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Abstract
Since the onset of the COVID-19 pandemic, there has been a grow-
ing interest in studying epidemiological models. Traditional mech-
anistic models mathematically describe the transmission mecha-
nisms of infectious diseases. However, they often fall short when
confronted with the growing challenges of today. Consequently,
Graph Neural Networks (GNNs) have emerged as a progressively
popular tool in epidemic research. In this paper, we endeavor to
furnish a comprehensive review of GNNs in epidemic tasks and
highlight potential future directions. To accomplish this objective,
we introduce hierarchical taxonomies for both epidemic tasks and
methodologies, o!ering a trajectory of development within this
domain. For epidemic tasks, we establish a taxonomy akin to those
typically employed within the epidemic domain. For methodology,
we categorize existing work into Neural Models and Hybrid Models.
Following this, we perform an exhaustive and systematic examina-
tion of the methodologies, encompassing both the tasks and their
technical details. Furthermore, we discuss the limitations of exist-
ing methods from diverse perspectives and systematically propose
future research directions. This survey aims to bridge literature
gaps and promote the progression of this promising "eld. We hope
that it will facilitate synergies between the communities of GNNs
and epidemiology, and contribute to their collective progress.

CCS Concepts
• Computing methodologies → Arti!cial intelligence.
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1 Introduction
Epidemiology has long been a critical "eld, with its origins tracing
back to ancient societies that observed patterns of disease spread [1,
2]. Although the conceptualization of epidemiology has evolved
over time, the terms health and control have been predominantly
associated with it since 1978 [3]. Currently, the World Health Orga-
nization (WHO) describes epidemiology as the investigation into
the distribution and determinants of health-related states or events,
encompassing issues including disease transmission, vaccination
e!orts [4, 5], cancer and diabetes treatment, etc. This de"nition un-
derscores the "eld’s emphasis on controlling health-related issues
and making informed decisions.

To address a range of health-related challenges, there is an indis-
pensable need for epidemic modeling, and researchers have devised
various mechanistic models [6, 7]. These models, grounded in math-
ematical formulations, simulate the dissemination of infectious
diseases by incorporating biological and behavioral underpinnings.
By considering factors such as population, they yield insights into
patterns of disease transmission and the e#cacy of intervention
strategies, thereby shaping public health policies [8, 9]. However,
these knowledge-driven methods often depend on oversimpli"ed
or "xed assumptions that can lead to biases in modeling. Conse-
quently, this compromises both the accuracy of predictions and
their ability to generalize across di!erent contexts.

To overcome the limitations of mechanistic models, there is
an emerging trend to adopt data-driven approaches in epidemic
forecasting tasks, with a particular emphasis on machine learning
and deep learning models [10]. Speci"cally, Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have
demonstrated great success in various epidemiological predictive
tasks, including forecasting daily new case counts, estimating virus
reproduction and doubling times, and determining disease-related
factors [11, 12, 13]. Despite their e!ectiveness in these tasks, these
models often fall short in incorporating relational information from
critical epidemiological data sources such as human mobility, geo-
graphic connections, and contact tracing. This de"ciency restricts
their utility in broader epidemiological applications.

Recently, the advances in Graph Neural Networks (GNNs) [14,
15, 16, 17] have set the stage for overcoming the aforementioned
challenges in epidemic modeling. Speci"cally, GNNs stand out for
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their ability to aggregate diverse information through a message-
passing mechanism, making them particularly suited for capturing
relational dynamics within graphs [18, 19]. Thus, by representing
interactions between entities as graphs, researchers can leverage
GNNs to harness relational data e!ectively and facilitate epidemi-
ology tasks [20, 21]. For instance, GNNs are often utilized to model
spatial interactions [22] and other complex interactions [23], en-
hancing the analysis of graph data and yielding more precise predic-
tions. In addition, GNNs bring a certain level of interpretability by
quantifying the in$uence of individual nodes (or entities) on "nal
prediction [24]. Moreover, the $exible design of GNNs facilitates
their integration with traditional mechanistic and probabilistic mod-
els to leverage expert knowledge and o!er measures of uncertainty.
As a result, GNNs have found extensive applications in various
tasks within the "eld including infection prediction [25] , outbreak
source detection [26], intervention modeling [27], etc., facilitating
advancements in epidemiology research.
Contributions. Given the pivotal role of epidemic modeling and
the growing use of GNNs, a systematic review of these algorithms
is vital for advancing the "eld. This paper aims to bridge the gap
with an in-depth overview and categorization of GNN applications
in epidemiology. Our objective is not just to spotlight current re-
search but also to identify future research avenues, enriching the
GNN and epidemiology "elds. By categorizing tasks, summariz-
ing methodologies, and suggesting future directions, we hope to
support researchers venturing into this interdisciplinary area.
Connection to Existing Surveys. Unlike earlier surveys focusing
on epidemiology and deep learning, which mainly predict COVID-
19 outcomes and seldom cover GNN-based methods [10, 28, 29, 12],
our paper provides an in-depth overview of GNNs in epidemic mod-
eling. Previous studies have incorporated GNNs but often in limited
contexts [30, 13], mostly virus transmission tasks. Our research,
uniquely focused on GNN approaches, spans a wider array of epi-
demic modeling tasks and presents the most current review of GNN
applications, delivering deeper insights than existing literature.

2 preliminaries and de!nitions
2.1 Learning on Graph Data
In this paper, we de"ne the graph data as 𝐿 = (𝑀 , E), with 𝑀
representing the node set comprising |𝑀 | = 𝑁 nodes. The edge set
E ↑ 𝑀 ↓𝑀 represents the connections between nodes. The feature
matrix X = {x1, x2, . . . , x𝐿 }↔ ↗ R𝐿↓𝑀 includes feature vectors x𝑁
associated with node 𝑂𝑁 , where 𝑃 denotes the feature dimension.
The adjacency matrix of𝐿 , denoted by A ↗ R𝐿↓𝐿 , sets A𝑁 𝑂 = 1 for
any existing edge 𝑄𝑁, 𝑂 ↗ E and A𝑁 𝑂 = 0 otherwise. The normalized
adjacency matrix is given by Â = D↘1/2AD↘1/2. The degree matrix
D, being a diagonal matrix, is characterized by D𝑁,𝑁 =

∑
𝑂 A𝑁, 𝑂 .

