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Machine learning for data-centric epidemic 
forecasting

Alexander Rodríguez    1,2,3  , Harshavardhan Kamarthi    1,3  , Pulak Agarwal1, 
Javen Ho1, Mira Patel1, Suchet Sapre1 & B. Aditya Prakash    1 

The COVID-19 pandemic emphasized the importance of epidemic 
forecasting for decision makers in multiple domains, ranging from public 
health to the economy. Forecasting epidemic progression is a non-trivial 
task due to multiple confounding factors, such as human behaviour, 
pathogen dynamics and environmental conditions. However, the surge in 
research interest and initiatives from public health and funding agencies 
has fuelled the availability of new data sources that capture previously 
unobservable aspects of disease spread, paving the way for a spate of 
‘data-centred’ computational solutions that show promise for enhancing 
our forecasting capabilities. Here we discuss various methodological and 
practical advances and introduce a conceptual framework to navigate 
through them. First we list relevant datasets, such as symptomatic online 
surveys, retail and commerce, mobility and genomics data. Next we consider 
methods, focusing on recent data-driven statistical and deep learning-based 
methods, as well as hybrid models that combine domain knowledge of 
mechanistic models with the flexibility of statistical approaches. We also 
discuss experiences and challenges that arise in the real-world deployment 
of these forecasting systems, including decision-making informed by 
forecasts. Finally, we highlight some challenges and open problems 
found across the forecasting pipeline to enable robust future pandemic 
preparedness.

The devastating impact of the COVID-19 pandemic on human lives, 
economic development and society as a whole has illustrated our vul-
nerability to major epidemics. While the science of epidemic forecast-
ing is, in many respects, still in its initial stages, the current pandemic 
and those before it (such as H1N1 and Ebola) have shown its crucial 
importance. Preventing and responding to such pandemics requires 
actionable epidemic forecasts to (for example) design effective health-
care policies and make optimal supply chain decisions. Generating 
such forecasts presents a range of interdisciplinary challenges, includ-
ing understanding the biological processes driving pathogen evolu-
tion, assessing responses to immunization and drug resistance, and 

modelling population-level interactions among heterogeneous groups, 
among others1. In response to these challenges, there has been growing 
interest in data-centred solutions for epidemic forecasting2, build-
ing on several initiatives in the past few years from both government 
public health agencies and funding agencies. For instance, in 2013 the 
US Centers for Disease Control and Prevention (CDC) introduced the 
FluSight challenge3, which has not only aided in improving flu forecast-
ing capabilities and public health decision-making, but also helped to 
build a community of researchers around this topic. Similar initiatives 
have followed for Ebola4, dengue5 and also COVID-196 led by institutions  
around the globe such as the European CDC7, Intelligence Advanced 
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Datasets
A diverse set of datasets has been used to better inform epidemic 
forecasting, offering benefits ranging from early-stage indicators to 
capturing complementary facets that help to explain disease spread 
dynamics. Figure 2 shows sources of such data; most sources on the 
left side are from clinical disease surveillance, whereas those on the 
right are from digital disease surveillance.

Clinical information has traditionally been the primary source of 
surveillance data for epidemiology, including aggregate markers from 
epidemiological line lists and testing records (for example, tracking 
people infected, recovered and deceased). Another important data 
source is syndromic surveillance, which is based on clinical features 
discernible before a diagnosis is confirmed or activities prompted 
by the onset of symptoms, serving as an alert of changes in disease 
activity11. Digital surveillance takes advantage of the widespread use 
of mobile devices and innovations in digital communication to provide 
real-time data without extensive human effort. Such technological 
developments can be used to track the large-scale mobility and disease 
exposure of populations8. Recent works have leveraged features from 
various unconventional data sources as well. For instance, images from 
remote-sensing satellites have been used to detect outbreaks and 
track prevalence by monitoring vacancies in car parks near hospitals 
and other sensitive locations12. Pharmaceutical sales records, other 
retail records that capture useful consumer signals, and restaurant 
reservation data have also previously proven valuable for epidemic 
forecasting13. By incorporating these diverse and complementary 
data sources, researchers have sought to gain a more comprehensive 
understanding of disease spread dynamics.

