ R, μ ∈ P2(R),
and τ1, τ2 have two uniformly bounded derivatives in y and which are jointly
continuous in (x, y,W2).

(A2) There exists β > 0 and κ > 0 such that:

f (x, y, μ) = −κ y + η(x, y, μ) (16)

where η is uniformly bounded in x and μ, and Lipschitz in the sense of (A9) in
x , μ, and y with

|η(x, y1, μ) − η(x, y2, μ)| ≤ Lη|y1 − y2|,∀x ∈ R, μ ∈ P2(R)

for Lη such that Lη − κ < 0, and

2( f (x, y1, μ) − f (x, y2, μ))(y1 − y2) + 3|τ1(x, y1, μ) − τ1(x, y2, μ)|2
+ 3|τ2(x, y1, μ) − τ2(x, y2, μ)|2 ≤ −β|y1 − y2|2,
∀x, y1, y2 ∈ R, μ ∈ P(R). (17)

Let a(x, y, μ) = 1
2 [τ 21 (x, y, μ) + τ 22 (x, y, μ)]. For x ∈ R, μ ∈ P2(R), we define

the differential operator Lx,μ acting on φ ∈ C2
b (R) by

Lx,μφ(y) = f (x, y, μ)φ′(y) + a(x, y, μ)φ′′(y). (18)
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Note that under assumptions (A1) and (A2), there is a constant C independent of
x, y, μ such that:

2 f (x, y, μ)y + 3|τ1(x, y, μ)|2 + 3|τ2(x, y, μ)|2

≤ −β

2
|y|2 + C,∀x, y ∈ R, μ ∈ P2(R). (19)

Thus by [60] Proposition 1 (see also [70]), there exists a π(·; x, μ)which is the unique
measure solving

L∗
x,μπ = 0. (20)

Moreover, for all k > 0, there is Ck ≥ 0 such that supx∈R,μ∈P2(R)

∫
R
|y|kπ(dy; x,

μ) ≤ Ck .

(A3) For π as in Eq. (20),

∫
R

b(x, y, μ)π(dy; x, μ) = 0,∀x ∈ R, μ ∈ P2(R), (21)

b is jointly continuous in (x, y,W2), grows at most polynomially in y uniformly
in x ∈ R, μ ∈ P2(R).

Having introduced the notation above, we can now present the law of large numbers
for the empirical measure με,N from Eq.2 in the joint limit as ε ↓ 0, N → ∞. Under
assumptions (A1)–(A3), by Lemma C.1 we consider � the unique classical solution
to:

Lx,μ�(x, y, μ) = −b(x, y, μ),

∫
R

�(x, y, μ)π(dy; x, μ) = 0. (22)

Let us define the functions

γ (x, y, μ) := γ1(x, y, μ) + c(x, y, μ)

γ1(x, y, μ) := b(x, y, μ)�x (x, y, μ) + g(x, y, μ)�y(x, y, μ)

+ σ(x, y, μ)τ1(x, y, μ)�xy(x, y, μ)

D(x, y, μ) := D1(x, y, μ) + 1

2
σ 2(x, y, μ)

D1(x, y, μ) = b(x, y, μ)�(x, y, μ) + σ(x, y, μ)τ1(x, y, μ)�y(x, y, μ). (23)

and

γ̄ (x, μ) :=
[∫

R

γ (x, y, μ)π(dy; x, μ)

]
, D̄(x, μ) :=

[∫
R

D(x, y, μ)π(dy; x, μ)

]
.

(24)
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Then, by essentially the same arguments as in [4], under the conditions outlined
below,με,N converges in distribution to the deterministic limitL(X)where X satisfies
the averaged McKean–Vlasov SDE

d Xt = γ̄ (Xt ,L(Xt ))dt +
√
2D̄(Xt ,L(Xt ))dW 2

t X0 = ηx . (25)

Here W 2
t is a Brownian motion on another filtered probability space satisfying the

usual conditions. In fact, we see here in Lemma 8.2 that in fact this convergence occurs
in P2(R) for each t ∈ [0, T ].
Remark 2.5 Using an integration-by-parts argument, one can find that the diffusion
coefficient D̄ can be written in the alternative form

D̄(x, μ) = 1

2

∫
R

([τ2(x, y, μ)�y(x, y, μ)]2 + [σ(x, y, μ) + τ1(x, y, μ)�y(x, y, μ)]2)
π(dy; x, μ), (26)

and hence is non-negative. See [3] Chapter 3 Section 6.2 for a similar computation.

We now introduce the remaining assumptions. Since we are dealing with fluctua-
tions, we will need to be able to obtain rates of averaging, and thus there are several
auxiliary Poisson equations involved in the proof of tightness. When there is more
specific structure to the system of Eq. (1), these assumptions may be able to be veri-
fied on a case-by-case basis. In Sect. 3 we provide concrete examples for which all of
the conditions imposed in the paper hold. Remark 2.6 and mainly Remark 2.7 discuss
the meaning of these assumptions more thoroughly. In doing so, it will be useful to
define the following complete collections of multi-indices in the sense of Definitions
2.1 and 2.2:

ζ̂ � {(0, j1, 0), (1, j2, j3), (2, j4, ( j5, j6)), (3, 0, ( j7, 0, 0))

: j1 ∈ {0, 1, . . . 4}, j2 + j3 ≤ 4, j4 + j5 + j6 ≤ 2, j7 = 0, 1}
ζ̃ � {(0, j1, 0), (1, j2, j3), (2, 0, 0) : j1 = 0, 1, 2, j2 + j3 ≤ 1}

ζ̃ 1 � {( j1, j2, 0) : j1 + j2 ≤ 1}
ζ̃ 2 � {( j, 0, 0) : j = 0, 1}
ζ̃ 3 � {(0, j1, 0), (1, 0, j2) : j1 = 0, 1, 2, j2 = 0, 1}

ζ x,l � {(0, j, 0) : j = 0, 1, . . . , l}, l ∈ N

ζ̄ � {( j, 0, 0) : j = 0, 1, 2}
ζ̄ l � {(0, 0, 0), (1, 0, j) : j = 0, 1, . . . , l}, l ∈ N. (27)

In the following set of assumptions, recall that for G : R × R × P2(R) → R and
a multi-index (n, l, β), q̃G(n, l, β) denotes the rate of polynomial growth in y of the
mixed derivative of G corresponding to (n, l, β) as per Eq. (15) in Definition 2.4.
Recall also the spaces of functions of measures from Definition 2.4.
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(A4) Strong existence and uniqueness holds for the systemof SDEs (1) for all N ∈ N,
for the Slow–Fast McKean–Vlasov SDEs (57), and for the limiting McKean–
Vlasov SDE (25).

(A5) g and σ are uniformly bounded, and c, b grow at most linearly in y uniformly
in x ∈ R, μ ∈ P2(R). All coefficients are jointly continuous in (x, y,W2).

(A6) There exists a unique strong solution � ∈ M̃ζ̃
p(R × R × P2(R)) to Eq. (22)

with q̃�(n, l,β) ≤ 1,∀(n, l,β) ∈ ζ̃ , and �y ∈ M̃ζ̃ 2
p (R × R × P2(R)), with

q̃�y (n, l,β) ≤ 1,∀(n, l,β) ∈ ζ̃ 2. In addition, this can be strengthened to
q̃�(0, k, 0) ≤ 0, k = 0, 1 and q̃�y (0, 0, 0) ≤ 0. (For Proposition 6.1 and
Theorem 7.2).

(A7) There exists a unique strong solution χ ∈ M̃ζ̃
p(R

2 ×R
2 ×P2(R)) to Eq. (63)

with q̃χ (n, l,β) ≤ 1,∀(n, l,β) ∈ ζ̃ , and χy ∈ M̃ζ̃ 1
p (R2 × R

2 × P2(R)),

χyy ∈ M̃(0,0,0)
p (R2 × R

2 × P2(R)) with q̃χy (n, l,β) ≤ 1,∀(n, l,β) ∈ ζ̃ 1,
q̃χyy (0, 0, 0) ≤ 1. In addition, this can be strengthened to q̃χ (0, k, 0) ≤ 0, k =
0, 1 and q̃χy (0, 0, 0) ≤ 0. (For Proposition 6.3 and Theorem 7.2).

(A8) For F = γ, D, or σψ1+[τ1ψ1+τ2ψ2]�y for anyψ1, ψ2 ∈ C∞
c ([0, T ]×R×

R), there exists a unique strong solution � ∈ M̃ζ̃
p([0, T ] × R× R× P2(R))

to Eq. (64) with each of these choices of F , q̃�(n, l,β) ≤ 2,∀(n, l,β) ∈ ζ̃ ,

and �y ∈ M̃ζ̃ 1
p ([0, T ] ×R×R× P2(R)) with q̃�y (n, l,β) ≤ 2,∀(n, l,β) ∈

ζ̃ 1. Moreover, we assume for all choices of F , this can be strengthened to
q̃�(n, l,β) ≤ 1,∀(n, l,β) ∈ ζ̃ 1 and q̃�y (0, 0, 0) ≤ 1. (For Propositions 6.4/
10.1 and Theorem 7.2).

(A9) For F = γ, σ + τ1�y, τ2�y, τ1, τ2:

|F(x1, y1, μ1) − F(x2, y2, μ2)| ≤ C(|x1 − x2| + |y1 − y2|
+W2(μ1, μ2)),∀x1, x2, y ∈ R, μ1, μ2 ∈ P2(R).

(Lemmas 7.4 and 7.5).

(A10) γ̄ , D̄1/2 ∈ Mζ̂
b,L(R× P2(R)). (For Theorem 7.2).

(A11) Consider the Poisson equation

L2
x,x̄,μχ̃(x, x̄, y, ȳ, μ) = −b(x, y, μ)�(x̄, ȳ, μ),∫
R

∫
R

χ̃(x, x̄, y, ȳ, μ)π(dy; x, μ)π(d ȳ, x̄, μ) = 0. (28)

where L2
x,x̄,μ is as in Eq. (60). Assume there exists a unique strong solution

χ̃ ∈ M̃ζ̃ 3
p (R2×R

2×P2(R)) and χ̃y ∈ M̃ζ x,1
p (R2×R

2×P2(R)) to Eq. (28).
(For Theorem 7.2).

(A12) τ1, τ2, f , γ, σ + τ1�y, τ2�y ∈ Mζ̄
δ,p(R×R×P2(R)). (For Lemmas 7.4 and

7.5).
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(A13) For w as in Eq. (6) and γ̄ ,D̄ as in Eq. (24), γ̄ , D̄ ∈ Mζ x,w+2
b (R × P2(R)) ∩

Mζ̄w+2
δ,b (R× P2(R)), and

sup
x∈R,μ∈P2(R)

∥∥∥∥ δ

δm
γ̄ (x, μ)[·]

∥∥∥∥
w+2

+ sup
x∈R,μ∈P2(R)

∥∥∥∥ δ

δm
D̄(x, μ)[·]

∥∥∥∥
w+2

< ∞.

(For Lemmas 7.7, 8.6, 8.7 and Proposition 8.3).

Remark 2.6 There is a current gap in the literature regarding rates of polynomial growth
for derivatives of solutions to Poisson equations of the form (22), as outlined in [33]
Remark A.1. Though in Proposition A.2 they state a result partially amending this
issue, the bounds provided likely are not tight. In particular, under the assumption (A2)
which we require for moment bounds of the fast process (and hence slow) process in
Sect. 2, their result cannot provide boundedness of derivatives in y of � from (22), or
any of the other auxiliary Poisson equationswhichwe consider. This in turn alsomakes
it difficult to gain good rates of polynomial growth for derivatives in the parameters
x and μ. We need strict control of these rates of growth, for the reasons outlined in
Remark 2.7. Stronger bounds are derived in the 1-D case in Proposition A.4 of [33],
so this makes gaining the necessary control much easier in the current setting (see the
results contained in Sect. 1 in the Appendix). Note also the much stricter assumptions
imposed when handling the multi-dimensional cell problem in Lemma C.4 (which is
required to establish sufficient conditions for (A7)).

Remark 2.7 Assumptions (A1) and (A2) are used in tandem for the existence and
uniqueness of the invariant measure π from Eq. (20). Such an invariant measure exists
under weaker recurrence conditions on f (see, e.g. [60] Proposition 1), but we use the
near-Ornstein-Uhlenbeck structure assumed in (16) and the form of the retraction to
the mean (17) in order to prove certain moment bounds on the controlled fast process
in the Appendix 2, and (17) is also used in order to gain sufficient conditions for the
required regularity of the Poisson Equations in Assumptions (A6)– (A13) in Appendix
3. In particular, (16) is inspired byAssumption 4.1 (iii) in [44] and is needed for Lemma
B.2, and (17) is a standard assumption for control of moments of SDEs over infinite
time horizons and for controlling solutions of related Cauchy problems (see e.g. [65]
Assumption A.1 Eq. (2.3)).

The centering condition (A3) is standard in the theory of stochastic homogenization.
Assumption (A4) is required in order to apply the weak-convergence approach to large
deviations. In particular, it ensures that the prelimit control representation (51) holds.
This is known to hold, for example, under global Lipschitz assumptions on all the
coefficients (see, e.g. [73] Theorem 2.1 and Section 6.1 in [65]), though can also be
proved under muchweaker assumptions. These two assumptions, alongwith existence
and uniqueness of the invariant measure π from Eq. (20) and the Poisson Equation
� from Eq. (22), can be seen as the crucial hypothesis of this paper. The rest of
the assumptions are technical and essentially used to have sufficient conditions for
tightness of the controlled fluctuations processes Z̃ N from Eq. (54) (and, in the case
of Assumption (A13), to have uniqueness of solutions to its limit (32)).
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The boundedness and linear growth of the coefficients from Assumption (A5) are
used to restrict the growth of the coefficients so that second moments of the controlled
fast process Ỹ i,ε,N from Eq. (55) can be proved in Appendix 2, and to ensure that only
knowing these secondmoment bounds are sufficient for boundedness of the remainder
terms in e.g. the ergodic-type theorems of Sect. 6. The joint continuity assumption is
used to ensure that integrating the coefficients is a continuous function on the space
of measures.

The Assumptions (A6)–(A13) are listed in terms of the Poisson Equations and
averaged coefficients (and hence implicitly in terms of � from Assumption (A6))
because these assumptions can be verified on a case-by-case basis when the differential
operator (18) or the inhomogeneities considered have some special structure. See the
Examples provided in Appendix 3.

The growth required by the specific derivatives listed in Assumptions (A6)– (A8)
are imposed in order to ensure that the remainder terms resulting form Itô’s formula
in the Ergodic-Type Theorems in Sect. 6 are bounded. In particular, in Sect. 6, we are
dealing with the controlled slow–fast system (55), which due to the controls a priori
being at best L2 integrable (see the bound 53), we are only able to show that we have
2 bounded moments of the fast component (see Appendix 2). This is limiting, since
the terms which show up in the Ergodic-Type Theorems are products of derivatives
of the Poisson equation with the coefficients of the system (1), of which c and b may
grow linearly as per assumption (A5), and with the L2 controls.

Using Assumption (A6) as an example and unpacking the multi-index notation, we
are requiring�,�x ,�y are bounded, and�xx , ∂μ�, ∂μ�x , ∂μ�y, ∂z∂μ�, ∂2μ� grow
at most linearly in y in their appropriate norms. Looking at the proof of Proposition
6.1, since we are taking the L2 norm of the remainder terms B̃1− B̃8, we are essentially
ensuring all the products showing up in these terms are L2 bounded. In particular, in
B̃7, the controls are multiplied by � and �x , which is why we end up needing those
derivatives to be bounded. �y being bounded is needed elsewhere for essentially the
same reason - see, e.g. the proof of Proposition 10.2, where we use that B N

t is bounded
in L2. The reasoning behind the Assumptions (A7) and (A8) are the exact same, with
additional regularity of χy and �y (replacing ζ̃ 2 by ζ̃ 1 means we are requiring χy and
�y have an x derivative which grows at most linearly in addition to a μ derivative)
and χyy required due to those additional terms showing up in B̄2 in Proposition 6.3,
C2 in Proposition 6.4, and B̄13 in Proposition 6.3 respectively.

The Lipschitz continuity imposed in Assumption (A9) and the existence of two
linear functional derivatives which grow at most polynomially in y uniformly in x, μ

imposed in Assumption (A12) are used to couple the controlled particles (55) to the
auxiliary IID particles (57) in Sect. 7.2. In particular, the terms required to be Lipschitz
are those which show up in the drift and diffusion of the processes which result from
applying Proposition 6.1 to the controlled system and IID system respectively. The
use of a Lipschitz property in such a coupling argument is standard - see, e.g. Lemma
1 in [39]. Since we don’t assume that the coefficients have linear interaction with the
measure, Assumption (A12) is being used to apply Lemma D.7 to the listed functions.
The result of that Lemma is essentially the Assumption (S3) made in [49], which we
are using in essentially the same manner that they are in their coupling argument in
Theorem 2.4.
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Assumption (A10) is tailored to ensure enough regularity of the coefficients of the
Cauchy Problem on Wasserstein Space for Theorem 7.2 to hold- see [5] (in partic-
ular Lemma 5.1 therein). Assumption (A11) is used to apply the same result, and
requires the introduction of the additional auxiliary Poisson equation (A11) which is
defined similarly to χ from Assumption (A7) but with a different inhomogeneity due
to an additional term which arises in [5] Proposition 4.4 due to the McKean–Vlasov
dynamics. The use of this specific control over the derivatives of χ̃ is discussed after
the statement of Theorem 7.2.

Finally, Assumption (A13) is needed for well-definedness/uniqueness of the limit-
ing Eq. (32). See the analogous Assumptions 2.2/2.3 in [10].

3 Main results

We are now ready to state our main result, which takes the form of Theorem 3.2 below.
These results will be applied to a concrete class of examples of interacting particle
systems of the form (1) in Sect. 4.2.

We prove the large deviations principle for fluctuations process {Z N } from Eq. (3)
via means of the Laplace Principle. In other words, in Theorem 3.2, we identify the
rate function I : C([0, T ];S−r ) → [0,+∞] such that for w as in Eq. (6):

lim
N→∞−a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)
= inf

Z∈C([0,T ];S−w)
{I (Z) + F(Z)} (29)

for all F ∈ Cb(C([0, T ];S−τ )), for any τ ≥ w. In particular, this holds for all
F ∈ Cb(C([0, T ];S−r )) for r > w + 2 as in Eq. (7), and for such F the right hand
side is equal to inf Z∈C([0,T ];S−r ){I (Z) + F(Z)} by construction of I (see Theorem
3.2). The equality (29) along with compactness of level sets of I implies that {Z N }
satisfies the large deviations principle with speed a−2(N ) and rate function I via e.g.
Theorem 1.2.3 in [22].

In order to show (29), we will show in Sect. 9 that the Laplace principle Lower
Bound:

lim inf
N→∞ −a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

≥ inf
Z∈C([0,T ];S−w)

{I (Z) + F(Z)},∀F ∈ Cb(C([0, T ];S−τ )) (30)

for any τ ≥ w, with w as in Eq. (6), holds.
Then, in Sect. 10 we will prove the Laplace principle Upper Bound:

lim sup
N→∞

−a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

≤ inf
Z∈C([0,T ];S−w)

{I (Z) + F(Z)},∀F ∈ Cb(C([0, T ];S−τ )) (31)
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for any τ ≥ w holds and compactness of level sets of I in C([0, T ];S−r ), at which
point the moderate deviations principle of Theorem 3.2 will be established.

We now formulate the rate function. Consider the controlled limiting equation:

〈Zt , φ〉 =
∫ t

0
〈Zs, L̄L(Xs )φ(·)〉ds

+
∫
R×R×R2×[0,t]

σ(x, y,L(Xs))z1φ
′(x)Q(dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y,L(Xs))z1

+ τ2(x, y,L(Xs))z2]�y(x, y,L(Xs))φ
′(x)Q(dx, dy, dz, ds)

L̄νφ(x) := γ̄ (x, ν)φ′(x) + D̄(x, ν)φ′′(x)

+
∫
R

(
δ

δm
γ̄ (z, ν)[x]φ′(z) + δ

δm
D̄(z, ν)[x]φ′′(z)

)
ν(dz), ν ∈ P(R).

(32)

for all φ ∈ C∞
c (R). Here we recall the limiting coefficients γ̄ , D̄ from Eq. (24),

the limiting McKean–Vlasov Equation Xt from Eq. (25), and the linear functional
derivative δ

δm from Definition D.4.

Theorem 3.1 Let assumptions (A1)– (A13) hold. Then {Z N }N∈N satisfies the Laplace
principle (29) with rate function I given by

I (Z) = inf
Q∈P∗(Z)

{
1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
Q(dx, dy, dz, ds)

}
(33)

where Q ∈ MT (R4) (recall this space from above Eq. 10) is in P∗(Z) if:

P∗1 (Z , Q) satisfies Eq. (32)
P∗2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
Q(dx, dy, dz, ds) < ∞

P∗3 Disintegrating Q(dx, dy, dz, ds) = κ(dz; x, y, s)λ(dy; x, s)Q(1,4)(dx, ds),
λ(dy; x, s) = π(dy; x,L(Xs)) νL(X ·)-almost surely, where π is as in Eq. (20)
and νL(X ·) is as in Eq. (10).

P∗4 Q(1,4) = νL(X ·).

Here we use the convention that inf{∅} = +∞.

Replacing assumption (A13) by the following:

(A’13) For r as in Eq. (7) and γ̄ ,D̄ as in Eq. (24), γ̄ , D̄ ∈ Mζ x,r+2
b (R × P2(R)) ∩

Mζ̄ r+2
δ,b (R× P2(R)) (recalling these spaces from Definition 2.4 and these col-

lections of multi-indices from Eq. 27), and

sup
x∈R,μ∈P(R)

∥∥∥∥ δ

δm
γ̄ (x, μ)[·]

∥∥∥∥
r+2

+ sup
x∈R,μ∈P(R)

∥∥∥∥ δ

δm
D̄(x, μ)[·]

∥∥∥∥
r+2

< ∞.
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we can in addition prove compactness of level sets of the rate function given in (33)
by extending it to a larger space. For a discussion of the necessity of this extension,
see the comments below Eq. (2.10) and below Eq. (4.33) in [10]. This yields the main
result:

Theorem 3.2 Let assumptions (A1)–(A12) and (A’13) hold. Then {Z N }N∈N from
Eq. (3) satisfies the large deviation principle on the space C([0, T ];S−r ), with r
as in Eq. (7), speed a−2(N ) and good rate function I given as in Eq. (33). Here
we use the convention that inf{∅} = +∞, and also impose that I (Z) = +∞ for
Z ∈ C([0, T ];S−r )\C([0, T ];S−w).

As is typically the case when using the weak convergence approach of [22] to prove
a large deviations principle, the rate function (33) can also be characterized by controls
in feedback form:

Corollary 3.3 In the setting of Theorem 3.1, we can alternatively characterize the rate
function as:

I o(Z) = inf
h∈Po(Z)

{
1

2

∫ T

0
E

[∫
R

|h(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds

}
(34)

where h : [0, T ] × R× R → R
2 is in Po(Z) if:

(Po1) (Z , h) satisfies Eq. (35) for all t ∈ [0, T ] and φ ∈ C∞
c (R)

(Po2)
∫ T
0 E

[∫
R
|h(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds < ∞.

Here we define:

〈Zt , φ〉 =
∫ t

0
〈Zs , L̄L(Xs )φ(·)〉ds

+
∫ t

0
E

[∫
R

σ(Xs , y,L(Xs))h1(s, Xs , y)φ′(Xs)π(dy; Xs ,L(Xs))

]
ds

+
∫ t

0
E

[∫
R

[τ1(Xs , y,L(Xs))h1(s, Xs , y) + τ2(Xs , y,L(Xs))h2(s, Xs , y)]

×�y(Xs , y,L(Xs))φ
′(Xs)π(dy; Xs ,L(Xs))

]
ds (35)

Again, we use the convention that inf{∅} = +∞. In the setting of Theorem 3.2, we
also impose that I o(Z) = +∞ for Z ∈ C([0, T ];S−r )\C([0, T ];S−w).

Proof This follows from Jensen’s inequality and the affine dependence of the coeffi-
cients on the controls. The details are omitted for brevity given that the argument is
standard, e.g., see Section 5 in [23]. ��

In addition, as a corollary to the proof of Theorem 3.2, we extend the results from
[10] as follows:
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Corollary 3.4 (MDP without Multiscale Structure) Suppose that b = f = g = τ1 =
τ2 ≡ 0 and c(x, y, μ) = c(x, μ), σ (x, y, μ) = σ(x, μ). Let v > 4 be sufficiently
large that the canonical embedding S−4 → S−v is Hilbert–Schmidt, ρ > 6 be suffi-
ciently large that the canonical embedding S−v−2 → S−ρ is Hilbert–Schmidt, and ζ̄

as in (27). Assume also that σ, c ∈ Mζ
δ,b(R× P2(R)) and for F(x, μ) = c(x, μ) or

σ(x, μ):

(1) supμ∈P2(R) |F(·, μ)|ρ+2 < ∞
(2) supx∈R,μ∈P2(R)

∥∥ δ
δm F(x, μ)[·]∥∥

ρ+2 < ∞.

Here we recall the space Mδ,b from Definition 2.4, the collection of multi-indices ζ

from Eq. (27), and the norms on S defined in Eqs. (4) and (8). Then {Z N }N∈N satisfies
a large deviation principle on the space C([0, T ];S−ρ) with speed a−2(N ) and good
rate function Ĩ o given by

Ĩ o(Z) = inf
h∈P̃o(Z)

{
1

2

∫ T

0
E

[
|h(s, Xs)|2

]
ds

}
(36)

where h : [0, T ] × R → R is in P̃o(Z) if:

(Po1) (Z , h) satisfies Eq. (37) for all t ∈ [0, T ] and φ ∈ C∞
c (R)

(Po2)
∫ T
0 E

[
|h(s, Xs)|2

]
ds < ∞

and inf{∅} = +∞, I (Z) = +∞ for Z ∈ C([0, T ];S−ρ)\C([0, T ];S−v). Here we
define:

〈Zt , φ〉 =
∫ t

0
〈Zs, L̃L(X̃s )

φ(·)〉ds +
∫ t

0
E

[
σ(X̃s,L(X̃s))h(s, X̃s)φ

′(X̃s)

]
ds

L̃νφ(x) = c(x, ν)φ′(x) + σ 2(x, ν)

2
φ′′(x)

+
∫
R

(
δ

δm
c(z, ν)[x]φ′(z) + 1

2

δ

δm
[σ 2(z, ν)[x]]φ′′(z)

)
ν(dz)

X̃t = ηx +
∫ t

0
c(X̃s,L(X̃s))ds +

∫ t

0
σ(X̃s,L(X̃s))dWs . (37)

Proof This follows from Theorem 3.2. The assumptions needed are vastly simplified
due to the absence of multiscale structure. In particular, we have no need for the
results from Sect. 6 and Sect. 7.1. The rate function can be posed on a smaller space
C([0, T ];S−ρ) (agreeing with that of Theorem 2.1 in [10]) as opposed to the larger
C([0, T ];S−r ) of our Theorem 3.2 due to the IID system (57) not depending on ε in

this regime. In particular, this means X̄ ε
t

d= X̃t in the proof of Lemma 7.6, and hence
the result is improvedC(T )|φ|21 instead ofC(T )|φ|24. Similarly, in the result of Lemma
7.7, the bound on RN

t (φ) can be improved from R̄(N , T )|φ|4 to R̄(N , T )|φ|3 using
Lemma 7.5 and the proof method of Proposition 4.2 in [10]. At this point tightness
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of {Z̃ N }N∈N from Eq. (54) can be proved in Proposition 7.8, but with the uniform
7-continuity of Eq. (67) improved to uniform 4-continuity, and hence the result holds
with w replaced by v. The remainder of the proofs in the paper found in Sects. 7.4, 8
and 9 then go through verbatim with m and w replaced by v and r replaced with ρ,
but with the simplifications assumed on the coefficients allowing us to set many terms
equal to 0. In particular, in the controlled particle Eq. (55), we can set Ỹ i,ε,N ≡ 0,
and throughout the invariant measure π from Eq. (20) can be set to δ0, which makes
dealingwith the secondmarginals of the occupationmeasures {QN }N∈N fromEq. (56)
trivial. Lastly, in Sect. 10, due to the lack of multiscale structure, there is no need for
an approximation argument in the proof of Proposition 10.1, and hence existence of
solutions to (37) can be established in C([0, T ];S−v) and compactness of level sets
established in C([0, T ];S−ρ) exactly as in Sects. 4.4 and 4.5 of [10]. ��
Remark 3.5 Note that, in contrast to [10], which assumes a linear-in-measure form
of the coefficients of Eq. (1) (without multiscale structure), i.e. that there are β, α :
R
2 → R such that c(x, μ) = ∫

R
β(x, z)μ(dz), σ (x, μ) = ∫

R
α(x, z)μ(dz), we do

not suppose any particular form of c(x, μ), σ(x, μ) other than that they have sufficient
regularity for the proof of tightness and existence/uniqueness of the limiting equation.
We are able to do so via the use of Lemma D.7 (which holds also in the case without
dependence of the function p on y) and the assumption that σ, c ∈ Mζ

δ,b(R×P2(R)).

For the specific linear form of c and σ assumed by [10], δ
δm c(x, μ)[z] = β(x, z)

and δ
δm σ(x, μ)[z] = α(x, z), so the condition (2) from Corollary 3.4 in fact implies

σ, c ∈ Mζ
δ,b(R×P2(R)). In addition, (1) and (2) are exactly the assumptions (a) and

(b) from Condition 2.3 of [10] in this subcase, so indeed Corollary 3.4 provides a strict
generalization of their result. See also Corollary 4.6 where we further extend this result
to get an alternate form of the rate function analogous to that of Dawson-Gärtner [17].

It is also useful to characterize the way that the limiting Eqs. (32), (35), and (37)
act on functions which depend both on time and space. Hence we make the following
remark:

Remark 3.6 We can alternatively characterize the controlled limiting Eq. (32) (and
analogously the ordinary controlled limiting Eqs. 35 and 37) in terms of how the Z
acts on ψ ∈ C∞

c (U ×R), where U is an open interval containing [0, T ]. For Eq. (35),
this characterization is:

〈ZT , ψ(T , ·)〉 =
∫ T

0
〈Zs, ψ̇(s, ·)〉ds +

∫ T

0
〈Zs, L̄L(Xs )ψ(s, ·)〉ds

+
∫ T

0
E

[∫
R

σ(Xs, y,L(Xs))h1(s, Xs, y)ψx (s, Xs)π(dy; Xs,L(Xs))

]
ds

+
∫ T

0
E

[∫
R

[τ1(Xs, y,L(Xs))h1(s, Xs, y) + τ2(Xs, y,L(Xs))h2(s, Xs, y)]

�y(Xs, y,L(Xs))ψx (s, Xs)π(dy; Xs,L(Xs))

]
ds

Z0 = 0. (38)
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This is analogous to the form of the limiting equation seen in [59] (Remark 2.9) and
[10] (Remark 2.2).

4 On the form of the rate function

4.1 Statement and proof of equivalent forms of the rate function

Here we prove an alternative form of the moderate deviations rate function (33), which
is analogous to the “negative Sobolev” form of the large deviations rate function for
the empirical measure of weakly interacting diffusions found in Theorem 5.1 of the
classical work of Dawson-Gärtner [17]. This is the first time such a form of the rate
function has been provided in the moderate deviations setting, both with and without
multiscale structure. The result for the specialized case without multiscale structure
can be found as Corollary 4.6 below.

A direct connection between the variational form of the large deviations rate func-
tion from [9] and the “negative Sobolev” form of [17] was recently made for the first
time in [4] Section 5.2. In contrast to the large deviations setting, in the moderate devi-
ations rate function (34), we already know the controls h are in feedback form, but
rather than being feedback controls of the limiting controlled processes Z in Eq. (35),
they are feedback controls of the law of large numbersL(X) from Eq. (25). Moreover,
contrast to in the large deviations setting of [4], here we handle the dependence of the
controls h on the parameter y do to themultiscale structure and obtaining the “negative
Sobolev” form of the rate function uniformly.

In order to state the alternate form of the rate function we first need to recall the
following definition:

Definition 4.1 (Definition 4.1 in [17]) For a compact set K ⊂ R, we will denote the
subspace of C∞

c (R) which have compact support contained in K by SK . Let I be an
interval on the real line. A map Z : I → S ′ is called absolutely continuous if for
each compact set K ⊂ R, there exists a neighborhood of 0 in SK and an absolutely
continuous function HK : I → R such that

|〈Z(u), φ〉 − 〈Z(v), φ〉| ≤ |HK (u) − HK (v)|

for all u, v ∈ I and φ ∈ UK .

It is also useful to recall the following result:

Lemma 4.2 (Lemma 4.2 in [17]) Assume the map Z : I → S ′ is absolutely continuous.
Then the real function 〈Z , φ〉 is absolutely continuous for each φ ∈ C∞

c (R) and the
derivative in the distribution sense

Ż(t) := lim
h↓0 h−1[Z(t + h) − Z(t)]

exists for Lebesgue almost-every t ∈ I .