In the domain of graph learning, the node-level task stands out
as a signi"cant area of focus. The objective of this task is to forecast
the properties (i.e., numerical value or probability) or class of the
individual nodes. This process entails training a neural network
model that utilizes a subset of nodes with known properties, de-
noted asV𝑃 , to infer the properties of other unknown nodes. The
essence of this training is encapsulated by optimizing the function:

min𝑄 L(𝑅𝑄 (𝐿)) =
∑

𝑅𝐿 ↗V𝑀
𝑆 (𝑅𝑄 (X,A)𝑁 ;𝑇𝑁 ), (1)

where the function 𝑅𝑄 (X,A) aims to forecast the property for each
node, with 𝑇𝑁 representing the actual state of node 𝑂𝑁 . The discrep-
ancy between the predicted and true properties is quanti"ed using
a loss function 𝑆 (·, ·), such as RMSE (Root Mean Square Error).

Over recent years, GNNs have garnered increasing interest and
have been deployed across diverse "elds, including bioinformat-
ics, material science, chemistry, and neuroscience [31, 32, 33, 34].
Among them, GraphConvolutional Networks (GCN) [15] andGraph
Attention Networks (GAT) [16, 17], have advanced the frontier of
research on graph-structured data with their sophisticated and ef-
fective designs [14, 35, 36]. Typically, GNNs aim to learn graph
representations, including node embeddings h𝑁 ↗ R𝑆 , by utilizing
both the structural and feature information of a graph 𝐿 . The pro-
cess within a GNN involves two key operations: message passing
and aggregation of neighborhood information. This involves each
node in the graph repeatedly collecting and integrating informa-
tion from its neighbors as well as its own attributes to enhance its
representation. An 𝑈 layers GNN can be described as:

h(𝑇+1)
𝑁 = 𝑉 (h(𝑇 )

𝑁 ,AGG(h(𝑇 )
𝑂 ; 𝑊 ↗ A𝑁 )),≃𝑋 ↗ [𝑈], (2)

where h(𝑇 )
𝑁 denotes node 𝑂𝑁 representation at layer 𝑋 , starting with

h(0)
𝑁 = x𝑁 as initial features.A𝑁 is node 𝑂𝑁 ’s neighbors, with AGG(·)

and 𝑉 as the aggregation and activation functions, respectively.
After 𝑈 layers, 𝑌𝑁 undergoes a projection for "nal prediction.

2.2 Mechanistic Models
Empirical models [37, 38] in epidemic forecasting utilize historical
data to discern patterns and forecast the future spread of diseases. In
contrast, mechanistic models [39, 40] provide a detailed framework
that explores the biological and social complexities underlying the
transmission of infectious diseases, thus exceeding the reliance
on historical data inherent to empirical models. Among mechanis-
tic approaches, classic compartmental models [41] (e.g., SIR) are
particularly notable. These models adeptly simplify the intricate
dynamics of disease transmission into digestible components. This
simpli"cation facilitates a clearer understanding of infection spread,
serving as a valuable tool for both researchers and policymakers.
SIR Compartmental Model. In the domain of epidemiology [42,
43], it is widely hypothesized that the rate at which networks evolve
is signi"cantly slower compared to the propagation speed of dis-
eases. This fundamental assumption underpins the adoption of a
SIR model [41, 44], which is instrumental in accurately capturing
the dynamics of epidemic spread. The SIR model categorizes the
population into three distinct groups based on their disease status:
susceptible (S) to infection, currently infectious (I), and recovered
(R), with the latter group being immune to both contraction and
transmission of the disease. The SIR model, formulated using ordi-
nary di!erential equations (ODEs) [45], are as follows:

𝑍𝑎 (𝑏)
𝑍𝑏

= ↘𝑐 𝑎 (𝑏)𝑑 (𝑏)
𝑁

,
𝑍𝑑 (𝑏)
𝑍𝑏

= 𝑐
𝑎 (𝑏)𝑑 (𝑏)

𝑁
↘ 𝑒𝑑 (𝑏),

𝑍𝑓(𝑏)
𝑍𝑏

= 𝑒𝑑 (𝑏).
(3)

These equations distribute the total population 𝑁 across the afore-
mentioned categories, with the transitions between states regulated
by two pivotal parameters: the transmission rate 𝑐 (𝑎 → 𝑑 ) and
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Table 1: A brief description of epidemic tasks we categorized.

Tasks Time Interval Objective

Detection History-Present Incident Back-tracing
Surveillance Present Event Monitoring
Prediction Future Future Incident Prediction
Projection Future Change Simulation and Prediction

the recovery rate 𝑒 (𝑑 → 𝑓). The model posits a quadratic relation-
ship for disease transmission via interactions between susceptible
and infectious individuals (𝑐𝑎 (𝑏)𝑑 (𝑏)), alongside a linear recovery
mechanism (𝑒𝑑 (𝑏)). By "ne-tuning the parameters of the SIR model,
it is possible to compute the basic reproduction number 𝑓0 = 𝑐/𝑒 ,
serving as a metric for the disease transmission potentials [46, 47].
SIR Variants. The SIR model’s simplicity overlooks factors like
incubation periods and non-permanent immunity, prompting the
development of more detailed SIR variants. These include: i) SEIR
[48]: Adds an ‘Exposed’ compartment for those exposed but not
yet infectious [41, 49], enriching the SIR model to better capture
disease progression stages: 𝑎 → 𝑔 → 𝑑 → 𝑓. ii) SIRD: Introduces a
’Dead’ compartment to account for disease mortality, altering the
progression to: 𝑎 → 𝑑 → 𝑓 → 𝑃 . This modi"cation accounts for
individuals who succumb to the disease [50, 51, 52].
The EpiLearn Library. To facilitate the development of mecha-
nistic models and promote their integration with neural models, a
Python library named EpiLearn [53] has recently been developed
for the bene"t of both epidemiologists and data scientists. It pro-
vides a comprehensive set of tools for simulating data, training and
evaluating epidemic models, as well as visualizing epidemic data.
For more details, we recommend referring to the paper.