Targets, tasks and evaluation
Forecasts can be divided into projections11,14 (for a specific future sce-
nario) and predictions15 (for the most likely scenario). Common predic-
tive targets are the number of symptomatic patients, hospitalizations16 
and mortality17 across varying spatial (for example, country, region/
state/province and county/city) and temporal (for example, weekly or 
daily) scales based on the requirements of decision makers and domain 
experts5,18. Tasks can be broadly classified as real-valued prediction 
tasks, such as the prediction of future incidences, nowcasting and 

Research Projects Activity (IARPA) and Pan American Health Organiza-
tion (PAHO) in Latin America. These forecasting initiatives have pro-
vided an unprecedented opportunity for researchers to observe both 
the successes and gaps in the current science of forecasting. Similarly, 
US agencies such as the National Science Foundation, the National 
Institutes of Health and US Army Research Laboratory have held a series 
of recent symposia and funding calls related to pandemic forecasting, 
which have given a much-needed impetus to this topic. This interest has 
also culminated in the establishment of the first Center for Forecasting 
and Outbreak Analytics by the US CDC in 2021.

This Review delves into data-driven computational methods driven 
by advances in machine learning and their capabilities to leverage new 
sources of data, from biological to behavioural. We found that the avail-
ability of data from reliable sources (several of them publicly accessible) 
is increasing, a trend that has only been accelerated by the COVID-19 
pandemic. This includes richer epidemiological datasets and digital 
data streams such as mobility data8, online surveys9 and wastewater 
samples10. We also found a number of technical innovations in machine 
learning and deep learning motivated by this domain, which have not 
only opened new horizons in the science of epidemic forecasting but 
also contributed to a broader understanding of time-series analysis and 
scientific artificial intelligence (AI). This Review is an effort to encom-
pass recent methodological and practical advances in machine learning 
at an opportune time to help and enable the broader computational 
and data/machine learning/AI communities to engage in this area. We 
refer to this recent body of work as data-centric epidemic forecasting. 
In the following sections, we will discuss the multiple components of 
data-centric epidemic forecasting, including datasets and problem 
formulation. We will then turn to modelling approaches: traditional 
machine learning, deep learning and hybrid methods. Finally, we  
discuss future challenges and opportunities in this emerging field.

Data-centric epidemic forecasting
Here we briefly describe the components of the data-centric forecasting 
pipeline, which we conceptualize in Fig. 1 as comprising three stages: 
data processing, model training and validation, and utilization and 
decision-making (see the Supplementary Information for in-depth 
discussion of each of the components).
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Fig. 1 | Overview of the data-centric epidemic forecasting pipeline. We begin 
by collecting data from heterogeneous sources, preparing these data and 
choosing from a set of epidemic targets and tasks. During model development, 
we consider various aspects of epidemic spread (such as spatiotemporal 
dynamics) and forecast utilization (for example, uncertainty quantification). 
Finally, real-time forecasts have multiple uses including dashboards, 

ensemble composition and other public health initiatives that serve as a 
platform for decision-making for resource allocation, risk assessment, general 
communication to the public and other domains. Red asterisks denote the 
forecasting tasks: the value of future incidence as an example of a real-valued 
task, and peak time as an example of an event-based task. t represents the 
forecasting week.
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peak incidence/height, and event-based prediction tasks that focus on 
predicting the time/stages of an outbreak or forecasting season, such as 
peak time and onset15. One common example of a point forecast metric 
for the evaluation of real-valued tasks is the mean absolute error17,19. 
Evaluations of probabilistic forecasts often rely on log scores for targets  
with a predefined range (for example, percentages)5,15,20,21. When  
working with unbounded predictions (such as the numbers of cases, 
deaths and hospitalizations), probabilistic metrics such as interval 
score or the weighted interval score17 are preferred, because they  
are ‘proper scoring rules’22. It is pertinent to note that the choice  
of evaluation metric should take into account the varying require-
ments of public health agencies and decision makers16 and that CDC 
evaluations often put more emphasis on probabilistic evaluations5,15.

