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The COVID-19 pandemic emphasized the importance of epidemic
forecasting for decision makers in multiple domains, ranging from public
health to the economy. Forecasting epidemic progression is a non-trivial
task due to multiple confounding factors, such as human behaviour,
pathogen dynamics and environmental conditions. However, the surge in
researchinterest and initiatives from public health and funding agencies

has fuelled the availability of new data sources that capture previously
unobservable aspects of disease spread, paving the way for a spate of
‘data-centred’ computational solutions that show promise for enhancing
our forecasting capabilities. Here we discuss various methodological and
practical advances and introduce a conceptual framework to navigate
through them. First we list relevant datasets, such as symptomatic online
surveys, retailand commerce, mobility and genomics data. Next we consider
methods, focusing onrecent data-driven statistical and deep learning-based
methods, as well as hybrid models that combine domain knowledge of
mechanistic models with the flexibility of statistical approaches. We also
discuss experiences and challenges that arise in the real-world deployment

of these forecasting systems, including decision-making informed by
forecasts. Finally, we highlight some challenges and open problems
found across the forecasting pipeline to enable robust future pandemic

preparedness.

The devastating impact of the COVID-19 pandemic on human lives,
economic development and society asawhole hasillustrated our vul-
nerability to major epidemics. While the science of epidemic forecast-
ingis, in many respects, still inits initial stages, the current pandemic
and those before it (such as HIN1 and Ebola) have shown its crucial
importance. Preventing and responding to such pandemics requires
actionable epidemic forecasts to (for example) design effective health-
care policies and make optimal supply chain decisions. Generating
such forecasts presents arange of interdisciplinary challenges, includ-
ing understanding the biological processes driving pathogen evolu-
tion, assessing responses to immunization and drug resistance, and

modelling population-level interactions among heterogeneous groups,
among others’. Inresponse to these challenges, there has been growing
interest in data-centred solutions for epidemic forecasting?, build-
ing on several initiatives in the past few years from both government
public health agencies and funding agencies. For instance, in2013 the
US Centers for Disease Control and Prevention (CDC) introduced the
FluSight challenge?®, which has not only aided inimproving flu forecast-
ing capabilities and public health decision-making, but also helped to
build acommunity of researchers around this topic. Similar initiatives
have followed for Ebola*, dengue® and also COVID-19° led by institutions
around the globe such as the European CDC’, Intelligence Advanced
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Fig.1| Overview of the data-centric epidemic forecasting pipeline. We begin
by collecting data from heterogeneous sources, preparing these data and
choosing from a set of epidemic targets and tasks. During model development,
we consider various aspects of epidemic spread (such as spatiotemporal
dynamics) and forecast utilization (for example, uncertainty quantification).
Finally, real-time forecasts have multiple uses including dashboards,

ensemble composition and other public healthinitiatives that serveasa
platform for decision-making for resource allocation, risk assessment, general
communication to the public and other domains. Red asterisks denote the
forecasting tasks: the value of future incidence as an example of a real-valued
task, and peak time as an example of an event-based task. t represents the
forecasting week.

Research Projects Activity (IARPA) and Pan American Health Organiza-
tion (PAHO) in Latin America. These forecasting initiatives have pro-
vided an unprecedented opportunity for researchers to observe both
the successes and gapsinthe current science of forecasting. Similarly,
US agencies such as the National Science Foundation, the National
Institutes of Health and US Army Research Laboratory have held aseries
of recent symposiaand funding calls related to pandemic forecasting,
which have givenamuch-needed impetus to this topic. Thisinterest has
also culminated inthe establishment of the first Center for Forecasting
and Outbreak Analytics by the US CDCin 2021.