3 Taxonomies
3.1 Epidemiological Tasks
For epidemiological tasks, we provide a taxonomy from the perspec-
tive of epidemiologists and categorize the work into four categories
based on researchers’ goals: Detection, Surveillance, Prediction,
and Projection. A brief comparison of these tasks is shown in
Table 1; the detailed explanations are introduced as follows:

3.1.1 Detection. The goal of detection tasks is to identify health
states, disease spread, or other related incidents that happened at a
speci"c time. In this survey, we incorporate two di!erent detection
tasks from the view of graph data: source detection and transmission
detection. To formulate a mathematical de"nition, the temporal
network, which consists of sequenced graphs from di!erent time
points, is represented as 𝐿 = {𝐿0,𝐿1, . . . ,𝐿𝑈 }. Within a graph
𝐿𝑉 , the states of nodes and edges are represented by 𝑎𝑊𝑉 and 𝑎E𝑉
respectively. Then, the detection task can be expressed as predicting
𝑎𝑊𝑉 or 𝑎E𝑉 given graph 𝐿𝑈 and time point 𝑏 .

For example, "nding patient-zero [74, 54, 47], as a source de-
tection task, is important for identifying the source of disease out-
breaks and aims to "nd a set of nodes𝑀 on graph𝐿0. In this setting,
the problem can also be seen as identifying the state of each node
at the initial time point, which is 𝑎𝑊0 .

3.1.2 Surveillance. Surveillance tasks aim at providing timely and
accurate information to support decision-making and disease pre-
vention. Since a prompt response is needed, real-time processing

ability has been the most important requirement during model-
ing. Here, we provide a formal de"nition: given a temporal graph
𝐿 = {𝐿0,𝐿1, . . . ,𝐿𝑈 }, the goal is to identify a target statistic y on
graph 𝐿𝑈 at the present moment or in the short term.

To illustrate, tasks like detecting infected individuals promptly
[75] and estimating infection risks in di!erent locations in real-
time [55, 56, 76, 46] can be seen as surveillance tasks, as they their
prediction targets lie in present or near future.

3.1.3 Prediction. Similar to surveillance tasks, prediction tasks
also aim to forecast epidemic events using historical data. How-
ever, unlike surveillance tasks, prediction tasks typically involve
longer time spans and do not require real-time processing. There-
fore, prediction tasks are more interested in predicting the target
at the longer time ahead like 𝑕 + 1 instead of at time 𝑕 . Due to the
large amount of work, we further classify prediction tasks into two
categories based on the type of prediction target:
(1) Incidence Prediction. The target of incidence prediction is to pro-

vide quantitative results. In epidemic forecasting, incidences can
include the number of infections or deaths in the future [77, 78,
79, 80, 64, 65, 81, 82, 83], in$uenza activity level [84], In$uenza-
Like Illness (ILI) rates [85], vaccine hesitancy [86], etc. The
prediction of these incidences is important to decision-making,
proactive public health planning, and the e!ective management
of infectious diseases and other health challenges.

(2) Trend Prediction. Di!erent from incidence prediction tasks, the
target of trend prediction tasks is to identify epidemic spreading
patterns. For transmission among locations [59], prediction of
infection trend is formulated as an information retrieving prob-
lem and the goal is to predict the next region to be infected given
a historic spreading route. For transmission among individuals
or groups, the goal usually includes identifying transmission
dynamics in emerging high-risk groups [87].

3.1.4 Projection. Projection tasks are similar to prediction tasks,
butwith an additional intention to understand epidemic outcomes.
These tasks usually require models with the ability to incorporate
changes during the evolution of epidemics. Most of the projec-
tion tasks we collected involve "nding the optimal interventions
or maximizing in!uence to achieve targets like curbing the spread
of diseases. In$uence maximization [88] aims to identify a subset
of nodes so that the epidemic spreads most e!ectively across the
graph, e.g., node importance ranking [89, 90].

In this paper, we extend the traditional setting of in$uence
maximization and combine it with intervention strategy tasks to
form a more general de"nition as follows: Given a temporal graph
𝐿 = {𝑀 (𝑏), E(𝑏)}, the states of nodes ↗ 𝑀 and edges ↗ E are in$u-
enced by strategies de"ned as 𝑖𝑅 (𝑏) and 𝑖E (𝑏), which represents
strategies on nodes and edges respectively. The goal of the task is to
"nd optimal strategies so that the target is maximized or minimized.
For example, vaccine strategy tasks [57] aim to vaccinate the opti-
mal set of nodes to minimize epidemic damage. For interventions
throughout the period, strategies can include applying quarantine
level to nodes [58] and restricting mobility on edges [91, 27], which
denotes 𝑖𝑅 (𝑏) and 𝑖E (𝑏).

3.1.5 Perspectives from Data Scientists. Besides the epidemiolo-
gists’ perspective, it is also feasible to categorize these works from
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Table 2: Summary of epidemiological tasks and representative GNN-based methods.