Overview of methods
We mainly focus on predictions in this Review as this is where most 
data-driven work has been undertaken. We broadly classify methods  
into three categories: mechanistic; statistical, machine learning 
and AI; and hybrid. Our focus is on the latter two, where most recent 
data-centric work has been done. Nevertheless, we elaborate on mecha-
nistic models in the Supplementary Information and refer the reader 
to other excellent surveys2,23 for in-depth discussions.

We now discuss some key insights for different kinds of models in 
Table 1. First, mechanistic models explicitly encode the causal mecha-
nisms of epidemic spread. These models have a rich history dating back 
to the eighteenth century and offer valuable insight and explainability. 
However, incorporating non-traditional data sources to complement 
mechanistic models is often challenging24.

On the other hand, statistical, machine learning and AI models 
focus on learning empirical relationships between past and future 
phenomena. Early attempts involved traditional regression models 
that could incorporate various data sources, such as searches25,26 and 
social media27. However, these methods often fall short due to their 
limited flexibility in capturing useful features and patterns from com-
plex dynamics of the real world. This limitation is where deep learning 
models shine, which also allow us to apply recent advances to model 
spatiotemporal dynamics and address data sparsity—although at the 
cost of reduced explainability. Density estimation methods, grounded 
in Bayesian modelling, enable the incorporation of expert-based priors; 
however, this also makes them less amenable to incorporating new 
datasets, as specifying priors for each of these datasets becomes an 
additional challenge.

Lastly, the more recent hybrid models combine mechanistic models  
with the data-driven flexibility of AI. Mechanistic models may incor-
porate statistical components to address data sparsity and integrate 
new datasets. Conversely, statistical components can be used to refine 
the output of mechanistic models, enhancing modelling flexibility 
to learn expressive features while preserving explainability. Another 
hybrid paradigm involves machine learning models being informed 
by priors from mechanistic models through generating training data 
or serving as learning constraints. The last hybrid paradigm is the 
wisdom of crowds, where the objective is to harness multiple predic-
tors, encompassing all previous perspectives and their unique aspects.

In the following sections, we elaborate on the machine learning 
and hybrid modelling approaches in greater detail. We also discuss 
model selection in the Supplementary Information.

Statistical, machine learning and AI models
These models learn complex patterns from a wide variety of input 
signals that are assumed to influence the epidemic and then leverage 
them to forecast. Unlike mechanistic models, they typically require 
minimal modelling assumptions and offer a more flexible approach 
to extracting patterns from data.

Traditional machine learning models
A diverse range of machine learning methods have been used and  
tailored to facilitate more data-driven approaches to epidemic fore-
casting. Some of these methods specialize in making predictions based 
on time-series data through standard regression techniques, whereas 
others incorporate the analysis of unstructured data (such as textual 
information). The development of methods for the effective quanti-
fication of forecast uncertainty is also a crucial aspect.

Classical statistical methods. These techniques rely on traditional 
regression models and take different sets of indicators as inputs, such as 
the volumes of search queries containing expert-curated keywords25,26. 
Common modelling approaches here are based on autoregressive 
models28–30, nearest-neighbour regression31, multi-task Gaussian pro-
cesses and elastic nets32, the minimum description length principle33 
and dynamic Poisson autoregression34.

Text-based methods. Such methods leverage data sources in the form 
of text, which (as can be seen in Fig. 2) are important sources of digital 
surveillance. Stylography and part-of-speech detection35, as well as 
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Fig. 2 | Conceptualization of disease surveillance data sources. The pyramid 
depicts the potential stages people may progress though during an illness from 
bottom to top, with the area of each level proportional to the number of people 
in that stage. We connect each of these levels with our proposed classification 

of datasets (a detailed classification can be found in the Supplementary 
Information) used in the literature to inform forecasting models and depict 
representative examples. Sources on the left side of the pyramid are from direct 
clinical surveillance; those on the right are digital sources of proxy indicators.
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using word embeddings36, are popular techniques used to extract 
intermediate features that are useful for forecasting36. Others rely 
on topic models, which can automatically find topics and parts of the 
text that are often associated with symptoms and treatments37. More 
recent works also mapped tweets to stages of disease progression (for 
example, susceptible-infected-recovered), which led to improvements 
in population-level prediction38,39.