Now we are ready to state the equivalent form of the rate function:
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Proposition 4.3 Let assumptions (A1)–(A12) and (A’13) hold. Assume also that
D̄(x, μ) > 0 for all x ∈ R, μ ∈ P2, where D̄ is as in Eq. (24). Let r be as in
Eq. (7). Consider I DG : C([0, T ];S−r ) → [0,+∞] given by:

I DG(Z) = 1

4

∫ T

0
sup

φ∈C∞
c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

∣∣∣∣〈Żt − L̄∗
L(Xt )

Zt , φ〉
∣∣∣∣
2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]dt

(39)

if Z(0) = 0, Z is absolutely continuous in the sense if Definition 4.1, and Z ∈
C([0, T ];S−w), and I DG(Z) = +∞ otherwise. Here Xt is as in Eq. (25), Ż is the
time derivative of Z in the distribution sense from Lemma 4.2 and L̄∗

L(Xs )
: S−w →

S−(w+2) is the adjoint of L̄L(Xs ) : Sw+2 → Sw given in Eq. (32) (using here Lemma
8.6).

Then {Z N }N∈N from Eq. (3) satisfies a large deviation principle on the space
C([0, T ];S−r ) with speed a−2(N ) and good rate function I DG.

Remark 4.4 Note that the assumption that D̄(x, μ) > 0 for all x ∈ R andμ ∈ P2(R) is
not very restrictive. In particular, via the representation for the density of the invariant
measure π given in Eq. (72), we know it is strictly positive for all x, μ. Then via the
representation for D̄(x, μ) given in Eq. (26), we have that if there is x, μ such that
D̄(x, μ) = 0, then for that x, μ, we must have

[τ2(x, y, μ)�y(x, y, μ)]2 + [σ(x, y, μ) + τ1(x, y, μ)�y(x, y, μ)]2 = 0

for Lebesgue-almost every y ∈ R. This will only happen if σ has a very specific
relation to f , τ1, τ2, b and hence �y .

In order to prove Proposition 4.3, we first prove the following Lemma, which gives
us a form of the rate function analogous to Eq. (4.21) in [17]:

Lemma 4.5 Assume the same setup as Proposition 4.3. For ψ ∈ C∞
c (U × R) and

Z ∈ S−w, define

FZ (ψ) = 〈ZT , ψ(T , ·)〉 −
∫ T

0
〈Zs, ψ̇(s, ·)〉ds −

∫ T

0
〈Zs, L̄L(Xs )ψ(s, ·)〉ds (40)

and consider J : C([0, T ];S−ρ) → [0,+∞] given by:

J (Z) = sup
ψ∈C∞

c (U×R)

{
FZ (ψ) −

∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

}
(41)

if Z0 = 0 and Z ∈ C([0, T ];S−w), and J (Z) = +∞ otherwise. Here U is an open
interval containing [0, T ]. Then {Z N }N∈N satisfies a large deviation principle on the
space C([0, T ];S−r ) with speed a−2(N ) and good rate function J .
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Proof Since by Theorem 1.3.1 in [22], the rate function for a sequence of random
variables is unique, it suffices to show that I o = J , where I o is from Corollary 3.3.
We note that by Remark 3.6, we can replace (Po1) in definition of the multiscale
ordinary rate function I o by Z satisfying Eq. (38). We will also use the alternative
form of D̄(x, μ) provided by Eq. (26) in Remark 2.5.

First we show J ≤ I o. Take Z such I o(Z) < ∞. Then Po(Z) is non-empty, and
for any h ∈ Po(Z) and, by Eq. (38), for any ψ ∈ C∞

c (U × R):

|FZ (ψ)| =
∣∣∣∣
∫ T

0
E

[∫
R

(
[σ(Xs , y,L(Xs)) + τ1(Xs , y,L(Xs))�y(Xs , y,L(Xs))]h1(s, Xs , y)

+ τ2(Xs , y,L(Xs))�y(Xs , y,L(Xs))h2(s, Xs , y)

)
ψx (s, Xs)π(dy; Xs ,L(Xs))

]
ds

∣∣∣∣
≤

(∫ T

0
E

[∫
R

(
[σ(Xs , y,L(Xs)) + τ1(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2

+ [τ2(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2
)

π(dy; Xs ,L(Xs))|ψx (s, Xs)|2
]

ds

)1/2

×
(∫ T

0
E

[∫
R

|h1(s, Xs , y)|2 + |h2(s, Xs , y)|2π(dy; Xs ,L(Xs))

]
ds

)1/2

= √
2

(∫ T

0
E

[
D̄(Xs ,L(Xs))|ψx (s, Xs)|2

]
ds

)1/2

(∫ T

0
E

[∫
R

|h(s, Xs , y)|2π(dy; Xs ,L(Xs))

]
ds

)1/2

so in particular, if
∫ T
0 E

[
D̄(Xs,L(Xs))|ψx (s, Xs)|2

]
ds = 0, then FZ (ψ) = 0. Then,

observing that ψ ∈ C∞
c (U ×R) if and only if for any c ∈ R\{0}, cψ ∈ C∞

c (U ×R)

and that FZ is linear, we have:

J (Z) = sup

ψ∈C∞
c (U×R):∫ T

0 E

[
D̄(Xs ,L(Xs ))|ψx (s,Xs )|2

]
ds �=0

{
FZ (ψ) −

∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

}
∨ 0

= sup

ψ∈C∞
c (U×R):∫ T

0 E

[
D̄(Xs ,L(Xs ))|ψx (s,Xs )|2

]
ds �=0

sup
c∈R

{
cFZ (ψ) − c2

∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

}
∨ 0

= sup

ψ∈C∞
c (U×R):∫ T

0 E

[
D̄(Xs ,L(Xs ))|ψx (s,Xs )|2

]
ds �=0
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|FZ (ψ)|2

4
∫ T
0 E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

.

Returning to the above inequality and squaring both sides, we have

|FZ (ψ)|2

2
∫ T
0 E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

≤
∫ T

0
E

[∫
R

|h(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds,

for all ψ ∈ C∞
c (U × R) such that

∫ T
0 E

[
D̄(Xs,L(Xs))|ψx (s, Xs)|2

]
ds �= 0 and all

h ∈ Po(Z). So J (Z) ≤ I o(Z).
Now we prove J ≥ I o. Assume without loss of generality that J (Z) ≤ C < ∞.

Then, since

J (Z) = sup
ψ∈C∞

c (U×R)

sup
c∈R

{
cFZ (ψ) − c2

∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

}

= +∞

if there exists ψ ∈ C∞
c (U × R) such that FZ (ψ) �= 0 and

∫ T
0 E[D̄(Xt ,L(Xt ))|ψx

(t, Xt )|2]dt = 0, we have

J (Z) = sup

ψ∈C∞
c (U×R):∫ T

0 E

[
D̄(Xs ,L(Xs ))|ψx (s,Xs )|2

]
ds �=0

|FZ (ψ)|2

4
∫ T
0 E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

.

This shows that for all ψ ∈ C∞
c (U × R)

∣∣∣∣FZ (ψ)

∣∣∣∣ ≤ 2
√

C

(∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

)1/2

. (42)

Now we borrow some notation from [17] (see pp. 270–271). We let for t ∈ [0, T ]
∇t , (·, ·)t , and | · |t be (formally) the Riemannian gradient, inner product, and Rie-
mannian norm in the tangent space of the Riemannian structure on R induced by the
diffusion matrix t  → D̄(·,L(Xt )), i.e.:

∇t f := D̄(·,L(Xt ))
d f

dx
, (X , Y )t := D̄(·,L(Xt ))

−1XY , |X |t := (X , X)
1/2
t .
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In particular, note that

|∇t f |2t = D̄(·,L(Xt ))|d f

dx
|2.

Now, as on p. 279 in [17], we define L2[0, T ] to be the Hilbert space of measurable
maps g : [0, T ] × R → R with finite norm

‖g‖ :=
(∫ T

0
〈L(Xt ), |g(t, ·)|2t 〉dt

)1/2

=
(∫ T

0
E[D̄(Xt ,L(Xt ))

−1|g(t, Xt )|2]dt

)1/2

and inner product

[g1, g2] :=
∫ T

0
〈L(Xt ), (g1(t, ·), g2(t, ·))t 〉dt

=
∫ T

0
E[D̄(Xt ,L(Xt ))

−1g1(t, Xt )g2(t, Xt )]dt .

Denote by L2∇[0, T ] the closure in L2[0, T ] of the linear subset L consisting of
all maps (s, x)  → ∇sψ(s, x), ψ ∈ C∞

c (U × R). Then FZ can be viewed as a linear
functional on L , and by the bound (42), is bounded. Then, by the Riesz Representation
Theorem, there exists h̄ ∈ L2∇[0, T ] such that

FZ (ψ) =
∫ T

0
〈L(Xs), (h̄(s, ·),∇sψ(s, ·))s〉ds

=
∫ T

0
E[h(s, Xs)ψx (s, Xs)]ds, ψ ∈ C∞

c (U × R). (43)

Note that actually, L2∇ must be considered not as a class of functions, but as a
set of equivalence classes of functions agreeing νL(X ·)-almost surely. This is of no
consequence, however, since the bound (42) ensures that FZ (ψ) = FZ (ψ̃) if ψx and
ψ̃x are in the same equivalence class (see p. 279 in [17] and Appendix D.5 in [28] for
a more thorough treatment of the space L2∇[0, T ] and its dual).

Consider h̃(s, x, y) : [0, T ] × R× R → R
2 given by

h̃1(s, x, y) = 1

2D̄(x,L(Xs))
[σ(x, y,L(Xs)) + τ1(x, y,L(Xs))�y(x, y,L(Xs))]h̄(s, x)

h̃2(s, x, y) = 1

2D̄(x,L(Xs))
τ2(x, y,L(Xs))�y(x, y,L(Xs))h̄(s, x). (44)

We have:

∫ T

0
E

[∫
R

|h̃(s, Xs , y)|2π(dy; Xs ,L(Xs))

]
ds

=
∫ T

0
E

[ |h̄(s, Xs)|2
4|D̄(x,L(Xs))|2

∫
R

(
[σ(Xs , y,L(Xs)) + τ1(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2
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+ [τ2(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2
)

π(dy; Xs ,L(Xs))

]
ds

= 1

2

∫ T

0
E

[
D̄(x,L(Xs))

−1|h̄(s, Xs)|2
]

ds < ∞. (45)

Moreover, for ψ ∈ C∞
c (U × R):

∫ T

0
E

[∫
R

(
[σ(Xs , y,L(Xs)) + τ1(Xs , y,L(Xs))�y(Xs , y,L(Xs))]h̃1(s, Xs , y)

+ τ2(Xs , y,L(Xs))�y(Xs , y,L(Xs))h̃2(s, Xs , y)

)
ψx (s, Xs)π(dy; Xs ,L(Xs))

]
ds

=
∫ T

0
E

[∫
R

(
[σ(Xs , y,L(Xs)) + τ1(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2

+ [τ2(Xs , y,L(Xs))�y(Xs , y,L(Xs))]2
)

π(dy; Xs ,L(Xs))
h̄(s, Xs)

2D̄(Xs ,L(Xs)
ψx (s, Xs)

]
ds

=
∫ T

0
E

[
h̄(s, Xs)ψx (s, Xs)

]
ds

= FZ (ψ) by Eq. (43).

Thus, h̃ ∈ Po(Z) by definition. Take a sequence {ψ̃n} ⊂ L such that ψ̃n → h̄ in
L2[0, T ]. By virtue of ψ̃n ∈ L , we have for each n, there is ψn ∈ C∞

c (U × R) such
that ψ̃n(s, x) = ∇sψ

n(s, x) = D̄(x,L(Xs))ψ
n
x (s, x).

In particular, we have |ψ̃n|2t → |h̄|2t , so

∫ T

0
E

[
D̄(Xt ,L(Xt ))|ψn

x (t, Xt )|2
]

dt →
∫ T

0
E

[
D̄(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt

and (ψ̃n, h̄)t → |h̄|2t , so

∫ T

0
E

[
ψn

x (t, Xt )h(t, Xt )

]
dt →

∫ T

0
E

[
D̄(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt .

Note that if
∫ T
0 E

[
D̄(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt = 0, we have by Eq. (45), that

the relation holds
∫ T
0 E

[∫
R
|h̃(s, Xs, y)|2π(dy)

]
ds = 0, and hence I o(Z) = 0, so

the desired bound is trivial.
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Assuming then that
∫ T
0 E

[
D(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt �= 0, we may choose a

subsequence of {ψn
x } such that

∫ T
0 E

[
D̄(Xt ,L(Xt ))|ψn

x (t, Xt )|2
]

dt �= 0,∀n. Then:

J (Z) ≥ 1

4

(∫ T
0 E

[
ψn

x (s, Xs)h̄(s, Xs)

]
ds

)2

∫ T
0 E

[
D̄(Xt ,L(Xt ))|ψn

x (t, Xt )|2
]

dt
for all n ∈ N

→ 1

4

∫ T

0
E

[
D(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt as n → ∞.

By Eq. (45),

1

4

∫ T

0
E

[
D(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt

= 1

2

∫ T

0
E

[∫
R

|h̃(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds,

so since h̃ ∈ Po(Z):

J (Z) ≥ 1

2

∫ T

0
E

[∫
R

|h̃(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds ≥ I o(Z).

��
Now we are ready to prove Proposition 4.3.

Proof of Proposition 4.3 As noted, the form of the rate function proved in Lemma 4.5
is analogous to that of Eq. (4.21) in [17]. We follow the proof of Lemma 4.8 in [17],
making changes to account for the multiscale structure and the entry of L(Xs) rather
than Zs in the subtracted term in Eq. (4.24), which comes the fact that we are looking at
moderate deviations rather than large deviations. We also use the specific information
about the optimal control from the proof of Lemma 4.5.

Once again, it is sufficient to show I o = I DG , or equivalently, J = I DG . First we
show that I o = J ≤ I DG . Let Z ∈ C([0, T ];S−w) be such that I DG(Z) < ∞. Note
that

sup
φ∈C∞

c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

{
〈Żt − L̄∗

L(Xt )
Zt , φ〉 − E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]}

= sup
φ∈C∞

c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

sup
c∈R{

c〈Żt − L̄∗
L(Xt )

Zt , φ〉 − c2E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]}
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= 1

4
sup

φ∈C∞
c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

∣∣∣∣〈Żt − L̄∗
L(Xt )

Zt , φ〉
∣∣∣∣
2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]

for all t ∈ [0, T ]. So for any ψ ∈ C∞
c (U × R):

I DG(Z) = 1

4

∫ T

0
sup

φ∈C∞
c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

∣∣∣∣〈Żt − L̄∗
L(Xt )

Zt , φ〉
∣∣∣∣
2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]dt

=
∫ T

0
sup

φ∈C∞
c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0{

〈Żt − L̄∗
L(Xt )

Zt , φ〉 − E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]}
dt

≥
∫ T

0
〈Żt − L̄∗

L(Xt )
Zt , ψ(t, ·)〉 − E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt

= 〈ZT , ψ(T , ·)〉 −
∫ T

0
〈Zt , ψ̇(t, ·)〉dt −

∫ T

0
〈Zt , L̄L(Xt )ψ(t, ·)〉dt

− E

[
D̄(Xt ,L(Xt ))|ψx (t, Xt )|2

]
dt,

where in the last step we used Lemma 4.3 in [17]. Then taking the supremum over all
ψ ∈ C∞

c (U × R), we get I DG(Z) ≥ J (Z), as desired.
Now we show that I DG ≤ J = I o. Consider Z ∈ C([0, T ];S−w) such that

J (Z) < ∞.
In Lemma 4.5, we proved for h̃ as in Eq. (44), h̃ ∈ Po(Z). We also showed:

1

2

∫ T

0
E

[∫
R

|h̃(s, Xs, y)|2π(dy)

]
ds

≤ J (Z) = I o(Z) ≤ 1

2

∫ T

0
E

[∫
R

|h(s, Xs, y)|2π(dy)

]
ds,∀h ∈ Po(Z),

so that in fact

J (Z) = I o(Z) = 1

2

∫ T

0
E

[∫
R

|h̃(s, Xs, y)|2π(dy)

]
ds

= 1

4

∫ T

0
E

[
D̄(Xs,L(Xs))

−1|h̄(s, Xs)|2
]

ds, (46)

where in the last inequality we used Eq. (45).
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Now, by the fact that h̃ ∈ Po(Z), we have by Eq. (35) that for all 0 ≤ s ≤ t ≤ T
and φ ∈ C∞

c (R):

〈Zt , φ〉 − 〈Zs , φ〉 =
∫ t

s
〈Zu, L̄L(Xu )φ(·)〉du

+
∫ t

s
E

[∫
R

(
[σ(Xu, y,L(Xu)) + τ1(Xu, y,L(Xu))�y(Xu, y,L(Xu))]h̃1(u, Xu, y)

+ τ2(Xu, y,L(Xu))�y(Xu, y,L(Xu))h̃2(u, Xu, y)

)
π(dy; Xu,L(Xu))φ′(Xu)

]
du

=
∫ t

s
〈Zu, L̄L(Xu )φ(·)〉du +

∫ t

s
E

[
h̄(u, Xu)φ′(Xu)

]
du

where h̄ is as in Eq. (43), so by Definition 4.1 and Lemma 8.6, Z is an absolutely
continuous map from [0, T ] to S ′. Then, using Lemma 4.2, we have for each φ ∈
C∞

c (R):

〈Żt , φ〉 = E

[
h̄(t, Xt )φ

′(Xt )

]
+ 〈Zt , L̄L(Xt )φ(·)〉. (47)

Using a density argument, we can make sure this holds simultaneously for all
φ ∈ C∞

c (R) and Lebesgue almost every t ∈ [0, T ] (see p. 280 of [17]). This gives:

I DG(Z) = 1

4

∫ T

0
sup

φ∈C∞
c (R):E[D̄(Xt ,L(Xt ))|φ′(Xt )|2]�=0

(
E

[
h̄(t, Xt )φ

′(Xt )

])2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]dt

For any φ ∈ C∞
c (R) and t ∈ [0, T ] such that E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]
�= 0, we

have

(
E

[
h̄(t, Xt )φ

′(Xt )

])2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

] =

(
E

[
D̄(Xt ,L(Xt ))

−1/2h̄(t, Xt )D̄(Xt ,L(Xt ))
1/2φ′(Xt )

])2

E

[
D̄(Xt ,L(Xt ))|φ′(Xt )|2

]

≤ E

[
D̄(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

so

I DG(Z) ≤ 1

4

∫ T

0
E

[
D̄(Xt ,L(Xt ))

−1|h̄(t, Xt )|2
]

dt,

and by Eq. (46) we are done. ��
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As a corollary to the above result, we also get an alternative form of the rate function
in the setting without multiscale structure. This provides us with rate functions with
which it is more feasible to compare the likelihood of rare events for the fluctuation
process (3) as N → ∞ in the multiscale and non-multiscale setting as opposed to the
variational form given in Theorem 3.2 and Corollary 3.4. This analysis is outside the
scope of this paper, but is an interesting avenue for future research.

Corollary 4.6 In the setting of Corollary 3.4, assume in addition σ 2(x, μ) > 0, for all
x ∈ R and μ ∈ P2(R). Consider Ĩ DG : C([0, T ];S−ρ) → [0,+∞] given by:

Ĩ DG(Z) := 1

2

∫ T

0
sup

φ∈C∞
c (R):E[σ 2(Xt ,L(Xt ))|φ′(X̃t )|2]�=0

|〈Żt − L̃∗
L(X̃t )

Zt , φ〉|2
E[σ 2(Xt ,L(Xt ))|φ′(X̃t )|2]

dt,

(48)

if Z(0) = 0, Z is absolutely continuous in the sense if Definition 4.1, and Z ∈
C([0, T ];S−v), and I DG(Z) = +∞ otherwise. Here X̃t is as in Corollary 3.4, Ż
is the time derivative of Z in the distribution sense from Lemma 4.2 and L̃∗

L(X̃s )
:

S−v → S−(v+2) is the adjoint of L̃L(X̃s )
: Sv+2 → Sv given in Corollary 3.4 (using

here Lemma 8.6).
Then {Z N }N∈N satisfies a large deviation principle on the space C([0, T ];S−ρ)

with speed a−2(N ) and good rate function Ĩ DG.

Proof This follows by the same proof as Proposition 4.3, removing the dependence
of the control on y and setting � ≡ 0.

��

4.2 Examples: a class of aggregation-diffusion equations

A common form for interacting particle systems which are widely used in many
settings such as in biology, ecology, social sciences, economics, molecular dynamics,
and in study of spatially homogeneous granular media (see e.g., [2, 34, 47, 54]) is:

d Xi,N
t = −V ′(Xi,N

t )dt − 1

N

N∑
j=1

W ′(Xi,N
t − X j,N

t )dt + σdW i
t , Xi,N

0 = ηx

(49)

where V : R → R is a sufficiently smooth confining potential and W : R → R

is a sufficiently smooth interaction potential. The class of systems (49) contains the
system in the seminal paper [16], where many mathematical aspects of a model for
cooperative behavior in a bi-stable confining potential with attraction to the mean are
explored. This leads us to our first example:

Example 4.7 Consider the system (49). Let v, ρ be as in Corollary 3.4. Suppose
V ′, W ′ ∈ Cρ+2

b ,W ′ ∈ Sρ+2, andσ > 0.Then {Z N }N∈N = {a(N )
√

N [ 1N
∑N

i=1 δXi,N· −
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L(X̃ ·)]}N∈N satisfies a large deviation principle on the space C([0, T ];S−ρ) with
speed a−2(N ) and good rate function Ĩ DG given by:

Ĩ DG(Z) := 1

2σ 2

∫ T

0
sup

φ∈C∞
c (R):E[|φ′(X̃t )|2]�=0

|〈Żt − L̃∗
L(X̃t )

Zt , φ〉|2
E[|φ′(X̃t )|2]

dt,

if Z(0) = 0, Z is absolutely continuous in the sense if Definition 4.1, and Z ∈
C([0, T ];S−v), and I DG(Z) = +∞ otherwise.

Here X̃t satisfies:

d X̃t = −V ′(X̃t )dt − Ē[W ′(x − X̄t )]|x=X̃t
dt + σdWt , X̃0 = ηx

and L̃L(X̃s )
: Sv+2 → Sv acts on φ ∈ C∞

c (R) by:

L̃L(X̃s )
φ(x) = −[V ′(x) + E[W ′(x − X̃s)]]φ′(x) + σ 2

2
φ′′(x) − E[W ′(X̃s − x)φ′(X̃s)].

We are denoting by X̄t an independent copy of X̃t on another probability space
(�̄, F̄ , P̄), and by Ē the expectation on that space.

Proof Noting that σ is constant and δ
δm c(x, μ)[z] = −W ′(x − z), the assumptions

put forward in Corollary 3.4 can be directly verified. This example then immediately
falls into the regime of Corollary 4.6. ��
In [38], the authors make, among other modifications, a modification to V in Eq. (49)
so that it is a so-called rough-potential (see also [74] and [4] Section 5), by letting
V ε(x) = V1(x)+ V2(x/ε), where V2 is sufficiently smooth and periodic. The system
becomes:

d Xi,ε,N
t = −[V ′

1(Xi,ε,N
t ) + 1

ε
V ′
2(Xi,ε,N

t /ε)]dt − 1

N

N∑
j=1

W ′(Xi,ε,N
t − X j,ε,N

t )dt + σdW i
t .

Letting Y i,ε,N
t = Xi,ε,N

t /ε, we see this is a subclass of systems of the form (1) with

f (x, y, μ) = b(x, y, μ) = −V ′
2(y), g(x, y, μ) = c(x, y, μ) = −V ′

1(x) − 〈μ, W ′(x − ·)〉
σ(x, y, μ) = τ1(x, y, μ) ≡ σ, τ2 ≡ 0,

Keeping within our setting of a slow–fast system on R, we consider a version of
this system where the fast and slow dynamics are allowed to be different, and the fast
system is not confined to the torus:

d Xi,ε,N
t = −[V ′

1(Xi,ε,N
t ) + 1

ε
V ′
2(Y

i,ε,N
t )]dt − 1

N

N∑
j=1

W ′
1(Xi,ε,N

t − X j,ε,N
t )dt + σdW i

t
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dY i,ε,N
t = −1

ε
[V ′

3(Xi,ε,N
t ) + 1

ε
V ′
4(Y

i,ε,N
t )]dt − 1

ε

1

N

N∑
j=1

W ′
2(Xi,ε,N

t − X j,ε,N
t )dt

+ 1

ε
τ1dW i

t + 1

ε
τ2d Bi

t

(Xi,ε,N
0 , Y i,ε,N

0 ) = (ηx , ηy). (50)

This falls into the class of systems (1) with

b(x, y, μ) = −V ′
2(y), c(x, y, μ) = −V ′

1(x) − 〈μ, W ′
1(x − ·)〉, σ (x, y, μ) ≡ σ

f (x, y, μ) = −V ′
4(y), g(x, y, μ) = −V ′

3(x) − 〈μ, W ′
2(x − ·)〉, τ1(x, y, μ) ≡ τ1,

τ2(x, y, μ) ≡ τ2.

Example 4.8 Consider the system (50).
SupposeV4(y) = κ

2 y2+η̃(y)whereκ > 0 and η̃ ∈ C2
b (R) is evenwith

∥∥η̃′′
∥∥∞ < κ ,

V ′
1, V ′

3, W ′
1, W ′

2 ∈ Cr+2
b (R), W ′

1, W ′
2 ∈ Sr+2 where r is as in Eq. (7), σ, τ2 �= 0, V2 is

even, and V ′
2 is Lipschitz continuous and O(|y|1/2) as |y| → ∞.

Then {Z N }N∈N = {a(N )
√

N [ 1N
∑N

i=1 δXi,ε,N· −L(X ·)]}N∈N satisfies a large devi-

ation principle on the space C([0, T ];S−r )with speed a−2(N ) and good rate function
I DG given by:

I DG(Z) = 1

2[σ 2 + 2αa + 2στ1α̃]
∫ T

0
sup

φ∈C∞
c (R):E[|φ′(Xt )|2]�=0

∣∣∣∣〈Żt − L̄∗
L(Xt )

Zt , φ〉
∣∣∣∣
2

E

[
|φ′(Xt )|2

] dt

if Z(0) = 0, Z is absolutely continuous in the sense if Definition 4.1, and Z ∈
C([0, T ];S−w), and I DG(Z) = +∞ otherwise. Here Xt satisfies:

d Xt = −[α̃V ′
3(Xt ) + V ′

1(Xt )]dt − Ē[α̃W ′
2(x − X̄t )

+ W ′
1(x − X̄t )]|x=Xt dt + [σ 2 + 2αa + 2στ1α̃]1/2dWt

X0 = ηx

α̃ =
∫
R

�′(y)π(dy), α =
∫
R

[�′(y)]2π(dy), a = 1

2
[τ 21 + τ 22 ]

and L̄L(Xs ) : Sw+2 → Sw acts on φ ∈ C∞
c (R) by:

L̄L(Xs )φ(x) := −[α̃V ′
3(x) + V ′

1(x) + E[α̃W ′
2(x − Xs) + W ′

1(x − Xs)]]φ′(x)

+ 1

2
[σ 2 + 2αa + 2στ1α̃]φ′′(x)

− E[[α̃W ′
2(Xs − x) + W ′

1(Xs − x)]φ′(Xs)].
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Again, we are denoting by X̄t an independent copy of Xt on another probability space
(�̄, F̄ , P̄) and by Ē the expectation on that space.

Proof Once we show
∫
R

V ′
2(y)π(dy) = 0 for π as in Eq. (20), it follows that assump-

tions (A1)–(A12) and (A’13) hold via Example C.6 in the appendix. Via Remark
4.4, we also have D̄ > 0,∀x ∈ R, μ ∈ P2(R). Then this example is an immediate
corollary of Proposition 4.3.

We know in this setting thatπ admits a density of the formπ(y) = C exp
(−V4(y)

a

)
,

where C is a normalizing constant (see Eq. 72 in the appendix). Then since V2, V4 are
assumed even and hence V ′

2π is odd, the result holds. ��

5 Overview of the approach and formulation of the controlled system

We use the weak convergence approach of [22] in order to prove the large deviations
principle for Z N . As discussed in Sect. 3, we prove the large deviations principle via
proving Z N satisfies the Laplace principle with speed a−2(N ) and good rate function
I given by Eq. (33) (see, e.g. [22] Section 1.2).

The method for this is to use the variational representation from [8] to get that for
each N ∈ N and F ∈ Cb(C([0, T ]; S−τ )), τ ≥ w, where w is as in Eq. (6),

− a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

= inf
ũN

E

[
1

2

1

N

N∑
i=1

∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds + F(Z̃ N )

]
(51)

where {ũN ,k
i }i∈N,k=1,2 are {Ft }-progressively-measurable processes such that

sup
N∈N

1

N
E

[ N∑
i=1

∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds

]
< ∞. (52)

One can see that in fact the results of [8] indeed imply the equality (51) by following
an argument along the same lines as Proposition 3.3. in [4].

This bound on the controls can be improved when proving the Laplace principle
Lower Bound (30) to:

sup
N∈N

1

N

N∑
i=1

∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds < ∞,P− almost surely. (53)

by the argument found in Theorem 4.4 of [8]. Here Z̃ N is given by, for φ ∈ C∞
c (R) :

〈Z̃ N
t , φ〉 = a(N )

√
N (〈μ̃ε,N

t , φ〉 − 〈L(Xt ), φ〉), with
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μ̃
ε,N
t = 1

N

N∑
i=1

δX̃ i,ε,N
t

, t ∈ [0, T ]. (54)

X̃ i,ε,N
t are solutions to:

d X̃ i,ε,N
t =

[
1

ε
b(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) + c(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )

+ σ(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )

ũN ,1
i (t)

a(N )
√

N

]
dt

+ σ(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )dW i

t

dỸ i,ε,N
t = 1

ε

[
1

ε
f (X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) + g(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )

+ τ1(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )

ũN ,1
i (t)

a(N )
√

N

+ τ2(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )

ũN ,2
i (t)

a(N )
√

N

]
dt

+ 1

ε

[
τ1(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )dW i

t + τ2(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )d Bi

t

]

(X̃ i,ε,N
0 , Ỹ i,ε,N

0 ) = (ηx , ηy). (55)

We couple the controls to the joint empirical measures of the fast and slow process
by defining occupation measures {QN }N∈N ⊂ MT (R4) in the following way: for
A, B ∈ B(R) and C ∈ B(R2):

QN (A × B × C × [0, t]) = 1

N

N∑
i=1

∫ t

0
δX̃ i,ε,N

s
(A)δỸ i,ε,N

s
(B)δ

(ũN ,1
i (s),ũN ,2

i (s))(C)ds.

(56)

The proof of the Inequalities (30) and (31) are attained by identifying limit in distri-
bution of (Z̃ N , QN ) as satisfying the limiting controlled Eq. (32). This identification
of the limit is the subject of Sect. 8. In order to identify this limit, we first need to
establish tightness of the sequence of random variables {(Z̃ N , QN )}N∈N, as done in
Sect. 7. The proof of tightness relies on a combination of Ergodic-Type Theorems for
the system of controlled interacting particles (55) as proved in Sect. 6 and on estab-
lishing rates of averaging for fully coupled McKean–Vlasov equations, as done in
Sect. 7.1. These rates of averaging are needed do to a novel coupling argument made
in the proof of tightness (see Lemma 7.6) to the following system of IID slow–fast
McKean–Vlasov Equations:

d X̄ i,ε
t =

[
1

ε
b(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t )) + c(X̄ i,ε
t , Ȳ i,ε

t ,L(X̄ ε
t ))

]
dt
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+ σ(X̄ i,ε
t , Ȳ i,ε

t ,L(X̄ ε
t ))dW i

t

dȲ i,ε
t = 1

ε

[
1

ε
f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t )) + g(X̄ i,ε
t , Ȳ i,ε

t ,L(X̄ ε
t ))

]
dt

+ 1

ε

[
τ1(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))dW i
t + τ2(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))d Bi
t

]

(X̄ i,ε
0 , X̄ i,ε

0 ) = (ηx , ηy), (57)

where X̄ ε is any particle that has common lawwith the X̄ i,ε’s and W i , Bi are the same
driving Brownian motions as in Eqs. (1) and (55).

We will also make use of the empirical measure on N of the IID slow particles from
Eq. (57):

μ̄ε,N := 1

N

N∑
i=1

δX̄ i,ε
t

. (58)

Remark 5.1 Note that these IIDparticles arewhatweget from replacingμε,N byL(X̄ ε)

in Eq. (1). Using such an auxiliary process is a traditional proof method for tightness
of fluctuation processes related to empirical measures; See [39] Theorem 1/Lemma 1,
[69] Section 8, [19] Section 5.1, [49] Theorem 2.4/3.1, [27] Lemma 3.2/Proposition
3.5/Section 4 for examples of this general approach. However, a key difference here
form those proofs is that the IID particles are not copies of the limiting process (25),
but instead are copies of the process we would obtain from keeping ε > 0 fixed and
sending N → ∞. As seen in [4], the limit in distribution as N → ∞,ε ↓ 0 of the
empirical measure με,N does not depend on the relative rates at which ε and N go to
their respective limits. Hence, we are able to treat each of the problems separately, and
obtain a rate of convergence of μ̃ε,N from Eq. (54) to μ̄ε,N from Eq. (58) as N → ∞
in L2 (see Lemma 7.5), and a rate of convergence of L(X̄1,ε

t ) from Eq. (57) to L(Xt )

uniformly as an element of S−m , where Xt is as in Eq. (25) and m is as in Eq. (5).
The latter is a problem of independent interest in itself, and extends the current known
results on averaging for SDEs andMcKean–Vlasov SDEs, which can be found in, e.g.
[64] and [65] respectively. The result is contained in Sect. 7.1 as Theorem 7.2, and its
proof is the subject of the complimentary paper [5].