Task Paper Methodology Hybrid Graph Construction

Detection SD-STGCN [54] GAT + GRU + SEIR ✁ Spatial-Temporal Graph; Static Graph Structure

Surveillance
WDCIP [55] GAE Spatial Graph; Static Graph Structure

GraphDNA [56] GCN + LSTM Spatial-Temporal Graph; Dynamic Graph Structure

Projection

MMCA-GNNA [57] GNN + SIR + RL ✁
Spatial-Temporal Graph; Static Graph Structure

DURLECA [27] GNN + RL
IDRLECA [58] GNN + RL Spatial-Temporal Graph; Dynamic Graph Structure

Prediction

DGDI [59] GCN + Self-Attention Spatial Graph; Static Graph Structure
DVGSN [60] GNN Temporal-Only Graph; Static Graph Structure
STAN [22] GAT + GRU

Spatial-Temporal Graph; Static Graph Structure

MSDNet [61] GAT + GRU + SIS ✁

SMPNN [62] MPNN + Autoregression
ATMGNN [63] MPNN/MGNN + LSTM/Transformer
DASTGN [64] GNN + Attention + GRU
MSGNN [65] GCN + N-Beats
STEP [66] GCN + Attention + GRU
GSRNN [67] GNN + RNN

Mepo GNN [68, 23] (TCN + GCN) + Modi"ed SIR ✁

Spatial-Temporal Graph; Dynamic Graph Structure

Epi-Cola-GNN [25] Cola-GNN + Modi"ed SIR ✁

CausalGNN [21] GNN + SIRD ✁

ATGCN [69] GNN + LSTM
HierST [70] GNN + LSTM
RESEAT [71] GNN + Self-Attention

SAIFlu-Net [72] GNN + LSTM
Epi-GNN [73] GCN + Attention + RNN
Cola-GNN [20] GCN + Attention + RNN

data scientists’ view. Here we provide a further taxonomy of the
computational pipeline in terms of model inputs and outputs:
(1) For model inputs, they consist mainly of two elements: node fea-

tures and the graph structure. Based on the temporal characteris-
tics of nodes, we can further categorize these work into spatial-
only tasks, temporal-only [85], and spatial-temporal tasks.
In addition, based on the temporality and learnability of graph
structure, we can also use static or dynamic classi"cations to
distinguish these works.

(2) In terms of model outputs, we summarize these works as fol-
lows: scalar, graph, and action sequence. Scalar outputs are
usually used in prediction tasks which provide indicators of the
epidemic like infected cases. Some works focus on epidemic
graph construction and their outputs are graphs [92, 55]. Finally,
the projection tasks we collected adopt Reinforcement Learning
(RL), which outputs the actions taken at each time step, forming
a consecutive action sequence [57, 58, 91, 27].

3.2 Graph Construction
For graph construction, we provide a taxonomy based on the dy-
namicity of nodes and edges as follows.
Static Node Features. Static node features typically refer to char-
acteristics that do not change with time. The shape of static features
can be represented as R𝐿↓𝑋 , where 𝑌 refers to the number of fea-
tures. Besides tasks involving time series, most GNN tasks are using
static features. For example, in a contact graph in which individuals
are modeled as nodes and contact information represents edges,

personal characteristics like gender and age can be used as static fea-
tures during training and prediction [75]. However, tasks involving
time series can also use static features as additional information.
Dynamic Node Features. Contrary to static features, dynamic
features represent characteristics that change through time. This
type of data is commonly seen in time-series forecasting tasks and
the models usually require inputs at each time point. Therefore,
the shape of the dynamic features can be represented as R𝐿↓𝑈↓𝑋 ,
where 𝑕 refers to the number of time points given. As an example,
the number of daily con"rmed cases in a region can be seen as
dynamic features [73]. Although most models take in a single slice
of dynamic features at each time point, some models use the entire
dynamic features across time 𝑕 in a single input [74].
Static Graph Structure. Static graph structures are generated
from existing data, which are consistent across training or di!erent
times. For example, geographical adjacency 𝑗 often links various
regions (nodes) in the graph 𝐿 for multi-regional tasks, using re-
gion distance or other criteria for edge weights [93, 78]. Another
strategy explores human mobility or transitions, e.g., linking nodes
through nearest neighbors in the case of COVID-19 transmission.
This method takes into consideration the distribution of the pop-
ulation and individual movements between various locations [59,
55]. When nodes represent individuals, contact information may
be used as connections to identify disease-spreading risks [94, 95].
Dynamic Graph Structure. Determining the structure of a dy-
namic graph commonly involves one of two methodologies. One
approach is the modi"cation of adjacency relations over time or
throughout the virus propagation process. For example, [91] utilize
E(𝑏) = {𝑄𝑌𝑅 (𝑏)} to represent the set of edges at time step 𝑏 , which
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Figure 1: GNNs aggregate information from neighborhoods.

connect individuals based on transmission probability. Another
strategy entails the learning of adaptive edges or edge weights
during the training phase. Given the dynamic nature of disease
transmission, which evolves at each time step, traditional geograph-
ical adjacency matrices fall short of accurately representing true
connectivity. Recent studies [51, 20, 23] have aimed for models
to learn an adaptive relationship between nodes. This typically
involves initially generating node features via a neural network,
followed by the computation of an attention matrix to depict dy-
namic connectivity, often expressed as A𝑉 = 𝑘𝑁, 𝑂 ↗ R𝐿↓𝐿 , where
𝑘𝑁, 𝑂 indicates the in$uence of node 𝑂 𝑂 on node 𝑂𝑁 .

3.3 Methodological Distinctions
The methodologies of the GNNs in epidemic modeling can be
broadly classi"ed into two categories: Neural Models and Hy-
brid Models. This classi"cation illuminates the extent of methods
that combine computational techniques with epidemiological in-
sights. Both categories employ neural networks, yet they diverge
in their underlying principles. (a) Neural Models primarily focus
on a data-driven approach and leverage the power of deep learning
(i.e., GNNs in our paper) to uncover complex patterns in disease
dynamics without explicit encoding of the underlying epidemio-
logical processes. (b) On the other hand, Hybrid Models represent
a synergistic fusion of mechanistic epidemiological models with
neural networks. This integration allows for the structured, theory-
informed insights of mechanistic models to complement the $exible,
data-driven nature of GNNs, aiming to deliver predictions that are
interpretable, accurate, and grounded in theoretical knowledge.