Probability density estimation. These methods estimate the prob-
ability distribution of the forecasts, thereby determining their uncer-
tainty, which is important for decision-making. Parametric inference 
methods, such as empirical Bayes, estimate the parameters of a dis-
tribution. They model epidemic curves as probabilistic functions of 
some specific characteristics selected by experts, including shape, 
peak height, peak week and pacing40. Non-parametric methods, which 
do not assume a fixed form or distribution for the underlying data, 
can also incorporate these epidemic curve characteristics as part of 
their kernel or similarity function. Prominent examples include kernel 
density estimation41 and delta density42, which were successfully used 

in past CDC flu forecasting initiatives20. Other non-parametric methods 
include Gaussian process43 and other kernel-based methods to model 
temporal and spatial correlations44.

Deep learning models
Artificial neural networks facilitate the handling of high-dimensional 
data and offer a flexible, generalizable approach to extract useful repre
sentations from various data modalities. Here we present key ideas in 
deep learning for epidemic forecasting, including modelling spatial–
temporal disease dynamics, handling data heterogeneity and multi-
modality, and taking advantage of transfer learning. We also discuss 
uncertainty quantification with these models, focusing on integrating 
multiple data modalities.

Off-the-shelf sequence models. These works propose to leverage 
general-purpose sequential models, such as recurrent neural networks 
and transformers, to model the temporal evolution of epidemics and 
incorporate time series of non-traditional data sources such as social 
media45, search trends46 and environmental factors47.

Table 1 | Most prominent capabilities and gaps (weaknesses) of modelling paradigms

Modelling paradigms Reference(s) Main capabilities Main gaps

Mechanistic Compartmental, meta-population, agent-based 65,87,106–113 X; UQ; ST NTD; DAT; NFE

Statistical, machine 
learning and AI

Traditional machine learning models

Linear models 25,26,114 NTD; X ST; NFE

Autoregressive models 19,28,30,115 NTD ST; NFE

Nonlinear models 31,34 NTD ST; NFE

Hierarchical models 29,32,33 ST NFE

Vision and language models

Vision models 12 NFE; NTD X; ST

Language-based models 35,36 NFE; NTD X; ST

Probabilistic topic models 37–39,116 NTD; X; UQ ST

Deep learning models

Off-the-shelf sequential models 45–47,86 NTD; NFE X; ST; DAT

Temporal similarity modelling 48–50 ST; NFE; NTD X; DAT

Spatiotemporal modelling 51–53 NTD; NFE X

Multimodal learning 54,55 DAT; NFE; NTD X

Transfer learning 56,57 DAT; NFE; NTD X

Probability density estimation

Kernel density estimation 41,42 EP; UQ NTD

Parametric Bayesian inference 40 EP; UQ NTD

Non-parametric methods 43,44 EP; UQ NTD

Neural uncertainty quantification 58,59 UQ; NFE; NTD X; EP

Hybrid

Mechanistic models with statistical components

Data assimilation 60–62 X NTD; NFE

Statistical estimation of mechanistic parameters 64,66–68,117 DAT; NTD; X NFE

Discrepancy modelling 69–72,118 DAT; NFE; X NTD

Priors from mechanistic models inform statistical models

Learning from synthetic and simulation data 73 DAT; EP NTD

Learning with mechanistic constraints 74,75 EP; DAT; NTD ST

Wisdom of crowds

Experts and prediction markets 76–80,119,120 MP; EP NTD; ST

Ensembles 5,17,18,20,30,81–84,101,121 MP; EP; NTD X

DAT, addresses data sparsity and quality issues; EP, incorporates expert priors and feedback; MP, leverages multiple prediction models; NFE, no manual feature engineering; NTD, incorporates 
non-traditional data sources; ST, incorporates complex spatial dynamics; UQ, uncertainty quantification; X, explainability.
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Modelling temporal dynamics via similarity. Several methods have 
enhanced general-purpose architectures to tackle the challenges posed 
by limited data by capitalizing on similarities across epidemic dyna
mics. These works developed clustering-based deep learning architec-
tures to explicitly model temporal similarity, comparing time-series 
segments across time (for example, past flu seasons with similar pat-
terns to the current season)48,49 and space (for example, regions with 
similar epidemic curves)50.