This Review delvesinto data-driven computational methods driven
by advancesin machine learning and their capabilities to leverage new
sources of data, from biological to behavioural. We found that the avail-
ability of datafromreliable sources (several of them publicly accessible)
isincreasing, a trend that has only been accelerated by the COVID-19
pandemic. This includes richer epidemiological datasets and digital
data streams such as mobility data®, online surveys’ and wastewater
samples'®. We also found a number of technicalinnovations in machine
learning and deep learning motivated by this domain, which have not
only opened new horizons in the science of epidemic forecasting but
also contributed to abroader understanding of time-series analysis and
scientific artificial intelligence (Al). This Review is an effort to encom-
pass recent methodological and practical advancesinmachinelearning
at an opportune time to help and enable the broader computational
and data/machine learning/Al communities to engage in this area. We
refer to this recent body of work as data-centric epidemic forecasting.
In the following sections, we will discuss the multiple components of
data-centric epidemic forecasting, including datasets and problem
formulation. We will then turn to modelling approaches: traditional
machine learning, deep learning and hybrid methods. Finally, we
discuss future challenges and opportunities in this emerging field.

Data-centric epidemic forecasting

Here we briefly describe the components of the data-centric forecasting
pipeline, which we conceptualize in Fig. 1 as comprising three stages:
data processing, model training and validation, and utilization and
decision-making (see the Supplementary Information for in-depth
discussion of each of the components).

Datasets

A diverse set of datasets has been used to better inform epidemic
forecasting, offering benefits ranging from early-stage indicators to
capturing complementary facets that help to explain disease spread
dynamics. Figure 2 shows sources of such data; most sources on the
left side are from clinical disease surveillance, whereas those on the
right are from digital disease surveillance.

Clinicalinformation has traditionally been the primary source of
surveillance datafor epidemiology, including aggregate markers from
epidemiological line lists and testing records (for example, tracking
people infected, recovered and deceased). Another important data
source is syndromic surveillance, which is based on clinical features
discernible before a diagnosis is confirmed or activities prompted
by the onset of symptoms, serving as an alert of changes in disease
activity™. Digital surveillance takes advantage of the widespread use
of mobile devices and innovationsin digital communication to provide
real-time data without extensive human effort. Such technological
developments canbe used to track the large-scale mobility and disease
exposure of populations®. Recent works have leveraged features from
various unconventional data sources as well. For instance, images from
remote-sensing satellites have been used to detect outbreaks and
track prevalence by monitoring vacancies in car parks near hospitals
and other sensitive locations®. Pharmaceutical sales records, other
retail records that capture useful consumer signals, and restaurant
reservation data have also previously proven valuable for epidemic
forecasting”. By incorporating these diverse and complementary
datasources, researchers have sought to gain a more comprehensive
understanding of disease spread dynamics.

Targets, tasks and evaluation

Forecasts can be divided into projections™" (for a specific future sce-
nario) and predictions” (for the most likely scenario). Common predic-
tive targets are the number of symptomatic patients, hospitalizations'
and mortality" across varying spatial (for example, country, region/
state/province and county/city) and temporal (for example, weekly or
daily) scalesbased on the requirements of decision makers and domain
experts>'®, Tasks can be broadly classified as real-valued prediction
tasks, such as the prediction of future incidences, nowcasting and
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Fig.2| Conceptualization of disease surveillance data sources. The pyramid
depicts the potential stages people may progress though during anillness from
bottom to top, with the area of each level proportional to the number of people
inthat stage. We connect each of these levels with our proposed classification

of datasets (a detailed classification can be found in the Supplementary
Information) used in the literature to inform forecasting models and depict
representative examples. Sources on the left side of the pyramid are from direct
clinical surveillance; those on the right are digital sources of proxy indicators.

peakincidence/height, and event-based prediction tasks that focus on
predicting the time/stages of an outbreak or forecasting season, such as
peak time and onset”. One common example of a point forecast metric
for the evaluation of real-valued tasks is the mean absolute error”’".
Evaluations of probabilistic forecasts often rely onlog scores for targets
with a predefined range (for example, percentages)*>*°?". When
working with unbounded predictions (such as the numbers of cases,
deaths and hospitalizations), probabilistic metrics such as interval
score or the weighted interval score' are preferred, because they
are ‘proper scoring rules’?. It is pertinent to note that the choice
of evaluation metric should take into account the varying require-
ments of public health agencies and decision makers' and that CDC
evaluations often put more emphasis on probabilistic evaluations™".