4 Methodology
In this section, we provide a detailed illustration of the methods
in epidemic modeling, all of which utilize GNNs as the backbone
model as shown in Figure 1. We organize these approaches into two
main categories, as previously introduced in Section 3.3: Neural
Models and Hybrid Models. This categorization hinges on whether
mechanistic models are integrated.

4.1 Neural Models
When utilizing GNNs for epidemic modeling, numerous studies
have exclusively employed GNNs without incorporating mechanis-
tic models into their tasks, which we term Neural Models. These
models excel at learning from raw data, identifying complex pat-
terns across varied inputs, and signi"cantly boosting task perfor-
mance. In this subsection, we delve into the (GNN-based) Neural

Models in epidemic modeling, dissected through three perspec-
tives: (a) Spatial Dynamics Modeling, (b) Temporal Dynamics
Modeling, and (c) Intervention Modeling. This categorization
is designed to speci"cally tackle the challenges of modeling the
spatial spread, temporal evolution, and the impact of intervention
strategies through the advanced capabilities of GNNs.

4.1.1 Spatial Dynamics Modeling. One advantage of GNNs, e.g.,
GCN or GAT, is their ability to capture spatial relationships through
various aggregation processes, which can analyze and capture the
spatial dimensions of disease propagation. Numerous studies rep-
resent the inherent structure of geographical data as graph data,
denoted as A, where nodes depict regions (e.g., cities, neighbor-
hoods, or countries), and edges describe connections between these
regions (e.g., roads, $ights, or potential vectors for disease trans-
mission). Subsequently, GNNs are applied to the graph data to un-
cover complex relationships and dependencies at the regional level,
facilitating predictions regarding disease spread across di!erent
areas [96, 97, 63, 94, 98].

In the context of GNNmodeling, the signi"cance of edge weights
is paramount, as they encapsulate the intensity and nature of inter-
actions. Within epidemiological studies, these weights are often de-
rived from themobility or social connectedness between regions [62,
99]. For instance, studies such as [27, 68] utilize Origin-Destination
(OD) $ows to quantify inter-regional mobility, thereby dynamically
capturing the intensity of transmission. To further enhance the spa-
tial context of each node within the graph, some research advocates
for the implementation of positional encoding techniques [100, 101].
These techniques are designed to augment the nodes’ spatial aware-
ness. For example, Liu et al. [59] introduced a unique encoding for
each location, denoted as 𝑖𝑔 (𝑙), with even and odd elements rep-
resented by sin(𝑙/10000𝑁/𝑃) and cos(𝑙/10000𝑁↘1/𝑃) respectively,
where 𝑈 denotes the dimension of the encoding.

While GNNs have shown success in modeling spatial relations,
challenges arise when dealing with varying input data. Speci"cally,
the absence of direct structural information and the introduction
of more complex structural information pose additional di#culties
during modeling. To tackle these challenges, several studies have
attempted solutions, as outlined below.
Adaptive Structure Learning. There are occasions when adja-
cency relationship information is not available in the real world,
often due to data scarcity. To overcome this challenge, several
studies highlight the importance of learning an adaptive structure
throughout the training process [70, 69]. For instance, Wang et
al. [69] introduced a graph structure learning module, denoted as
𝑅𝑄 . This module is designed to calculate node similarities, thereby
representing spatial relationships as follows:

M1 = tanh(𝑅𝑄1 (𝑚X1)), M2 = tanh(𝑅𝑄2 (𝑚X2)),
A = ReLU(tanh(𝑚 (M2M↔

2 ↘M1M↔
1 ))),

(4)

where X1 and X2 are randomly initialized, learnable node embed-
dings, while 𝑚 represents a hyper-parameter. Shan et al. [92] em-
ployed a method to estimate the graph Laplacian from COVID-19
data through convex optimization of derived eigenvectors. This
approach aims to identify dynamic patterns of pandemic spread
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among countries by analyzing their structural relationships. Addi-
tionally, inspired by recent advancements in attention-based mech-
anisms [102, 103, 104], a considerable portion of research suggests
the use of an attention matrix to illustrate the relationships between
nodes [20, 51, 105]. Notably, Cola-GNN [20] pioneers the applica-
tion of additive attention in learning the adaptive structure, which
is de"ned as follows: 𝑘𝑁, 𝑂 = v𝑈𝑛(W𝑍h𝑁 +W𝑉h𝑂 + b𝑍 ) + 𝑜𝑅 , where 𝑛
is an activation function,W𝑍 ,W𝑉 ↗ R𝑆↓𝑀 , b𝑍 ↗ R𝑆 , and 𝑜𝑅 ↗ R are
trainable parameters, with 𝑍 as a hyperparameter controlling the
dimensions of these parameters. 𝑘𝑁, 𝑂 re$ects the impact of location
𝑊 on location 𝑝 . This approach allows for dynamic adaptation to
changes in graph structure, e!ectively capturing asymmetric and
complex viral transmission patterns.
Multi-Scale Modeling. Previous approaches typically operate at
a singular level, overlooking the multifaceted nature of real-world
epidemiological data, which encompasses multiple scales such as
country, state, and community levels. For epidemiological tasks,
multi-scale modeling is imperative for capturing the dynamics of
disease spread across these varied levels, from individual behaviors
to global dissemination. HierST [70] leverages multi-scale mod-
eling to e!ectively capture the spread of COVID-19 across di!er-
ent administrative levels by constructing a uni"ed graph, which
encapsulates the spatial correlation dynamics both within and be-
tween these levels. To further address both local interactions and
long-range dependencies, MSGNN [65] is designed to integrate
in$uences from both immediate and broader regions on disease
transmission.