6 Ergodic-type theorems for the controlled system (55)

In this section, we use themethod of auxiliary Poisson equations to derive rates of aver-
aging in the form of Ergodic-Type Theorems for the controlled particles (55). These
results are used in the proof of tightness of the controlled fluctuation process, as they
allow us to couple the controlled particles (55) to the IID slow–fast McKean–Vlasov
Eq. (57)—see Lemma 7.5. They also allow us to identify a prelimit representation
for the controlled fluctuations processes ˜Z N from Eq. (54) (see Lemma 7.7), which
informs the controlled limit proved in Sect. 8. In particular, Proposition 6.1 is neces-
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sary to handle the terms 1
ε
b appearing in the drift of the slow particles Xi,N ,ε , X̃ i,N ,ε

in Eqs. (1), (55). This is where the terms involving the solution � to the Poisson
Eq. (22) in the limiting coefficients (23) come from. The same analysis is performed
in averaging fully-coupled standard diffusions—see e.g. [61] Theorem 4 and [64]
Lemma 4.4—but here we must also account for the dependence of the coefficients on
the empirical measure, and hence derivatives of � in its measure component appear
in the remainder terms. One term involving the derivative in the measure component
of � a priori seems to be O(1) in the limit, but is seen to vanish as N → ∞ in
Proposition 6.3. Naturally such a term does not appear in the setting without mea-
sure dependence of the coefficients, and is unique to slow–fast interacting particle
systems and slow–fast McKean–Vlasov SDEs. Thus the “doubled Poisson equation”
construction (see Eq. 63) and the proof of Proposition 6.3 are novel to this paper and
the related paper [5]. Proposition 6.4 is used to see that drift and diffusion coefficients
which depend on the fast particles Ỹ i,ε,N from Eq. (55) can be exchanged for those
where dependence on Ỹ i,ε,N is replaced with integration against the invariant measure
π from Eq. (20) at a cost of O(ε). This method is employed when establishing rates
of stochastic homogenization in the standard (one-particle) setting in e.g. [67] Lemma
4.1, [56] Lemma B.5, and [64] Lemma 4.2. There again, our setting is different than
the standard case in that we must compensate for the dependence of the empirical
measure of the coefficients, which yields terms involving the derivative in the measure
component of the auxiliary Poisson Eq. (64).

Proposition 6.1 Consider ψ ∈ C1,2
b ([0, T ] × R). Under assumptions (A1)–(A6), we

have for any t ∈ [0, T ]:

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

1

ε
b(i)ψ(s, X̃ i,ε,N

s )ds

−
∫ t

0

(
γ1(i)ψ(s, X̃ i,ε,N

s ) + D1(i)ψx (s, X̃ i,ε,N
s )

+ [ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)ψ(s, X̃ i,ε,N
s )

)
ds

−
∫ t

0
τ1(i)�y(i)ψ(s, X̃ i,ε,N

s )dW i
s

−
∫ t

0
τ2(i)�y(i)ψ(s, X̃ i,ε,N

s )d Bi
s −

∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )ds

∣∣∣∣
2]

≤ C[ε2a(N )
√

N (1+ T + T 2) + a(N )√
N

T 2] ‖ψ‖2
C1,2

b

where here (i) denotes the argument (X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ) and similarly for ( j), [ j]

denotes the argument X̃ j,ε,N
s , and � is as in (22). Here we recall the definitions of

γ1, D1 from Eq. (23).
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Proof Using Lemma C.1 to gain appropriate differentiablity of �, letting �N : R ×
R × R

N → R be the empirical projection of � and applying standard Itô’s formula
and Proposition D.6 to the composition �N (X̃ i,ε,N

s , Ỹ i,ε,N
s , (X̃1,ε,N

s , . . . , X̃ N ,ε,N
s )),

we get:

∫ t

0

1

ε
b(i)ψ(s, X̃ i,ε,N

s )ds −
∫ t

0

(
γ1(i)ψ(s, X̃ i,ε,N

s ) + D1(i)ψx (s, X̃ i,ε,N
s )

+ [ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)ψ(s, X̃ i,ε,N
s )

)
ds

−
∫ t

0
τ1(i)�y(i)ψ(s, X̃ i,ε,N

s )dW i
s

−
∫ t

0
τ2(i)�y(i)ψ(s, X̃ i,ε,N

s )d Bi
s −

∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )ds

=
8∑

k=1

B̃i,ε,N
k

where:

B̃i,ε,N
1 (t) = ε[�(X̃ i,ε,N

0 , Ỹ i,ε,N
0 , μ̃

ε,N
0 )ψ(0, X̃ i,ε,N

0 )

− �(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )ψ(t, X̃ i,ε,N

t )]
B̃i,ε,N
2 (t) = 1

N

∫ t

0
σ(i)τ1(i)∂μ�y(i)[i]ψ(s, X̃ i,ε,N

s )ds

B̃i,ε,N
3 (t) = ε

∫ t

0

(
�(i)ψ̇(s, X̃ i,ε,N

s ) + c(i)[�x (i)ψ(s, X̃ i,ε,N
s ) + �(i)ψx (s, X̃ i,ε,N

s )]

+ σ 2(i)

2
[�xx (i)ψ(s, X̃ i,ε,N

s )

+ 2�x (i)ψx (s, X̃ i,ε,N
s ) + �(i)ψxx (s, X̃ i,ε,N

s )]
)

ds

B̃i,ε,N
4 (t) = ε

∫ t

0

σ 2(i)

2
[ 2

N
∂μ�(i)[i]ψx (s, X̃ i,ε,N

s ) + 2

N
∂μ�x (i)[i]ψ(s, X̃ i,ε,N

s )]ds

B̃i,ε,N
5 (t) = ε

∫ t

0

1

N

N∑
j=1

{
c( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N

s ) + 1

2
σ 2( j)[ 1

N
∂2μ�(i)[ j, j]

+ ∂z∂μ�(i)[ j]]ψ(s, X̃ i,ε,N
s )

}
ds

B̃i,ε,N
6 (t) = ε

[∫ t

0
σ(i)[�x (i)ψ(s, X̃ i,ε,N

s ) + �(i)ψx (s, X̃ i,ε,N
s )]dW i

t

+ 1

N

N∑
j=1

{∫ t

0
σ( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N

s )dW j
s

}]

B̃i,ε,N
7 (t) = ε

∫ t

0

σ(i)

a(N )
√

N
ũN ,1

i (s)[�x (i)ψ(s, X̃ i,ε,N
s ) + �(i)ψx (s, X̃ i,ε,N

s )]ds
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B̃i,ε,N
8 (t) = ε

∫ t

0

1

N

{ N∑
j=1

σ( j)

a(N )
√

N
ũN ,1

j (s)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )

}
ds.

Via Lemma B.1, the assumed linear growth of b and c in y and boundedness of σ ,
and the assumed bound (53) on the controls, one can check that indeed μ̃N

t ∈ P2(R)

for each t ∈ [0, T ] and N ∈ N, and so there is no issue with the domain of � and its
derivatives being P2(R).

Then, by multiple applications of Hölder’s inequality, and using the assumed uni-
form in x, μ polynomial growth in y of � and its derivatives from Assumption (A6):

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

1 (t)|2
]
≤ ε2a(N )

√
N ‖ψ‖2∞

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

2 (t)|2
]
≤ C

a(N )√
N

1

N 2

N∑
i=1

TE

[∫ T

0
|∂μ�y(i)[i]|2ds

]
‖ψ‖2∞

≤ C
a(N )√

N

1

N

N∑
i=1

TE

[∫ T

0

∥∥∂μ�y(i)[·]
∥∥2

L2(R,μ̃
N ,ε
s )

ds

]
‖ψ‖2∞

≤ C
a(N )√

N
T 2

(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2q̃�y (1,0,0)
])

‖ψ‖2∞

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

3 (t)|2
]

≤ ε2a(N )
√

N T 2
(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2 + |Ỹ i,ε,N
t |2q�(0,2,0)

])
‖ψ‖2

C1,2
b

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

4 (t)|2
]

≤ C
a(N )√

N

ε2

N 2

N∑
i=1

TE

[∫ T

0

∣∣∣∣
(
|∂μ�(i)[i]| + |∂μ�x (i)[i]|

)∣∣∣∣
2

ds

]
(‖ψ‖2∞ + ‖ψx‖2∞)

≤ C
a(N )√

N

ε2

N

N∑
i=1

TE

[∫ T

0

∣∣∣∣
(∥∥∂μ�(i)[·]∥∥L2(R,μ̃

N ,ε
s )

+ ∥∥∂μ�x (i)[·]
∥∥

L2(R,μ̃
N ,ε
s )

)∣∣∣∣
2

ds

]
(‖ψ‖2∞ + ‖ψx‖2∞)

≤ C
a(N )√

N
ε2T 2

(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2(q̃�(1,0,0)∨q̃�(1,1,0))
])

(‖ψ‖2∞ + ‖ψx‖2∞)

Here for B̃1, we used the assumed boundedness of � from (A6). For B̃2 we used
the assumed polynomial growth in y of ∂μ� from (A6) and the boundedness of σ and
τ1 from (A5) and (A1). For B̃3 we used the assumed polynomial growth in y of �xx

and boundedness of �,�x from (A6) and the boundedness of σ and the linear growth
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in y of c from (A5). In B̃4 we used the assumed polynomial growth in y of ∂μ� and
∂μ�x from (A6) and the assumed boundedness of σ from (A5).

For B̃i,ε,N
5 (t), we bound the two terms separately. For the first, we use the assumed

linear growth in y of c and polynomial growth of ∂μ� in y to get:

a(N )√
N

N∑
i=1

ε2

N 2E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

N∑
j=1

c( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )ds

∣∣∣∣
2]

≤ ε2a(N )
√

N
T

N

N∑
i=1

E

[∫ T

0

∥∥∂μ�(i)[·]∥∥2L2(R,μ̃
ε,N
s )

1

N

N∑
j=1

|c( j)|2ds

]
‖ψ‖2∞

≤ Cε2a(N )
√

N T 2
(
1+ 1

N

N∑
i=1

sup
s∈[0,T ]

E

[
1

N

N∑
j=1

|Ỹ i,ε,N
s |2

]

+ 1

N

N∑
i=1

sup
s∈[0,T ]

E

[
|Ỹ i,ε,N

s |2q̃�(1,0,0)
]

+ sup
s∈[0,T ]

E

[
1

N 2

N∑
j=1

N∑
i=1

|Ỹ i,ε,N
s |2q̃�(1,0,0)|Ỹ j,ε,N

s |2
])

‖ψ‖2∞

≤ Cε2a(N )
√

N T 2
(
1+ 1

N

N∑
i=1

sup
s∈[0,T ]

E

[
1

N

N∑
j=1

|Ỹ i,ε,N
s |2

]

+ 1

N

N∑
i=1

sup
s∈[0,T ]

E

[
|Ỹ i,ε,N

s |2q̃�(1,0,0)
]

+ sup
s∈[0,T ]

E

[(
1

N

N∑
i=1

|Ỹ i,ε,N
s |2(q̃�(1,0,0)∨1)

)2])
‖ψ‖2∞ .

For the second, we have by boundedness of σ and the assumed polynomial growth in
y of ∂2μ� and ∂z∂μ�:

a(N )√
N

ε2

N 2

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

N∑
j=1

1

2
σ 2( j)[ 1

N
∂2μ�(i)[ j, j] + ∂z∂μ�(i)[ j]]ψ(s, X̃ i,ε,N

s )ds

∣∣∣∣
2]

≤ a(N )√
N

ε2CT
N∑

i=1

E

[∫ T

0

1

N

N∑
j=1

1

N 2 |∂2μ�(i)[ j, j]|2 + |∂z∂μ�(i)[ j]|2ds

]
‖ψ‖2∞

≤ a(N )√
N

ε2CT
N∑

i=1

E

[∫ T

0

1

N

∥∥∂2μ�(i)[·, ·]∥∥2
L2(R,μ̃

ε,N
s )⊗L2(R,μ̃

ε,N
s )

+ ∥∥∂z∂μ�(i)[·]∥∥2L2(R,μ̃
ε,N
s )

ds

]
‖ψ‖2∞

≤ Cε2a(N )
√

N T 2
[
1+ 1

N

N∑
i=1

sup
s∈[0,T ]

E

[
|Ỹ i,ε,N

s |2(q̃�(2,0,0)∨q̃�(1,0,1))
]]

‖ψ‖2∞ .
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For the martingale terms, by Burkholder-Davis-Gundy inequality, the assumed
boundedness of σ , �, and �x and assumed polynomial growth in y of ∂μ�:

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

6 (t)|2
]

≤ Cε2a(N )
√

N T (‖ψ‖2∞ + ‖ψx‖2∞)

+ C
a(N )√

N

N∑
i=1

ε2

N 2

N∑
j=1

E

[∫ T

0
|∂μ�(i)[ j]|2ds

]
‖ψ‖2∞

= Cε2a(N )
√

N T (‖ψ‖2∞ + ‖ψx‖2∞) + C
a(N )√

N

N∑
i=1

ε2

N

E

[∫ T

0

∥∥∂μ�(i)[·]∥∥2L2(R,μ̃
ε,N
s )

ds

]
‖ψ‖2∞

≤ Cε2a(N )
√

N T (‖ψ‖2∞ + ‖ψx‖2∞) + C
ε2a(N )√

N
T

×
(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2q̃�(1,0,0)
])

‖ψ‖2∞ .

By the bound (52) and the assumed boundedness of �,�x , we have also

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

7 (t)|2
]

≤ a(N )√
N

N∑
i=1

ε2

a2(N )N
CTE

[∫ T

0
|ũN ,1

i (s)|2ds

]
(‖ψ‖2∞ + ‖ψx‖2∞)

≤ ε2

a(N )
√

N
CT (‖ψ‖2∞ + ‖ψx‖2∞).

Finally, by the assumed boundedness of σ and polynomial growth of ∂μ� in y:

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]
|B̃i,ε,N

8 (t)|2
]

≤ a(N )√
N

N∑
i=1

ε2

a2(N )N 3 CE

[∣∣∣∣
N∑

j=1

∫ T

0
|ũN ,1

j (s)||∂μ�(i)[ j]|ds

∣∣∣∣
2]

‖ψ‖2∞

≤ a(N )√
N

N∑
i=1

ε2

a2(N )N
CE

[(
1

N

N∑
j=1

∫ T

0
|ũN ,1

j (s)|2ds

)
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×
(∫ T

0

∥∥∂μ�(i)[·]∥∥2L2(R,μ̃
ε,N
s )

ds

)]
‖ψ‖2∞

≤ C
ε2

a(N )
√

N
T

(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2q̃�(1,0,0)
])

‖ψ‖2∞

where we use the bound (53) in the last step. The result follows from Lemmas B.1 and
B.3, using that the exponent of |Ỹ i,ε,N

t | in the expectation of all these bounds is less
than or equal to 2 as imposed in Assumption (A6). Lemma B.3 is used to handle the
last term appearing in the bound of the first part of B̃5. ��
Remark 6.2 Bounding the first term in B̃5 in Proposition 6.1 is the only place where
Lemma B.3 is required in this manuscript. The proof of Lemma B.3 is where it is
required that there exists ρ ∈ (0, 1) such that a(N )

√
Nερ → λ ∈ (0,+∞]. Thus,

if this term can be otherwise bounded (e.g. if c or ∂μ� is uniformly bounded), one
can relax this technical assumption on the scaling sequence a(N ) to a(N )

√
Nε → 0.

Moreover, a(N )
√

Nε → 0 is needed so that the term B̃1 in Proposition 6.1 vanishes
- without this, one cannot hope to prove tightness of {Z̃ N }N∈N, as in Proposition
7.8 there would be an O(1) term which is not uniformly continuous with respect to
time. If b ≡ 0 and hence there is no need for Proposition 6.1, it is possible to prove
tightness even when a(N )

√
Nε → λ ∈ [0,∞). Under this scaling, we expect to get

a different formulation for the rate function in Theorem 3.2 when λ > 0. This is an
interesting avenue for future research which we do not pursue here for purposes of the
presentation.

Proposition 6.3 In the setup of Proposition 6.1, assume in addition (A7). Then

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )ds

∣∣∣∣
2]

≤ C[ε2a(N )
√

N (1+ T + T 2) + a(N )

N 3/2 T 2] ‖ψ‖2
C1,2

b
.

Proof Recall the operator Lx,μ from Eq. (18). For fixed x ∈ R, μ ∈ P(R), this is the
generator of

dY x,μ
t = f (x, Y x,μ

t , μ)dt + τ1(x, Y x,μ
t , μ)dWt + τ2(x, Y x,μ

t , μ)d Bt (59)

for Wt , Bt independent 1-D Brownian motions.
We introduce a new generator L2

x,x̄,μ parameterized by x, x̄ ∈ R, μ ∈ P2 which

acts on ψ ∈ C2
b (R2) by

L2
x,x̄,μψ(y, ȳ) = f (x, y, μ)ψy(y, ȳ) + f (x̄, ȳ, μ)ψȳ(y, ȳ)

+ 1

2
[τ 21 (x, y, μ) + τ 22 (x, y, μ)]ψyy(y, ȳ)
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+ 1

2
[τ 21 (x̄, ȳ, μ) + τ 22 (x̄, ȳ, μ)]ψȳ ȳ(y, ȳ). (60)

This is the generator associated to the 2-dimensional process solving 2 independent
copies of Eq. (59) where the same parameter μ enters both equations, but different
x, x̄ enter each equation, i.e.

dY x,μ
t = f (x, Y x,μ

t , μ)dt + τ1(x, Y x,μ
t , μ)dWt + τ2(x, Y x,μ

t , μ)d Bt

dȲ x̄,μ
t = f (x̄, Ȳ x̄,μ

t , μ)dt + τ1(x̄, Ȳ x̄,μ
t , μ)dW̄t + τ2(x̄, Ȳ x̄,μ

t , μ)d B̄t . (61)

for Wt , Bt , W̄t , B̄t independent 1-D Brownian motions.
It is easy then to see that the unique distributional solution of the adjoint equation

L2
x,x̄,μπ̄(·; x, x̄, μ) = 0,

∫
R2

π̄(dy, d ȳ; x, x̄, μ) = 1,∀x, x̄ ∈ R, μ ∈ P(R)

is given by

π̄(dy, d ȳ; x, x̄, μ) = π(dy; x, μ) ⊗ π(d ȳ; x̄, μ) (62)

whereπ is as in Eq. (20).We now considerχ(x, x̄, y, ȳ, μ) : R×R×R×R×P(R) →
R solving

L2
x,x̄,μχ(x, x̄, y, ȳ, μ) = −b(x, y, μ)∂μ�(x̄, ȳ, μ)[x]∫

R

∫
R

χ(x, x̄, y, ȳ, μ)π(dy; x, μ)π(d ȳ, x̄, μ) = 0. (63)

Note that by the centering condition, Eq. (21), the right hand side of Eq. (63)
integrates against π̄ fromEq. (62) to 0 for all x, x̄, μ. Also, the second order coefficient
in L2

x,x̄,μ is uniformly elliptic by virtue of Assumption (A1), and by virtue of Eq. (19),
there is R f2 > 0 and �2 > 0 such that

sup
x,x̄,μ

( f (x, y, μ)y + f (x̄, ȳ, μ)ȳ) ≤ −�2(|y|2 + |ȳ|2),∀y, ȳ such that
√

y2 + ȳ2 > R f2 .

Thus indeedwe have a unique solution to (63) by Theorem 1 in [60] (which is a clas-
sical solution by assumption). Applying Itô’s formula to χ N (X̃ j,ε,N

t , X̃ i,ε,N
t , Ỹ j,ε,N

t ,

X̃ i,ε,N
t , (X̃1,ε,N

t , . . . , X̃ N ,ε,N
t ))ψ(t, X̃ i,ε,N

t ), where χ N : R×R×R×R×R
N → R

is the empirical projection of χ and using Proposition D.6, we get

∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ψ(s, X̃ i,ε,N
s )ds = 1

N

N∑
j=1

13∑
k=1

B̄i, j,ε,N
k (t)

where

B̄i, j,ε,N
1 (t) = ε2[χ(X̃ j,ε,N

0 , X̃ i,ε,N
0 , Ỹ j,ε,N

0 , Ỹ i,ε,N
0 , μ̃

ε,N
0 )ψ(0, X̃ i,ε,N

0 )
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− χ(X̃ j,ε,N
t , X̃ i,ε,N

t , Ỹ j,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )ψ(t, X̃ i,ε,N

t )]
B̄i, j,ε,N
2 (t) = ε

∫ t

0

(
b( j)χx (i, j)ψ(s, i) + b(i)

[
χx̄ (i, j)ψ(s, i) + χ(i, j)ψx̄ (s, i)

]

+ g( j)χy(i, j)ψ(s, i) + g(i)χȳ(i, j)ψ(s, i)

+ σ( j)τ1( j)χxy(i, j)ψ(s, i) + σ(i)τ1(i)

[
χx̄ ȳ(i, j)ψ(s, i) + χȳ(i, j)ψx̄ (s, i)

])
ds

B̄i, j,ε,N
3 (t) = ε

∫ t

0

1

N

N∑
k=1

b(k)∂μχ(i, j)[k]ψ(s, i)ds

B̄i, j,ε,N
4 (t) = ε

N

∫ t

0

(
σ( j)τ1( j)∂μχy(i, j)[ j]ψ(s, i) + σ(i)τ1(i)∂μχ2

ȳ (i, j)[i]ψ(s, i)

)
ds

B̄i, j,ε,N
5 (t) = ε2

∫ t

0

(
χ(i, j)ψ̇(s, i) + c( j)χx (i, j)ψ(s, i)

+ c(i)

[
χx̄ (i, j)ψ(s, i) + χ(i, j)ψx̄ (s, i)

]

+ 1

N

N∑
k=1

{
c(k)∂μχ(i, j)[k]

}
ψ(s, i) + 1

2
σ 2( j)χxx (i, j)ψ(s, i)

+ 1

2
σ 2(i)

[
χx̄ x̄ (i, j)ψ(s, i) + 2χx̄ (i, j)ψx̄ (s, i) + χ(i, j)ψx̄ x̄ (s, i)

]

+ 1

2

1

N

N∑
k=1

{
σ 2(k)

[
∂z∂μχ(i, j)[k] + 1

N
∂2μχ2(i, j)[k, k]

]}
ψ(s, i)

+ 1

N
σ 2( j)∂μχx (i, j)[ j]ψ(s, i)

+ 1

N
σ 2(i)

[
∂μχx̄ (i, j)[i]ψ(s, i) + ∂μχ(i, j)[i]ψx̄ (s, i)

])
ds

B̄i, j,ε,N
6 (t) = ε

∫ t

0
τ1( j)χy(i, j)ψ(s, i)dW j

s

+ ε

∫ t

0
τ2( j)χy(i, j)ψ(s, i)d B j

s + ε

∫ t

0
τ1(i)χȳ(i, j)ψ(s, i)dW i

s

+ ε

∫ t

0
τ2(i)χȳ(i, j)ψ(s, i)d Bi

s

B̄i, j,ε,N
7 (t) = ε2

∫ t

0
σ( j)χx (i, j)ψ(s, i)dW j

s

+ ε2
∫ t

0
σ(i)

[
χx̄ (i, j)ψ(s, i) + χ(i, j)ψx̄ (s, i)

]
dW i

s

+ ε2

N

N∑
k=1

{∫ t

0
σ(k)∂μχ(i, j)[k]ψ(s, i)dW k

s

}

B̄i, j,ε,N
8 (t) = ε2

∫ t

0

(
σ( j)ũN ,1

j (s)√
Na(N )

χx (i, j)ψ(s, i) + σ(i)ũN ,1
i (s)√

Na(N )[
χx̄ (i, j)ψ(s, i) + χ(i, j)ψx̄ (s, i)

])
ds
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B̄i, j,ε,N
9 (t) = ε2

∫ t

0

1

N

N∑
k=1

{
σ(k)ũN ,1

k (s)√
Na(N )

∂μχ2(i, j)[k]
}
ψ(s, i)ds

B̄i, j,ε,N
10 (t) = ε

∫ t

0

([
τ1( j)ũN ,1

j (s)√
Na(N )

+ τ2( j)ũN ,2
j (s)√

Na(N )

]
χy(i, j)ψ(s, i) +

[
τ1(i)ũ

N ,1
i (s)√

Na(N )
+ τ2(i)ũ

N ,2
i (s)√

Na(N )

]
χȳ(i, j)ψ(s, i)

)
ds

B̄i, j,ε,N
11 (t) = 1i= jε

2
∫ t

0
σ(i)σ ( j)

[
χx x̄ (i, j)ψ(s, i) + χx (i, j)ψx̄ (s, i)

]
ds

B̄i, j,ε,N
12 (t) = 1i= jε

∫ t

0

(
σ( j)τ1(i)χx ȳ(i, j)ψ(s, i) + σ(i)τ1( j)

[
χx̄ y(i, j)ψ(s, i) + χy(i, j)ψx̄ (s, i)

])
ds

B̄i, j,ε,N
13 (t) = 1i= j

∫ t

0

[
τ1(i)τ1( j) + τ2(i)τ2( j)

]
χy ȳ(i, j)ψ(s, i)ds.

Here we have introduced the notation χ(i, j) to denote χ(X̃ j,ε,N
s , X̃ i,ε,N

s ,

Ỹ j,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ), ∂μχ(i, j)[k] to denote ∂μχ(X̃ j,ε,N

s , X̃ i,ε,N
s , Ỹ j,ε,N

s , Ỹ i,ε,N
s ,

μ̃
ε,N
s )[X̃ k,ε,N

s ], and similarly for ∂μχ(i, j)[k, k]. We also use ψ(s, i) to denote
ψ(s, X̃ i,ε,N

s ).
Using that σ, τ1, τ2, and g are bounded and (A7) on the growth of χ and its deriva-

tives, the proof that

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣ 1N
N∑

j=1

12∑
k=1

B̄i, j,ε,N
k (t)

∣∣∣∣
2]

≤ Cε2a(N )
√

N (1+ T + T 2) ‖ψ‖2
C1,2

b

follows essentially in the same way as Proposition 6.1. For example, for B̄2, we can
use the assumed linear growth in y of b and boundedness of g and σ from (A5),
boundedness of τ1 from (A1), and boundedness of χ, χx , χx̄ , χy, χȳ and polynomial
growth in y of χxy and χx̄ ȳ to get:

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣ 1N
N∑

j=1

B̄i, j,ε,N
2 (t)

∣∣∣∣
2]

≤ Cε2a(N )
√

N T 2
(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2 + |Ỹ i,ε,N
t |2qχy (0,1,0)

])

× (‖ψ‖2∞ + ‖ψx‖2∞)

≤ Cε2a(N )
√

N T 2
(
1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2
])

(‖ψ‖2∞ + ‖ψx‖2∞)

≤ Cε2a(N )
√

N T 2(‖ψ‖2∞ + ‖ψx‖2∞),
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where in the last step we used Lemma B.1.
The other bounds follow similarly. We omit the details for brevity. To handle the

last term, we see by boundedness of τ1, τ2 from (A1) and linear growth of χy ȳ from
(A7):

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣ 1N
N∑

j=1

B̄i, j,ε,N
13

∣∣∣∣
2]

= a(N )√
N

1

N 2

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

[
τ 21 (i) + τ 22 (i)

]
χy ȳ(i, i)ψ(s, i)ds

∣∣∣∣
2]

≤ a(N )√
N

1

N 2 CT
N∑

i=1

E

[∫ T

0
|χy ȳ(i, i)|2ds

]
‖ψ∞‖2

≤ a(N )

N 3/2 CT 2(1+ 1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2
]
) ‖ψ∞‖2

≤ a(N )

N 3/2 CT 2 ‖ψ∞‖2 (by Lemma B.1).

��
Proposition 6.4 Assume (A1)–(A5). Let F be any function such that� satisfies assump-
tion (A8). Then for F̄(x, μ) := ∫

R
F(x, y, μ)π(dy; x, μ), with π as in Eq. (20) and

ψ ∈ C1,2
b ([0, T ] × R)

a(N )√
N

N∑
i=1

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(
F(X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s ) − F̄(X̃ i,ε,N
s , μ̃ε,N

s )

)
ψ(s, X̃ i,ε,N

s )dt

∣∣∣∣
]

≤ Cεa(N )
√

N (1+ T + T 1/2) ‖ψ‖C1,2
b

.

Proof By Lemma C.1, we can consider � : R×R×P(R) → R the unique classical
solution to

Lx,μ�(x, y, μ) = −[F(x, y, μ) −
∫
R

F(x, y, μ)π(dy; x, μ)],
∫
R

�(x, y, μ)π(dy; x, μ) = 0. (64)

(� and F may also depend on t ∈ [0, T ], but we suppress this in the notation here).
Applying Itô’s formula to �N (X̃ i,ε,N

t , Ỹ i,ε,N
t , (X̃1,ε,N

t , . . . , X̃ N ,ε,N
t ))ψ(t, X̃ i,ε,N

t ),
where again �N : R × R × R

N → R is the empirical projection of � and using
Proposition D.6, we get:

∫ t

0

(
F(X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N ) − F̄(X̃ i,ε,N

s , μ̃ε,N
s )

)
ψ(s, X̃ i,ε,N

s )dt =
10∑

k=1

Ci,ε,N
k (t)
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Ci,ε,N
1 (t) = ε2[�(X̃ i,ε,N

0 , Ỹ i,ε,N
0 , μ̃

ε,N
0 )ψ(0, X̃ i,ε,N

0 )

− �(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )ψ(t, X̃ i,ε,N

t )]

Ci,ε,N
2 (t) = ε

∫ t

0

(
b(i)[�x (i)ψ(s, i) + �(i)ψx (s, i)]

+ g(i)�y(i)ψ(s, i) + σ(i)τ1(i)[�xy(i)ψ(s, i) + �y(i)ψx (s, i)]
)

ds

Ci,ε,N
3 (t) = ε

∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ψ(s, i)ds

Ci,ε,N
4 (t) = ε

N

∫ t

0
σ(i)τ1(i)∂μ�y(i)[i]ψ(s, i)ds

Ci,ε,N
5 (t) = ε2

∫ t

0

(
�(i)ψ̇(s, i) + c(i)[�x (i)ψ(s, i) + �(i)ψx (s, i)]

+ σ 2(i)

2
[�xx (i)ψ(s, i) + 2�x (i)ψx (s, i) + �(i)ψxx (s, i)

+ 2

N
∂μ�(i)[i]ψx (s, i) + 2

N
∂μ�x (i)[i]ψ(s, i)]

+ 1

N

N∑
j=1

{
c( j)∂μ�(i)[ j]ψ(s, i) + 1

2
σ 2( j)[ 1

N
∂2μ�(i)[ j, j] + ∂z∂μ�(i)[ j]]ψ(s, i)

})
ds

Ci,ε,N
6 (t) = ε

∫ t

0
τ1(i)�y(i)ψ(s, i)dW i

s + ε

∫ t

0
τ2(i)�y(i)ψ(s, i)d Bi

s

Ci,ε,N
7 (t) = ε2

[∫ t

0
σ(i)[�x (i)ψ(s, i) + �(i)ψx (s, i)]dW i

t

+ 1

N

N∑
j=1

{∫ t

0
σ( j)∂μ�(i)[ j]ψ(s, i)dW j

s

}]

Ci,ε,N
8 (t) = ε2

∫ t

0

σ(i)

a(N )
√

N
ũN ,1

i (s)[�x (i)ψ(s, i) + �(i)ψx (s, i)]ds

Ci,ε,N
9 (t) = ε2

∫ t

0

1

N

{ N∑
j=1

σ( j)

a(N )
√

N
ũN ,1

j (s)∂μ�(i)[ j]ψ(s, i)

}
ds

Ci,ε,N
10 (t) = ε

∫ t

0
[ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)ψ(s, i)ds.

Then using that σ, τ1, τ2, and g are bounded and that b, c grow at most linearly in y
uniformly in x, μ, and the assumptions on the growth of � and its derivatives from
(A8), the proof follows in essentially the same way as Propositions 6.1 and 6.3.

Since � is not necessarily bounded under Assumption (A8) (q̃�(n, l,β) ≤
1,∀(n, l,β) ∈ ζ̃ 1 allows � to grow linearly in y), we need to handle the first term in
the following way:

a(N )√
N

N∑
i=1

ε2E

[
sup

t∈[0,T ]

∣∣∣∣�(X̃ i,ε,N
0 , Ỹ i,ε,N

0 , μ̃
ε,N
0 )ψ(0, X̃ i,ε,N

0 )
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− �(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t )ψ(t, X̃ i,ε,N

t )

∣∣∣∣
]
≤

≤ Cε2a(N )
√

N

[
1+ 1

N

N∑
i=1

E

[
sup

t∈[0,T ]
|Ỹ i,ε,N

t |
]]

‖ψ‖∞

≤ C(ρ)ε2a(N )
√

N

[
1+ ε−ρ

]
‖ψ‖∞

for any ρ ∈ (0, 2) by Lemma B.2. Taking any ρ ∈ (0, 1], the desired bound holds.
The only other terms that are handled differently in a way that matters areCi,ε,N

4 (t),

which corresponds to B̃i,ε,N
2 (t), where the difference of having a ε in front means that

it is bounded by εa(N ) ≤ εa(N )
√

N , hence there being no need to include a(N )/
√

N
in the definition of C(N ), and Ci,ε,N

2 (t), Ci,ε,N
3 (t), Ci,ε,N

6 (t), and Ci,ε,N
10 (t), which

were O(1) in Lemma 6.1 and hence were not shown to vanish. C2 is handled as B̃3
was, C3 in the same way that B̃5 was, C6 in the same way that B̃6 was, and C10 in the
same way that B̃7 was.