Overview of methods

We mainly focus on predictions in this Review as this is where most
data-driven work has been undertaken. We broadly classify methods
into three categories: mechanistic; statistical, machine learning
and Al; and hybrid. Our focus is on the latter two, where most recent
data-centricwork hasbeendone. Nevertheless, we elaborate on mecha-
nistic models in the Supplementary Information and refer the reader
to other excellent surveys®* for in-depth discussions.

We now discuss some key insights for different kinds of modelsin
Table 1. First, mechanistic models explicitly encode the causal mecha-
nisms of epidemic spread. These models have arich history dating back
to the eighteenth century and offer valuable insight and explainability.
However, incorporating non-traditional data sources to complement
mechanistic models is often challenging®.

On the other hand, statistical, machine learning and Al models
focus on learning empirical relationships between past and future
phenomena. Early attempts involved traditional regression models
that could incorporate various data sources, such as searches*** and
social media?. However, these methods often fall short due to their
limited flexibility in capturing useful features and patterns from com-
plexdynamics of the real world. This limitationis where deep learning
models shine, which also allow us to apply recent advances to model
spatiotemporal dynamics and address data sparsity—although at the
cost of reduced explainability. Density estimation methods, grounded
inBayesian modelling, enable theincorporation of expert-based priors;
however, this also makes them less amenable to incorporating new
datasets, as specifying priors for each of these datasets becomes an
additional challenge.

Lastly, the morerecenthybrid models combine mechanisticmodels
with the data-driven flexibility of Al. Mechanistic models may incor-
porate statistical components to address data sparsity and integrate
new datasets. Conversely, statistical components can be used torefine
the output of mechanistic models, enhancing modelling flexibility
to learn expressive features while preserving explainability. Another
hybrid paradigm involves machine learning models being informed
by priors from mechanistic models through generating training data
or serving as learning constraints. The last hybrid paradigm is the
wisdom of crowds, where the objective is to harness multiple predic-
tors, encompassing all previous perspectives and their unique aspects.

In the following sections, we elaborate on the machine learning
and hybrid modelling approaches in greater detail. We also discuss
model selection in the Supplementary Information.

Statistical, machine learning and Al models

These models learn complex patterns from a wide variety of input
signals that are assumed to influence the epidemic and then leverage
them to forecast. Unlike mechanistic models, they typically require
minimal modelling assumptions and offer a more flexible approach
to extracting patterns from data.

Traditional machine learning models

A diverse range of machine learning methods have been used and
tailored to facilitate more data-driven approaches to epidemic fore-
casting. Some of these methods specialize in making predictions based
ontime-series datathrough standard regression techniques, whereas
others incorporate the analysis of unstructured data (such as textual
information). The development of methods for the effective quanti-
fication of forecast uncertainty is also a crucial aspect.

Classical statistical methods. These techniques rely on traditional
regression models and take different sets ofindicators asinputs, such as
the volumes of search queries containing expert-curated keywords>*.
Common modelling approaches here are based on autoregressive
models®®* 7, nearest-neighbour regression®, multi-task Gaussian pro-
cesses and elastic nets®, the minimum description length principle®
and dynamic Poisson autoregression®.

Text-based methods. Such methods leverage datasourcesin the form
oftext, which (ascanbeseeninFig.2) areimportant sources of digital
surveillance. Stylography and part-of-speech detection®, as well as
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Table 1| Most prominent capabilities and gaps (weaknesses) of modelling paradigms

Modelling paradigms Reference(s) Main capabilities Main gaps

Mechanistic Compartmental, meta-population, agent-based 65,87106-113 X; UQ; ST NTD; DAT; NFE
Traditional machine learning models
Linear models 25,26,114 NTD; X ST; NFE
Autoregressive models 19,28,30,115 NTD ST; NFE
Nonlinear models 31,34 NTD ST; NFE
Hierarchical models 29,32,33 ST NFE
Vision and language models
Vision models 12 NFE; NTD X; ST
Language-based models 35,36 NFE; NTD X; ST
Probabilistic topic models 37-39,116 NTD; X; UQ ST