4.1.2 Temporal Dynamics Modeling. The temporal dynamics in
epidemiological models are pivotal for capturing the evolution of
disease spread. These models typically conceptualize graphs as
spatio-temporal networks, underscoring the signi"cance of tempo-
ral data in comprehending disease dynamics, and forecasting future
trends [60, 106]. A particular strand of research utilizes RNN-based
models (e.g., LSTM or GRU), as mechanisms to extract node features.
These features are then incorporated into the graph convolution
process [107, 70]. A simple way [108] to achieve this by executing
the concat operator: h = MLP(x𝑉 |x𝑉↘1 |...|x𝑉↘𝑆 ) where h is simply
the output of an MLP (Multilayer Perceptron) over the node fea-
tures x at time 𝑏 reaching back 𝑍 days. Another surge of approaches
executes graph spatial convolution in each time step separately, and
then leverages all outputs of the GNNs as the input of the temporal
module and utilizes them for "nal downstream tasks like the pre-
diction [22, 106, 109, 110]. STEP [66] execute the multi-layers graph
convolution operation to get all node embedding h, and then lever-
age the GRU to get the "nal output: h𝑉 = z𝑉 ⇐ h𝑉↘1 + (1 ↘ z𝑉 ) ⇐ h⇒𝑉 ,
where h𝑉 is the "nal result, and z𝑉 is the result of the update gate,
which controls the in$ow of information in the form of gating.
The Hadamard product of z𝑉 and h𝑉↘1 represents the information
retained to the "nal memory at the previous timestep.

In contrast to the initial two methodologies, numerous studies
achieve their "nal output by iteratively layering GNN and temporal
models [111]. Some work [112, 54] advocate for the employment
of Spatio-Temporal Graph Neural Networks (STGNNs) [113, 114,
115] to extract insights from multivariate spatiotemporal epidemic
graphs. An STGNN integrates many ST-Conv blocks, which com-
prise a spatial layer $anked by two temporal layers. Each temporal

layer features a 1-D CNN operating along the time axis, followed
by a Gated Linear Unit (GLU), to delineate the temporal dynam-
ics. The spatial layer utyeahilizes a GCN based on the Chebyshev
polynomials approximation [116, 117] for spatial analysis. To fur-
ther re"ne the understanding of spatial dynamics during disease
evolution, RESEAT [71] proposes the continuous maintenance and
adaptive updating of an attention matrix. This process aims to
capture regional correlations throughout the input data period:

𝑏𝑞𝑉𝑁, 𝑂 (A) = A𝑉
𝑁 · A𝑉

𝑂 , A𝑉+1
𝑁, 𝑂 = softmax(𝑘𝑉+1𝑁, 𝑂 + 𝑏𝑞𝑉𝑁, 𝑂 (A)),

where A𝑉
𝑁, 𝑂 ↗ R denotes the attention weight between regions 𝑝 and

𝑊 at time step 𝑏 ; then 𝑗𝑏𝑏𝑁 =
∑𝐿

𝑂=1 A
𝑉
𝑁, 𝑂 · x𝑂 is employed as the "nal

feature for the node 𝑂𝑁 . Through this mechanism, RESEAT adeptly
captures not only temporal patterns but also the dynamically evolv-
ing regional interrelationships. To integrate explicit observations
with implicit factors over time, Cui et al. [105] introduced a new case
prediction methodology within an encoder-decoder framework.
They contend that relying solely on observed case data, which can
be inaccurate, may impair prediction performance. Accordingly,
their proposed decoder is designed to incorporate inputs of new
cases and deaths, thereby dynamically re$ecting temporal changes.

4.1.3 Intervention Modeling. Intervention modeling o!ers a de-
tailed perspective on epidemic spread by simulating the behaviors
and interactions of individuals within a network based on inter-
vention strategies. This method provides an intricate view of in-
dividual actions, mobility patterns, and the likelihood of disease
transmission. When combined with GNN, this approach enhances
the model’s capability to represent the diversity and complexity
inherent in real-world social networks. Song et al. [27] introduced
a reinforcement learning framework that dynamically optimizes
public health interventions to strike a balance between controlling
the epidemic and minimizing economic impact. To delve deeper
into the individual underlying dynamics, Meirom et al. [91] pro-
posed a dual GNN module strategy. One module updates the node
representations according to dynamic processes, while the other
manages the propagation of long-range information. Subsequently,
they employ RL to modulate the dynamics of social interaction
graphs and perform intervention actions on them.

IDRLECA [24] embodies a novel integration, combining an in-
fection probability model with an innovative GNN design. The
infection probability model calculates the current likelihood of
each individual’s infection status. This information, along with
personal health and movement data, is utilized to forecast virus
transmission through human contacts using the GNN:

𝑞𝑁,infected = 1 ↘ 𝑞𝑁,healthy = 1 ↘ 𝑞𝑁,healthy,𝑈 ↓ (1 ↘ 𝑞𝑎 )contacts, (5)

here 𝑞𝑁,infected represents the probability that individual 𝑝 is infected,
while 𝑞𝑁,healthy,𝑈 denotes the baseline probability of individual 𝑝
being healthy at time𝑕 , before accounting for contact-related risks.
𝑞𝑎 refers to the probability of infection from a single contact. Addi-
tionally, a custom reward function is designed to simultaneously
minimize the spread of infections and the associated costs, striking
a balance between health objectives and economic considerations:

𝑟 = ↘
(
exp (ω𝑑/𝑠𝑏 ) + exp

(
ω𝑡/𝑠𝑐

) )
. (6)
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This function considers the change in the number of infections (ω𝑑 )
and the cost of mobility interventions (ω𝑡), with 𝑠𝑏 and 𝑠𝑐 acting
as soft thresholds for these changes.