��

7 Tightness of the controlled pair

In this section we throughout fix any controls satisfying the bound (53) and prove
tightness of the pair (Z̃ N , QN ) from Eqs. (54) and (56) under those controls. We
will establish tightness in the appropriate spaces by proving tightness for each of the
marginals.

As discussed in Sect. 2, in order to prove tightness of the controlled fluctuation
process Z̃ N in C([0, T ];S−m) for some m ∈ N sufficiently large (see Eq. 5), we
will use the theory of Mitoma from [55]. In particular, we need to prove uniform
m-continuity for sufficiently large m in the family of Hilbert norms (4), and tightness
of 〈Z N , φ〉 as a C([0, T ];R)-valued random variables in order to apply Theorem 3.1
and Remark R1) in [55]. For the former, by definition we need some uniform in time
control over the S−m-norm of Z̃ N . By Markov’s inequality, it suffices to show that
supφ∈S:‖φ‖m=1 E[supt∈[0,T ] |〈Z̃ N

t , φ〉|] ≤ C (see, e.g., the proof of [10] Theorem 4.7).
As mentioned in Remark 5.1, we will do so in Lemma 7.6 via triangle inequality
and establishing an L2 rate of convergence of the controlled particle system (55) to
the IID particle system (57), and a rate of convergence of the IID particle system
(57) to the averaged McKean–Vlasov SDE (25). The convergence of the controlled
particle system (55) to the IID particle system (57) is the subject of Sect. 7.2 and
the convergence of the IID slow–fast McKean–Vlasov SDEs (57) to the averaged
McKean–Vlasov SDE (25) is the subject of Sect. 7.1.

A major difference between the coupling arguments in the references listed in
Remark 5.1 and ours is that the IID system in the listed references were all equal in
distribution to the law of the system which they are considering fluctuations from.
This is not the case for us, since, as is well-known, we do not expect in general to
have L2 convergence of fully-coupled slow–fast diffusions to their averaged limit (see
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[3] Remark 3.4.4 for an illustrative example). In other words, Lemma 7.5 cannot hold
with X̄ i,ε replaced by IID copies of the averaged limiting McKean–Vlasov Equation
Xt from Eq. (25). We are thus exploiting here the fact that the limits ε ↓ 0 and
N → ∞ commute, as shown in [4], and hence we can use an IID system of Slow–Fast
McKean–Vlasov SDEs as our intermediate process for our proof of tightness. This
commutativity of the limitswill hold so long as sufficient conditions for the propagation
of chaos and stochastic averaging respectively hold for the system of SDEs (55) and
the invariant measure π from Eq. (20) is unique for all x ∈ R, μ ∈ P(R). Recall that
the latter is a consequence of assumptions (A1) and (A2).

Tightness of QN is contained in Sect. 7.4, and is essentially a consequence of
moment bounds on the controlled particles (55), which again follow from the results
of Sect. (6).

7.1 On the rate of averaging for fully-coupled slow–fastMcKean–Vlasov diffusions

Herewe recall a resultwhich allows us to establish closeness of the slow–fastMcKean–
Vlasov SDEs (57) to the averaged McKean–Vlasov SDE (25). This result will be used
in the Lemma 7.6, which is a key ingredient in the proof of tightness of {Z̃ N }N∈N.
Therein, the first term being bounded is essentially due to the propagation of chaos
holding for the controlled particle system (55), as captured by Lemma 7.5. For the
second term, the particles being IID means it is sufficient to gain control over conver-
gence of supφ∈S:‖φ‖m=1 |E[φ(X̄1,ε

t ) − φ(Xt )]| as ε ↓ 0. There are very few results
in the current literature in this direction. The existing averaging results for Slow–Fast
McKean Vlasov SDEs can be found in [40, 48, 65] and in [5]. In [40, 48, 65] only
systems where L2 rates of averaging can be found are considered. Moreover, even for
standard diffusion processes (which do not depend on their law), the only result for
rates of convergence in distribution in the sense we desire for the fully-coupled setting
is found in [64] Theorem 2.3. The fully coupled case for McKean–Vlasov diffusions
is addressed in [5].

Wemention here the main result from [5] that will be used in our case. In particular,
we wish to establish a rate of convergence in distribution of

X̄ ε
t = ηx +

∫ t

0

[
1

ε
b(X̄ ε

s , Ȳ ε
s ,L(X̄ ε

s )) + c(X̄ ε
s , Ȳ ε

s ,L(X̄ ε
s ))

]
ds

+
∫ t

0
σ(X̄ ε

s , Ȳ ε
s ,L(X̄ ε

s ))dWs

Ȳ ε
t = ηy +

∫ t

0

1

ε

[
1

ε
f (X̄ ε

s , Ȳ ε
s ,L(X̄ ε

s )) + g(X̄ ε
s , Ȳ ε

s ,L(X̄ ε
s ))

]
dt

+ 1

ε

[∫ t

0
τ1(X̄ ε

s , Ȳ ε
s ,L(X̄ ε

s ))dWs +
∫ t

0
τ2(X̄ ε

s , Ȳ ε
s ,L(X̄ ε

s ))d Bs

]
, (65)

to the solution of Eq. (25). Note that a solution to Eq. (65) is equal in distribution to
the IID particles from Eq. (57). The following moment bound holds.
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Lemma 7.1 Assume (A1)–(A2), (A4), and (A5). Then for any p ∈ N:

sup
ε>0

sup
t∈[0,T ]

E

[
|Ȳ ε

t |2p
]
≤ C(p, T ) + |ηy |2p.

Proof The proof of this lemma is omitted as it follows very closely the proof of Lemma
4.1 in [5]. ��

Then, the main result of [5] that is relevant for our purposes is Theorem 7.2.

Theorem 7.2 (Corollary 3.2 of [5]) Assume that assumptions (A1)–(A8) as well as
(A10)–(A11) hold. Then for φ ∈ C4

b,L(R), there is a constant C = C(T ) that is
independent of φ such that

sup
s∈[0,T ]

∣∣∣∣E[φ(X̄ ε
s )] − E[φ(Xs)]

∣∣∣∣ ≤ εC(T )|φ|4,

where X̄ ε is as in Eq. (65), X is as in Eq. (25), and | · |4 is as in Eq. (8).

Remark 7.3 Though in [5] the assumptions are stated in terms of sufficient conditions
on the limiting coefficients for the needed regularity of�,χ,�, γ̄ , D̄1/2, and χ̃ in the
proofs therein to hold (which is much easier to do in that situation since the lack of
control eliminates the need for tracking specific rates of polynomial growth), it can be
checked that the assumptions imposed on these functions by (A6), (A7), (A8), (A10),
and (A11) respectively are sufficient. See also Remark 2.6 therein.

In particular, in [5], since specific rates of polynomial growth are not tracked, it is
assumed the initial condition of Ȳ ε has all moments bounded. This holds automatically
here, since ηy ∈ R are deterministic. Then, due to Lemma 7.1, it is sufficient to show
the derivatives of the Poisson equations which show up in the proof have polynomial
growth in y uniformly in x, μ, z. In fact, the same Poisson equations are being used
in Section 4 of [5] to gain ergodic-type theorems of the same nature as those of Sect. 6
here. The growth rates of �,χ,� as imposed in (A6), (A7), and (A8) are already
required here for the ergodic-type theorems for the controlled system (55) found in
Sect. 6, and these conditions can be seen as more than sufficient for the results of [5]
to go through. The solution χ̃ to Eq. (28) does not, however, appear elsewhere in this
paper, despite appearing in Proposition 4.4. of [5], which is fundamental to the result
presented here as Theorem 7.2. This is why we can allow for the specified derivatives
of χ̃ (which are exactly those appearing in the proof of Proposition 4.4.) inAssumption
(A11) to have polynomial growth of any order.

Lastly, we remark that the regularity of the limiting coefficients imposed by (A10)
is used not for ergodic-type theorems, but instead to establish regularity a Cauchy-
Problem on Wasserstein space in Lemma 5.1 of [5], which provides a refinement of
Theorem2.15 in [14]. As remarked therein, these assumptions can likely be relaxed via
an alternative proof method, but as it stands these are the only results in this direction
which provide sufficient regularity on the derivatives needed to prove Theorem 7.2.
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7.2 Coupling of the controlled particles and the IID slow–fast McKean–Vlasov
particles

Here we establish a coupling result, which we will use along with Theorem 7.2 in
order to establish tightness for the controlled fluctuation process {Z̃ N } from Eq. (54).
Recall the processes (X̃ i,ε,N

t , Ỹ i,ε,N
t ) that satisfy (55) and (X̄ i,ε

t , Ȳ i,ε
t ) that satisfies

(57).

Lemma 7.4 Assume (A1)–(A7), (A9), and (A12). Then there exists C > 0 such that
for all t ∈ [0, T ]:

1

N

N∑
i=1

E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]

≤ C

{
ε2 + 1

N
+ 1

Na2(N )
+ sup

s∈[0,t]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
s − X̄ i,ε

s

∣∣∣∣
2]}

Proof We set τ1 ≡ 0, since terms involving τ1 can be handled in the same way as those
involving τ2 in the proof. By Itô’s formula, and given that the stochastic integrals are
martingales (using Lemmas B.1 and 7.1),

d

dt
E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]

= 2E

[
1

ε2

(
f (X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

2ε2
|τ2(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))|2

+ 1

ε

(
g(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − g(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

ε
√

Na(N )
τ2(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )ũN ,2

i (t)(Ỹ i,ε,N
t − Ȳ i,ε

t )

]

≤ 2E

[
1

ε2

(
f (X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − f (X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t )

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

ε2

(
f (X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

ε2

(
f (X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

ε2
|τ2(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − τ2(X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t )|2

+ 2

ε2
|τ2(X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )|2

+ 2

ε2
|τ2(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))|2
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+ 1

ε

(
g(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t ) − g(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

)
(Ỹ i,ε,N

t − Ȳ i,ε
t )

+ 1

ε
√

Na(N )
τ2(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )ũN ,2

i (t)(Ỹ i,ε,N
t − Ȳ i,ε

t )

]

≤ 2E

[
− β

2ε2
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

+ 1

2ηε2

∣∣∣∣ f (X̃ i,ε,N
t , Ȳ i,ε

t , μ̃
ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )

∣∣∣∣
2

+ η

2ε2
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

+ 1

2ηε2

∣∣∣∣ f (X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2

+ η

2ε2
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

+ 2

ε2
|τ2(X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )|2

+ 2

ε2
|τ2(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))|2

+ 1

2η

∣∣∣∣g(X̃ i,ε,N
t , Ỹ i,ε,N

t , μ̃
ε,N
t ) − g(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2

+ η

2ε2
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

+ 2

ηNa2(N )
|τ2(X̃ i,ε,N

t , Ỹ i,ε,N
t , μ̃

ε,N
t )|2|ũN ,2

i (t)|2

+ η

2ε2
|Ỹ i,ε,N

t − Ȳ i,ε
t )|2

]

for all η > 0, where in the second inequality we used Eq. (17) of Assumption (A2).
Taking η = β/8 and using the boundedness of g from Assumption (A5) and of τ1, τ2
from Assumption (A1), we get:

d

dt
E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]

≤ − β

2ε2
E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]
+ C

ε2
E

[∣∣∣∣ f (X̃ i,ε,N
t , Ȳ i,ε

t , μ̃
ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )

∣∣∣∣
2

+
∣∣∣∣ f (X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2

+ |τ2(X̃ i,ε,N
t , Ȳ i,ε

t , μ̃
ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N
t )|2

+ |τ2(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − τ2(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))|2
]
+ C

Na2(N )
E

[
|ũN ,2

i (s)|2
]
+ C

Now using the global Lipschitz property of f from Assumption (A2) and of τ1 and
τ2 from Assumption (A9) to handle the terms of the form | f (X̃ i,ε,N

t , Ȳ i,ε
t , μ̃

ε,N
t ) −

f (X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t )|2 and Assumption (A12) with Lemma D.7 for the terms of the

form | f (X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − f (X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))|2, we have:
d

dt
E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]
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≤ − β

2ε2
E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]
+ C

ε2
E

[∣∣∣∣X̃ i,ε,N
t − X̄ i,ε

t

∣∣∣∣
2

+ 1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
t − X̄ i,ε

t

∣∣∣∣
2]

+ C

ε2N
+ C

Na2(N )
E

[
|ũN ,2

i (s)|2
]
+ C .

When using Lipschitz continuity of f , τ1, and τ2, we are also using that

W2(μ̃
ε,N
t , μ̄

ε,N
t ) ≤ 1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
t − X̄ i,ε

t

∣∣∣∣
2

by Eq. (76) in Appendix 4.
Now using a comparison theorem, dividing by 1

N and summing from i = 1, . . . , N ,
we get

1

N

N∑
i=1

E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]

≤ C

{
e
− β

2ε2
t
∫ t

0
e

β

2ε2
s
ds + 1

ε2
e
− β

2ε2
t
∫ t

0
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
s − X̄ i,ε

s

∣∣∣∣
2]

e
β

2ε2
s
ds

+ 1

Nε2
e
− β

2ε2
t
∫ t

0
e

β

2ε2
s
ds + 1

Na2(N )
e
− β

2ε2
t
∫ t

0
E

[
1

N

N∑
i=1

|ũN ,2
i (s)|2

]
e

β

2ε2
s
ds

}

≤ C

{
ε2 + sup

s∈[0,t]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
s − X̄ i,ε

s

∣∣∣∣
2]

+ 1

N
+ 1

Na2(N )

∫ T

0
E

[
1

N

N∑
i=1

|ũN ,2
i (s)|2

]
ds

}

and by the bound (52), we get:

1

N

N∑
i=1

E

[
|Ỹ i,ε,N

t − Ȳ i,ε
t |2

]

≤ C

{
ε2 + 1

N
+ 1

Na2(N )
+ sup

s∈[0,t]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
s − X̄ i,ε

s

∣∣∣∣
2]}

.

��
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Lemma 7.5 Under assumptions (A1)–(A9) and (A12) we have

sup
s∈[0,T ]

E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
s − X̄ i,ε

s

∣∣∣∣
2]

≤ C(T )[ε2 + 1

N
+ 1

Na2(N )
]

Proof Letting (ī) denote the argument (X̄ i,ε
s , Ȳ i,ε

s ,L(X̄ ε
s )), (ĩ) denote the argument

(X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ):

X̃ i,ε,N
t − X̄ i,ε

t = 1

ε

∫ t

0

(
b(ĩ) − b(ī)

)
ds +

∫ t

0

(
c(ĩ) − c(ī)

)
ds

+
∫ t

0
σ(ĩ)

ũN ,1
i (s)

a(N )
√

N
ds +

∫ t

0

(
σ(ĩ) − σ(ī)

)
dW i

s

=
∫ t

0

(
γ (ĩ) − γ (ī)

)
ds +

∫ t

0

(
[σ(ĩ)

+ τ1(ĩ)�y(ĩ)] − [σ(ī) + τ1(ī)�y(ī)]
)

dW i
s

+
∫ t

0

(
τ2(ĩ)�y(ĩ) − τ2(ī)�y(ī)

)
d Bi

s

+ Ri,ε,N
1 (t) − Ri,ε,N

2 (t) + Ri,ε,N
3 (t) − Ri,ε,N

4 (t) + Ri,ε,N
5 (t),

where here we recall � from Eq. (22) and γ, γ1 from Eq. (23), and:

Ri,ε,N
1 (t) = 1

ε

∫ t

0
b(ĩ)ds −

∫ t

0

(
γ1(ĩ) + [ τ1(ĩ)

a(N )
√

N
ũN ,1

i (s) + τ2(ĩ)

a(N )
√

N
ũN ,2

i (s)]�y(ĩ)

)
ds

−
∫ t

0
τ1(ĩ)�y(ĩ)dW i

s −
∫ t

0
τ2(ĩ)�y(ĩ)d Bi

s

−
∫ t

0

1

N

N∑
j=1

b(X̃ j,ε,N
s , Ỹ j,ε,N

s , μ̃ε,N
s )∂μ�(ĩ)[X̃ j,ε,N

s ]ds

Ri,ε,N
2 (t) = 1

ε

∫ t

0
b(ī)ds −

∫ t

0
γ1(ī)ds −

∫ t

0
τ1(ī)�y(ī)dW i

s −
∫ t

0
τ2(ī)�y(ī)d Bi

s

−
∫ t

0

∫
R2

b(x, y,L(X̄ ε
s ))∂μ�(X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))[x]L(X̄ ε
s , Y ε

s )(dx, dy)ds

Ri,ε,N
3 (t) =

∫ t

0

1

N

N∑
j=1

b(X̃ j,ε,N
s , Ỹ j,ε,N

s , μ̃ε,N
s )∂μ�(ĩ)[X̃ j,ε,N

s ]ds

Ri,ε,N
4 (t) =

∫ t

0

∫
R2

b(x, y,L(X̄ ε
s ))∂μ�(X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))[x]L(X̄ ε
s , Y ε

s )(dx, dy)ds

Ri,ε,N
5 (t) =

∫ t

0

(
σ(ĩ)

ũN ,1
i (s)

a(N )
√

N
+ [ τ1(ĩ)

a(N )
√

N
ũN ,1

i (s) + τ2(ĩ)

a(N )
√

N
ũN ,2

i (s)]�y(ĩ)

)
ds
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By Proposition 6.1 with ψ ≡ 1, we have

1

N

N∑
i=1

E

[
|Ri,ε,N

1 (t)|2
]
≤ C(T )[ε2 + 1

N
],

by Proposition 4.2 of [5] with ψ ≡ 1, we have

1

N

N∑
i=1

E

[
|Ri,ε,N

2 (t)|2
]
≤ C(T )ε2,

by Proposition 6.3 with ψ ≡ 1, we have

1

N

N∑
i=1

E

[
|Ri,ε,N

3 (t)|2
]
≤ C(T )[ε2 + 1

N 2 ],

and by Proposition 4.3 of [5] with ψ ≡ 1, we have

1

N

N∑
i=1

E

[
|Ri,ε,N

4 (t)|2
]
≤ C(T )ε2.

Here we are using that, under the assumed regularity of � and χ imposed by
Assumptions (A6) and (A7) respectively along with the result of Lemma 7.1, the
norm can brought inside the expectation in Propositions 4.2 and 4.3 of [5] with little
modification to the proofs. Finally, since under Assumption (A6) �y is bounded:

1

N

N∑
i=1

E

[
|Ri,ε,N

5 (t)|2
]
≤ C

1

a2(N )N

1

N

N∑
i=1

E

[∫ T

0
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2ds

]

≤ C
1

a2(N )N

by the assumed bound on the controls (52). Now we see that, by Itô Isometry:

1

N

N∑
i=1

E

[
|X̃ i,ε,N

t − X̄ i,ε
t |2

]

≤ 1

N

N∑
i=1

E

[∣∣∣∣
∫ t

0

(
γ (X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s ) − γ (X̄ i,ε
s , Ȳ i,ε

s ,L(X̄ ε
s ))

)
ds

∣∣∣∣
2]

+ 1

N

N∑
i=1

E

[∫ t

0

∣∣∣∣[σ + τ1�y](X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − [σ + τ1�y](X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))

∣∣∣∣
2

ds

]

+ 1

N

N∑
i=1

E

[∫ t

0

∣∣∣∣[τ2�y](X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − [τ2�y](X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))

∣∣∣∣
2

ds

]
+ RN (t)
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where RN (t) ≤ C(T )[ε2 + 1
N ]. We handle the terms from the martingales first.

1

N

N∑
i=1

E

[∫ t

0

∣∣∣∣[σ + τ1�y](X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − [σ + τ1�y](X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))

∣∣∣∣
2

ds

]

≤ C

N

N∑
i=1

{
E

[∫ t

0

∣∣∣∣[σ + τ1�y](X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − [σ + τ1�y](X̄ i,ε

s , Ȳ i,ε
s , μ̄ε,N )

∣∣∣∣
2

ds

]

+ E

[∫ t

0

∣∣∣∣[σ + τ1�y](X̄ i,ε
s , Ȳ i,ε

s , μ̄ε,N ) − [σ + τ1�y](X̄ i,ε
s , Ȳ i,ε

s ,L(X̄ ε
s ))

∣∣∣∣
2

ds

]}

≤ C

N

N∑
i=1

E

[∫ t

0
|X̃ i,ε,N

s − X̄ i,ε
s |2 + |Ỹ i,ε,N

s − Ȳ i,ε
s |2ds

]
+ C

N

by Lipschitz continuity from Assumption (A9) and Assumption (A12) with Lemma
D.7

≤ C

{
ε2 + 1

N
+ 1

Na2(N )
+

∫ t

0
sup

τ∈[0,s]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
τ − X̄ i,ε

τ

∣∣∣∣
2]

ds

}

by Lemma 7.4 .

The exact same proof and bound applies to

1

N

N∑
i=1

E

[∫ t

0

∣∣∣∣[τ2�y](X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − [τ2�y](X̄ i,ε

s , Ȳ i,ε
s ,L(X̄ ε

s ))

∣∣∣∣
2

ds

]
.

In a similar manner:

1

N

N∑
i=1

E

[∣∣∣∣
∫ t

0

(
γ (X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s ) − γ (X̄ i,ε
s , Ȳ i,ε

s ,L(X̄ ε
s ))

)
ds

∣∣∣∣
2]

≤ C(T )

N

N∑
i=1

{
E

[∫ t

0

∣∣∣∣γ (X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s ) − γ (X̄ i,ε

s , Ȳ i,ε
s , μ̄ε,N )

∣∣∣∣
2

ds

]

+ E

[∫ t

0

∣∣∣∣γ (X̄ i,ε
s , Ȳ i,ε

s , μ̄ε,N ) − γ (X̄ i,ε
s , Ȳ i,ε

s ,L(X̄ ε
s ))

∣∣∣∣
2

ds

]}

≤ C(T )

N

N∑
i=1

E

[∫ t

0
|X̃ i,ε,N

s − X̄ i,ε
s |2 + |Ỹ i,ε,N

s − Ȳ i,ε
s |2ds

]
+ C(T )

N

≤ C(T )

{
ε2 + 1

N
+ 1

Na2(N )
+

∫ t

0
sup

τ∈[0,s]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
τ − X̄ i,ε

τ

∣∣∣∣
2]

ds

}
.
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Collecting these bounds, we have for all p ∈ [0, T ]:

1

N

N∑
i=1

E

[
|X̃ i,ε,N

p − X̄ i,ε
p |2

]
≤ C1(T )

∫ p

0
sup

τ∈[0,s]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
τ − X̄ i,ε

τ

∣∣∣∣
2]

ds

+ C2(T )[ε2 + 1

N
+ 1

Na2(N )
]

so

sup
p∈[0,t]

1

N

N∑
i=1

E

[
|X̃ i,ε,N

p − X̄ i,ε
p |2

]
≤ C(T )

[ ∫ t

0
sup

τ∈[0,s]
E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
τ − X̄ i,ε

τ

∣∣∣∣
2]

ds

+ [ε2 + 1

N
+ 1

Na2(N )
]
]

and by Gronwall’s inequality:

sup
p∈[0,T ]

1

N

N∑
i=1

E

[
|X̃ i,ε,N

p − X̄ i,ε
p |2

]
≤ C(T )[ε2 + 1

N
+ 1

Na2(N )
].

��

7.3 Tightness of Z̃N

We now have the tools to prove tightness of {Z̃ N } from Eq. (54). We first prove a
uniform-in-time bound on 〈Z̃ N

t , φ〉 in terms of | · |4 (recall Eq. 8) in Lemma 7.6. Then,
using the results from Sect. 6, we provide a prelimit representation for Z̃ N which is a
priori O(1) in ε, N in Lemma 7.7. Combining these two lemmas, we are then able to
establish tightness via the methods of [55] in Proposition 7.8.

Lemma 7.6 Under Assumptions (A1)–(A12), there exists C independent of N such
that for all φ ∈ C4

b,L(R)

sup
N∈N

sup
t∈[0,T ]

E

[
|〈Z̃ N

t , φ〉|2
]
≤ C(T )|φ|24.

Proof Let μ̄ε,N
t be as in Eq. (58). Then, by triangle inequality

E

[
|〈Z̃ N

t , φ〉|2
]
≤ 2a2(N )NE

[
|〈μ̃ε,N

t , φ〉 − 〈μ̄ε,N
t , φ〉|2

]

+ 2a2(N )NE

[
|〈μ̄ε,N

t , φ〉 − 〈L(Xt ), φ〉|2
]
.
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For the first term:

a2(N )NE

[
|〈μ̃ε,N

t , φ〉 − 〈μ̄ε,N
t , φ〉|2

]

= a2(N )NE

[∣∣∣∣ 1N
N∑

i=1

φ(X̃ i,ε,N
t ) − φ(X̄ i,ε

t )

∣∣∣∣
2]

≤ a2(N )N
1

N

N∑
i=1

E

[∣∣∣∣φ(X̃ i,ε,N
t ) − φ(X̄ i,ε

t )

∣∣∣∣
2]

≤ a2(N )N
1

N

N∑
i=1

E

[∣∣∣∣X̃ i,ε,N
t − X̄ i,ε

t

∣∣∣∣
2] ∥∥φ′∥∥2∞

≤ C(T )[ε2a2(N )N + a2(N ) + 1] ∥∥φ′∥∥2∞
≤ C(T )

∥∥φ′∥∥2∞ ,

where in the second to last inequality we used Lemma 7.5.
For the second term, we use that {X̄ i,ε}i∈N are IID to see:

a2(N )NE

[
|〈μ̄ε,N

t , φ〉 − 〈L(Xt ), φ〉|2
]
= a2(N )NE

[∣∣∣∣ 1N
N∑

i=1

φ(X̄ i,ε
t ) − E[φ(Xt )]

∣∣∣∣
2]

= a2(N )

{
(N − 1)(E[φ(X̄ ε

t ] − E[φ(Xt )])2

+ E

[∣∣∣∣φ(X̄ ε
t ) − E[φ(Xt )]

∣∣∣∣
2]}

≤ a2(N )

{
N (E[φ(X̄ ε

t )] − E[φ(Xt )])2 + 4 ‖φ‖2∞
}

≤ a2(N )Nε2C(T )|φ|24 + 4a2(N ) ‖φ‖2∞ ,

where in the last inequality we used Theorem 7.2. This bound vanishes as N → ∞. ��

Lemma 7.7 Assume (A1)–(A8), (A10), and (A13). Define L̄ν1,ν2 to be the operator
parameterized by ν1, ν2 ∈ P2(R) which acts on φ ∈ C2

b (R) by

L̄ν1,ν2φ(x) = γ̄ (x, ν2)φ
′(x) + D̄(x, ν2)φ

′′(x)

+
∫
R

∫ 1

0

δ

δm
γ̄ (z, (1− r)ν1 + rν2)[x]φ′(z)

+ δ

δm
D̄(z, (1− r)ν1 + rν2)[x]φ′′(z)drν1(dz). (66)

Here we recall γ̄ , D̄ from Eq. (24), the linear functional derivative from Definition
D.4, � from Eq. (22), and the occupation measures QN from Eq. (56). Then we have

123



1322 Stoch PDE: Anal Comp (2024) 12:1265–1373

the representation: for φ ∈ C∞
c (R) and t ∈ [0, T ]:

〈Z̃ N
t , φ〉 =

∫ t

0
〈Z̃ N

s , L̄L(Xs ),μ̃
ε,N
s

φ(·)〉ds

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]�y(x, y, μ̃ε,N
s )

φ′(x)QN (dx, dy, dz, ds) + RN
t (φ)

where

E

[
sup

t∈[0,T ]

∣∣∣∣RN
t (φ)

∣∣∣∣
]
≤ R̄(N , T )|φ|4,

R̄(N , T ) → 0 as N → ∞, and R̄(N , T ) is independent of φ.

Proof Recall μ̃N ,ε from Eq. (54), Xt from Eq. (25), and that Z̃ N = a(N )
√

N [μ̃N ,ε −
L(X)].

By Itô’s formula,

〈μ̃ε,N
t , φ〉 = φ(x) + 1

N

N∑
i=1

∫ t

0

(
1

ε
b(i)φ′(X̃ i,ε,N

s ) + c(i)φ′(X̃ i,ε,N
s )

+ 1

2
σ 2(i)φ′′(X̃ i,ε,N

s ) + σ(i)
ũN ,1

i (s)

a(N )
√

N
φ′(X̃ i,ε,N

s )

)
ds

+
∫ t

0
σ(i)φ′(X̃ i,ε,N

s )dW i
s

where (i) denotes the argument (X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ) and

〈L(Xs), φ〉 = φ(x) + E

[∫ t

0

(
γ̄ (Xs,L(Xs))φ

′(Xs) + D̄(Xs,L(Xs))φ
′′(Xs)

)
ds

+
∫ t

0

√
2D̄1/2(Xs,L(Xs)φ

′(Xs)dWs

]

= φ(x) + E

[∫ t

0

(
γ̄ (Xs,L(Xs))φ

′(Xs) + D̄(Xs,L(Xs))φ
′′(Xs)

)
ds

]

since D̄1/2 is bounded as per Assumption (A10). Then

〈Z̃ N
t , φ〉 = a(N )√

N

N∑
i=1

{∫ t

0

(
1

ε
b(i)φ′(X̃ i,ε,N

s ) + c(i)φ′(X̃ i,ε,N
s )
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+ 1

2
σ 2(i)φ′′(X̃ i,ε,N

s ) + σ(i)
ũN ,1

i (s)

a(N )
√

N
φ′(X̃ i,ε,N

s )

)
ds

+
∫ t

0
σ(i)φ′(X̃ i,ε,N

s )dW i
s

− E

[∫ t

0

(
γ̄ (Xs,L(Xs))φ

′(Xs) + D̄(Xs,L(Xs))φ
′′(Xs)

)
ds

]}

= a(N )√
N

N∑
i=1

{∫ t

0

(
γ (i)φ′(X̃ i,ε,N

s ) − E

[
γ̄ (Xs,L(Xs))φ

′(Xs)

])
ds

+
∫ t

0

(
D(i)φ′′(X̃ i,ε,N

s ) − E

[
D̄(Xs,L(Xs))φ

′′(Xs)

])
ds

+ Ri
1(t) + Ri

2(t) + Mi (t)

}

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

(
[τ1(x, y, μ̃ε,N

s )z1 + τ2(x, y, μ̃ε,N
s )z2]

× �y(x, y, μ̃ε,N
s )φ′(x)

)
QN (dx, dy, dz, ds)

where here we recall γ1, γ, D, D1 from Eq. (23) and:

Ri
1(t) :=

∫ t

0

(
1

ε
b(i)φ′(X̃ i,ε,N

s ) −
∫ t

0
γ1(i)φ

′(X̃ i,ε,N
s ) + D1(i)φ

′′(X̃ i,ε,N
s )]

+
[

τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)

]
�y(i)φ

′(X̃ i,ε,N
s )

)
ds

−
∫ t

0
τ1(i)�y(i)φ

′(X̃ i,ε,N
s )dW i

s −
∫ t

0
τ2(i)�y(i)φ

′(X̃ i,ε,N
s )d Bi

s

−
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]φ′(X̃ i,ε,N
s )ds

Ri
2(t) :=

∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]φ′(X̃ i,ε,N
s )ds

Mi (t) :=
∫ t

0
[τ1(i)�y(i) + σ(i)]φ′(X̃ i,ε,N

s )dW i
s +

∫ t

0
τ2(i)�y(i)φ

′(X̃ i,ε,N
s )d Bi

s .

For Ri
1(t), we have via Proposition 6.1 that

E

[
sup

t∈[0,T ]
a(N )√

N

N∑
i=1

|Ri
1(t)|

]
≤ C[εa(N )

√
N (1+ T + T 1/2) + a(N )T ]|φ|3.
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For Ri
2(t), we have via Proposition 6.3 that

E

[
sup

t∈[0,T ]
a(N )√

N

N∑
i=1

|Ri
2(t)|

]

≤ C[εa(N )
√

N (1+ T + T 1/2) + a(N )√
N

T ]|φ|3.