Incorporating structured spatial relationships. Deep learning  
methods for spatiotemporal modelling aim to capture the underlying 
spatial propagation of disease. Therefore, in addition to considering 
the spatial structure of geographical proximity, these models also 
leverage cross-regional mobility flows. Some early works proposed 
neural architectures composed of recurrent neural networks and con-
volutional layers to encode the spatial distribution of locations51. More 
recent methods are based on graph neural networks and recurrent 
neural networks that capture latent co-evolving dynamics at multiple 
locations52,53.

Leveraging heterogeneous and multimodal data. One key advan-
tage of deep learning models is their ability to facilitate the learning 
of knowledge representations from various data modalities. Recent 
work has explored leveraging multiple static features (for example, 
demographics, healthcare vulnerability) and dynamic features (for 
example, indicators of government response)54, while other studies 
investigated spatial features beyond proximity and mobility flows, 
such as travel restrictions55.

Transferring knowledge representations. Transfer learning is 
another effective solution for challenges associated with limited data, 
and is particularly valuable in responding to emerging pandemics  
where data is inherently scarce. For example, a heterogeneous domain 
transfer learning framework was proposed to adapt a historical influ-
enza forecasting model to the new scenario where COVID-19 and 
influenza coexist56. Another study formulated a meta-learning set-
ting to leverage data from regions initially impacted by the COVID-19 
pandemic, aiming to assist with predictions in regions on the verge of 
being impacted57.

Deep learning models for uncertainty quantification. Uncertainty in 
epidemic forecasts has been addressed by developing non-parametric 
deep generative models that leverage similarities in historical data58. 
Specifically, they learn forecast distributions as a probabilistic combi-
nation of representations of past time-series segments (for example, 
flu seasons). Follow-up work extended the idea to multiple sources 
and modalities, where these are combined dynamically based on their 
relevance in the accuracy and uncertainty of forecasts59.

Hybrid models
Hybrid models bridge the gaps between the domain knowledge embed-
ded in mechanistic models or guidance/predictions from experts, the 
predictive and pattern-mining capabilities of machine learning and 
predictions coming from experts, as well as the broader public. These 
types of model can be assembled in multiple ways, and we broadly 
classify them into the following types: (1) mechanistic models with 
statistical components, (2) statistical models informed by mechanistic 
models and (3) wisdom of crowd models.

Mechanistic models with statistical components
These methods make inferences using mechanistic models, which 
are aided by statistical components that address challenges such as 
facilitating model recalibration, incorporating data features from 
unconventional sources and accounting for modelling limitations. 
Here we present multiple ways to accomplish this.

Data assimilation. Techniques such as filtering are used to regularly 
reinitialize and recalibrate mechanistic models using the most recent 
observations from diverse sources; importantly, these observations 
must measure a state that is explicitly represented in the mechanistic 
model. One of the earliest studies on incorporating digital data sources 
involved integrating Google Flu Trends into forecasts of a suscepti-
ble–infectious–recovered–susceptible compartmental flu model60. 
Specifically, they assimilated Google Flu Trends (a proxy measure for 
‘number of infectious cases’) via ensemble adjustment Kalman filters. 
Follow-up works extended this method to other predictive targets 
(such as hospitalizations61), pathogens62 and agent-based models63.