4.2 Hybrid Models
Unlike Neural Models described above, Hybrid models merge neural
networks’ predictive power with mechanistic models’ fundamental
principles, boosting accuracy and interpretability. These can be split
into Parameter Estimation for Mechanistic Model and Mechanistic
Informed Neural Model. The former updates mechanistic model
parameters with neural networks to re$ect current epidemic trends,
while the latter integrates mechanistic priors into neural networks,
infusing domain knowledge and guiding learning toward realistic
disease dynamics. This approach leverages neural models’ data-
driven insights while grounding predictions in epidemiological
theory for a well-rounded epidemic prediction strategy.
4.2.1 Parameter Estimation for Mechanistic Models. This line of
research highlights that hybrid models, which integrate neural net-
works, dynamically adjust the parameters of mechanistic models.
This combination enables the analysis of real-time data, thus inform-
ing and re"ning mechanistic models to ensure their simulations
accurately mirror the dynamics of actual epidemics [57, 61, 98].
Notably, studies like [98, 118] employ GNNs to estimate the con-
tact (transmission) rate, 𝑐 , and to monitor the epidemic evolution
through the implementation of the SIR model. Further, research [22,
61] estimates both the transmission rates 𝑐 and recovery rates 𝑒
by leveraging outputs from the GNN. This methodology initiates
with the utilization of GRU to derive node embeddings h, which
subsequently facilitate the calculation of parameters:

𝑐,𝑒 = MLP1 (h) ω𝑑 ,ω𝑓 = MLP2 (h), (7)
where ω𝑑 and ω𝑓 denote the daily increases in the number of

infected and recovered cases, respectively. To enhance the model’s
ability to leverage the dynamics of the pandemic for regulating
longer-term progressions, the researchers utilize the predicted trans-
mission and recovery rates to calculate predictions based on the
dynamics of the disease spread:

ω̂𝑏
𝑁
=
[
ω̂𝑏

𝑁
𝑂+1, ω̂𝑏

𝑁
𝑂+2, ..., ω̂𝑏

𝑁
𝑂+𝑀𝑃

]
,

each ω̂𝑏
𝑁
𝐿 = 𝑑𝑒𝐿↘1 ↘ 𝑓𝑏𝐿↘1 = 𝑑 (𝐿𝑃 ↘ 𝑏𝑁𝐿↘1 ↘ 𝑔̂𝑁𝐿↘1 ) ↘ 𝑓𝑏𝑁𝐿↘1,

ω̂𝑔
𝑁
=
[
ω̂𝑔

𝑁
𝑂+1, ω̂𝑔

𝑁
𝑂+2, ..., ω̂𝑔

𝑁
𝑂+𝑀𝑃

]
, each ω̂𝑔

𝑁
𝐿 = 𝑓𝑏𝑁𝐿↘1,

(8)

where 𝑑𝑆𝑁↘1 and 𝑓𝑆𝑁↘1 are calculated using the previous day actual
infected and recovered cases. 𝑁𝑕 is the population size, 𝑏 time steps,
and 𝑈𝑕 is the forecast horizon. The researchers then propose two
loss functions for short and long-term pandemic trends.

To go beyond single-region recognition, MepoGNN [68, 119] ex-
tends the SIR model to the metapopulation variant [120, 121, 122],
accommodating heterogeneity within populations and incorporat-
ing human mobility to model the spread between sub-populations:

𝑆𝑒𝐿 (𝑉 )
𝑆𝑉

= ↘𝑑𝐿 (𝑉 ) · 𝑒𝐿 (𝑉 )
𝑄∑
𝑅=1

(
𝑋 𝑅𝐿 (𝑉 )
𝑖 𝑅

+
𝑋𝐿 𝑅 (𝑉 )
𝑖𝐿

)
𝑏 𝑅 (𝑉 ),

𝑆𝑏𝐿 (𝑉 )
𝑆𝑉

= 𝑑𝐿 (𝑉 ) · 𝑒𝐿 (𝑉 )
𝑄∑
𝑅=1

(
𝑋 𝑅𝐿 (𝑉 )
𝑖 𝑅

+
𝑋𝐿 𝑅 (𝑉 )
𝑖𝐿

)
𝑏 𝑅 (𝑉 ) ↘ 𝑓𝐿 (𝑉 ) · 𝑏𝐿 (𝑉 ),

𝑆𝑔𝐿 (𝑉 )
𝑆𝑉

= 𝑓𝐿 (𝑉 ) · 𝑏𝐿 (𝑉 ) .

(9)

MepoGNN incorporates a spatio-temporal GNN designed to learn
three dynamic parameters: 𝑐𝑁 (𝑏 +1), 𝑒𝑁 (𝑏 +1), andH(𝑏), throughout
the evolving timeframe. Here, H(𝑏) signi"es the epidemic propa-
gation matrix, capturing human mobility between regions, repre-
sented by {𝑌(𝑏)𝑁 𝑂 |𝑝, 𝑊 ↗ {1, 2, ...,𝑁 }}. The model thereby generates
its "nal prediction of daily con"rmed cases as follows:

𝑇𝑁 (𝑏) = 𝑐𝑁 (𝑏)
∑𝐿

𝑂=1
(
𝑌 𝑂𝑁 (𝑏)/𝑖 𝑂 + 𝑌𝑁 𝑂 (𝑏)/𝑖𝑁

)
𝑑 𝑂 (𝑏), (10)

Recent work [25] integrates the Cola-GNN [20] framework with the
SIR model through the development of Epi-Cola-GNN, introducing
a mobility matrix ε to capture the dynamics of infectious disease
spread across di!erent locations. Within this matrix, 𝑢𝑁 𝑂 quanti"es
the intensity of human mobility from location 𝑝 to location 𝑊 , o!er-
ing a nuanced perspective on the spatial transmission of diseases.
This incorporation leads to a modi"cation in the representation of
infectious cases within the SIR model framework:

𝑍𝑑𝑁
𝑍𝑏

= 𝑐𝑁 𝑑𝑁 ↘ 𝑒𝑁 𝑑𝑁 ↘
𝐿∑

𝑂=1, 𝑂ω𝑁
𝑢𝑁, 𝑂 𝑑𝑁 +

𝐿∑
𝑂=1, 𝑂ω𝑁

𝑢 𝑂,𝑁 𝑑 𝑂 . (11)

Furthermore, they introduce the concept of the Next-Generation
Matrix (NGM) [123], which provides a clearer epidemiological inter-
pretation and more e!ectively supports both intra-location spread
and inter-location transmission in$uenced by human mobility.