Statistical, machine _Deep learning models

learning and Al Off-the-shelf sequential models 45-47,86 NTD; NFE X; ST; DAT
Temporal similarity modelling 48-50 ST; NFE; NTD X; DAT
Spatiotemporal modelling 51-53 NTD; NFE X
Multimodal learning 54,55 DAT; NFE; NTD X
Transfer learning 56,57 DAT; NFE; NTD X
Probability density estimation
Kernel density estimation 41,42 EP; UQ NTD
Parametric Bayesian inference 40 EP; UQ NTD
Non-parametric methods 43,44 EP; UQ NTD
Neural uncertainty quantification 58,59 UQ; NFE; NTD X; EP
Mechanistic models with statistical components
Data assimilation 60-62 X NTD; NFE
Statistical estimation of mechanistic parameters 64,66-68,117 DAT; NTD; X NFE
Discrepancy modelling 69-72,118 DAT; NFE; X NTD

) Priors from mechanistic models inform statistical models

Hybrid Learning from synthetic and simulation data 73 DAT; EP NTD
Learning with mechanistic constraints 74,75 EP; DAT; NTD ST
Wisdom of crowds
Experts and prediction markets 76-80,119,120 MP; EP NTD; ST
Ensembles 5,17,18,20,30,81-84,101,121 MP; EP; NTD X

DAT, addresses data sparsity and quality issues; EP, incorporates expert priors and feedback; MP, leverages multiple prediction models; NFE, no manual feature engineering; NTD, incorporates
non-traditional data sources; ST, incorporates complex spatial dynamics; UQ, uncertainty quantification; X, explainability.

using word embeddings®®, are popular techniques used to extract
intermediate features that are useful for forecasting®. Others rely
on topic models, which can automatically find topics and parts of the
text that are often associated with symptoms and treatments®. More
recent works also mapped tweets to stages of disease progression (for
example, susceptible-infected-recovered), which led toimprovements
in population-level prediction® .

Probability density estimation. These methods estimate the prob-
ability distribution of the forecasts, thereby determining their uncer-
tainty, whichisimportant for decision-making. Parametric inference
methods, such as empirical Bayes, estimate the parameters of a dis-
tribution. They model epidemic curves as probabilistic functions of
some specific characteristics selected by experts, including shape,
peak height, peak week and pacing*’. Non-parametric methods, which
do not assume a fixed form or distribution for the underlying data,
can also incorporate these epidemic curve characteristics as part of
their kernel or similarity function. Prominent examplesinclude kernel
density estimation* and delta density*?, which were successfully used

in past CDC flu forecasting initiatives?®. Other non-parametric methods
include Gaussian process* and other kernel-based methods to model
temporal and spatial correlations*.

Deep learning models

Artificial neural networks facilitate the handling of high-dimensional
dataand offer aflexible, generalizable approach to extract useful repre-
sentations from various data modalities. Here we present key ideas in
deep learning for epidemic forecasting, including modelling spatial-
temporal disease dynamics, handling data heterogeneity and multi-
modality, and taking advantage of transfer learning. We also discuss
uncertainty quantification with these models, focusing onintegrating
multiple data modalities.

Off-the-shelf sequence models. These works propose to leverage
general-purpose sequential models, such asrecurrent neural networks
and transformers, to model the temporal evolution of epidemics and
incorporate time series of non-traditional data sources such as social
media®, search trends*® and environmental factors".
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Modelling temporal dynamics via similarity. Several methods have
enhanced general-purpose architectures to tackle the challenges posed
by limited data by capitalizing on similarities across epidemic dyna-
mics. These works developed clustering-based deep learning architec-
tures to explicitly model temporal similarity, comparing time-series
segments across time (for example, past flu seasons with similar pat-
terns to the current season)*®*° and space (for example, regions with
similar epidemic curves)®°.