For Mi (t), we have by Burkholder-Davis-Gundy inequality that

E

[
sup

t∈[0,T ]

∣∣∣∣a(N )√
N

N∑
i=1

Mi (t)

∣∣∣∣
]

≤ C
a(N )√

N

{
E

[( N∑
i=1

∫ T

0
[τ1(i)�y(i) + σ(i)]2|φ′(i)|2ds

)1/2]

+ E

[( N∑
i=1

∫ T

0
|τ2(i)�y(i)|2|φ′(i)|2ds

)1/2]}

≤ Ca(N )T 1/2|φ|1

since the integrand it bounded by Assumptions (A1),(A5), and (A6). Thus we have

〈Z̃ N
t , φ〉 = a(N )√

N

N∑
i=1

{∫ t

0

(
γ (i)φ′(X̃ i,ε,N

s ) − E

[
γ̄ (Xs,L(Xs))φ

′(Xs)

])
ds

+
∫ t

0

(
D(i)φ′′(X̃ i,ε,N

s ) − E

[
D̄(Xs,L(Xs))φ

′′(Xs)

])
ds

}

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]

× �y(x, y, μ̃ε,N
s )φ′(x)QN (dx, dy, dz, ds) + R3,N

t (φ)

where E

[
supt∈[0,T ] |R3,N

t (φ)|
]
≤ C(T )εa(N )

√
N ∨ a(N )|φ|3. We rewrite this as:

〈Z̃ N
t , φ〉 = a(N )√

N

N∑
i=1

{∫ t

0

(
γ̄ (X̃ i,ε,N

s , μ̃i,ε,N
s )φ′(X̃ i,ε,N

s )

− E

[
γ̄ (Xs,L(Xs))φ

′(Xs)

])
ds
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+
∫ t

0

(
D̄(X̃ i,ε,N

s , μ̃i,ε,N
s )φ′′(X̃ i,ε,N

s ) − E

[
D̄(Xs,L(Xs))φ

′′(Xs)

])
ds

+ Ri
4(t) + Ri

5(t)

}

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]

�y(x, y, μ̃ε,N
s )φ′(x)QN (dx, dy, dz, ds) + R3,N

t (φ)

where

Ri
4(t) =

∫ t

0
[γ (X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s ) − γ̄ (X̃ i,ε,N
s , μ̃N ,ε

s )]φ′(X̃ i,ε,N
s )ds

Ri
5(t) =

∫ t

0
[D(X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s ) − D̄(X̃ i,ε,N
s , μ̃ε,N

s )]φ′′(X̃ i,ε,N
s )ds.

By Proposition 6.4 (using here Assumption (A8)):

E

[
sup

t∈[0,T ]
a(N )√

N

N∑
i=1

|Ri
4(t)|

]
≤ Cεa(N )

√
N (1+ T 1/2 + T )|φ|3

and

E

[
sup

t∈[0,T ]
a(N )√

N

N∑
i=1

|Ri
5(t)|

]
≤ Cεa(N )

√
N (1+ T 1/2 + T )|φ|4.

Now, we arrive at

〈Z̃ N
t , φ〉 = a(N )√

N

N∑
i=1

{∫ t

0

(
γ̄ (X̃ i,ε,N

s , μ̃i,ε,N
s )φ′(X̃ i,ε,N

s ) − E

[
γ̄ (Xs ,L(Xs))φ

′(Xs)

])
ds

+
∫ t

0

(
D̄(X̃ i,ε,N

s , μ̃i,ε,N
s )φ′′(X̃ i,ε,N

s ) − E

[
D̄(Xs ,L(Xs))φ

′′(Xs)

])
ds

}

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]

�y(x, y, μ̃ε,N
s )φ′(x)QN (dx, dy, dz, ds) + RN

t (φ)

where E

[
supt∈[0,T ] |RN

t (φ)|
]

≤ C(T )[εa(N )
√

N ∨ a(N )]|φ|4. By Assumption

(A13), γ̄ and D̄ have well-defined linear functional derivatives (see Definition D.4).
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Then we can rewrite 〈Z̃ N
t , φ〉 as

〈Z̃ N
t , φ〉 =

∫ t

0
〈Z̃ N

s , γ̄ (·, μ̃ε,N
s )φ′(·) + D̄(·, μ̃ε,N

s )φ′′(·)〉ds

+ a(N )
√

N

[∫ t

0
〈L(Xs), [γ̄ (·, μ̃ε,N

s ) − γ̄ (·,L(Xs))]φ′(·)

+ [D̄(·, μ̃ε,N
s ) − D̄(·,L(Xs))]φ′′(·)〉ds

]

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]�y(x, y, μ̃ε,N
s )

φ′(x)QN (dx, dy, dz, ds) + RN
t (φ)

=
∫ t

0
〈Z̃ N

s , γ̄ (·, μ̃ε,N
s )φ′(·) + D̄(·, μ̃ε,N

s )φ′′(·)〉ds

+ a(N )
√

N

[∫ t

0
〈L(Xs),

[∫ 1

0

∫
R

δ

δm
γ̄ (·, (1− r)L(Xs) + rμ̃ε,N

s )

[y](μ̃N ,ε
s (dy) − L(Xs)(dy))dr

]
φ′(·)

+
[∫ 1

0

∫
R

δ

δm
D̄(·, (1− r)L(Xs) + rμ̃ε,N

s )[y](μ̃N ,ε
s (dy)

− L(Xs)(dy))dr

]
φ′′(·)〉ds

]

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]�y(x, y, μ̃ε,N
s )

φ′(x)QN (dx, dy, dz, ds) + RN
t (φ)

=
∫ t

0
〈Z̃ N

s , L̄L(Xs ),μ̃
ε,N
s

φ(·)〉ds +
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]�y(x, y, μ̃ε,N
s )

φ′(x)QN (dx, dy, dz, ds) + RN
t (φ).

��
Proposition 7.8 Under Assumptions (A1)–(A13), {Z̃ N }N∈N is tight as a sequence of
C([0, T ];S−m)-valued random variables, where m is as in Eq. (6).

Proof By Remark R.1 on p.997 of [55], it suffices to prove tightness of {〈Z̃ N , φ〉}
as a sequence of C([0, T ];R)-valued random variables for each φ ∈ S, along with
uniform 7-continuity as defined in the same remark. By the argument found in the
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proof of [10] Theorem 4.7, to show the latter it suffices to prove:

sup
N∈N

E

[
sup

t∈[0,T ]

∣∣∣∣〈Z̃ N
t , φ〉

∣∣∣∣
]
≤ C(T ) ‖φ‖7 ,∀φ ∈ S. (67)

After these two results are shown, we will have established tightness of Z̃ N as
C([0, T ];S−w)-valued random variables for m > 7 such that the canonical embed-
ding S−7 → S−m is Hilbert–Schmidt. We start with showing tightness of {〈Z̃ N , φ〉}.
By Lemma 7.7, we write for any φ ∈ S:

〈Z̃ N
t , φ〉 = AN

t (φ) + RN
t (φ)

AN
t (φ) :=

∫ t

0
〈Z̃ N

s , L̄L(Xs ),μ̃
ε,N
s

φ(·)〉ds

+
∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]

�y(x, y, μ̃ε,N
s )φ′(x)QN (dx, dy, dz, ds)

where for each φ, RN (φ) → 0 in C([0, T ];R) as N → ∞. Thus, to prove tightness
of {〈Z̃ N , φ〉}, it is sufficient to prove tightness of {AN (φ)}. We note that for any and
0 ≤ τ < t ≤ T :

AN
t (φ) − AN

τ (φ) = B N
t,τ (φ) + C N

t,τ (φ) + DN
t,τ (φ)

B N
t,τ (φ) :=

∫ t

τ

〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉ds

C N
t,τ (φ) =

∫
R×R×R2×[τ,t]

σ(x, y, μ̃ε,N
s )z1φ

′(x)QN (dx, dy, dz, ds)

DN
t,τ (φ) =

∫
R×R×R2×[τ,t]

[τ1(x, y, μ̃ε,N
s )z1 + τ2(x, y, μ̃ε,N

s )z2]

× �y(x, y, μ̃ε,N
s )φ′(x)QN (dx, dy, dz, ds).

Then we have for δ > 0,

E

[
sup

|t−τ |≤δ

∣∣∣∣B N
t,τ (φ)

∣∣∣∣
]
≤ δ1/2E

[∫ T

0

∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉
∣∣∣∣
2

ds

]1/2

≤ δ1/2T 1/2 sup
s∈[0,T ]

E

[∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉
∣∣∣∣
2]1/2

≤ δ1/2T 1/2 sup
s∈[0,T ]

sup
ν1,ν2∈P2(R)

E

[∣∣∣∣〈Z̃ N
s , L̄ν1,ν2φ(·)〉

∣∣∣∣
2]1/2

≤ C(T )δ1/2|φ|6
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by boundedness of the first 5 derivatives in x of γ̄ , D̄, and of the first 5 derivatives in
z of δ

δm γ̄ , δ
δm D̄ from Assumption (A13), the definition of L̄ν1,ν2 from Eq. (66), and

Lemma 7.6. Also, we see:

E

[
sup

|t−τ |≤δ

∣∣∣∣DN
t,τ (φ)

∣∣∣∣
]

≤ C
1

N

N∑
i=1

E

[
sup

|t−τ |≤δ

∫ t

τ

(
[|ũN ,1

i (s)| + |ũN ,2
i (s)|]|�y(X̃ i,ε,N

s , Ỹ i,ε,N
s , μ̃ε,N

s )|
)

ds

]
|φ|1

≤ C
1

N
E

[ N∑
i=1

∫ T

0
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2ds

]1/2

E

[
sup

|t−τ |≤δ

N∑
i=1

∫ t

τ

|�y(X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s )|2ds

]1/2
|φ|1

≤ CE

[
sup

|t−τ |≤δ

1

N

N∑
i=1

∫ t

τ

|�y(X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃ε,N
s )|2ds

]1/2
|φ|1 by the bound(52)

≤ Cδ1/2C(T )|φ|1 by the boundedness of�yfrom Assumption (A6).

The proof that E

[∣∣∣∣B N
t,τ (φ)

∣∣∣∣
]
≤ Cδ1/2C(T )|φ|1 holds in the same way.

So by the Arzelà-Ascoli tightness criterion on classical Wiener space (see, e.g.
Theorem 4.10 in Chapter 2 of [46]), we have {AN (φ)} and hence {〈Z̃ N , φ〉} are tight
as a sequence of C([0, T ];R)-valued random variables for each φ.

Now we see by the same argument (fixing τ = 0) and the fact that, as shown in
Lemma 7.7,

E

[
supt∈[0,T ]

∣∣∣∣RN
t (φ)

∣∣∣∣
]
≤ R̄(N , T )|φ|4 with R̄(N , T ) → 0 as N → ∞:

sup
N∈N

E

[
sup

t∈[0,T ]

∣∣∣∣〈Z̃ N
t , φ〉

∣∣∣∣
]
≤ C(T )|φ|6 ≤ C(T ) ‖φ‖7

for all φ ∈ S, where here we used the inequality (9). Thus the bound (67) holds, and
tightness is established. ��

7.4 Tightness ofQN

The proof of tightness of {QN } from Eq. (56) is standard, see [4, 9, 56]. We see that
since the occupation measures QN involve {X̃ i,ε,N }N∈N from Eq. (55) as part of their
definition, we will need some kind of uniform control on their expectation. Thus, we
begin with a lemma:

Lemma 7.9 Under assumptions (A1)–(A7) and (A9), we have supt∈[0,T ]
supN∈N 1

N

∑N
i=1 E

[
|X̃ i,ε,N

t |2
]

< ∞.
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Proof Using that

X̃ i,ε,N
t = ηx +

∫ t

0

(
1

ε
b(i) + c(i)

)
ds +

∫ t

0
σ(i)

ũN ,1
i (s)

a(N )
√

N
ds +

∫ t

0
σ(i)dW i

s

= ηx +
∫ t

0

1

ε
b(i)ds −

{∫ t

0
γ1(i)ds +

∫ t

0
τ1(i)�y(i)dW i

s +
∫ t

0
τ2(i)�y(i)d Bi

s

+
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ds

+
∫ t

0
[ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)ds

}

+
∫ t

0
γ (i)ds +

∫ t

0
σ(i)dW i

s

+
∫ t

0
τ1(i)�y(i)dW i

s +
∫ t

0
τ2(i)�y(i)d Bi

s +
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ds

+
∫ t

0

(
σ(i)

ũN ,1
i (s)

a(N )
√

N
+ [ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)

)
ds,

where here once again the argument (i) is denoting (X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ) and simi-

larly for j , and we recall � from Eq. (22) and γ1, γ from Eq. (23).
So, by Itô Isometry and boundedness of σ from (A5), of τ1 and τ2 from (A1), and

of �y from (A6):

1

N

N∑
i=1

E

[
|X̃ i,ε,N

t |2
]

≤ C(|ηx |2 + T ) + C

N

N∑
i=1

{
Ri,N
1 (t) + Ri,N

2 (t) + Ri,N
3 (t) + Ri,N

4 (t)

}

Ri,N
1 (t) := E

[∣∣∣∣
∫ t

0

1

ε
b(i)ds −

{∫ t

0
γ1(i)ds +

∫ t

0
τ1(i)�y(i)dW i

s +
∫ t

0
τ2(i)�y(i)d Bi

s

+
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ds +
∫ t

0
[ τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)]�y(i)ds

}∣∣∣∣
2]

Ri,N
2 (t) := E

[∣∣∣∣
∫ t

0
γ (i)ds

∣∣∣∣
2]

Ri,N
3 (t) = E

[∣∣∣∣
∫ t

0

1

N

N∑
j=1

b( j)∂μ�(i)[ j]ds

∣∣∣∣
2]

Ri,N
4 (t) = E

[∣∣∣∣
∫ t

0

(
σ(i)

ũN ,1
i (s)

a(N )
√

N

+
[

τ1(i)

a(N )
√

N
ũN ,1

i (s) + τ2(i)

a(N )
√

N
ũN ,2

i (s)

]
�y(i)ds

)∣∣∣∣
2]
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Then applying Proposition 6.1 with ψ = 1, we have

1

N

N∑
i=1

Ri,N
1 (t) ≤ C[ε2(1+ T + T 2) + 1

N
T 2]

Using Assumption (A9):

1

N

N∑
i=1

Ri,N
2 (t) ≤ 1

N

N∑
i=1

TE

[∫ t

0
|γ (i)|2ds

]

≤ CT
∫ t

0

1

N

N∑
i=1

E

[
|X̃ i,ε,N

s |2 + |Ỹ i,ε,N
s |2 + 1

N

N∑
j=1

|X̃ j,ε,N
s |2

]
ds

≤ CT 2 + CT
∫ t

0

1

N

N∑
i=1

E

[
|X̃ i,ε,N

s |2
]

ds

by Lemma B.1. Applying Proposition 6.3 with ψ = 1:

1

N

N∑
i=1

Ri,N
3 (t) ≤ C[ε2(1+ T + T 2) + 1

N 2 T 2]

Using the boundedness of σ from (A5), of τ1 and τ2 from (A1), and of �y from (A6)
and the bound (53):

1

N

N∑
i=1

Ri,N
4 (t) ≤ CT

a2(N )N

1

N

N∑
i=1

E

[∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds] ≤ CT

a2(N )N
.

Then, by Gronwall’s inequality:

1

N

N∑
i=1

E

[
|X̃ i,ε,N

t |2
]
≤ C(T )[1+ ε2 + 1

N
+ 1

N 2 + 1

a2(N )N
] ≤ C(T ),

since all the above terms which depend on N , ε in the first bound vanish as N → ∞.
Since this holds uniformly in N and t , we are done. ��

Now we can prove tightness of the occupation measures.

Proposition 7.10 Under assumptions (A1)–(A7) and (A9), {QN }N∈N is tight as a
sequence of MT (R4)-valued random variables (recall this space of measures intro-
duced above Eq. 10).

Proof Consider the function G : P(R× R× R
2 × [0, T ]) → R given by

G(θ) =
∫
R×R×R2×[0,T ]

(
|z|2 + |y|2 + |x |2

)
θ(dx, dy, dz, ds).
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Then we have G is bounded below, and considering a given level set AL := {θ ∈
MT (R4) : G(θ) ≤ L}, it follows by Chebyshev’s inequality that supθ∈AL

θ((K ε
L)c) ≤

ε where K ε
L is the compact subset of R4 × [0, T ]

K ε
L := {(x, y, z) ∈ R× R× R

2 : |x |2 + |y|2 + |z|2 ≤ L

ε
} × [0, T ].

We also see that any collection of measures on R4 × [0, T ] which is in MT (R4) is
uniformly bounded in the total variation norm, and that for {θ N } ⊂ AL such that θ N →
θ in MT (R4) (recalling here that we are using the topology of weak convergence), by
a version of Fatou’s lemma (see Theorem A.3.12 in [22])

G(θ) ≤ lim inf
N→∞ G(θ N ) ≤ L,

so θ ∈ AL . Via Prokhorov’s theorem, AL is precompact, and we have shown that AL

is closed, and hence G has compact level sets. Thus G is a tightness function (see [22]
p.309), and it suffices to prove

sup
N∈N

E

[
G(QN )

]

= sup
N∈N

1

N

N∑
i=1

E

[∫ T

0

(
|X̃ i,ε,N

s |2 + |Ỹ i,ε,N
s |2 + |ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds

]

< ∞

to see that {QN } is a tight sequence of MR(R4)−valued random variables. This
follows immediately from the bound (52) and Lemmas B.1 and 7.9. ��

8 Identification of the limit

Now having established tightness of {(Z̃ N , QN )}N, we take any sub-sequence that
converges in distribution as C([0, T ];S−m)× MT (R4)-valued random variables, and
call the random variable which is its limit (Z , Q). We will show that Q ∈ P∗(Z),
and that this uniquely characterizes the distribution of (Z , Q) for a given choice of
controls in the construction of QN .Wewill at times apply Skorokhod’s Representation
Theorem towithout loss of generality pose the problemon a probability space such that
this subsequence converges to (Z , Q) almost surely. We also do not distinguish from
the subsequence and the original sequence in the notation, nor the original probability
space and that invoked by Skorokhod’s Representation Theorem. We begin with two
lemmas which allow us to identify convergence of the controlled empirical measure
μ̃N from (54) to the law of the averaged McKean–Vlasov Eq. (25):
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Lemma 8.1 In the setting of Proposition 7.9, we have for any p ≥ 1:

sup
ε>0

sup
t∈[0,T ]

E

[
|X̄ ε

t |p
]
≤ |ηx |p + C(T , p)[1+ |ηy |p].

Here X̄ ε is as in Eq. (65). That is, it is equal in distribution to the IID particles from
Eq. (57).

Proof This follows in the same way as Lemmas 7.5 and 7.9, using Lemma 7.1 and the
ergodic-type Theorems from Section 4 of [5]. We omit the proof for brevity. ��
Lemma 8.2 Assume (A1)–(A12). Let μ̃

ε,N
t be as in Eq. (54), with controls satisfying

(53). Then

E

[
W2(μ̃

ε,N
t ,L(Xt ))

]
→ 0 as N → ∞,∀t ∈ [0, T ],

where Xt is as in Eq. (25). In particular, decomposing QN from Eq. (56) as
QN (dx, dy, dz, dt) = QN

t (dx, dy, dz)dt, for any t ∈ [0, T ], the first marginal of QN
t

converges to L(Xt ) in probability as a sequence of P2(R)-valued random variables.

Proof Firstly, we note by Theorem 7.2, L(X̄ ε
t ) → L(Xt ) in P(R) (using here that

C∞
c (R) is convergence determining - see [25] Proposition 3,4.4). In addition, by

Lemma 8.1, we have supε>0

∫
R
|x |pL(X̄ ε

t )(dx) < ∞, for some p > 2. Thus, we have

by uniform integrability, E

[
|X̄ ε

t |2
]
→ E

[
|Xt |2

]
as ε ↓ 0, soW2(L(X̄ ε

t ),L(Xt )) →
0 as ε ↓ 0 (Theorem 5.5 in [13]). By Lemma 7.5, we also have

E

[
W2(μ̃

ε,N
t , μ̄

ε,N
t )

]
≤ E

[
1

N

N∑
i=1

∣∣∣∣X̃ i,ε,N
t − X̄ i,ε

t

∣∣∣∣
2]

→ 0 as N → ∞,

where μ̄ε,N is as in Eq. (58). Also, by Glivenko-Cantelli Convergence in the Wasser-
stein Distance (see, e.g. Section 5.1.2 in [13]):

E

[
W2(μ̄

ε,N
t ,L(X̄ ε

t ))

]
→ 0 as N → ∞.

So by the triangle inequality (see, e.g. the proof of [13] Proposition 5.3), we have:

E

[
W2(μ̃

ε,N
t ,L(Xt ))

]
≤ E

[
W2(μ̃

ε,N
t , μ̄

ε,N
t )

]
+ E

[
W2(μ̄

ε,N
t ,L(X̄ ε

t ))

]

+W2(L(X̄ ε
t ),L(Xt )) → 0 as N → ∞.

The latter statement of the Lemma now follows from the construction of QN and
Markov’s inequality. ��
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Now we can use the prelimit representation for the controlled fluctuation process Z̃ N

from Lemma 7.7 in order to identify the limiting behavior of (Z̃ N , QN ).

Proposition 8.3 Under assumptions (A1) - (A13), (Z , Q) satisfies Eq. (32) with prob-
ability 1.

Proof We now invoke the Skorokhod’s Representation Theorem as previously dis-
cussed. By a standard density argument, we can simply show that Eq. (32) holds with
probability 1 for each φ ∈ C∞

c (R) and t ∈ [0, T ]. This is using the fact that there
exists a countable, dense collection of smooth, compactly supported functions in Sm

(this follows from, e.g. Corollary 2.1.2 in [62]).
We note that by almost sure convergence of Z̃ N to Z , we have for each t ∈ [0, T ]

and φ ∈ C∞
c (R), 〈Z̃ N

t , φ〉 → 〈Zt , φ〉with probability 1.We also note that the prelimit
representation given in Lemma 7.7 can be written solely in terms of QN and Z N by
replacing μ̃

ε,N
s by the first marginal of QN

s . We can therefore take μ̃
ε,N
s to also live

on the new probability space from Skorokhod’s Representation Theorem, and on that
space we still have the convergence of μ̃

ε,N
t to L(Xt ) in probability proved in Lemma

8.2. Thus, by the representation provided by Lemma 7.7, we only need to show the
limits in probability:

∫ t

0
〈Z̃ N

s , L̄L(Xs ),μ̃
ε,N
s

φ(·)〉ds → (N → ∞)

∫ t

0
〈Zs, L̄L(Xs )φ(·)〉ds (68)

∫
R×R×R2×[0,t]

(
σ(x, y, μ̃ε,N

s )z1φ
′(x) + [τ1(x, y, μ̃ε,N

s )z1 + τ2(x, y, μ̃ε,N
s )z2]

�y(x, y, μ̃ε,N
s )φ′(x)

)
QN (dx, dy, dz, ds)

→ (N → ∞)∫
R×R×R2×[0,t]

(
σ(x, y,L(Xs))z1φ

′(x) + [τ1(x, y,L(Xs))z1 + τ2(x, y,L(Xs))z2]

�y(x, y,L(Xs))φ
′(x)

)
Q(dx, dy, dz, ds), (69)

where L̄ν1,ν2 is as in Eq. (66) and L̄ν is as in Eq. (32). By boundedness and continuity
of γ̄ , D̄ from assumption (A13) (see Definition D.4), along with Lemma 8.2, we have
for each s ∈ [0, T ] and φ ∈ C∞

c (R), the limit in probability

L̄L(Xs ),μ̃
ε,N
s

φ(·) → L̄L(Xs )φ(·) in Sm

holds via the continuous mapping theorem. Thus, for each s ∈ [0, T ] and φ ∈ C∞
c (R),

the limit in probability

〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉 → 〈Zs, L̄L(Xs )φ(·)〉
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holds. We have, then, for all t ∈ [0, T ]:

lim
N→∞E

[∣∣∣∣
∫ t

0

(
〈Z̃ N

s , L̄L(Xs ),μ̃
ε,N
s

φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉
)

ds

∣∣∣∣
]
≤

≤ lim
N→∞E

[∫ t

0

∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉
∣∣∣∣ds

]
,

and we have by Lemma 7.6 that

sup
N∈N

∫ t

0
E

[∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·) − L̄L(Xs )φ(·)〉
∣∣∣∣
2]

ds < ∞,

so by uniform integrability we can pass to the limit to get

lim
N→∞E

[∫ t

0

∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉
∣∣∣∣ds

]

= E

[∫ t

0
lim

N→∞

∣∣∣∣〈Z̃ N
s , L̄L(Xs ),μ̃

ε,N
s

φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉
∣∣∣∣ds

]
= 0.

Similarly, we can use that by the Lemma 7.6 and Fatou’s lemma:

sup
N∈N

∫ t

0
E

[∣∣∣∣〈Z̃ N
s , L̄L(Xs )φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉

∣∣∣∣
2]

ds < ∞

and to get

lim
N→∞E

[∣∣∣∣
∫ t

0

(
〈Z̃ N

s , L̄L(Xs )φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉
)

ds

∣∣∣∣
]

≤ E

[∫ t

0
lim

N→∞

∣∣∣∣〈Z̃ N
s , L̄L(Xs )φ(·)〉 − 〈Zs, L̄L(Xs )φ(·)〉

∣∣∣∣ds

]

= 0.

Then, by Markov’s inequality, we establish (68). The limit (69) follows immediately
from the integrand being bounded by C[|z1|+ |z2|] and continuous inW2, along with
the assumed bound on the controls (53) (see, e.g., [22] Theorem A.3.18). ��
Proposition 8.4 Under assumptions (A1) - (A13), Q ∈ P∗(Z) with Probability 1.

Proof By Proposition 8.3, P∗1 in the definition of P∗(Z) holds. It remains to show
P∗2-P∗4.

P∗4 is immediate from the fact that the last marginal of Q is Lebesgue measure by
the definition of MT (R4) above Eq. (10), and the first marginal of Q̃N

s is μ̃
ε,N
s , which

converges in P2(R) and hence P(R) to L(Xs) by Lemma 8.2.
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P∗2 follows from the version of Fatou’s lemma from TheoremA.3.12 in [22], since∫
R×R×R2×[0,T ] |z1|2+|z2|2QN (dx, dy, dz, dt) is a non-negative randomvariable, and

E

[∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
Q(dx, dy, dz, dt)

]

≤ lim inf
N→∞ E

[∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
QN (dx, dy, dz, dt)

]

≤ sup
N∈N

∫ T

0
E

[
1

N

N∑
i=1

|ũN ,1
i (s)|2 + |ũN ,2

i (s)|2
]

ds < ∞

by the assumed bound (52).
Lastly, to see P∗3, takeψ ∈ C∞

c (U×R) andφ ∈ C∞
c (R).HereU is anopen interval

inR containing [0, T ]. Then applying Itô’s formula (recalling here X̃ i,ε,N , Ỹ i,ε,N from
Eq. (55)):

φ(Ỹ i,ε,N
T )ψ(T , X̃ i,ε,N

T ) = φ(Ỹ i,ε,N
0 )ψ(0, X̃ i,ε,N

0 ) +
∫ T

0

(
ψ̇(s, X̃ i,ε,N

s )φ(Ỹ i,ε,N
s )

+ 1

ε2

[
f (i)φ′(Ỹ i,ε,N

s ) + 1

2
(τ 21 (i) + τ 22 (i))φ′′(Ỹ i,ε,N

s )

]
ψ(s, X̃ i,ε,N

s )

+ 1

ε

[
g(i) + τ1(i)

ũN ,1
i (s)

a(N )
√

N
+ τ2(i)

ũN ,1
2 (s)

a(N )
√

N

]
φ′(Ỹ i,ε,N

s )ψ(s, X̃ i,ε,N
s )

+
[

c(i) + σ(i)
ũN ,1

i (s)

a(N )
√

N

]
φ(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s ) + 1

2
σ 2(i)φ(Ỹ i,ε,N

s )ψxx (s, X̃ i,ε,N
s )

+ 1

ε
b(i)φ(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s ) + 1

ε
σ (i)τ1(i)φ

′(Ỹ i,ε,N
s )ψx (s, X̃ i,ε,N

s )

)
ds

+ 1

ε

∫ T

0
τ1(i)φ

′(Ỹ i,ε,N
s )ψ(s, X̃ i,ε,N

s )dW i
s + 1

ε

∫ T

0
τ2(i)φ

′(Ỹ i,ε,N
s )ψ(s, X̃ i,ε,N

s )d Bi
s

+
∫ T

0
σ(i)φ(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s )dW i

s

where (i) denotes the argument (X̃ i,ε,N
s , Ỹ i,ε,N

s , μ̃
ε,N
s ). So recalling the definition of

Lx,μ from Eq. (18), multiplying both sides by ε2

N and summing,

∫
R×R×R2×[0,T ]

Lx,μ̃
ε,N
s

φ(y)ψ(s, x)QN (dx, dy, dz, ds) =

= 1

N

N∑
i=1

{
ε2[φ(Ỹ i,ε,N

0 )ψ(0, X̃ i,ε,N
0 ) − φ(Ỹ i,ε,N

T )ψ(T , X̃ i,ε,N
T )]

+ ε2
∫ T

0

(
ψ̇(s, X̃ i,ε,N

s )φ(Ỹ i,ε,N
s ) +

[
c(i) + σ(i)

ũN ,1
i (s)

a(N )
√

N

]
φ(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s )

+ 1

2
σ 2(i)φ(Ỹ i,ε,N

s )ψxx (s, X̃ i,ε,N
s )

)
ds
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+ ε

∫ T

0

([
g(i) + τ1(i)

ũN ,1
i (s)

a(N )
√

N
+ τ2(i)

ũN ,1
2 (s)

a(N )
√

N

]
φ′(Ỹ i,ε,N

s )ψ(s, X̃ i,ε,N
s )

+ b(i)φ(Ỹ i,ε,N
s )ψx (s, X̃ i,ε,N

s ) + σ(i)τ1(i)φ
′(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s )

)
ds

+ ε

∫ T

0
τ1(i)φ

′(Ỹ i,ε,N
s )ψ(s, X̃ i,ε,N

s )dW i
s + ε

∫ T

0
τ2(i)φ

′(Ỹ i,ε,N
s )ψ(s, X̃ i,ε,N

s )d Bi
s

+ ε2
∫ T

0
σ(i)φ(Ỹ i,ε,N

s )ψx (s, X̃ i,ε,N
s )dW i

s .

Since all terms in the right hand side are bounded other than b and c, which grow
at most linearly in y as per Assumption (A5), we see after using the bound (52) that
the right hand side is bounded in square expectation by

C(T )ε2(1+ sup
N∈N

1

N

N∑
i=1

sup
s∈[0,T ]

E

[
|Ỹ i,ε,N

s |2
]
) ≤ C(T )ε2

by Lemma B.1, and hence converges to 0 in probability.
We can see also by the fact thatφ andψ are compactly supported and the coefficients

in Lx,μ are continuous in (x, y,W2) by assumptions (A1) and (A2), we can use the
definition of convergence in MT (R4) andLemma8.2 to see the left hand side converges
in probability to

∫
R×R×R2×[0,T ]

Lx,L(Xs )φ(y)ψ(s, x)Q(dx, dy, dz, ds)

(see, e.g., [22] Theorem A.3.18). Thus, using that Q satisfies P∗4,
∫
R×R×R2×[0,T ]

Lx,L(Xs )φ(y)ψ(s, x)Q(dx, dy, dz, ds)

=
∫ T

0

∫
R

∫
R

Lx,L(Xs )φ(y)ψ(s, x)λ(dy; x, s)L(Xs)(dx)ds = 0

for some stochastic kernel λ almost surely. Then noting that by boundedness of the
coefficients and the derivatives of φ, we have (s, x)  → ∫

R
Lx,L(Xs )φ(y)λ(dy; x, s) is

in L1
loc([0, T ] ×R, νL(X ·)) for all φ, and thus by Corollary 22.38 (2) in [21], for each

φ, we have

∫
R

Lx,L(Xs )φ(y)λ(dy; x, s) = 0

νL(X ·)- almost surely. By a standard density argument (see [4] Section 6.2.1), we have
by letting

A = {(s, x) :
∫
R

Lx,L(Xs )φ(y)λ(dy; x, s) = 0,∀φ ∈ C∞
c (R)},
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νL(X ·)(A×[0, T ]) = ∫ T
0

∫
R
1AL(Xs)(dx)ds = 1. This then characterizes λ(dy; x, s)

as νL(X ·)− almost surely satisfying L∗
x,L(Xs )

λ(·; x, s) = 0 in the distributional sense,

and by definition of stochastic kernels
∫
R

λ(dy; x, s) = 1,∀x, s, so λ(dy; x, s) is an
invariant measure associated to Lx,L(Xs ). Since such an invariant measure is unique
under assumptions (A1) and (A2) by [60] Proposition 1, we have in fact λ(dy; x, s) =
π(dy; x,L(Xs)) νL(X ·)− almost surely.

��

8.1 Weak-sense uniqueness

In order to prove the Laplace Principle Lower bound (31) in Sect. 10 and compactness
of level sets in Proposition 10.2, we will need to be able to identify a given Z ∈
C([0, T ];S−w/r ) using only the information that Z solves the limiting controlled
Eq. (32) for some fixed Q. Hence, in this subsection, we prove an appropriate notion
of weak-sense uniqueness for Eq. (32). Recall the space spaces Sp,S−p, and the
related norms from the beginning of Sect. 2.

Lemma 8.5 Let p ∈ N and consider φ ∈ Sp+2, F ∈ C p
b (R), and G ∈ Sp. Then for

any μ ∈ P(R), we have:

(1) 〈φ, Fφ′〉p ≤ C ‖φ‖2p
(2) 〈φ, Fφ′′〉p ≤ C ‖φ‖2p − ∫

R
(1+ x2)p|φ(p+1)(x)|2F(x)dx

(3)
∥∥∫

R
G(·)φ(k)(z)μ(dz)

∥∥
p ≤ C ‖φ‖k+1, for k ≤ p − 1.