Estimating parameters of a mechanistic model from features. 
These methods can integrate a broader range of data sources than data 
assimilation techniques. They are designed to alleviate the challenging 
optimization landscape that arises during the calibration of mechanis-
tic parameters via machine learning modules that ingest the data and 
inform parameter calibration. Some studies leverage geo-localized 
tweets to inform the estimation of the initial conditions of mechanistic 
models64. Others differentiate through a numerical solver (for example, 
Runge Kutta) to calibrate mechanistic parameters, taking into account 
observations from adjacent geographical regions65. One recent line 
of research proposed an alternative approach through the develop-
ment of differentiable simulators based on mechanistic models. These 
differentiable simulators enable end-to-end, gradient-based calibra-
tion of the mechanistic model parameters, circumventing the need 
for traditional numerical solvers. A mass action model (represented 
as an ordinary differential equation) can be seamlessly converted 
into a differentiable simulator. The simulator parameters can then 
be calibrated based on static (for example, demographic, policy) and 
time-varying (for example, mobility) features ingested by a machine 
learning module66,67. Recent work has extended this idea to agent-based 
models—which are inherently non-differentiable and orders of magni-
tude more complex—by combining tensorized operations, invariances 
in disease transmission and relaxations of discontinuous functions68.

Discrepancy modelling. This line of work acknowledges the limi-
tations of mechanistic models in modelling disease dynamics and 
proposes to incorporate a machine learning model to refine/correct 
predictions. Recent efforts introduced a hierarchical Bayesian model 
that incorporates prior knowledge and learns to correct mechanistic 
predictions based on trends, seasonal variations and state-specific 
deviations69. The same authors obtained first place in the 2018/2019 
CDC FluSight challenge by further developing their model through the 
imposition of consistency and facilitation of information sharing across 
scales70. Similarly, other methods leverage spatiotemporal dependen-
cies to correct mechanistic predictions of meta-population models71. 
Other studies72 have proposed that real-time forecasts of any model 
could be refined via machine learning by leveraging important patterns 
that these models may have missed during development. Recent work 
introduced a deep learning architecture based on recurrent graph 
neural networks to refine predictions based on the temporal dynamics 
of data revisions72; the authors showed that this led to improvements 
in all of the top five models in the COVID-19 Forecast Hub, composed 
of both mechanistic and statistical modules.

Priors from mechanistic models inform statistical models
In these methods, the statistical model incorporates components of 
mechanistic models as a source of prior knowledge that facilitates 
learning. One direct way to do this is via the use of high-resolution 
synthetic data from mechanistic models73. Specifically, a deep learning 
architecture that learns from simulation time-series data generated by 
a stochastic variant of the susceptible–exposed–infectious–recovered 
model was proposed. Another approach involves using mechanistic 
priors as integral components in the design of learning frameworks, and 
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thus informing machine learning models about mechanistic epidemic 
dynamics. Recent work built on physics-informed neural networks 
to jointly learn partially observed epidemic dynamics and connect 
them with heterogeneous datasets74. Meanwhile, other studies have 
incorporated constraints from mechanistic equations into their latent 
representations, which are learned through tensor factorization75.

Wisdom of crowd models
Wisdom of crowd methods harness the collective insights from  
previously introduced modelling approaches, human predictions and 
domain heuristics—expertise often excluded from models—to lever-
age common sense and specialized knowledge. Methods based on 
expert consensus76,77 and prediction markets78 have been developed 
for epidemic forecasting79, as well as predicting important variables 
such as vaccine efficacy, safety, timing and delivery80.

An adjacent approach involves using ensembles of predictions 
from multiple models, which are widely used to obtain better predic-
tive performance than their individual components. Indeed, ensemble 
methods have consistently outperformed most, if not all, individual 
methods in multiple CDC forecasting competitions—for example, 
influenza20, Ebola4,5 and COVID-1917. Aggregating ensemble models 
based on locations18, as well as uncertainty81, model complexity and 
diversity82 seems to yield good results. However, a key limitation of 
using ensembles in real-time forecasting is the availability of forecasts 
for all models in all instances to gauge their relative importance. This 
motivated the use of adaptive ensemble approaches83, using represent-
ative clustering84 or a simple equally weighted average of forecasts30. 
The latter has yielded good results in practice and has been used by the 
official US CDC ensemble for the COVID-19 pandemic.

Epidemic forecasting in action
We now describe some important initiatives for real-time epidemic fore-
casting, such as the CDC FluSight challenge and the COVID-19 Forecast 
Hub, which have helped to encourage research in this area. Despite their 
successes, challenges persist—from methodological problems to data 
quality issues. We also discuss recent methods that strive to integrate 
these forecasting tools with decision-making to help policymakers.