Incorporating structured spatial relationships. Deep learning
methods for spatiotemporal modelling aim to capture the underlying
spatial propagation of disease. Therefore, in addition to considering
the spatial structure of geographical proximity, these models also
leverage cross-regional mobility flows. Some early works proposed
neural architectures composed of recurrent neural networks and con-
volutional layers to encode the spatial distribution of locations®. More
recent methods are based on graph neural networks and recurrent
neural networks that capture latent co-evolving dynamics at multiple
locations®>**,

Leveraging heterogeneous and multimodal data. One key advan-
tage of deep learning models is their ability to facilitate the learning
of knowledge representations from various data modalities. Recent
work has explored leveraging multiple static features (for example,
demographics, healthcare vulnerability) and dynamic features (for
example, indicators of government response)**, while other studies
investigated spatial features beyond proximity and mobility flows,
such as travel restrictions®.

Transferring knowledge representations. Transfer learning is
another effective solution for challenges associated with limited data,
and is particularly valuable in responding to emerging pandemics
where dataisinherently scarce. Forexample, aheterogeneous domain
transfer learning framework was proposed to adapt a historical influ-
enza forecasting model to the new scenario where COVID-19 and
influenza coexist®. Another study formulated a meta-learning set-
ting to leverage data fromregions initiallyimpacted by the COVID-19
pandemic, aiming to assist with predictionsin regions on the verge of
beingimpacted”.

Deep learning models for uncertainty quantification. Uncertaintyin
epidemicforecasts has been addressed by developing non-parametric
deep generative models that leverage similarities in historical data®®.
Specifically, they learn forecast distributions as a probabilistic combi-
nation of representations of past time-series segments (for example,
flu seasons). Follow-up work extended the idea to multiple sources
and modalities, where these are combined dynamically based on their
relevance in the accuracy and uncertainty of forecasts®.

Hybrid models

Hybrid models bridge the gaps between the domain knowledge embed-
dedinmechanistic models or guidance/predictions from experts, the
predictive and pattern-mining capabilities of machine learning and
predictions coming from experts, as well as the broader public. These
types of model can be assembled in multiple ways, and we broadly
classify theminto the following types: (1) mechanistic models with
statistical components, (2) statistical models informed by mechanistic
models and (3) wisdom of crowd models.

Mechanistic models with statistical components

These methods make inferences using mechanistic models, which
are aided by statistical components that address challenges such as
facilitating model recalibration, incorporating data features from
unconventional sources and accounting for modelling limitations.
Here we present multiple ways to accomplish this.

Data assimilation. Techniques such as filtering are used to regularly
reinitialize and recalibrate mechanistic models using the most recent
observations from diverse sources; importantly, these observations
must measure a state that is explicitly represented in the mechanistic
model. Oneof the earliest studies onincorporating digital datasources
involved integrating Google Flu Trends into forecasts of a suscepti-
ble-infectious-recovered-susceptible compartmental flu model®°.
Specifically, they assimilated Google Flu Trends (a proxy measure for
‘number of infectious cases’) viaensemble adjustment Kalman filters.
Follow-up works extended this method to other predictive targets
(such as hospitalizations®), pathogens®? and agent-based models®.

Estimating parameters of a mechanistic model from features.
These methods canintegrate abroader range of datasources than data
assimilation techniques. They are designed to alleviate the challenging
optimization landscape that arises during the calibration of mechanis-
tic parameters via machine learning modules thatingest the dataand
inform parameter calibration. Some studies leverage geo-localized
tweets toinform the estimation of the initial conditions of mechanistic
models®*. Others differentiate through anumerical solver (for example,
Runge Kutta) to calibrate mechanistic parameters, taking into account
observations from adjacent geographical regions®. One recent line
of research proposed an alternative approach through the develop-
ment of differentiable simulators based on mechanistic models. These
differentiable simulators enable end-to-end, gradient-based calibra-
tion of the mechanistic model parameters, circumventing the need
for traditional numerical solvers. A mass action model (represented
as an ordinary differential equation) can be seamlessly converted
into a differentiable simulator. The simulator parameters can then
be calibrated based on static (for example, demographic, policy) and
time-varying (for example, mobility) features ingested by a machine
learning module®**’. Recent work has extended this idea to agent-based
models—which areinherently non-differentiable and orders of magni-
tude more complex—by combining tensorized operations, invariances
in disease transmission and relaxations of discontinuous functions®®.