Proof The proof of (1) follows by the same integration by parts argument as A1)
in the Appendix of [49]. Part 2 follows by the same integration by parts argument
as A2) in the Appendix of [49]. It becomes evident upon reading those proofs that
wp := (1 + x2)p can be replaced by any wp such that w−1

p Dkwp is bounded for all
k ≤ p. The proof of 3 is similar to the proof of A4) in the Appendix of [49]. We recall
it here:

∥∥∥∥
∫
R

G(·)φ(k)(z)μ(dz)

∥∥∥∥
p
=

( p∑
j=0

∫
R

(1+ x2)2p
∣∣∣∣
∫
R

G( j)(x)φ(k)(z)μ(dz)

∣∣∣∣
2

dx

)1/2

≤ ‖G‖p

(∫
R

|φ(k)(z)|2μ(dz)

)1/2

by Hölder’s inequality

≤ ‖G‖p |φ|k
≤ ‖G‖p ‖φ‖k+1 .

��
Lemma 8.6 Under assumption (A13), for any p ∈ {1, . . . , w + 2}, where w is as in
Eq. (6), and any s ∈ [0, T ], L̄L(Xs ) as given in Eq. (32), where Xs is as in Eq. (25),
is a bounded linear map from Sp+2 to Sp. In particular, there exists cp such that for
all s ∈ [0, T ] and φ ∈ Sp+2,

∥∥L̄L(Xs )φ
∥∥

p ≤ cp ‖φ‖p+2 .
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The same holds with w replaced by r from Eq. (7) if we in addition assume (A’13).

Proof Linearity is clear. For φ ∈ Sp+2 and s ∈ [0, T ],

∥∥γ̄ (·,L(Xs))φ
′(·)∥∥2p =

p∑
k=0

∫
R

(1+ x2)2p
(
[γ̄ (x,L(Xs))φ

′(x)](k)

)2

dx

≤ cp

p∑
k=0

∫
R

(1+ x2)2p
(

φ(k+1)(x)

)2

dx by Assumption (A13)

≤ cp ‖φ‖2p+1 .

In the sameway, we can see
∥∥D̄(·,L(Xs))φ

′′(·)∥∥2p ≤ cp ‖φ‖2p+2 . In addition, we have

∥∥∥∥
∫
R

δ

δm
γ̄ (z,L(Xs))[·]φ′(z)L(Xs)(dz)

∥∥∥∥
2

p

=
p∑

k=0

∫
R

(1+ x2)2p
(

∂k

∂xk

[∫
R

δ

δm
γ̄ (z,L(Xs))[x]φ′(z)L(Xs)(dz)

])2

dx

≤
∫
R

∥∥∥∥ δ

δm
γ̄ (z,L(Xs))[·]

∥∥∥∥
2

p
L(Xs)(dz)|φ|21 by Jensen’s inequality and Tonelli’s Theorem

≤ cp ‖φ‖22 by Assumption (A13) and the inequality (9).

Again, in the same way, we can see

∥∥∥∥
∫
R

δ

δm
D̄(z,L(Xs))[·]φ′′(z)L(Xs)(dz)

∥∥∥∥
2

p
≤ cp ‖φ‖23 ,

so by definition of L̄ν , the result follows. ��
Lemma 8.7 Under Assumption (A13), we have for any p ∈ {1, . . . , w} and F ∈ S−p,
where w is as in Eq. (6),

sup
s∈[0,T ]

〈F, L̄∗
L(Xs )

F〉−(p+2) ≤ ‖F‖2−(p+2)

where L̄∗
L(Xs )

: S−p → S−(p+2) is the adjoint of L̄L(Xs ) : Sp+2 → Sp given in
Eq. (32) (using here Lemma 8.6). The same holds if instead we further assume (A’13)
and replace w with r from Eq. (7).

Proof By the Riesz representation theorem we can take φ ∈ Sp such that for all
ψ ∈ Sp, 〈F, ψ〉 = 〈φ,ψ〉p and ‖F‖−p = ‖φ‖p. By a density argument, we may
assume in fact that φ ∈ S, 〈F, ψ〉 = 〈φ,ψ〉p+2, and ‖φ‖p+2 = ‖F‖−(p+2). Then for
any s ∈ [0, T ], 〈F, L̄∗

L(Xs )
F〉−(p+2) = 〈F, L̄L(Xs )φ〉 = 〈φ, L̄L(Xs )φ〉p+2. Then,
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〈φ, L̄L(Xs )φ〉p+2

= 〈φ, γ̄ (·,L(Xs))φ
′(·)〉p+2 + 〈φ, D̄(·,L(Xs))φ

′′(·)〉p+2

+ 〈φ,

∫
R

δ

δm
γ̄ (z,L(Xs))[·]φ′(z)L(Xs)(dz)〉p+2

+ 〈φ,

∫
R

δ

δm
D̄(z,L(Xs))[·]φ′′(z)L(Xs)(dz)〉p+2

≤ 〈φ, γ̄ (·,L(Xs))φ
′(·)〉p+2 + 〈φ, D̄(·,L(Xs))φ

′′(·)〉p+2

+ ‖φ‖p+2

∥∥∥∥
∫
R

δ

δm
γ̄ (z,L(Xs))[·]φ′(z)L(Xs)(dz)

∥∥∥∥
p+2

+ ‖φ‖p+2

∥∥∥∥
∫
R

δ

δm
D̄(z,L(Xs))[·]φ′′(z)L(Xs)(dz)

∥∥∥∥
p+2

by Cauchy Schwarz

≤ C

{
‖φ‖2p+2 + ‖φ‖p+2 ‖φ‖2 + ‖φ‖p+2 ‖φ‖3

}

by Lemma 8.5 and Assumption (A13)

≤ C ‖φ‖2p+2

= C ‖F‖2−(p+2) .

The proof follows in the same way if we replace w with r . ��
Proposition 8.8 Under Assumption (A13), for any (Z , Q) and (Z̃ , Q) such that Q ∈
P∗(Z) and Q ∈ P∗(Z̃), Z = Z̃ as elements of C([0, T ];S−w). If we assume (A’13)
instead of (A13), Z = Z̃ as elements of C([0, T ];S−r ).

Proof Consider η = Z − Z̃ . Then by virtue of P∗1 in the definition of P∗, η almost
surely satisfies

〈ηt , φ〉 =
∫ t

0
〈ηs, L̄L(Xs )φ(·)〉ds

for all t ∈ [0, T ] and φ ∈ Sw. Let {φw+2
j } j∈N be an orthonormal basis for S−(w+2).

By chain rule, we have

〈ηt , φ
w+2
j 〉2 = 2

∫ t

0
〈ηs, φ

w+2
j 〉〈ηs, L̄L(Xs )φ

w+2
j (·)〉ds.

Summing through j , we have using Parseval’s identity, Riesz representation theo-
rem, and linearity of ηs and L̄L(Xs ) that

‖η(t)‖−(w+2) = 2
∫ t

0
〈η(s), L̄∗

L(s)η(s)ds〉−(w+2)ds

≤ C
∫ t

0
‖η(s)‖−(w+2) ds by Lemma 8.7
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so by Gronwall’s inequality, ‖η(t)‖−(w+2) = 0,∀t ∈ [0, T ], so ‖η(t)‖−w = 0,∀t ∈
[0, T ], and hence Z = Z̃ . The proof follows in the same way if we replace w with r .
��
Remark 8.9 By P∗3 and P∗4 in the definition of P∗, we have that for any Q ∈ P∗(Z)

that disintegrating Q(dx, dy, dz, ds) = κ(dz; x, y, s)λ(dy; x, s)Q(1,4)(dx, ds),
λ(dy; x, s) = π(dy; x,L(Xs)) and Q(1,4)(dx, ds) = L(Xs)(dx)ds = νL(X ·)(dx, ds).
Thus any Q, Q̃ ∈ P∗(Z) only differentiate in their control stochastic kernels,
κ(dz; x, y, s) and κ̃(dz; x, y, s). These are, of course, entirely determined by the
choice of controls in the construction of QN . In other words, keeping in mind the
result of Proposition 8.4, the choice of controls in the prelimit system (55) determine
uniquely the limit in distribution of Z̃ N .

9 Laplace principle lower bound

We now can prove the Laplace principle Lower Bound (30).

Proposition 9.1 Under assumptions (A1)–(A13), Eq. (30) holds.

Proof Take τ ≥ w, with w as in Eq. (6), F ∈ Cb(C([0, T ];S−τ )) and η > 0. By
Eq. (51) there exists {ũN }N∈N such that for all N ,

− a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

≥ E

[
1

2

1

N

N∑
i=1

∫ T

0
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2ds + F(Z̃ N )

]
− η.

Where Z̃ N is as in Eq. (54) and is controlled by {ũN }N∈N. Then letting QN be as in
Eq. (56) with this choice of controls (recalling that we can assume the almost-sure
bound (53) on the controls by the argument found in Theorem 4.4 of [8]), we have

E

[
1

2

1

N

N∑
i=1

∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds + F(Z̃ N )

]

= E

[
1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
QN (dxdydzds) + F(Z̃ N )

]

so by the version of Fatou’s lemma from Theorem A.3.12 in [22], we have

lim inf
N→∞ −a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

≥ lim inf
N→∞ E

[
1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
QN (dxdydzds) + F(Z̃ N )

]
− η

≥ E

[
lim inf
N→∞

1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
QN (dxdydzds) + F(Z̃ N )

]
− η
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≥ E

[
1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
Q(dxdydzds) + F(Z)

]
− η

≥ inf
Z∈C([0,T ];S−m )

{
inf

Q∈P∗(Z)

{
1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
Q(dxdydzds)

}
+ F(Z)

}
− η

≥ inf
Z∈C([0,T ];S−w)

{
inf

Q∈P∗(Z)

{
1

2

∫
R×R×R2×[0,T ]

(
|z1|2 + |z2|2

)
Q(dxdydzds)

}
+ F(Z)

}
− η

= inf
Z∈C([0,T ];S−w)

{I (Z) + F(Z)} − η,

where in the second-to-last inequality we used Proposition 8.4. So Eq. (30) is estab-
lished. ��

10 Laplace principle upper bound and compactness of level sets

Wenowprove theLaplace principleUpperBound and, under the additional assumption
of (A’13), compactness of level sets.

Proposition 10.1 Under assumptions (A1)–(A13), the Laplace principle Upper Bound
(31) holds.

Proof We use the ordinary formulation I o from Eq. (34). We take η > 0, w as in
Eq. (6), τ ≥ w, F ∈ Cb(C([0, T ];S−τ )), and Z∗ such that

I (Z∗) + F(Z∗) ≤ inf
Z∈C([0,T ];S−w)

E

[
I (Z) + F(Z)

]
+ η

2
.

Then we can find h ∈ Po(Z∗) such that

1

2

∫ T

0
E

[∫
R

|h(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds ≤ I (Z∗) + η

2
.

Then since ν(� × A × B) := ∫
�

∫
R
1A(x)

∫
R
1B(y)π(dy; x,L(Xs))L(Xs)(dx)ds,

� ∈ B(U ), A, B ∈ B(R) is a finite Borel measure on U × R × R for all x ∈ R,
by Corollary 22.38 (1) in [21], we can take {ψk

j }k∈N ⊂ C∞
c (U × R × R) such that

ψk
j → h j in L2(U × R × R, ν) for j ∈ {1, 2}. Here we let U be any open interval

containing [0, T ] and assume ν(� × A × B) is 0 when � ∩ [0, T ] = ∅.
Then letting ũN

i,k(s, ω) = ψk(s, X̃ i,ε,N ,k
s (ω), Ỹ i,ε,N ,k

s (ω)),where (X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s )

are as in Eq. (55) but controlled by
ũN

i,k (s)

a(N )
√

N
,

sup
N∈N

∫ T

0
E

[
1

N

N∑
i=1

|ũN
i,k(s)|2

]
ds = sup

N∈N

∫ T

0
E

[
1

N

N∑
i=1

|ψk(s, X̃ i,ε,N
s , Ỹ i,ε,N

s )|2
]

ds

≤ T ‖ψk‖2∞
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for each k ∈ N, and in fact

∫ T

0

1

N

N∑
i=1

|ũN
i,k(s)|2ds ≤ T ‖ψk‖2∞

for each k ∈ N (so the supposition (53) holds with this choice of controls).
Letting (Z̃ N ,k, QN ,k) be as in Eqs. (54) and (56) with this choice of controls,

we want to establish that (Z̃ N ,k, QN ,k) converges in distribution as a sequence of
C([0, T ];S−m) × MT (R4)-valued random variables to (Z̃ k, Qk) as N → ∞, where
Qk ∈ P∗(Z̃ k) (this is immediate since we prove this for all L2 controls in Proposition
8.4) and such that

Qk(A × B × C × �)

=
∫

�

∫
A

∫
C

δψk (s,x,y)(C)π(dy; x,L(Xs))L(Xs)(dx)ds,

∀A, B ∈ B(R), C ∈ B(R2), � ∈ B([0, T ]). (70)

By the weak-sense uniqueness established in Proposition 8.8, this determines each Z̃ k

almost surely to be the unique element of C([0, T ];S−m) satisfying Eq. (32) with Qk

in the place of Q.
Then we will send k → ∞ and show (Z̃ k, Qk) converges to (Z̃ , Q) in

C([0, T ];S−w) × MT (R4), where Q ∈ P∗(Z̃) and

Q(A × B × C × �)

=
∫

�

∫
A

∫
C

δh(s,x,y)(C)π(dy; x,L(Xs))L(Xs)(dx)ds,

∀A, B ∈ B(R), C ∈ B(R2), � ∈ B([0, T ]). (71)

Then by the weak-sense uniqueness established in Proposition 8.8, we have Z̃
d=

Z∗. By reverse Fatou’s lemma:

lim sup
N→∞

−a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

= lim sup
N→∞

inf
ũN

E

[
1

2

1

N

N∑
i=1

∫ T

0

(
|ũN ,1

i (s)|2 + |ũN ,2
i (s)|2

)
ds + F(Z̃ N )

]
by Eq. (51)

≤ lim sup
N→∞

E

[
1

2

1

N

N∑
i=1

∫ T

0

(
|ũN ,1

i,k (s)|2 + |ũN ,2
i,k (s)|2

)
ds + F(Z̃ N ,k)

]
,∀k ∈ N

= lim sup
N→∞

E

[
1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
QN ,k(dx, dy, dz, ds) + F(Z̃ N ,k)

]
, ∀k ∈ N

≤ E

[
1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
Qk(dx, dy, dz, ds) + F(Z̃ k)

]
, ∀k ∈ N
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= 1

2

∫ T

0
E

[∫
R

|ψk(s, Xs , y)|2π(dy; Xs ,L(Xs))

]
ds + E

[
F(Z̃ k)

]
,∀k ∈ N

Then sending k → ∞ and using the L2 convergence ofψk to h and the boundedness
F and convergence of Z̃ k to Z∗, we get

lim sup
N→∞

−a2(N ) logE exp

(
− 1

a2(N )
F(Z N )

)

≤ 1

2

∫ T

0
E

[∫
R

|h(s, Xs, y)|2π(dy; Xs,L(Xs))

]
ds + E

[
F(Z∗)

]

≤ I (Z∗) + F(Z∗) + η

2

≤ inf
Z∈C([0,T ];S−w)

E

[
I (Z) + F(Z)

]
+ η

so Eq. (31) will be established.
Looking at the proof of Proposition 8.3, to see (Z̃ N ,k, QN ,k) converges to (Z̃ k, Qk)

where Qk ∈ P∗(Z̃ k) satisfies Eq. (70). we just need to establish that

∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N ,k
s )z1φ

′(x)QN ,k(dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N ,k
s )z1 + τ2(x, y, μ̃ε,N ,k

s )z2]

�y(x, y, μ̃ε,N ,k
s )φ′(x)QN ,k(dx, dy, dz, ds)

converges in distribution to

∫ t

0
E

[∫
R

σ(Xs, y,L(Xs))ψ
k
1 (s, Xs, y)φ′(Xs)π(dy; Xs,L(Xs))

]
ds

+
∫ t

0
E

[∫
R

(
[τ1(Xs, y,L(Xs))ψ

k
1 (s, Xs, y) + τ2(Xs, y,L(Xs))ψ

k
2 (s, Xs, y)]

�y(Xs, y,L(Xs))φ
′(Xs)

)
π(dy; Xs,L(Xs))

]
ds

for all φ ∈ C∞
c (R) and t ∈ [0, T ]. Fix k ∈ N and φ and t . We have

∫
R×R×R2×[0,t]

σ(x, y, μ̃ε,N ,k
s )z1φ

′(x)QN ,k(dx, dy, dz, ds)

+
∫
R×R×R2×[0,t]

[τ1(x, y, μ̃ε,N ,k
s )z1 + τ2(x, y, μ̃ε,N ,k

s )z2]

�y(x, y, μ̃ε,N ,k
s )φ′(x)QN ,k(dx, dy, dz, ds)

=
∫ t

0

1

N

N∑
i=1

σ(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s )ψk

1 (s, X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s )φ′(X̃ i,ε,N ,k
s )ds
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+
∫ t

0

1

N

N∑
i=1

[
τ1(X̃ i,ε,N ,k

s , Ỹ i,ε,N ,k
s , μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , Ỹ i,ε,N ,k
s )+

+τ2(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s )ψk

2 (s, X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s )
]

�y(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s φ′(X̃ i,ε,N ,k

s )ds

Then using Proposition 6.4 with

F(s, x, y, μ) = σ(x, y, μ)ψk
1 (s, x, y) + [τ1(x, y, μ)ψk

1 (s, x, y)

+ τ2(x, y, μ)ψk
2 (s, x, y)]�y(x, y, μ)

using that s only appears as a parameter, in the same way as x , so that the same proof
holds (using also the assumed bound on the time derivative of � in (A8)), we get that

E

[∣∣∣∣
∫ t

0

1

N

N∑
i=1

σ(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s )ψk

1 (s, X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s )φ′(X̃ i,ε,N ,k
s )ds

+
∫ t

0

1

N

N∑
i=1

[
τ1(X̃ i,ε,N ,k

s , Ỹ i,ε,N ,k
s , μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , Ỹ i,ε,N ,k
s )+

+τ2(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s )ψk

2 (s, X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s )
]

�y(X̃ i,ε,N ,k
s , Ỹ i,ε,N ,k

s , μ̃ε,N ,k
s )φ′(X̃ i,ε,N ,k

s )ds

−
∫ t

0

1

N

N∑
i=1

∫
R

σ(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , y)φ′(X̃ i,ε,N ,k
s )

+ [τ1(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , y) + τ2(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )

× ψk
2 (s, X̃ i,ε,N ,k

s , y)]�y(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψ(s, X̃ i,ε,N ,k
s )π(dy; X̃ i,ε,N

s , μ̃ε,N
s )ds

∣∣∣∣
]

≤ C(T )ε

Then noting that

∫ t

0

1

N

N∑
i=1

∫
R

σ(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , y)φ′(X̃ i,ε,N ,k
s )

+ [τ1(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψk
1 (s, X̃ i,ε,N ,k

s , y) + τ2(X̃ i,ε,N ,k
s , y, μ̃ε,N ,k

s )ψk
2 (s, X̃ i,ε,N ,k

s , y)]×
× �y(X̃ i,ε,N ,k

s , y, μ̃ε,N ,k
s )φ′(X̃ i,ε,N ,k

s )π(dy; X̃ i,ε,N
s , μ̃ε,N

s )ds

=
∫ t

0

∫
R

∫
R

(
σ(x, y, μ̃ε,N ,k

s )ψk
1 (s, x, y)φ′(x) + [τ1(x, y, μ̃ε,N ,k

s )ψk
1 (s, x, y)

+ τ2(x, y, μ̃ε,N ,k
s )ψk

2 (s, x, y)]�y(x, y, μ̃ε,N ,k
s )φ′(x)

)
π(dy; x, μ̃ε,N

s )μ̃ε,N ,k
s (dx)ds

and using that the integrand of the first two integrals above is bounded byAssumptions
(A1),(A5),and (A6) and continuous in W2 by Assumption (A12), along with the
convergence of μ̃

ε,N
s to L(Xs) from Lemma 8.2, we have by dominated convergence
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theorem (invoking here Skorokhod’s representation theorem to assume μ̃
ε,N
s toL(Xs)

almost surely as in Proposition 8.3) and Theorem A.3.18 in [22]:

lim
N→∞E

[∣∣∣∣
∫ T

0

∫
R

∫
R

(
σ(x, y, μ̃ε,N ,k

s )ψk
1 (s, x, y)φ′(x) + [τ1(x, y, μ̃ε,N ,k

s )ψk
1 (s, x, y)

+ τ2(x, y, μ̃ε,N ,k
s )ψk

2 (s, x, y)]�y(x, y, μ̃ε,N ,k
s )φ′(x)

)
π(dy; x, μ̃ε,N

s )μ̃ε,N ,k
s (dx)ds

−
∫ T

0

∫
R

∫
R

(
σ(x, y,L(Xs))ψ

k
1 (s, x, y)φ′(x) + [τ1(x, y,L(Xs))ψ

k
1 (s, x, y)

+ τ2(x, y,L(Xs))ψ
k
2 (s, x, y)]�y(x, y,L(Xs))φ

′(x)

)
π(dy; x,L(Xs))L(Xs)(dx)ds

∣∣∣∣
]
= 0

so by triangle inequality, the desired convergence is shown.
Now we seek to establish that (Z̃ k, Qk) converges to (Z̃ , Q) in C([0, T ];S−w) ×

MT (R4) where Q ∈ P∗(Z̃) and Q satisfies (71).
We first prove precompactness. We have since ψk → h in L2(U × R× R, ν),

sup
k∈N

∫
R×R×R2×[0,T ]

(
z21 + z22

)
Qk(dx, dy, dz, ds) =

= sup
k∈N

∫ T

0

∫
R

∫
R

(
|ψk

1 (s, x, y)|2 + |ψk
2 (s, x, y)|2

)
π(dy; x,L(Xs))L(Xs)(dx)ds < ∞.

Moreover, by P∗3 and P∗4

∫
R×R×R2×[0,T ]

(
y2 + |x |2

)
Qk(dx, dy, dz, ds)

=
∫ T

0
E

[∫
R

y2π(dy; Xs,L(Xs)) + |Xs |2
]

ds < ∞,∀k ∈ N,

where here we have used that π(·; x, μ) from Eq. (20) has bounded moments
of all orders uniformly in x ∈ R, μ ∈ P2(R) and that for Xs from Eq. (25),
sups∈[0,T ] E[|Xs |2] < ∞,which follows easily from the fact that γ̄ and D̄ are bounded
as per Assumption (A13). Thus, via the same tightness function used for Proposition
7.10, {Qk}k∈N is tight in MT (R4).

To see that {Z̃ k}k∈N is precompact, we use that for each k (Z̃ k, Qk) must satisfy
Eq. (32). That is, for φ ∈ S and t ∈ [0, T ]:

〈Z̃ k
t , φ〉 =

∫ t

0
〈Z̃ k

s , L̄L(Xs )φ〉ds +
∫ t

0
〈Bk

s , φ〉ds

〈Bk
t , φ〉 :=

∫
R×R×R2

(
σ(x, y,L(Xs))z1φ

′(x) + [τ1(x, y,L(Xs))z1 + τ2(x, y,L(Xs))z2]

�y(x, y,L(Xs))φ
′(x)

)
Qk

t (dx, dy, dz).
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Here Qk
t ∈ P(R4) is such that Qk(dx, dy, dz, dt) = Qk

t (dx, dy, dz)dt . We can see
that Bk

t ∈ S−(m+2) for almost every t ∈ [0, T ], and in fact

sup
k∈N

∫ T

0

∥∥∥Bk
s

∥∥∥2−(m+2)
ds

= sup
k∈N

∫ T

0
sup

‖φ‖m+2=1
|〈Bk

s , φ〉|2ds

≤ sup
k∈N

∫ T

0
sup

‖φ‖m+2=1

{∫
R×R×R2

(
|z1|2 + |z2|2

)
Qk

s (dx, dy, dz)|φ|21
}

ds

≤ sup
k∈N

∫ T

0
sup

‖φ‖m+2=1

{∫
R×R×R2

(
|z1|2 + |z2|2

)
Qk

s (dx, dy, dz) ‖φ‖2m+2

}
ds

= sup
k∈N

∫ T

0

∫
R×R×R2

(
|z1|2 + |z2|2

)
Qk

s (dx, dy, dz)ds < ∞

Thus, by the proof of Theorem 2.5.2 in [45], it suffices to show that for fixed φ ∈ S,
〈Z̃ k

t , φ〉 is relatively compact inC([0, T ];R), and Z̃ k is uniformly (m+2)-continuous
to get precompactness of Z̃ k in C([0, T ];S−w) for w > m + 2 sufficiently large that
the canonical embedding S−m−2 → S−w is Hilbert–Schmidt (see Eq. 6).

We have that, in the same way as the proof of Proposition 8.8 (using here that
Z̃ k ∈ C([0, T ];S−m)),

∥∥∥Z̃ k
t

∥∥∥2−(m+2)
= 2

∫ t

0
〈Z̃ k

s , L∗
L(Xs )

Z̃ k
s 〉−(m+2)ds + 2

∫ t

0
〈Z̃ k

s , Bk
s 〉−(m+2)ds

≤ C
∫ t

0

∥∥∥Z̃ k
s

∥∥∥2−(m+2)
ds + 2

∫ t

0

∥∥∥Z̃ k
s

∥∥∥−(m+2)

∥∥∥Bk
s

∥∥∥−(m+2)
ds

by Cauchy Schwarz and Lemma 8.7

≤ C

{∫ t

0

∥∥∥Z̃ k
s

∥∥∥2−(m+2)
ds +

∫ t

0

∥∥∥Bk
s

∥∥∥2−(m+2)
ds

}

so by Gronwall’s inequality,

sup
k∈N

sup
t∈[0,T ]

∥∥∥Z̃ k
t

∥∥∥2−(m+2)
≤ C(T ).

This gives then that for t1, t2 ∈ [0, T ] and φ ∈ S:

|〈Z̃ k
t2 , φ〉 − 〈Z̃ k

t1 , φ〉|

≤ 2|t2 − t1|
{∫ T

0
|〈Z̃ k

s , L̄L(Xs )φ〉|2ds +
∫ T

0
|〈Bk

s , φ〉|2ds

}

≤ 2|t2 − t1|
{∫ T

0

∥∥∥Z̃ k
s

∥∥∥2−(m+2)

∥∥L̄L(Xs )φ
∥∥2

m+2 ds +
∫ T

0

∥∥∥B N
s

∥∥∥2−(m+2)
‖φ‖2m+2 ds

}
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≤ 2|t2 − t1|C(T ) ‖φ‖2m+4 by Lemma 8.6,

and precompactness of {Z̃ k}k∈N is established.
Taking a convergent subsequence, which we do not relabel in the notation, we call

its limit (Z , Q). The fact that P∗2-P∗4 in the definition of P∗(Z) are satisfied follows
in the exact same way as Proposition 10.2. It thus remains to show that (Z , Q) satisfies
Eq. (32) with Q given in Eq. (71). At this point, by Proposition 8.8, we will have the
limit is uniquely identified for every subsequence, and hence the lemma is proved. By
a density argument, it suffices to show that for each φ ∈ C∞

c (R) and t ∈ [0, T ],

lim
k→∞〈Z̃ k

t , φ〉

=
∫ t

0
〈Zs, L̄L(Xs )φ〉ds +

∫ t

0
E

[∫
R

(
σ(x, y,L(Xs))h1(s, Xs, y)φ′(Xs)

+ [τ1(Xs, y,L(Xs))h1(s, Xs, y) + τ2(Xs, y,L(Xs))h2(s, Xs, y)]
�y(Xs, y,L(Xs))φ

′(Xs)

)
π(dy; Xs,L(Xs))

]
ds.

We have by dominated convergence theorem, L2 convergence of ψk to h, and that
under Assumption (A13) L̄L(Xs )φ ∈ Sw,∀s ∈ [0, T ]:

lim
k→∞〈Z̃ k

t , φ〉

= lim
k→∞

{∫ t

0
〈Z̃ k

s , L̄L(Xs )φ〉ds +
∫ t

0
〈Bk

s , φ〉ds

}

=
∫ t

0
lim

k→∞〈Z̃ k
s , L̄L(Xs )φ〉ds + lim

k→∞

∫ t

0
E

[∫
R

(
σ(x, y,L(Xs))ψ

k
1 (s, Xs, y)φ′(Xs)

+ [τ1(Xs, y,L(Xs))ψ
k
1 (s, Xs, y) + τ2(Xs, y,L(Xs))ψ

k
2 (s, Xs, y)]

�y(Xs, y,L(Xs))φ
′(Xs)

)
π(dy; Xs,L(Xs))

]
ds

=
∫ t

0
〈Zs, L̄L(Xs )φ〉ds +

∫ t

0
E

[∫
R

(
σ(x, y,L(Xs))h1(s, Xs, y)φ′(Xs)

+ [τ1(Xs, y,L(Xs))h1(s, Xs, y) + τ2(Xs, y,L(Xs))h2(s, Xs, y)]
�y(Xs, y,L(Xs))φ

′(Xs)

)
π(dy; Xs,L(Xs))

]
ds

as desired. ��
Proposition 10.2 Under assumptions (A1)–(A12) and (A’13), I given in Theorems
3.1/3.2 is a good rate function on C([0, T ];S−r ) for r > w + 2 as in Eq. (7).

Proof We need to show that for any L > 0,

�L := {Z ∈ C([0, T ];S−r ) : I (Z) ≤ L}
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is compact in C([0, T ];S−r ).
Let {Z N }N∈N ⊂ �L . Then by the form of I , for each N ∈ N, there exists QN ∈

P∗(Z N ) such that

1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
QN (dx, dy, dz, ds) ≤ L + 1

N

and by P∗3 and P∗4, we have as with the Qk’s in the proof of Proposition 9.1

sup
N∈N

∫
R×R×R2×[0,T ]

(
y2 + |x |2

)
QN (dx, dy, dz, ds) < ∞.

Thus by the same tightness function used for Proposition 7.10, {QN }N∈N is tight in
MT (R4).

Taking a subsequence of {QN } which converges to some Q ∈ MT (R4) (which we
do not relabel in the notation), define Z ∈ C([0, T ];S−w) to be the unique solution to
Eq. (32) with this choice of Q. Here we are using that by the proof of Proposition 10.1
such a solution exists and that by Proposition 8.8 it is unique - see the discussion before
Lemma4.10 in [10].We claim that (Z N , QN ) converges to (Z , Q) inC([0, T ];S−r )×
MT (R4) and Q ∈ P∗(Z). At this point we will have that since Z N has a limit, �L is
precompact, and by the version of Fatou’s lemma from Theorem A.3.12 in [22]:

I (Z) ≤ 1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
Q(dx, dy, dz, ds)

≤ lim inf
N→∞

1

2

∫
R×R×R2×[0,T ]

(
z21 + z22

)
QN (dx, dy, dz, ds) ≤ L

so �L is closed, and hence compact. Note that we have I (Z N ) < ∞ implies Z N ∈
C([0, T ];S−w),∀N ∈ N and by definition Z ∈ C([0, T ];S−w). Thus if we could
show convergence of Z N → Z in C([0, T ];S−w), we would have compactness of
level sets of I as a rate function on C([0, T ];S−w). However, such convergence is not
immediately obvious, hence the need for the additional assumption (A’13).

To see that {Z N }N∈N is precompact, we have that since QN ∈ P∗(Z N ), for each
N (Z N , QN ) must satisfy Eq. (32). That is, for φ ∈ S and t ∈ [0, T ]:

〈Z N
t , φ〉 =

∫ t

0
〈Z N

s , L̄L(Xs )φ〉ds +
∫ t

0
〈B N

s , φ〉ds

〈B N
t , φ〉 :=

∫
R×R×R2

(
σ(x, y,L(Xs))z1φ

′(x)

+ [τ1(x, y,L(Xs))z1 + τ2(x, y,L(Xs))z2]�y(x, y,L(Xs))φ
′(x)

)

QN
t (dx, dy, dz).

Thus precompactness of {Z N }N∈N in C([0, T ];S−r ) follows in the exact same way
as precompactness of {Z̃ k}k∈N in C([0, T ];S−w) in the proof of Proposition 10.1, but
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replacing m by w. Note that there we knew that Z̃ k was in C([0, T ];S−m) for each k,
where here we only know Z N ∈ C([0, T ];S−w) for each N . Along the way, we get:

sup
N∈N

sup
t∈[0,T ]

∥∥∥Z N
t

∥∥∥2−(w+2)
≤ C(T ).

To see that Q ∈ P∗(Z), we identify the point-wise limit of 〈Z N , φ〉 to satisfy
the desired equation, i.e. (32) with our specific choice of Q. This uniquely character-
izes the limit along the whole sequence by Lemma 8.8. This gives P∗1. P∗2 follows
immediately from Fatou’s lemma. P∗3 and P∗4 follow from convergence of the mea-
sure implying convergence of the marginals and uniqueness of the decomposition into
stochastic kernels (see [22] Theorems A.4.2 and A.5.4).

To see (32) with our specific choice of Q holds, we may by a density argument
consider fixed φ ∈ C∞

c (R) and t ∈ [0, T ]. Then:

〈Zt , φ〉 = lim
N→∞〈Z N

t , φ〉 = lim
N→∞

{∫ t

0
〈Z N

s , L̄L(Xs )φ〉ds +
∫ t

0
〈B N

s , φ〉ds

}

=
∫ t

0
lim

N→∞〈Z N
s , L̄L(Xs )φ〉ds + lim

N→∞

∫ t

0
〈B N

s , φ〉ds

(by boundedness of sup
N∈N

sup
t∈[0,T ]

∥∥∥Z N
t

∥∥∥2−(w+2)

and Dominated Convergence Theorem)

=
∫ t

0
〈Zs, L̄L(Xs )φ〉ds +

∫ t

0
〈Bs, φ〉ds,

since under assumption(A′13)L̄L(Xs )φ ∈ Sr ,∀s ∈ [0, T ].