Real-time outbreak response
Real-time forecasting initiatives have energized research in epidemic 
forecasting, fostering knowledge exchange among researchers and 
translating results into public health tools. One prominent example 
is the CDC FluSight forecasting challenge for seasonal influenza15. In 
response to COVID-19, the US CDC and partners organized the COVID-19 
Forecast Hub6, which received international attention, and their predic-
tions were publicized on multiple web portals (including the official 
CDC website). Building on the COVID-19 Forecast Hub, the Scenario 
Hub focuses on projections for 6 months ahead, conditional on specific 
scenarios14. Among the most important insights from these initiatives 
is that no modelling approach by any single team was effective in all 
instances15,17,20. The teams that submit real-time forecasts need to deal 
with issues with operationalizing different methodologies, handling 
changing disease patterns, varying data availability and data quality 
issues. Some common problems are data access20, data biases and 
inconsistencies across multiple geographies85, data sparsity and noise86. 
These initiatives received international attention, sparking similar 
schemes in Europe7.

Performance on the ground
As mentioned, the 2013 US CDC FluSight challenge15 represented a pio-
neering effort in real-time forecasting. This initiative and others were 
usually followed by a systematic evaluation of forecasting performance. 
Comprehensive evaluations showcased the usefulness and maturity of 
methods for predicting seasonal influenza20. These successes spanned 
several similar initiatives for other diseases such as Ebola and dengue4,5. 

However, the COVID-19 pandemic exposed multiple shortcomings in 
epidemic forecasting and performance was uneven. There was often 
a conflation between projections and predictions. These are different 
types of forecast, as noted in the ‘Target, tasks and evaluation’ sec-
tion, and should be analysed separately. Projections and long-term 
predictions (6 months or longer) were frequently highlighted in the 
media in early stages of the pandemic; many turning out to be severely 
incorrect87, thereby impacting public trust. Short-term predictions 
(4 weeks ahead) emerged as a more viable alternative. In April 2020, the 
US CDC consortium COVID-19 Forecast Hub led these efforts and had 
considerably more success than initial projections, especially with the 
ensemble of all models. Nevertheless, there were several gaps: some-
times performance during trend changes and uncertainty calibration 
fell short of expectations17. Indeed, the CDC occasionally removed 2- to 
4-week-ahead case forecasts from their website due to concerns about 
well-calibrated uncertainty88.

Bridging forecasting and decision-making
Forecasting models have been leveraged to perform strategic and 
tactical decision-making by policymakers and public health workers. 
A strategic intervention involves decision-making at a large scale; for 
example, whether to cull or vaccinate animals against diseases89 or 
how to determine optimal policies for lockdowns and travel restric-
tions1. A tactical intervention focuses on achieving a small-scale goal 
whose action space is large, such as the allocation of ventilators and 
optimizing for the supply chain constraints of medical supplies90. 
One complementary approach to strategic decision-making is active 
management91, which proposes general principles for designing and 
adapting strategies. It has proved to be effective in applications such as 
controlling disease outbreaks92 and developing vaccination strategies91.

Open challenges and opportunities
As discussed in this survey, there have been noteworthy advancements 
in data-centric forecasting. However, the COVID-19 pandemic high-
lighted that, despite these advances, the scientific community was 
not fully prepared for a rapidly evolving crisis, and readiness may still 
be lacking. Achieving an effective pandemic response may require 
combined efforts across different domains, including data, modelling 
and evaluation. We now outline our forward-looking perspective on 
these important challenges.

Creating principled methods for data quality issues
Developing methods to address data-related issues could be a fruitful 
direction to improve our forecasting capabilities. We could formu-
late new statistical problems to improve data quality72 and explicitly 
account for biases in data that may affect the fairness of downstream 
decisions93. Other problems arise in datasets containing sensitive  
information (for example, electronic health records) for which we  
could exploit advances in federated learning and differential privacy94. 
We emphasize here the importance of efforts to build publicly acces-
sible data archives, such as that introduced by Reinhart et al.95. Building 
such infrastructure can accelerate research on data quality issues.