Discrepancy modelling. This line of work acknowledges the limi-
tations of mechanistic models in modelling disease dynamics and
proposes to incorporate a machine learning model to refine/correct
predictions. Recent efforts introduced a hierarchical Bayesian model
thatincorporates prior knowledge and learns to correct mechanistic
predictions based on trends, seasonal variations and state-specific
deviations®. The same authors obtained first place in the 2018/2019
CDCFluSight challenge by further developing their model through the
imposition of consistency and facilitation of information sharing across
scales”. Similarly, other methods leverage spatiotemporal dependen-
cies to correct mechanistic predictions of meta-population models”.
Other studies’ have proposed that real-time forecasts of any model
couldberefined viamachinelearning by leveraging important patterns
that these models may have missed during development. Recent work
introduced a deep learning architecture based on recurrent graph
neural networks to refine predictions based on the temporal dynamics
of data revisions’*; the authors showed that this led to improvements
in all of the top five models in the COVID-19 Forecast Hub, composed
of both mechanistic and statistical modules.

Priors from mechanistic models inform statistical models

In these methods, the statistical model incorporates components of
mechanistic models as a source of prior knowledge that facilitates
learning. One direct way to do this is via the use of high-resolution
synthetic data from mechanistic models”. Specifically, adeep learning
architecture thatlearns from simulation time-series data generated by
astochastic variant of the susceptible-exposed-infectious-recovered
model was proposed. Another approach involves using mechanistic
priorsasintegral componentsinthe design of learning frameworks, and
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thusinforming machinelearning models about mechanistic epidemic
dynamics. Recent work built on physics-informed neural networks
tojointly learn partially observed epidemic dynamics and connect
them with heterogeneous datasets’. Meanwhile, other studies have
incorporated constraints from mechanistic equations into their latent
representations, which are learned through tensor factorization™.

Wisdom of crowd models

Wisdom of crowd methods harness the collective insights from
previously introduced modelling approaches, human predictions and
domain heuristics—expertise often excluded from models—to lever-
age common sense and specialized knowledge. Methods based on
expert consensus’”” and prediction markets’ have been developed
for epidemic forecasting’, as well as predicting important variables
such as vaccine efficacy, safety, timing and delivery®.

An adjacent approach involves using ensembles of predictions
from multiple models, which are widely used to obtain better predic-
tive performance thantheirindividual components. Indeed, ensemble
methods have consistently outperformed most, if not all, individual
methods in multiple CDC forecasting competitions—for example,
influenza®, Ebola*® and COVID-19". Aggregating ensemble models
based on locations'®, as well as uncertainty®, model complexity and
diversity®? seems to yield good results. However, a key limitation of
using ensemblesinreal-time forecasting is the availability of forecasts
for allmodels in all instances to gauge their relative importance. This
motivated the use of adaptive ensemble approaches®, using represent-
ative clustering® or a simple equally weighted average of forecasts™.
Thelatter hasyielded good resultsin practice and hasbeenused by the
official US CDC ensemble for the COVID-19 pandemic.

Epidemicforecastinginaction

We now describe someimportantinitiatives for real-time epidemic fore-
casting, such as the CDC FluSight challenge and the COVID-19 Forecast
Hub, which have helped to encourage researchin this area. Despite their
successes, challenges persist—from methodological problems to data
quality issues. We also discuss recent methods that strive to integrate
these forecasting tools with decision-making to help policymakers.