Here

〈Bt , φ〉 :=
∫
R×R×R2

(
σ(x, y,L(Xs))z1φ

′(x)

+ [τ1(x, y,L(Xs))z1 + τ2(x, y,L(Xs))z2]�y(x, y,L(Xs))φ
′(x)

)

Qt (dx, dy, dz),

and to pass to the second limit, we use that the integrand appearing in
∫ t
0 〈B N

s , φ〉ds is
bounded by C[|z1| + |z2|], and hence is uniformly integrable with respect to QN . ��

11 Conclusions and future work

In this paperwe have derived amoderate deviations principle for the empiricalmeasure
of a fully coupled multiscale system of weakly interacting particles in the joint limit
as number of particles increases and averaging due to the multiscale structure takes
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over. Using weak convergence methods we have derived a variational form of the rate
function and have rigorously shown that the rate function can take equivalent forms
analogous to the one derived in the seminal paper [17].

In this paper we have assumed that the particles are in dimension one. It is of great
interest to extend this work in the multidimensional case. One source of difficulty here
is that in higher dimensions we would probably have to consider a different space for
the fluctuation process to live in (see, e.g. [27] and [69]). This is because in higher
dimensions the result that for each v, there isw ≥ v such that S−v → S−w is Hilbert–
Schmidt breaks down, and the bound (9) no longer holds true. See [19] Section 5.1 for a
further discussion of this. The trade-off with using these alternative spaces is that they
often require higher moments of the particles and limiting McKean–Vlasov Equation
in order to establish tightness—see, e.g. Section 4.7 in [27], where the proofs depend
crucially on Lemma 3.1 (even in one dimension this would require having bounded
8’th moments of the controlled particles X̃ i,N ,ε , with the required number of moments
increasing with the dimension). This would seem to require strong assumptions on the
coefficients Eq. (1) even in the absence of multiscale structure, since the controls are
a priori only bounded in L2.

Another potentially interesting direction is to derive the moderate deviations prin-
ciple for the stochastic current. See [59] for some related results in the direction of
large deviations for an interacting particle system in the joint mean field and small-
noise limit. Also, we are hopeful that the results of this paper can also be used for
the construction of provably-efficient importance sampling schemes for the compu-
tation of rare events for statistics of weakly interacting diffusions that are relevant to
the moderate-deviations scaling. Lastly, as we also mentioned in the introduction, we
believe that the results of this paper can be used to study dynamical questions related
to phase transitions in the spirit of [16].

Appendix A. A list of technical notation

Here we provide a list of frequently used notation for the various processes, spaces,
operators, ect. used throughout this manuscript for convenient reference. Other, more
standard notation is introduced following Eq. (9) in Sect. 2.

• ε is the scale separation parameter which decreases to 0 as N → ∞. N is the
number of particles. a(N ) is moderate deviations the scaling sequence such that
a(N ) ↓ 0 and a(N )

√
N → ∞.

• (Xi,ε,N , Y i,ε,N ) is the slow–fast system of particles from Eq. (1).
• με,N from Eq. (2) is the empirical measure on the slow particles Xi,ε,N .
• Xt is the limiting averaged McKean–Vlasov Equation from Eq. (25). L(Xt )

denotes its Law.
• Z N is the fluctuations process from Eq. (3) for which we derive a large deviations
principle.

• (X̃ i,ε,N , Ỹ i,ε,N ) are the controlled slow–fast interacting particles from Eq. (55).
• μ̃ε,N is the empiricalmeasure on the controlled slowparticles X̃ i,ε,N fromEq. (54).
• Z̃ N is the controlled fluctuations process from Eq. (54).
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• QN are the occupation measures from Eq. (56).
• (X̄ i,ε, Ȳ i,ε) are the IID slow–fast McKean–Vlasov equations from Eq. (57). X̄ ε is
a random process with law Equal to that of the X̄ i,ε’s.

• μ̄ε,N from Eq. (58) is the empirical measure on N of the IID slow particles X̄ i,ε .
• P2(R) is the space of square integrable probability measures with the 2-
Wasserstein metricW2 (Definition D.1).

• MT (Rd) is the space of measures Q on R
d × [0, T ] such that Q(Rd × [0, t]) =

t,∀t ∈ [0, T ] equipped with the topology of weak convergence.
• For p ∈ N, Sp is the completion of S with respect to ‖·‖p (see Eq. (4)) and

S−p = S ′
p the dual space ofSp .We prove tightness of {Z̃ N }N∈N inC([0, T ];S−m)

for the choice of m found in Eq. (5), the Laplace Principle on C([0, T ];S−w) for
the choice of w found in Eq. (6), and compactness of level sets of the rate function
on C([0, T ];S−r ) for the choice of r found in Eq. (7).

• For n ∈ N, | · |n is the sup norm defined in Eq. (8), which is related to ‖·‖n+1 via
Eq. (9).

• For G : P2(R) → R and ν ∈ P2(R), ∂μG(ν)[·] : R → R denotes the Lions
derivative of G at the point ν (Definition D.1) and δ

δm G(ν)[·] : R → R denotes
the Linear Functional Derivative of G at the point ν (Definition D.4).

• For G : R×P2(R) → R, we use D(n,l,β)G to denote multiple derivatives of G in
space andmeasure in themulti-index notation ofDefinition 2.1. Spaces (denoted by
M with some sub or super-scripts) containing functions with different regularity
of suchmixed derivatives are found inDefinition 2.4.When G : R×R×P2(R) →
R, polynomial growth of such derivatives in G’s second coordinate, denoted by
qG(n, l, β) or q̃G(n, l, β), are defined as in Eqs. (13) and (15).

• Lx,μ is the frozen generator associated to the fast particles fromEq. (18).π denotes
its unique associated invariant measure from Eq. (20) and � denotes the solution
to the associated Poisson Eq. (22).

• For ν ∈ P2(R) L̄ν is the linearized generator of the limiting averaged McKean–
Vlasov Equation Xt at ν and is defined in Eq. (32).

• γ̄ , D̄ from Eq. (24) are the drift and diffusion coefficients of the limiting averaged
McKean–Vlasov Equation Xt , and are defined in terms of γ1, D1, γ, D : R×R×
P2(R) → R from Eq. (23).

Appendix B. A priori bounds onmoments of the controlled process
(55)

In this Appendix, we fix any controls satisfying the bound (53) and provide moment
bounds on the fast component of the controlled particles (55). These are needed,
among other places, to handle possible growth lack of boundedness in y of functions
appearing in the remainders in the ergodic-type theorems of Sect. 6. The details of the
proofs can be found in the extended arXiv version of the paper (arXiv:2202.08403).
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Lemma B.1 Under assumptions (A1)–(A2), (A4), and (A5), we have there is C ≥ 0
such that:

sup
N∈N

1

N

N∑
i=1

sup
t∈[0,T ]

E

[
|Ỹ i,ε,N

t |2
]
≤ C + |ηy |2.

Proof The proof of this lemma is omitted as it follows very closely the proof of Lemma
4.1 in [5]. The main additional step that is needed is to average over the N particles
in order to obtain the final bound. ��
Lemma B.2 Under assumptions (A1)–(A2), (A4),and (A5), we have:

1

N

N∑
i=1

E

[
sup

0≤t≤T
|Ỹ i,ε,N

t |2
]
≤ |ηy |2 + C(ρ)

[
1+ ε−ρ + 1

a2(N )N

]

for all ρ ∈ (0, 2).

Proof The proof follows along the lines of that of Lemma B.4 in [44] and thus it is
omitted here. Note that this is where the near-Ornstein-Uhlenbeck structure assumed
in (16) plays an important role. ��
Lemma B.3 Under assumptions (A1)–(A2), (A4), and (A5), we have:

sup
N∈N

sup
0≤t≤T

E

[(
1

N

N∑
i=1

|Ỹ i,ε,N
t |2

)2]
< ∞.

Proof The proof is very similar to that of Lemma 4.1 in [5], but we need in addition
to use Lemma B.2. In particular, one obtains:

E

[(
1

N

N∑
i=1

|Ỹ i,ε,N
t |2

)2]

≤ |ηy |4 + C

[
1+ 1

N

]
sup

s∈[0,T ]
E

[
1

N

N∑
i=1

|Ỹ i,ε,N
s |2

]

+ C

a2(N )N
E

[
sup

s∈[0,T ]

(
1

N

N∑
i=1

|Ỹ i,ε,N
s |2

)]

≤ C(ρ)[1+ 1

N
+ 1

a2(N )N
+ 1

a4(N )N 2 + 1

a2(N )Nερ
]

by LemmasB.1 andB.2. This is where the assumption that we can take ρ/2 ∈ (0, 1)
such that a(N )

√
Nερ/2 → λ ∈ (0,∞] is needed. Details are omitted given that they

are standard and for brevity of presentation. ��
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Appendix C. Regularity of the Poisson equations

As discussed in Remark 2.6, there is a current gap in the literature regarding rates
of polynomial growth of derivatives of the Poisson equations used in Sect. 6. Never-
theless, it is important to verify that the assumptions imposed on these solutions in
Sect. 2 are non-empty. For the reasons outlined in Remark 2.6, we handle the case
of the 1D Poisson equations from Eqs. (22), (64) and the Multi-Dimensional Pois-
son Eqs. (28) and (63), separately in Sects. 1 and 2 below. In Sect. 3 we provide
specific examples where the Assumptions in Sect. 2 hold. Proofs with details of the
results presented in this section can be found in the extended arXiv version of this
paper (arXiv:2202.08403); details are omitted here due to the standard form of the
arguments and for reasons of brevity of presentation.

Results for the 1-dimensional Poisson equation

Throughout this subsection we assume (A1) and (A2). Recall the frozen generator
Lx,μ from Eq. (18), the invariant measure π from Eq. (20), the multi-index derivative
notation and associated spaces of functions from Definitions 2.1 and 2.4, and the
definition of a from Eq. (18).

Lemma C.1 Consider B : R× R× P2(R) → R continuous such that

∫
R

B(x, y, μ)π(dy; x, μ) = 0,∀x ∈ R, μ ∈ P2(R)

and |B(x, y, μ)| = O(|y|qB ) for qB ∈ R uniformly in x, μ as |y| → ∞. Then there
exists a unique classical solution u : R× R× P2(R) → R to

Lx,μu(x, y, μ) = B(x, y, μ)

such that u is continuous in (x, y,W2),
∫
R

u(x, y, μ)π(dy; x, μ) = 0, and u has at
most polynomial growth as |y| → ∞.

In addition,

|u(x, y, μ)| = O(|y|qB ) for qB �= 0; if qB = 0, then |u(x, y, μ)| = O(ln(|y|)
|uy(x, y, μ)| = O(|y|qB−1), |uyy(x, y, μ)| = O(|y|qB )

as |y| → ∞ uniformly in x, y, μ.
Furthermore if B(x, y, μ) is Lipschitz continuous in y uniformly in x, μ (so that

necessarily qB ≤ 1), then so are u, uy, uyy.

Proof This follows by Proposition A.4 in [33], since in our setting Condition 2.1 (i)
holds with α = 1 and assumptionA.3 holds with θ = 1. The statement about Lipschitz
continuity of u and its derivatives follows from the Lipschitz continuity of a, f under
assumptions (A1) and (A2) and Theorem 9.19 in [37]. ��
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Lemma C.2 Consider B : R× R× P2(R) → R continuous such that

∫
R

B(x, y, μ)π(dy; x, μ) = 0,∀x ∈ R, μ ∈ P2(R).

Suppose that for some complete collection of multi-indices ζ that B, a, f ∈
Mζ

p(R×R×P2(R)). Then for the unique classical solution u : R×R×P2(R) → R

to

Lx,μu(x, y, μ) = B(x, y, μ)

such that u is continuous in (x, y,W2),
∫
R

u(x, y, μ)π(dy; x, μ) = 0, and u has at
most polynomial growth as |y| → ∞ (which exists by Lemma C.1),

(1) u, uy, uyy ∈ Mζ
p(R× R× P2(R)).

(2) If B, a, f ∈ Mζ
δ,p(R× R× P2(R)) ∩Mζ

p(R× R× P2(R)), then u, uy, uyy ∈
Mζ

δ,p(R× R× P2(R)).

(3) If B, a, f ∈ Mζ
p,L(R×R×P2(R)), then u, uy, uyy ∈ Mζ

p,L(R×R×P2(R)).

Moreover, if we suppose that for all multi-indices (n, l,β) ∈ ζ , q f (n, l,β) ≤ 1
and qa(n, l,β) ≤ 0 (using here the notation of 13), we have control on the growth
rate of the derivatives of u in terms of those of B. In particular, for any (n, l,β) ∈ ζ :

qu(n, l,β) ≤ max{qB(k, j,α(k)) : α(k) ∈
(

β

k

)
, k ≤ n, j ≤ l},

when the right hand side is nonzero, and the corresponding term grows at most
like ln(|y|) as |y| → ∞ when the left hand side is zero. In addition, quy (n, l,β) ≤
qu(n, l,β) − 1, and quyy (n, l,β) ≤ qu(n, l,β), for all (n, l,β) ∈ ζ .

Proof For 1), the proof essentially uses the same tools and a similar method to Lemma
A.2 in [5], so we will only check this in the case for (n, l,β) = (0, 1, 0) and then
comment on how the rest of the terms follow. Importantly, Lemma A.2 in [5] only
assumes existence and polynomial growth of derivatives of the solution u up to one
order less than the derivative obtained there.

The result for (n, l,β) = (0, 0, 0) is just another way of writing Lemma C.1.
The differentiability and continuity of the derivatives is immediate via the explicit

representation for u

v(x, y, μ) =
∫ y

−∞
1

a(x, ȳ, μ)π(ȳ; x, μ)

[∫ ȳ

−∞
B(x, ỹ, μ)π(ỹ; x, μ)d ỹ

]
d ȳ

π(y; x, μ) = Z(x, μ)

a(x, y, μ)
exp

(∫ y

0

f (x, ȳ, μ)

a(x, ȳ, μ)
d ȳ

)
(72)

where Z−1(x, μ) := ∫
R

1
a(x,y,μ)

exp

(∫ y
0

f (x,ȳ,μ)
a(x,ȳ,μ)

d ȳ

)
dy is the normalizing constant.
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To obtain the rate of polynomial growth of ux , we differentiate the equation that u
satisfies to get

Lx,μux (x, y, μ) = Bx (x, y, μ) − fx (x, y, μ)uy(x, y, μ) − ax (x, y, μ)uyy(x, y, μ)

= Bx (x, y, μ) − L(0,1,0)
x,μ u(x, y, μ)

in the notation of Lemma A.2 in [5]. But by the centering condition on B, we have
that letting B = h in Lemma A.2 in [5], u = v in the statement of that same lemma.
Thus we have

∫
R

(
Bx (x, y, μ) − L(0,1,0)

x,μ u(x, y, μ)
)

π(dy; x, μ)

= ∂

∂x

∫
R

B(x, y, μ)π(dy; x, μ) = 0,

and the inhomogeneity of the elliptic PDE that ux solves, in fact obeys the cen-
tering condition, and hence Lemma C.1 applies. From the same lemma we already
know that qu,y(0, 0, 0) = qB(0, 0, 0) − 1 and qyy = qB(0, 0, 0). This establishes
that ux grows at most polynomially in y uniformly in x, μ. Under the additional
assumptions that q f (0, 1, 0) ≤ 1 and qa(0, 1, 0) ≤ 0, we have the inhomogeneity is
O(|y|qB (0,0,0)∨qB (0,1,0)). So by LemmaC.1, qu,x = qB(0, 0, 0)∨qB(0, 1, 0), qu,x,y =
qB(0, 0, 0) ∨ qB(0, 1, 0) − 1, qu,x,y,y = qB(0, 0, 0) ∨ qB(0, 1, 0).

All of the bounds work in the same way, with the inhomogeneity of the elliptic
PDE of the desired derivative of u solves being the integrand of the expression for the
corresponding derivative of B̄(x, y, μ) from Lemma A.2 in [5]. Put explicitly:

Lx,μ D(n,l,β)u(x, y, μ)[z1, . . . , zn] = D(n,l,β) B(x, y, μ)[z1, . . . , zn]−

−
n∑

k=0

l∑
j=0

∑
pk

C( pk , j,n,l)L
(k, j,α( pk ))
x,μ [z pk

]D(n−k,l− j,α( p′n−k ))u(x, y, μ)[z p′n−k
],

(73)

where the constants C( pk , j,n,l) are defined inductively in Remark A.3 in [5] and

L
(k, j,α( pk ))
x,μ [z pk

] is the differential operator acting on φ ∈ C2
b (R) by

L
(k, j,α( pk ))
x,μ [z pk

]φ(y)

= D(k, j,α( pk )) f (x, y, μ)[z pk
]φ′(y) + D(k, j,α( pk ))a(x, y, μ)[z pk

]φ′′(y).

The first y derivative of a lower order derivative in a parameter of u in the inhomo-
geneity is always multiplied by a derivative of f , and so if that derivative of f grows at
most linearly in y, the growth of that term is at most that of that lower order derivative
of u, and same for the second y derivative in a parameter of u in the inhomogeneity,
which multiplied by a bounded lower order derivative of a. Thus it is clear the result
follows by proceeding inductively on n, l.
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The proof for 2) follows in the exact same way. We note here that Lemma A.2
in [5] holds for the linear functional derivatives δ(n,l,β) in place of the Lions deriva-
tives D(n,l,β) if in addition we assume h, a, f ∈ Mζ

δ,p(R × R × P2(R)),vy, vyy ∈
Mζ ′

δ,p(R
d × R

d × P2(R
d)).

The proof for 3) is similar to step 4 in the proof of Theorem 2.1 in [64]. For the
case (n, l,β) = (0, 0, 0), we first note that

Lx,μ1 [u(x, y, μ1) − u(x, y, μ2)] = B(x, y, μ1) − Lx,μ1u(x, y, μ2)

= B(x, y, μ1) − B(x, y, μ2) − [Lx,μ1 − Lx,μ2 ]u(x, y, μ2).

By the transfer formula in Lemma A.2 of [5] we have

∫
R

(
B(x, y, μ1) − B(x, y, μ2) − [Lx,μ1 − Lx,μ2 ]u(x, y, μ2)

)
π(dy, x, μ1) =

=
∫
R

B(x, y, μ1)π(dy; x, μ1) −
∫
R

B(x, y, μ2)π(dy; x, μ2) = 0,

so in fact the inhomogeneity in the above Poisson equation is centered. Now, rather
than using Lemma C.1, we apply [60] Theorem 2 to get there is k ∈ R sufficiently
large and C > 0 such that for all x ∈ R, μ1, μ2 ∈ P2(R)

sup
y∈R

|u(x, y, μ1) − u(x, y, μ2)|
(1+ |y|)k

≤ C sup
y∈R

∣∣∣∣B(x, y, μ1) − B(x, y, μ2) − [Lx,μ1 − Lx,μ2 ]u(x, y, μ2)

∣∣∣∣
(1+ |y|)k

≤ CW2(μ1, μ2)

by the Lipschitz assumptions on B, f , a. Thus for all x, y ∈ R, μ1, μ2 ∈ P2(R),

|u(x, y, μ1) − u(x, y, μ2)| ≤ CW2(μ1, μ2)(1+ |y|)k .

To see then that there are k′, k′′ ∈ R, C ′, C ′′ > 0 such that

|uy(x, y, μ1) − uy(x, y, μ2)| ≤ CW2(μ1, μ2)(1+ |y|)k′

|uyy(x, y, μ1) − uyy(x, y, μ2)| ≤ CW2(μ1, μ2)(1+ |y|)k′′ ,

we can apply the result of [33] Lemma B.1 and Remark B.2, and the last line of
Proposition A.4 in the same reference.

The proof with μ1, μ2 replaced by x1, x2 follows in the same way.
For the Lipschitz property in z, we first recall that for all x, y, z ∈ R, μ ∈ P2(R)

Lx,μ D(1,0,0)u(x, y, μ)[z] = D(1,0,0)B(x, y, μ)[z] − L(1,0,0)
x,μ [z]u(x, y, μ)
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so

Lx,μ

[
D(1,0,0)u(x, y, μ)[z1] − D(1,0,0)u(x, y, μ)[z2]

]

= D(1,0,0)B(x, y, μ)[z1] − L(1,0,0)
x,μ [z1]u(x, y, μ)

−
[

D(1,0,0)B(x, y, μ)[z2] − L(1,0,0)
x,μ [z2]u(x, y, μ)

]
.

By the transfer formula in Lemma A.2 of [5] we have for all x, z ∈ R, μ ∈ P2(R):

∫
R

(
D(1,0,0) B(x, y, μ)[z] − L(1,0,0)

x,μ [z]u(x, y, μ)
)

π(dy; x, μ)

= D(0,1,0)
∫
R

B(x, y, μ)π(dy; x, μ)[z] = 0,

so the inhomogeneity in the Poisson equation above in centered. Thus, using
the same argument as for the other Lipschitz continuity as well as the fact that
D(1,0,0) B, D(1,0,0) f , D(1,0,0)a are Lipschitz in z and uy, uyy grow at most polynomi-
ally in y, we get there is K ∈ R and C > 0 such that

∣∣∣∣D(1,0,0)u(x, y, μ)[z1] − D(1,0,0)u(x, y, μ)[z2]
∣∣∣∣ ≤ C |z1 − z2|(1+ |y|)k,

and similarly for D(1,0,0)uy and D(1,0,0)uyy .
Then using the Poisson equation the derivatives satisfy given in Eq. (73), we can

iteratively use this same approach, along with the fact that products and sums of
functions in Mζ

p,L(R × R × P2(R)) remain in Mζ
p,L(R × R × P2(R)), to achieve

the full result.
��

Lemma C.3 Suppose that for some complete collection of multi-indices ζ that h, a, f ∈
Mζ

p(R × R × P2(R)). Then
∫
R

h(x, y, μ)π(dy; x, μ) ∈ Mζ
b(R × P2(R)). If

in addition, h, a, f ∈ Mζ
δ,p(R × R × P2(R)), then

∫
R

h(x, y, μ)π(dy; x, μ) ∈
Mζ

δ,b(R× P2(R)). Further, if we have that h, a, f ∈ Mζ
p,L(R× R× P2(R)), then∫

R
h(x, y, μ)π(dy; x, μ) ∈ Mζ

b,L(R× P2(R)).

Proof This follows via Lemmas A.2 in [5] and C.1 in a similar way to Lemma C.2.
The details are omitted. ��

Result for the d-dimensional Poisson equation

Lemma C.4 Suppose F : Rd ×R
d ×P2(R) → R

d , G : Rd ×R
d ×P2(R) → R, τ :

R
d × R

d × P2(R) → R
d×m

|F(x1, y1, μ1) − F(x2, y2, μ2)| + |G(x1, y1, μ1) − G(x2, y2, μ2)|
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+ ‖τ(x1, y1, μ1) − τ(x2, y2, μ2)‖
≤ C[|x1 − x2| + |y1 − y2| +W2(μ1, μ2)],∀x1, x2, y1, y2 ∈ R

d , μ1, μ2 ∈ P2(R
d),

and there exists β > 0 such that for all x ∈ R
d , μ ∈ P2(R):

2〈F(x, y1, μ) − F(x, y2, μ), (y1 − y2)〉 + 3 ‖τ(x, y1, μ) − τ(x, y2, μ)‖2
≤ −β|y1 − y2|2.

Here 〈·, ·〉 is denoting the inner product on R
d and ‖·‖ the matrix norm. Also assume

that τ is bounded, and

|G(x, y, μ)|, |F(x, y, μ)| ≤ C(1+ |y|),∀x ∈ R
d , μ ∈ P2(R).

Define the differential operator L̃x,μ which for each x ∈ R
d , μ ∈ P2(R) acts on

φ ∈ C2
b (R) by

L̃x,μφ(y) := F(x, y, μ) · ∇φ(y) + 1

2
ττ!(x, y, μ) : ∇2φ(y).

Then there is a unique invariant measure ν(·; x, μ) associated to L̃x,μ for each
x, μ, and we assume the centering condition on G:

∫
Rd

G(x, y, μ)ν(dy; x, μ) = 0,∀x ∈ R
d , μ ∈ P2(R).

Finally, we assume the below derivatives all exist, are jointly continuous in
(x, y,W2) and auxiliary variables where applicable, and satisfy:

sup
x∈Rd ,μ∈P2(R)

max{|∂x G(x, μ, y1) − ∂x G(x, μ, y2)|, |∂y G(x, μ, y1) − ∂y G(x, μ, y2)|}

≤ C |y1 − y2|
sup

x∈Rd ,μ∈P2(R)

max{∥∥∂2x G(x, μ, y1) − ∂2x G(x, μ, y2)
∥∥ ,

∥∥∥∂2y G(x, μ, y1) − ∂2y G(x, μ, y2)
∥∥∥}

≤ C |y1 − y2|
sup

x∈Rd ,μ∈P2(R)

∥∥∂x∂y G(x, μ, y1) − ∂x∂y G(x, μ, y2)
∥∥

≤ C |y1 − y2|
sup

x∈Rd ,μ∈P2(R)

∥∥∂μ∂x G(x, μ, y1)[·] − ∂μ∂x G(x, μ, y2)[·]
∥∥

L2(R,μ)

≤ C |y1 − y2|
sup

x∈Rd ,μ∈P2(R)

∥∥∂z∂μG(x, μ, y1)[·] − ∂z∂μG(x, μ, y2)[·]
∥∥

L2(R,μ)
≤ C |y1 − y2|

sup
x∈Rd ,μ∈P2(R)

∥∥∂μ∂x G(x, μ, y1)[·] − ∂μ∂x G(x, μ, y2)[·]
∥∥

L2(R,μ)
≤ C |y1 − y2|
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sup
x∈Rd ,μ∈P2(R)

∥∥∂μ∂y G(x, μ, y1)[·] − ∂μ∂y G(x, μ, y2)[·]
∥∥

L2(R,μ)
≤ C |y1 − y2|

sup
x∈Rd ,μ∈P2(R)

∥∥∂2μG(x, μ, y1)[·, ·] − ∂2μG(x, μ, y2)[·, ·]
∥∥

L2(R,μ)⊗L2(R,μ)
≤ C |y1 − y2|

sup
x,y∈Rd ,μ∈P2(R)

max

{∥∥∂y∂x G(x, μ, y)
∥∥ ,

∥∥∥∂2y G(x, μ, y)

∥∥∥ ,
∥∥∂μ∂y G(x, μ, y)[·]∥∥L2(R,μ)

}
≤ C

and same for G replaced by F and τ , and in addition

sup
x,y∈Rd ,μ∈P2(R)

max

{∥∥∥∂2x F(x, μ, y)

∥∥∥ ,

∥∥∥∂2x τ(x, μ, y)

∥∥∥ ,

∥∥∂z∂μF(x, μ, y)[·]∥∥L2(μ,R)
,
∥∥∂z∂μτ(x, μ, y)[·]∥∥L2(μ,R)

,∥∥∂μ∂x F(x, μ, y)[·]∥∥L2(μ,R)
,
∥∥∂μ∂xτ(x, μ, y)[·]∥∥L2(μ,R)

,∥∥∥∂2μF(x, μ, y)[·, ·]
∥∥∥

L2(μ,R)⊗L2(μ,R)
,

∥∥∥∂2μτ(x, μ, y)[·, ·]
∥∥∥

L2(μ,R)⊗L2(μ,R)

}
≤ C .

Then the partial differential equation

L̃x,μχ(x, y, μ) = −G(x, y, μ)

admits a unique classical solution χ : Rd × R
d × P2(R) → R which has all of the

above derivatives, and

sup
x∈Rd ,μ∈P2(R)

max

{
|χ(x, y, μ)|, ‖∂xχ(x, y, μ)‖ ,

∥∥∂μχ(x, y, μ)[·]∥∥L2(R,μ)
,

∥∥∥∂2x χ(x, y, μ)

∥∥∥ ,
∥∥∂z∂μχ(x, y, μ)[·]∥∥L2(R,μ)

,

∥∥∂μ∂xχ(x, y, μ)[·]∥∥L2(R,μ)
,

∥∥∥∂2μχ(x, y, μ)[·, ·]
∥∥∥

L2(R,μ)⊗L2(R,μ)

}

≤ C(1+ |y|),∀y ∈ R
2,

sup
x,y∈Rd ,μ∈P2(R)

max

{∥∥∂yχ(x, y, μ)
∥∥ ,

∥∥∥∂2yχ(x, y, μ)

∥∥∥ ,

∥∥∂x∂yχ(x, y, μ)
∥∥ ,

∥∥∂μ∂yχ(x, y, μ)
∥∥

L2(R,μ)
≤ C .

Moreover, if all listed derivatives of F, G, τ are jointly continuous in (x, y,W2), then
so are listed derivatives of χ .

In the notation of Definition 2.4, this conclusion reads χ ∈ M̃ζ̃
p(R

2×R
2×P2(R)),

χy ∈ M̃ζ̃ 1
p (R2×R

2×P2(R)), χyy ∈ M̃(0,0,0)
p (R2×R

2×P2(R)) with q̃χ (n, l,β) ≤
1,∀(n, l,β) ∈ ζ̃ , q̃χy (n, l,β) ≤ 0,∀(n, l,β) ∈ ζ̃ 1, and q̃χyy (0, 0, 0) ≤ 0 where ζ̃ , ζ̃ 1
are as in Eq. (27).
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Proof The arguments here follow closely those in [65]. Existence and uniqueness for
the invariant measure and strong solution from the Poisson equation are the subject
of the beginning of Sects. 3.3 and 4.1 of [65]. The bound for χ , ∂yχ , ∂xχ, ∂μχ, ∂2x χ ,
and ∂z∂μχ is also the subject of Proposition 4.1/Section 6.3 of [65], where we made
the modification that τ, F (their g, f respectively) are bounded in x, μ, from which
one can see that the bound on the solution is also uniform in x, μ.

Thus we just need to show the bounds for ∂2yχ , ∂x∂yχ , ∂μ∂yχ , ∂μ∂xχ , and ∂2μχ .
The bounds for ∂2yχ , ∂x∂yχ and ∂μ∂yχ are established in the recent [41] Proposition
3.1.

For the mixed partial derivative in x and μ and the second partial derivative in μ,
we can follow the proof of Proposition 4.1 of [65]. The details are omitted here due
to the similarity of the argument. ��

Some specific examples for which the assumptions of the paper hold

One can check, using the results of Lemmas C.2, C.3, and C.4, that examples C.5–C.7
below satisfy all of the assumptions made in the paper. See the extended arXiv version
of this paper (arXiv:2202.08403) for more details.

Example C.5 (A case with full dependence of the coefficients on (x, y, μ)) Suppose
τ1, τ2, σ > 0 are constantwith σ large enough that D̄(x, μ) > 0,∀x ∈ R, μ ∈ P2(R),
where D̄ is as in Eq. (24), and the other coefficients take the form

b(x, y, μ) = q

(
y − 1

κ
〈μ, φ f 〉

)
pb(x), c(x, y, μ) = rc(y) + pc(x) + 〈μ, φc〉

f (x, y, μ) = −κ y + 〈μ, φ f 〉, g(x, y, μ) = rg(y) + pg(x) + 〈μ, φg〉,

where here κ > 0 and 〈φ,μ〉 := ∫
R

φ(z)μ(dz). Suppose also that q ∈ C∞(R) is odd,
there is β > 0 such that |q(z)|, |q ′(z)|, |q ′′(z)|, |q ′′′(z)| ≤ C(1+ |z|)−β ,

∥∥r ′c
∥∥∞ ≤ C ,

|rg|C1
b (R) ≤ C , φc, φg, φ f ∈ Sw+2, and pc, pg ∈ Cw+2

b (R), pb ∈ Cw+3
b (R). Then

assumptions (A1)–(A13) hold, and (A’13) holds if w is replaced by r .

Example C.6 (A case where � and π are independent of x, μ) Consider the case:

b(x, y, μ) = b(y), c(x, y, μ) = c1(x) + 〈μ, c2(x − ·)〉, σ (x, y, μ) ≡ σ

f (x, y, μ) = −κ y + η(y), g(x, y, μ) = g1(x) + 〈μ, g2(x − ·)〉, τ1(x, y, μ) ≡ τ1,

τ2(x, y, μ) ≡ τ2.

Suppose η ∈ C1
b(R) with

∥∥η′
∥∥∞ < κ , c1, g1, c2, g2 ∈ Cw+2

b (R), c2, g2 ∈ Sw+2,
τ 21 + τ 22 > 0, and b is Lipschitz continuous, O(|y|1/2), and satisfies the centering
condition (21). Then Assumptions (A1)–(A13) hold. Furthermore, if this holds with
w replaced by r , then Assumption (A’13) holds.

Example C.7 (The case without full-coupling) Consider the case where

b(x, y, μ) ≡ 0, σ (x, y, μ) = σ(x, μ).
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In this setting, it is known that when also g ≡ 0 and τ1 ≡ 0, under sufficient conditions

on c, σ, f and τ2, we can expect not only convergence in distribution of X̄ ε d= X̄ i,ε

from Eq. (57) to X from Eq. (25), but also convergence in L2. It is easily seen that
this also holds when g, τ1 �= 0 if they are sufficiently regular.