Going beyond short-term forecasting
Determining and expanding our forecasting limits remain open 
challenges96,97. To exploit long-term patterns from data, some works 
have developed methods to bridge mechanistic and AI approaches74, 
building on advances in scientific AI98. Incorporating scenario-based 
projections, causal inference and causal representation learning to 
connect multimodal data with interventions99 is another promising 
research direction. On the spatial scale, we can develop more princi-
pled methods that use spatial dynamics and hierarchical relationships. 
Other orthogonal aspects that provide useful higher-order patterns 
include multi-scale behavioural models2, the evolution (phylodynam-
ics) of pathogens100 and other biological indicators. Towards this goal, 
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developing methods to leverage multilevel dynamics and relations at 
multiple scales could be another fruitful direction.

Improving the combination of models and wisdom of crowds 
predictions
Combining ensembles of models to maximize their strengths remains 
difficult. The proficiency of a single model varies across temporal and 
spatial scales17. New models may be introduced, and some teams may 
change their methodologies or not publish predictions for a while101. 
In most studies, multiple weighting schemes are considered, but there 
is no consensus on which perform best. In this regard, it is important 
to explore new schemes using techniques such as optimal ensemble 
weighting and mixtures of experts102. Overcoming inefficiencies and 
misinformation103, as well as developing better interfaces that lever-
age advances in human–computer interactions to elicit detailed and 
reliable human predictions for prediction markets, are pressing open 
challenges.

Making forecasts explainable and actionable
For high-stakes decisions in public health, calibrated forecasts are cru-
cial, but they can be challenging because there are multiple sources of 
uncertainty. Recent work has shown the usefulness of taking data-driven 
representations of uncertainty58 from multiple sources into account. 
The explainability of predictions to domain experts is an important 
aspect to bridge forecasts and decision-making. Linear regression and 
mechanistic approaches can easily provide explanations, but other 
models (for example, artificial neural nets) require more sophistication 
to provide explanations48,58,86. In addition, the forecasting set-up and 
evaluation need to be constantly scrutinized to make forecasts suitable 
for public communication and decision-making. One possible direction 
could be defining new forecast targets104. For error metrics, we need a 
better understanding of which are most important for each decision 
type, and how to compare them across temporal and spatial scales. It 
is also necessary to standardize evaluation guidelines for presenting 
methodological advances105.

Evaluating ad hoc adjustments of real-world model 
deployment
The real-world deployment of forecasting systems requires a non-trivial 
amount of human involvement in (for example) handling anomalous 
data and predictions that look incorrect to the expert eye85,86. Other 
examples can be found when calibrating mechanistic models—one 
might need to adjust domain inputs, such as setting boundaries for 
parameter optimization106. Such interventions are crucial to the suc-
cess of models in real-world situations, such as the epidemic prediction 
challenges discussed in the ‘Real-time outbreak response’ section. 
However, these critical interventions are not always formally accounted 
for, and contribute to the technical debt (the future costs arising from 
inadequate solutions to current issues). It is therefore important to 
find ways to disentangle the main factors that affect a model or team’s 
performance, such as the methodology, ad hoc expert adjustments 
and technical debt. Otherwise, we may be uncertain about the true 
measurement of prediction challenges, which could compromise the 
generalizability and robustness of future pandemic responses.

To conclude, this Review provides an overview of data-centric 
methods for epidemic forecasting. We have highlighted recent data 
sources (the ‘Data-centric epidemic forecasting’ section) and discussed 
key approaches that utilize them across statistical, deep learning and 
hybrid models (the ‘Statistical, machine learning and AI models’ and 
‘Hybrid models’ sections). We have also discussed the current capabili-
ties and preparedness of the scientific and public health communities 
for responding to emerging epidemics like COVID-19 (the ‘Epidemic 
forecasting in action’ section). Despite the considerable progress 
made, numerous challenges across multiple domains remain that 
demand further attention, some of which are listed above. Addressing 

these challenges has the potential to substantially improve forecasting 
systems, ensure their extensibility to future data sources and ultimately 
enhance our preparedness for future crises.
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