Real-time outbreak response

Real-time forecasting initiatives have energized research in epidemic
forecasting, fostering knowledge exchange among researchers and
translating results into public health tools. One prominent example
is the CDC FluSight forecasting challenge for seasonal influenza®. In
response to COVID-19, the US CDC and partners organized the COVID-19
Forecast Hub®, which received international attention, and their predic-
tions were publicized on multiple web portals (including the official
CDC website). Building on the COVID-19 Forecast Hub, the Scenario
Hub focuses on projections for 6 months ahead, conditional on specific
scenarios'. Among the most important insights from these initiatives
is that no modelling approach by any single team was effective in all
instances™”?°, The teams that submit real-time forecasts need to deal
with issues with operationalizing different methodologies, handling
changing disease patterns, varying data availability and data quality
issues. Some common problems are data access®°, data biases and
inconsistencies across multiple geographies®, data sparsity and noise®.
These initiatives received international attention, sparking similar
schemes in Europe’.

Performance on the ground

Asmentioned, the 2013 US CDC FluSight challenge® represented a pio-
neering effortin real-time forecasting. Thisinitiative and others were
usually followed by a systematic evaluation of forecasting performance.
Comprehensive evaluations showcased the usefulness and maturity of
methods for predicting seasonal influenza®. These successes spanned
several similar initiatives for other diseases such as Ebolaand dengue*”.

However, the COVID-19 pandemic exposed multiple shortcomings in
epidemic forecasting and performance was uneven. There was often
aconflation between projections and predictions. These are different
types of forecast, as noted in the ‘Target, tasks and evaluation’ sec-
tion, and should be analysed separately. Projections and long-term
predictions (6 months or longer) were frequently highlighted in the
mediainearly stages of the pandemic; many turning out to be severely
incorrect”, thereby impacting public trust. Short-term predictions
(4 weeks ahead) emerged as amore viable alternative. In April 2020, the
US CDC consortium COVID-19 Forecast Hub led these efforts and had
considerably more success thaninitial projections, especially with the
ensemble of all models. Nevertheless, there were several gaps: some-
times performance during trend changes and uncertainty calibration
fellshort of expectations”. Indeed, the CDC occasionally removed 2- to
4-week-ahead case forecasts from their website due to concerns about
well-calibrated uncertainty®.

Bridging forecasting and decision-making

Forecasting models have been leveraged to perform strategic and
tactical decision-making by policymakers and public health workers.
A strategic intervention involves decision-making at alarge scale; for
example, whether to cull or vaccinate animals against diseases®® or
how to determine optimal policies for lockdowns and travel restric-
tions'. A tactical intervention focuses on achieving a small-scale goal
whose action space is large, such as the allocation of ventilators and
optimizing for the supply chain constraints of medical supplies™.
One complementary approach to strategic decision-making is active
management®, which proposes general principles for designing and
adapting strategies. It has proved to be effective inapplications such as
controlling disease outbreaks’” and developing vaccination strategies”.

Open challenges and opportunities

Asdiscussed inthis survey, there have been noteworthy advancements
in data-centric forecasting. However, the COVID-19 pandemic high-
lighted that, despite these advances, the scientific community was
not fully prepared for arapidly evolving crisis, and readiness may still
be lacking. Achieving an effective pandemic response may require
combined efforts across different domains, including data, modelling
and evaluation. We now outline our forward-looking perspective on
these important challenges.

Creating principled methods for data quality issues

Developing methods to address data-related issues could be a fruitful
direction to improve our forecasting capabilities. We could formu-
late new statistical problems to improve data quality’” and explicitly
account for biases in data that may affect the fairness of downstream
decisions®. Other problems arise in datasets containing sensitive
information (for example, electronic health records) for which we
could exploitadvancesin federated learning and differential privacy®.
We emphasize here the importance of efforts to build publicly acces-
sible dataarchives, such as thatintroduced by Reinhart et al.””. Building
suchinfrastructure can accelerate research on data quality issues.