Note that in the limiting coefficients from Eq. (24), we have � ≡ 0, so γ̄ (x, μ) =
c̄(x, μ) and D̄(x, μ) = 1

2σ
2(x, μ). In this setting, we can see immediately that there is

no need for Assumptions (A6), (A7), and (A11). (A8) need only hold with F = c and
F = ψ ∈ C∞

c ([0, T ]×R×R).Wewill see that, since we can gain the aforementioned
L2 averaging, there is no need for Theorem 7.2, and hence for Assumption (A10).

Sufficient conditions for Theorem 3.2 to hold in this case are: (A1)–(A3), (A5),
(A9), (A12), and

(1) c, a, f ∈ Mζ̃
p(R × R × P2(R)) with q f (n, l,β) ≤ 1, qa(n, l,β) ≤ 0,

qc(n, l,β) ≤ 2, ∀(n, l,β) ∈ ζ̃ and qc(n, l,β) ≤ 1, ∀(n, l,β) ∈ ζ̃ 1.

(2) σ 2 ∈ Mζ x,r+2
b (R × P2(R)) ∩ Mζ̄ r+2

δ,b (R × P2(R)) and supx∈R,μ∈P(R)∥∥ δ
δm σ 2(x, μ)[·]∥∥r+2 < ∞.

(3) f , a, c ∈ Mζ x,r+2
p and

∥∥∥∥ δ

δm
f (x, y, μ)[·]

∥∥∥∥
r+2

,

∥∥∥∥ δ

δm
a(x, y, μ)[·]

∥∥∥∥
r+2

,

∥∥∥∥ δ

δm
c(x, y, μ)[·]

∥∥∥∥
r+2

≤ C(1+ |y|k),

uniformly in x ∈ R, μ ∈ P2(R) for some k ∈ N.

In the above the referenced collections of multi-indices are from Eq. (27).

Appendix D. On differentiation of functions on spaces of measures

We will need the following two definitions from [13]:

Definition D.1 Given a function u : P2(R
d) → R, we may define a lifting of u to

ũ : L2(�̃, F̃ , P̃;Rd) → R via ũ(X) = u(L(X)) for X ∈ L2(�̃, F̃ , P̃;Rd). We
assume �̃ is a Polish space, F̃ its Borel σ -field, and P̃ is an atomless probability
measure (since �̃ is Polish, this is equivalent to every singleton having zero measure).

Here, denoting by μ(| · |r ) := ∫
Rd |x |rμ(dx) for r > 0,

P2(R
d) := {μ ∈ P(Rd) : μ(| · |2) =

∫
Rd

|x |2μ(dx) < ∞}.

P2(R
d) is a Polish space under the L2-Wasserstein distance

W2(μ1, μ2) := inf
π∈Cμ1,μ2

[∫
Rd×Rd

|x − y|2π(dx, dy)

]1/2
,

where Cμ1,μ2 denotes the set of all couplings of μ1, μ2.
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We say u is L-differentiable or Lions-differentiable at μ0 ∈ P2(R
d) if there

exists a random variable X0 on some (�̃, F̃ , P̃) satisfying the above assumptions,
L(X0) = μ0 and ũ is Fréchet differentiable at X0.

TheFréchet derivative of ũ canbe viewed as an element of L2(�̃, F̃ , P̃;Rd)by iden-
tifying L2(�̃, F̃ , P̃;Rd) and its dual. From this, one canfind that if u is L-differentiable
at μ0 ∈ P2(R

d), there is a deterministic measurable function ξ : Rd → R
d such

that Dũ(X0) = ξ(X0), and that ξ is uniquely defined μ0-almost everywhere on
R

d . We denote this equivalence class of ξ ∈ L2(Rd , μ0;Rd) by ∂μu(μ0) and call
∂μu(μ0)[·] : Rd → R

d the Lions derivative of u at μ0. Note that this definition is
independent of the choice of X0 and (�̃, F̃ , P̃). See [13] Section 5.2.

To avoid confusion when u depends on more variables than just μ, if ∂μu(μ0) is
differentiable at z0 ∈ R

d , we denote its derivative at z0 by ∂z∂μu(μ0)[z0].
Definition D.2 ([13] Definition 5.83) We say u : P2(R) → R is Fully C2 if the
following conditions are satisfied:

(1) u is C1 in the sense of L-differentiation, and its first derivative has a jointly
continuous version P2(R) × R � (μ, z)  → ∂μu(μ)[z] ∈ R.

(2) For each fixed μ ∈ P2(R), the version of R � z  → ∂μu(μ)[z] ∈ R from the first
condition is differentiable onR in the classical sense and its derivative is given by
a jointly continuous function P2(R) × R � (μ, z)  → ∂z∂μu(μ)[z] ∈ R.

(3) For each fixed z ∈ R, the version of P2(R) � μ  → ∂μu(μ)[z] ∈ R in the
first condition is continuously L-differentiable component-by-component, with a
derivative given by a function P2(R) × R× R � (μ, z, z̄)  → ∂2μu(μ)[z][z̄] ∈ R

such that for any μ ∈ P2(R) and X ∈ L2(�̃, F̃ , P̃;R) with L(X) = μ,
∂2u(μ)[z][X ] gives the Fréchet derivative at X of L2(�̃, F̃ , P̃;R) � X ′  →
∂μu(L(X ′))[z] for every z ∈ R. Denoting ∂2μu(μ)[z][z̄] by ∂2μu(μ)[z, z̄], the map
P2(R) × R× R � (μ, z, z̄)  → ∂2μu(μ)[z, z̄] is also assumed to be continuous in
the product topology.

Remark D.3 In this paper we will in fact also look at functions u : P2(R) → R which
are required to have 3 Lions Derivatives. We will assume such functions are Fully C2,
and satisfy:

(4) For each each fixed μ ∈ P2(R) the version of R × R � (z1, z2)  →
∂2μu(μ)[z1, z2] ∈ R in Definition D.2 (3) is differentiable on R

2 in the classical
sense and its derivative is given by a jointly continuous functionP2(R)×R×R �
(μ, z1, z2)  → ∇z∂

2
μu(μ)[z1, z2] = (∂z1∂

2
μu(μ)[z1, z2], ∂z2∂

2
μu(μ)[z1, z2]) ∈ R

2.
(5) For each fixed (z1, z2) ∈ R

2, the version of P2(R) � μ  → ∂2μu(μ)[z1, z2] ∈ R

in Definition D.2 (3) is continuously L-differentiable component-by-component,
with a derivative given by a function P2(R) × R × R × R � (μ, z1, z2, z3)  →
∂3μu(μ)[z1, z2][z3] ∈ R such that for any μ ∈ P2(R) and X ∈ L2(�̃, F̃ , P̃;R)

with L(X) = μ, ∂3u(μ)[z1, z2][X ] gives the Fréchet derivative at X of
L2(�̃, F̃ , P̃;R) � X ′  → ∂2μu(L(X ′))[z1, z2] for every (z1, z2) ∈ R

2. Denot-
ing ∂3μu(μ)[z1, z2][z3] by ∂2μu(μ)[z1, z2, z3], the map P2(R) × R × R × R �
(μ, z1, z2, z3)  → ∂3μu(μ)[z1, z2, z3] is also assumed to be continuous in the prod-
uct topology.
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Though we don’t require higher than 3 Lions derivatives in this paper, when we state
general results for higher Lions derivatives in terms of the spaces from Definition 2.4,
we assume the analogous higher continuity.

Wewill alsomake use of another notion of differentiation of functions of probability
measures: the linear functional derivative.

Definition D.4 ( [13]Definition 5.43)Let p : P2(R) → R.We say p hasLinearFunc-
tional Derivative δ

δm p if there exists a function (z, μ) � R×P2(R)  → δ
δm p(μ)[z] ∈

R continuous in the product topology on R× P2(R) such that for any bounded sub-
set K ⊂ P2(R), the function R � z  → δ

δm p(μ)[z] is of at most quadratic growth
uniformly in μ for μ ∈ K, and for all ν1, ν2 ∈ P2(R

d) :

p(ν2) − p(ν1) =
∫ 1

0

∫
R

δ

δm
p((1− r)ν1 + rν2)[z](ν2(dz) − ν1(dz))dr .

Note in particular that this implies that p is continuous on P2(R).
The second linear functional derivative is said to exist if the linear functional

derivative of δ
δm p(μ)[z1] as defined above exists for each z1 ∈ R. For any bounded

subset K ⊂ P2(R), the function (z1, z2) � R × R  → δ
δm

(
δ

δm p(μ)[z1]
)
[z2] :=

δ2

δm2 p(μ)[z1, z2] ∈ R, is of at most quadratic growth uniformly in μ for μ ∈ K,

(z1, z2, μ) � R×R×P2(R)  → δ2

δm2 p(μ)[z1, z2] ∈ R and is assumed to be continu-
ous in the product topology on R× R× P2(R).

Remark D.5 See Section 5.4.1 of [13] for well-posedness of the above notion of dif-
ferentiability and relation to Lions derivative. In particular, under sufficient regularity
on u : P2(R) → R, ∂μu(μ)[z] = ∂z

δ
δm u(μ)[z]. For a formal understanding of the

linear functional derivative as a Fréchet Derivative, see p. 21 of [12]. Lastly, it is
important to note that the linear functional derivative is only defined up to a constant
by definition. This is usually not of importance, at it normally arises when studying
fluctuations of measures. In particular, applying Z̃ N

t as defined in (3) to a constant
function, we of course get 0 for any N ∈ N and t ∈ [0, T ], so shifting the linear
functional derivative by a constant in Eq. (32) does not change the representation of
the limiting process. A common means of fixing this constant for concreteness is to
require that 〈μ, δ

δm u(μ)[·]〉 = 0,∀μ ∈ P2(R) (see p.31 of [12] or Section 2.2 of [19].
However, due to our choice of topology for the fluctuations process, correcting the
constant for the linear functional derivative may break assumptions (A13) and (A’13).
We thus interpret these assumptions to mean that there is a choice of constant when
defining each of the linear functional derivatives of the functions in question which
makes them satisfy the desired properties.

We recall a useful connection between the Lions derivative as defined in D.1 and
the empirical measure.
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Proposition D.6 For g : P2(R
d) → R

d which is Fully C2 in the sense of definition
D.2, we can define the empirical projection of g, as gN : (Rd)N → R

d given by

gN (β1, . . . , βN ) := g(
1

N

N∑
i=1

δβi ).

Then gN is twice differentiable on (Rd)N , and for each β1, . . . , βN ∈ R
d , (i, j) ∈

{1, . . . , N }2, l ∈ {1, . . . , d}

∇βi g
N
l (β1, . . . , βN ) = 1

N
∂μgl(

1

N

N∑
i=1

δβi )[βi ] (74)

and

∇βi∇β j g
N
l (β1, ..., βN )

= 1

N
∂z∂μgl

(
1

N

N∑
i=1

δβi

)
[βi ]1i= j + 1

N 2 ∂2μgl

(
1

N

N∑
i=1

δβi

)
[βi , β j ]. (75)

Proof This follows from Propositions 5.35 and 5.91 of [13].
��

Finally, we provide a Lemma which allows us to couple the interacting particles
(55) to the IIDMcKean–Vlasov Eqs. (57) knowing only information about the growth
of the linear functional derivatives of the coefficients.

Lemma D.7 Suppose p : R× R× P2(R) → R satisfies

sup
x,z∈R,μ∈P2(R)

| δ

δm
p(x, y, μ)[z]|

+ sup
x,z,z̄∈R,μ∈P2(R)

| δ2

δm2 p(x, y, μ)[z, z̄]| ≤ C(1+ |y|k)

for some C > 0, k ∈ N independent of y ∈ R, and that p(x, y, ·) : P2(R) → R

is Lipschitz continuous in W2 for all x, y ∈ R. Assume (A1)–(A7) and (A9). Then
for (X̄ i,ε, Ȳ i,ε) as in Eq. (57) and μ̄

ε,N
t as in Eq. (58), we have there exists C > 0

independent of N such that for all t ∈ [0, T ]:

E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

≤ C

N − 1
.

Here X̄ ε d= X̄ i,ε,∀i, N ∈ N.
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Proof This follows using the same conditional expectation argument as on p.26 in [19]
and then following the proof of Lemma 5.10 in the same paper, but where we only
require second order expansions rather than 4th. Since the argument and assumptions
are slightly different, we present the proof here for completeness.

We first write

E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

≤ 2E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N
t ) − p(X̄ i,ε

t , Ȳ i,ε
t , μ̄

ε,N ,−i
t )

∣∣∣∣
2]

+ 2E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N ,−i
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

≤ CE

[
|W2(μ̄

ε,N
t , μ̄

ε,N ,−i
t )|2

]

+ 2E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N ,−i
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

where here μ̄
ε,N ,−i
t denotes μ̄

ε,N
t with the i’th particle removed, i.e.

μ̄
ε,N ,−i
t := 1

N − 1

N∑
j=1, j �=i

δ
X̄ j,ε

t
.

Recall the formula

W
p
p(μ

N
x , μN

y ) = min
σ

1

N

N∑
i=1

|xi − σ(y)i |p (76)

for x, y ∈ R
N , μN

x = 1
N

∑N
i=1 δxi , μ

N
x = 1

N

∑N
i=1 δxi , and where σ : RN → R

N

denotes a permutationof the coordinates of a vector inRN (see e.g. Eq. 2.8 in [59]). This
suggests that the first term should be bounded due to the boundCE[|X̄ i,ε

t |2]/N ≤ C/N
from Lemma 8.1.

To see this is indeed true, we take μN
x , μ

N ,−i
x for any x ∈ R

N , where here μ
N ,−i
x

is defined in the same way as μ̄
ε,N ,−i
t , and see

W
2
2(μ

N
x , μN ,−i

x ) ≤
∫
R2

|x − y|2γ N (dx, dy)

γ N (dx, dy) := 1

N

N∑
j=1, j �=i

[
δx j (dx) + 1

N − 1
δxi (dx)

]
δx j (dy)
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Wesee that indeedγ N is a couplingbetweenμN
x , μ

N ,−i
x since it is clearly non-negative,

∫
R2

γ N (dx, dy) = 1

N
[N − 1][1+ 1

N − 1
] = 1,

and for f ∈ Cb(R),

∫
R2

f (x)γ N (dx, dy) = 1

N

N∑
j=1, j �=i

[
f (x j ) + 1

N − 1
f (xi )

]

=
{
1

N

N∑
j=1, j �=i

f (x j )

}
+ 1

N
f (xi ) =

∫
R

f (y)μN
x (dy)

∫
R2

f (y)γ N (dx, dy) = 1

N

[
1+ 1

N − 1

] N∑
j=1, j �=i

f (x j )

= 1

N − 1

N∑
j=1, j �=i

f (x j ) =
∫
R

f (y)μN ,−i
x (dy).

So indeed

W
2
2(μ

N
x , μN ,−i

x ) ≤
∫
R2

|x − y|2γ N (dx, dy)

= 1

N

N∑
j=1, j �=i

{
|x j − x j |2 + 1

N − 1
|x j − xi |2

}

= 1

N (N − 1)

N∑
j=1, j �=i

|x j − xi |2.

Now, applying this to the first term we wish to bound,

CE

[
|W2(μ̄

ε,N
t , μ̄

ε,N ,−i
t )|2

]
≤ C

N (N − 1)

N∑
j=1, j �=i

E

[∣∣∣∣X̄ j,ε
t − X̄ i,ε

t

∣∣∣∣
2]

= C

N

[
E[|X̄ ε

t |2] − E[X̄ ε
t ]2

]

≤ C

N
E[|X̄ ε

t |2] ≤
C

N

where in the equality we use that the X̄ i,ε
t ’s are IID, and in the last bound we used

Lemma 8.1.
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Now we turn to the second term. We have by independence,

E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N ,−i
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

= E

[
E

[∣∣∣∣p(x, y, μ̄
ε,N ,−i
t ) − p(x, y,L(X̄ ε

t ))

∣∣∣∣
2]∣∣∣∣

(x,y)=(X̄ i,ε
t ,Ȳ i,ε

t )

]
.

We will show that for q : P2(R) → R with two bounded Linear Functional
Derivatives, that for {ξi }i∈N IID with ξi ∼ μ ∈ P2(R), that letting ξ = (ξ1, . . . , ξN )

and μN
ξ be as above with ξ in the place of x :

E

[
|q(μN

ξ ) − q(μ)|2
]

≤ C

N

[
sup

z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]|2 + sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|2
]
. (77)

Applying this to the above equality, we have there is k ∈ N such that

E

[∣∣∣∣p(X̄ i,ε
t , Ȳ i,ε

t , μ̄
ε,N ,−i
t ) − p(X̄ i,ε

t , Ȳ i,ε
t ,L(X̄ ε

t ))

∣∣∣∣
2]

≤ C

N − 1
E

[
1+ |Ȳ ε

t |2k
]
≤ C

N − 1

by Lemma 7.1, and the result will have been proved.
We now prove the bound (77). By definition of the linear functional derivative, we

have:

q(μN
ξ ) − q(μ) =

∫ 1

0

∫
R

δ

δm
q(rμN

ξ + (1− r)μ)[z](μN
ξ (dz) − μ(dz))dr = S1 + S2

where

SN
1 =

∫
R

δ

δm
q(μ)[z](μN

ξ (dz) − μ(dz)),

SN
2 =

∫ 1

0

∫
R

[
δ

δm
q(rμN

ξ + (1− r)μ)[z] − δ

δm
q(μ)[z]

]
(μN

ξ (dz) − μ(dz))dr .

For S1, we have by independence:

E

[
|S1|2

]
= E

[∣∣∣∣ 1N
N∑

i=1

δ

δm
q(μ)[ξi ] − E

[
δ

δm
q(μ)[ξ1]

]∣∣∣∣
2]

= 1

N

(
E

[∣∣∣∣ δ

δm
q(μ)[ξ1]

∣∣∣∣
2]

− E

[
δ

δm
q(μ)[ξ1]

]2)
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≤ 1

N
sup

z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]|2.

Now we set

φi
r := δ

δm
q(rμN

ξ + (1− r)μ)[ξi ] − δ

δm
q(μ)[ξi ]

− Ẽ

[
δ

δm
q(rμN

ξ + (1− r)μ)[ξ̃ ] − δ

δm
q(μ)[ξ̃ ]

]
,

where ξ̃ is an independent copy of the ξi ’s, r ∈ [0, 1], and the expectation Ẽ is taken
over the law of ξ̃ .

Then we have SN
2 = 1

N

∑N
i=1

∫ 1
0 φi

r dr , and

E

[∣∣∣∣SN
2

∣∣∣∣
2]

≤ 1

N 2

∫ 1

0
E

[∣∣∣∣
N∑

i=1

φi
r

∣∣∣∣
2]

dr = 1

N 2

∫ 1

0

N∑
i=1

N∑
j=1

E

[
φi

rφ
j

r

]
dr = SN

2,1 + SN
2,2

where

SN
2,1 =

1

N 2

∫ 1

0

N∑
i=1

E

[
|φi

r |2
]

dr , and SN
2,2 =

1

N 2

∫ 1

0

N∑
i=1

N∑
j=1, j �=i

E

[
φi

rφ
j

r

]
dr .

Observing that for all i ∈ N, r ∈ [0, 1] and ω ∈ �, |φi
r (ω)|2 ≤ C supz∈R,μ∈P2(R)

| δ
δm q(μ)[z]|2, so we have

SN
2,1 ≤

C

N
sup

z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]|2.

For SN
2,2,we introduce themeasuresμN ,−(i1,i2)

ξ := 1
N−2

∑N
j=1, j �=i1,i2 δξ j for i1, i2 ∈

{1, . . . , N }, and let

φi,−(i1,i2)
r := δ

δm
q(rμ

N ,−(i1,i2)
ξ + (1− r)μ)[ξi ] − δ

δm
q(μ)[ξi ]

− Ẽ

[
δ

δm
q(rμ

N ,−(i1,i2)
ξ + (1− r)μ)[ξ̃ ] − δ

δm
q(μ)[ξ̃ ]

]
.

Then

φi
rφ

j
r = [φi

r − φ
i,−(i, j)
r ][φ j

r − φ
j,−(i, j)

r ] + φ
j,−(i, j)

r [φi
r − φ

i,−(i, j)
r ]

+ φ
i,−(i, j)
r [φ j

r − φ
j,−(i, j)

r ] + φ
i,−(i, j)
r φ

j,−(i, j)
r ,

so

SN
2,2 = SN

2,2,1 + SN
2,2,2 + SN

2,2,3 + SN
2,2,4
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SN
2,2,1 =

1

N 2

∫ 1

0

N∑
i=1

N∑
j=1, j �=i

E

[
φ

i,−(i, j)
r φ

j,−(i, j)
r

]
dr

SN
2,2,2 =

1

N 2

∫ 1

0

N∑
i=1

N∑
j=1, j �=i

E

[
φ

j,−(i, j)
r [φi

r − φ
i,−(i, j)
r ]

]
dr

SN
2,2,3 =

1

N 2

∫ 1

0

N∑
i=1

N∑
j=1, j �=i

E

[
φ

i,−(i, j)
r [φ j

r − φ
j,−(i, j)

r ]
]

dr

SN
2,2,4 =

1

N 2

∫ 1

0

N∑
i=1

N∑
j=1, j �=i

E

[
[φi

r − φ
i,−(i, j)
r ][φ j

r − φ
j,−(i, j)

r ]
]

dr .

For SN
2,2,1, we have

E

[
φ

i,−(i, j)
r φ

j,−(i, j)
r

]
= E

[
E

[
φ

i,−(i, j)
r φ

j,−(i, j)
r |ξk, k �= i, j

]]

= E

[
E

[
φ

i,−(i, j),x
r φ

j,−(i, j),x
r

]∣∣∣∣
x=ξ

]

= E

[
E

[
φ

i,−(i, j),x
r

]∣∣∣∣
x=ξ

E

[
φ

j,−(i, j),x
r

]∣∣∣∣
x=ξ

]

where

φi,−(i1,i2),x
r := δ

δm
q(rμN ,−(i1,i2)

x + (1− r)μ)[ξi ] − δ

δm
q(μ)[ξi ]

− Ẽ

[
δ

δm
q(rμN ,−(i1,i2)

x + (1− r)μ)[ξ̃ ] − δ

δm
q(μ)[ξ̃ ]

]

and same for j . Then

E

[
φ

i,−(i, j),x
r

]∣∣∣∣
x=ξ

=
{
E

[
δ

δm
q(rμN ,−(i1,i2)

x + (1− r)μ)[ξi ] − δ

δm
q(μ)[ξi ]

]

− Ẽ

[
δ

δm
q(rμN ,−(i1,i2)

x + (1− r)μ)[ξ̃ ] − δ

δm
q(μ)[ξ̃ ]

]}∣∣∣∣
(x=ξ)

= 0

since ξi
d= ξ̃ , and same for E

[
φ

j,−(i, j),x
r

]∣∣∣∣
x=ξ

. Thus in fact, SN
2,2,1 = 0.

To handle S2,2,2 − S2,2,4, we need to see how to bound |φi
r − φ

i,−(i, j)
r |. We have

that

φi
r − φ

i,−(i, j)
r = δ

δm
q(rμN

ξ + (1− r)μ)[ξi ] − δ

δm
q(rμ

N ,−(i, j)
ξ + (1− r)μ)[ξi ]

+ Ẽ

[
δ

δm
q(rμ

N ,−(i, j)
ξ + (1− r)μ)[ξ̃ ] − δ

δm
q(rμN

ξ + (1− r)μ)[ξ̃ ]
]

123



1370 Stoch PDE: Anal Comp (2024) 12:1265–1373

= r
∫ 1

0

∫
R

δ2

δm2 q(rsμN
ξ + r(1− s)μN ,−(i, j)

ξ + (1− r)μ)[ξi , z̄]

[μN
ξ (dz̄) − μ

N ,−(i, j)
ξ (dz̄)]ds

+ r Ẽ

[∫ 1

0

∫
R

δ2

δm2 q(rsμN
ξ + r(1− s)μN ,−(i, j)

ξ + (1− r)μ)

[ξ̃ , z̄][μN
ξ (dz̄) − μ

N ,−(i, j)
ξ (dz̄)]ds

]
.

Then using

μN
x − μ

N ,−(i, j)
x = 1

N

N∑
k=1

δxk −
1

N − 2

N∑
k=1,k �=i, j

δxk

= 1

N
δxi +

1

N
δx j −

2

N (N − 2)

N∑
k=1,k �=i, j

δxk

and that r ∈ [0, 1], we get

|φi
r (ω) − φ

i,−(i, j)
r (ω)| ≤ 4

N
sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|

for all ω ∈ �, r ∈ [0, 1], i, j ∈ N. This combined with the fact that |φk,−(i, j)
r (ω)| ≤

C supz∈R,μ∈P2(R) | δ
δm q(μ)[z]|, k = i, j for any i, j ∈ N, r ∈ [0, 1], ω ∈ � allows us

to see:

SN
2,2,2 ≤ C

N (N − 1)

N 2 sup
z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]| 1

N
sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|

≤ C

N
[ sup
z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]|2 + sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|2]

SN
2,2,3 ≤ C

N (N − 1)

N 2 sup
z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]| 1

N
sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|

≤ C

N
[ sup
z∈R,μ∈P2(R)

| δ

δm
q(μ)[z]|2 + sup

z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|2]

SN
2,2,4 ≤ C

N (N − 1)

N 2

1

N 2 sup
z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|2

≤ C

N 2 sup
z,z̄∈R,μ∈P2(R)

| δ2

δm2 q(μ)[z, z̄]|2.

So the bound (77) is proved. ��
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Remark D.8 Note we could have polynomial growth in x for the Linear Functional
Derivatives as well and the result above would still hold, so long as we have sufficient
bounded moments for X̄ ε

t . Also, the result is independent of the fact that the particles
depend on ε, and of the fact that the particles are one-dimensional. See Lemma 5.10
in [19] and Theorem 2.11 in [14] for similar results in the higher-dimensional setting.

References

1. Baldi, P.: Large deviations for diffusions processeswith homogenization and applications.Ann. Probab.
19(2), 509–524 (1991)

2. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for
one-dimensional granular media. J. Stat. Phys. 91, 979–990 (1998)

3. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures. North
Holland, Amsterdam (1978)

4. Bezemek, Z., Spiliopoulos, K.: Large deviations for interacting multiscale particle systems. Stoch.
Process. Appl. 155, 27–108 (2023)

5. Bezemek, Z., Spiliopoulos, K.: Rate of homogenization for fully-coupled McKean–Vlasov SDEs.
Stoch. Dyn. 23(2). (2023)

6. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (2008)
7. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels pathways and the energy land-

scape of protein folding: a synthesis. Proteins Struct. Funct. Bioinform. 21(3), 167–195 (1995)
8. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional

Brownian motion. Probab. Math. Stat. 20, 39–61 (2001)
9. Budhiraja, A., Dupuis, P., Fischer, M.: Large devation properties of weakly interacting particles via

weak convergence methods. T.A. Prob. 40, 74–100 (2012)
10. Budhiraja, A., Wu, R.: Moderate deviation principles for weakly interacting particle systems. Probab.

Theory Relat. Fields 168, 721–771 (2016)
11. Cardaliaguet, P.: Notes on mean field games (from P. L. Lions’ lectures at Coll‘ege de France), 2013.

https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf, unpublished
12. Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.L.: The Master Equation and the Convergence

Problem in Mean Field Games. Princeton University Press, Princeton (2019)
13. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I. Springer,

New York (2018)
14. Chassagneux, J.F., Szpruch, L., Tse,A.:Weak quantitative propagation of chaos via differential calculus

on the space of measures. Ann. Appl. Probab. 32(3), 1929–1969 (2022)
15. Crisan, D., McMurray, E.: Smoothing properties of McKean–Vlasov SDEs. Probab. Theory Relat.

Fields 171(2), 97–148 (2018)
16. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J.

Stat. Phys. 31, 29–85 (1983)
17. Dawson, D.A., Gäartner, J.: Large deviations from the Mckean–Vlasov limit for weakly interacting

diffusions. Stochastics 20(4), 247–308 (1987)
18. Del Barrio, E., Deheuvels, P., Van De Geer, S.: Lectures on Empirical Processes: Theory and Statistical

Applications. European Mathematical Society Publishing House, Zurich (2007)
19. Delarue, F., Lacker, D., Ramanan, K.: From the master equation to mean field game limit theory: a

central limit theorem. Electron. J. Probab. 24, 1–54 (2019)
20. Delgadino,M.G.,Gvalani,R.S., Pavliotis,G.A.:On the diffusive-meanfield limit forweakly interacting

diffusions exhibiting phase transitions. Arch. Ration. Mech. Anal. 241, 91–148 (2021)
21. Driver, B.K.: Analysis Tools with Examples (2004). http://www.math.ucsd.edu/bdriver/DRIVER/

Book/anal.pdf, unpublished
22. Dupuis, P., Ellis, R.S.: AWeak Convergence Approach to the Theory of Large Deviations. Wiley, New

York (1997)
23. Dupuis, P., Spiliopoulos, K.: Large deviations for multiscale diffusion via weak convergence methods.

Stoch. Process. Appl. 122(4), 1947–1987 (2012)

123

https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf
http://www.math.ucsd.edu/bdriver/DRIVER/Book/anal.pdf
http://www.math.ucsd.edu/bdriver/DRIVER/Book/anal.pdf


1372 Stoch PDE: Anal Comp (2024) 12:1265–1373

24. Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. SIAM Multi-
scale Model. Simul. 12(1), 1–27 (2012)

25. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)
26. Feng, J., Fouque, J.P., Kumar, R.: Small-time asymptotics for fast mean-reverting stochastic volatility

models. Ann. Appl. Probab. 22(4), 1541–1575 (2012)
27. Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean–Vlasov model.

Stoch. Process. Appl. 71, 33–53 (1997)
28. Feng, J., Kurtz, T.: Large Deviations for Stochastic Processes. AMS, Providence (2006)
29. Fouque, J.P., Papanicolaou,G., Sircar, K.R.: Derivatives in FinancialMarketswith StochasticVolatility.

Cambridge University Press, Cambridge (2000)
30. Freidlin, M.I., Sowers, R.: A comparison of homogenization and large deviations, with applications to

wavefront propagation. Stoch. Process Appl. 82(1), 23–52 (1999)
31. Fischer, M.: On the connection between symmetric N-player games and mean field games. Ann. Appl.

Probab. 27(2), 757–810 (2017)
32. Gaitsgor, V., Nguyen, M.T.: Multiscale singularly perturbed control systems: limit occupational mea-

sures sets and averaging. SIAM J. Control. Optim. 41(3), 954–974 (2002)
33. Ganguly, A., Sundar, P.: Inhomogeneous functionals and approximations of invariant distributions of

ergodic diffusions: central limit theorem and moderate deviation asymptotics. Stoch. Process. Appl.
133, 74–110 (2021)

34. Garnier, J., Papanicolaou, G., Yang, T.W.: Large deviations for a mean field model of systemic risk.
SIAM J. Financ. Math. 4(1), 151–184 (2013)

35. Garnier, J., Papanicolaou, G., Yang, T.W.: Consensus convergence with stochastic effects. Vietnam J.
Math. 45(1–2), 51–75 (2017)

36. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4. AMS, Providence (1964)
37. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New

York (2001)
38. Gomes, S.N., Pavliotis, G.A.: Mean field limits for interacting diffusions in a two-scale potential. J.

Nonlinear Sci. 28, 905–941 (2018)
39. Hitsuda, M., Mitoma, I.: Tightness problem and stochastic evolution equation arising from fluctuation

phenomena for interacting diffusions. J. Multivar. Anal. 19(2), 311–328 (1986)
40. Hong, W., Li, S., Liu, W.: Strong convergence rates in averaging principle for slow–fast McKean–

Vlasov SPDEs. J. Differ. Equ. 316, 94–135 (2022)
41. Hong, W., Li, S., Liu, W., Sun, X.: Central limit type theorem and large deviations for multi-scale

McKean–Vlasov SDEs (2021). arXiv:2112.08203 [math.PR]
42. Hyeon, C., Thirumalai, D.: Can energy landscapes roughness of proteins and RNA be measured by

using mechanical unfolding experiments? Proc. Natl. Acad. Sci. 100(18), 10249–10253 (2003)
43. Isaacson, S.A.,Ma, J., Spiliopoulos,K.:Meanfield limits of particle-based stochastic reaction-diffusion

models. SIAM J. Math. Anal. 54(1), 453–511 (2022)
44. Jacquier, A., Spiliopoulos, K.: Pathwise moderate deviations for option pricing. Math. Financ. 30(2),

426–463 (2020)
45. Kallianpur, G., Xiong, J.: Stochastic differential equations in infinite dimensional spaces. Lecture

Notes-Monograph Series, vol. 26, pp. iii–342 (1995)
46. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)
47. Kolokolnikov, T., Bertozzi, A., Fetecau, R., Lewis, M.: Emergent behaviour in multi-particle systems

with non-local interactions. Physica D 260, 1–4 (2013)
48. Kong, M., Shi, Y., Sun, X.: Well-posedness and averaging principle of McKean–Vlasov SPDEs driven

by cylindrical α-stable process (2021). arXiv:2106.05561 [math.PR]
49. Kurtz, T.G., Xiong, J.: A stochastic evolution equation arising from the fluctuations of a class of

interacting particle systems. Commun. Math. Sci. 2(3), 325–358 (2004)
50. Lacker, D.: Limit theory for controlled McKean–Vlasov dynamics. SIAM J. Control. Optim. 55(3),

1641–1672 (2017)
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