Going beyond short-term forecasting

Determining and expanding our forecasting limits remain open
challenges’®”. To exploit long-term patterns from data, some works
have developed methods to bridge mechanistic and Al approaches™,
building on advances in scientific AI’®. Incorporating scenario-based
projections, causal inference and causal representation learning to
connect multimodal data with interventions®” is another promising
research direction. On the spatial scale, we can develop more princi-
pled methods that use spatial dynamics and hierarchical relationships.
Other orthogonal aspects that provide useful higher-order patterns
include multi-scale behavioural models?, the evolution (phylodynam-
ics) of pathogens'® and other biological indicators. Towards this goal,
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developing methods to leverage multilevel dynamics and relations at
multiple scales could be another fruitful direction.

Improving the combination of models and wisdom of crowds
predictions

Combining ensembles of models to maximize their strengths remains
difficult. The proficiency of a single model varies across temporal and
spatial scales”. New models may be introduced, and some teams may
change their methodologies or not publish predictions for a while'"".
Inmost studies, multiple weighting schemes are considered, but there
is no consensus on which perform best. In this regard, it is important
to explore new schemes using techniques such as optimal ensemble
weighting and mixtures of experts'°’. Overcoming inefficiencies and
misinformation'®, as well as developing better interfaces that lever-
age advances in human-computer interactions to elicit detailed and
reliable human predictions for prediction markets, are pressing open
challenges.

Making forecasts explainable and actionable

For high-stakes decisionsin public health, calibrated forecasts are cru-
cial, butthey can be challenging because there are multiple sources of
uncertainty. Recent work has shown the usefulness of taking data-driven
representations of uncertainty*® from multiple sources into account.
The explainability of predictions to domain experts is an important
aspect to bridge forecasts and decision-making. Linear regression and
mechanistic approaches can easily provide explanations, but other
models (for example, artificial neural nets) require more sophistication
to provide explanations****%¢ In addition, the forecasting set-up and
evaluation need to be constantly scrutinized to make forecasts suitable
for public communication and decision-making. One possible direction
could be defining new forecast targets'’*. For error metrics, weneed a
better understanding of which are most important for each decision
type, and how to compare them across temporal and spatial scales. It
is also necessary to standardize evaluation guidelines for presenting
methodological advances'®.

Evaluating ad hoc adjustments of real-world model
deployment

Thereal-world deployment of forecasting systems requires anon-trivial
amount of human involvement in (for example) handling anomalous
data and predictions that look incorrect to the expert eye®**®. Other
examples can be found when calibrating mechanistic models—one
might need to adjust domain inputs, such as setting boundaries for
parameter optimization'®. Such interventions are crucial to the suc-
cessof modelsin real-world situations, such as the epidemic prediction
challenges discussed in the ‘Real-time outbreak response’ section.
However, these criticalinterventions are not always formally accounted
for,and contribute to the technical debt (the future costs arising from
inadequate solutions to current issues). It is therefore important to
find ways to disentangle the main factors that affectamodel or team’s
performance, such as the methodology, ad hoc expert adjustments
and technical debt. Otherwise, we may be uncertain about the true
measurement of prediction challenges, which could compromise the
generalizability and robustness of future pandemic responses.

To conclude, this Review provides an overview of data-centric
methods for epidemic forecasting. We have highlighted recent data
sources (the ‘Data-centric epidemic forecasting’ section) and discussed
key approaches that utilize them across statistical, deep learning and
hybrid models (the ‘Statistical, machine learning and Al models’ and
‘Hybrid models’ sections). We have also discussed the current capabili-
tiesand preparedness of the scientific and public health communities
for responding to emerging epidemics like COVID-19 (the ‘Epidemic
forecasting in action’ section). Despite the considerable progress
made, numerous challenges across multiple domains remain that
demand further attention, some of which are listed above. Addressing

these challenges has the potential to substantially improve forecasting
systems, ensure their extensibility to future datasources and ultimately
enhance our preparedness for future crises.
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