Instead of simply estimating the rates, EpiGCN [124] innovates
by using three separate linear layers to convert node features into
SIR states, improving the model data awareness:

𝑎𝑅 = 𝑉 (W𝑍 · h𝑅 + 𝑜𝑍 ), 𝑑𝑅 = 𝑉 (W𝑁 · h𝑅 + 𝑜𝑁 ),𝑓𝑅 = 𝑉 (W𝑗 · h𝑅 + 𝑜𝑗 ).

Subsequently, they re"ne the process of updating the SIR model
(Eq. (3)) and introduce a novel SIR message-passing mechanism
that aggregates information from neighboring nodes. This approach
modi"es the conventional SIR update equation to incorporate spa-
tial dependencies and interactions within the network:

𝑒𝑆 = 𝑒𝑆 ↘ Wtran · concat
(
𝑒𝑆,

∑
w↗A𝑆

𝑘𝑇 𝑏𝑇
)
, 𝑔𝑆 = 𝑔𝑆 +Wrecov · 𝑏𝑆,

𝑏𝑆 = 𝑏𝑆 +Wtran · concat
(
𝑒𝑆,

∑
w↗A𝑆

𝑘𝑇 𝑏𝑇
)
↘ Wrecov𝑏𝑆,

where Wtran ↗ R2𝑀↓𝑀 and Wrecov ↗ R𝑀↓𝑀 denote the matrices
for linear transformations corresponding to the transmission and
recovery processes, respectively. Ultimately, the SIR states are con-
catenated and transformed to align with the prediction objectives:

𝑇𝑅 = softmax
(
Woutput · concat(𝑎𝑅, 𝑑𝑅,𝑓𝑅)

)
. (12)

4.2.2 Mechanistic-Informed Neural Models. Unlike previous meth-
ods wherein neural networks dynamically adjust the parameters of
mechanistic models based on data inputs,mechanistic-informed neu-
ral models utilize domain knowledge from mechanistic models to
inform the architecture and learning processes of GNNs. This strat-
egy $exibility allows for a swift adaptation to changing conditions,
markedly improving the accuracy of forecasts and the e!ective-
ness of interventions. Certain studies [125, 55, 95] utilize the SIR
model to generate target data by simulating epidemic spreads from
individual nodes, which are then employed to train GNNs for down-
stream tasks. In the context of source detection tasks, such as those
discussed in [26, 47, 54], one-hot encoded node states 𝑣𝑉𝑁 ↗ {0, 1}𝑙 ,
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with𝑤 representing the number of possible states, are used as in-
puts for the GNN, where the states are de"ned as either {S, E, I, R} or
{S, I, R}. Song et al. [27] integrated SIHR (a variant of SIR) [126] sim-
ulation environment with the RL framework, providing a dynamic
model of epidemic progression for the RL agent. This capability
allows the agent to account for individuals who are hospitalized,
enabling the dynamic modi"cation of mobility control policies.

To explicitly capture causal dynamics, CausalGNN [21] intro-
duces a novel approach to causal modeling by leveraging causal
features Q𝑉 = (𝑥𝑁,𝑉 ) ↗ R𝐿↓4, with 𝑥𝑁,𝑉 : 𝑎𝑁 (𝑏), 𝑑𝑁 (𝑏),𝑓𝑁 (𝑏),𝑃𝑁 (𝑏)
representing the cumulative number of individuals in each state of
the SIRD model. A causal encoder is then designed to transform
these causal features into node embeddings, operating as follows:

H𝑉
𝑎 = tanh(Q𝑉W

𝑉
𝑘 + 𝑜𝑉𝑘 ) ↗ R𝐿↓𝑀 , (13)

where W𝑉
𝑘 ↗ R4↓𝑀 and 𝑜𝑉𝑘 ↗ R𝑀 denote model parameters, and

these causal features are intended to be concatenated with other
node embeddings. The spatial GNN architecture also infers the SIRD
rates 𝑐𝑁 (𝑏),𝑒𝑁 (𝑏), 𝑦𝑁 (𝑏) by providing P𝑉 = (𝑞𝑁,𝑉 ) ↗ R𝐿↓3, which are
subsequently utilized for SIRD model updates.

5 Future Work
While many challenges have been addressed in the application of
GNNs within epidemic modeling, this "eld continues to confront
various di#culties unexplored. This section will discuss these issues
and suggest directions for future research.
Epidemic at Scales.Multi-scale data are crucial in epidemiology as
they o!er comprehensive insights into both intra-region and inter-
region relationships . Presently, several studies have acknowledged
this importance and initiated the integration of multi-scale data
into their frameworks [83, 127, 128, 70]. Although these e!orts
have yielded models capable of accommodating multi-scale data,
existing approaches are limited to processing only two prede"ned
scales, such as county-level and state-level data. Thus, there is
growing anticipation for the development of novel models capable
of incorporating data across multiple dynamic scales and adaptable
to diverse epidemiological tasks. Meanwhile, scalabilitymust also be
considered for numerous reasons: (1) A smaller granularity results
in the expansion of graph data. (2) Some tasks require real-time
processing [127].While the number of countries or provinces can be
small, the graph for individuals or other necessary parts in epidemic
models can be extremely large, e.g., contact information graphs in
metropolises, which could make the current methods very time-
consuming. Moreover, the use of multi-scale data and the demands
for real-time processing make the problem even harder.
Cross-Modality in Epidemiology.The integration ofmulti-modal
data in epidemiological tasks o!ers a powerful approach for learn-
ing disease transmission dynamics, improving predictive accuracy,
enabling early intervention, and fostering interdisciplinary collab-
oration to address public health challenges more e!ectively. Data
from di!erent modalities can not only serve as augmentations for
each other but also compensate for noise from single-modality
data. In recent years, some works have successfully incorporated
multi-modality in GNNs. Although GNNs are very suitable for in-
formation aggregation and handling multi-modality data, there has
not been much work exploring the multi-modality of GNNs in an

epidemiology setting. Some related works [129, 46] have utilized un-
structured data like textual or image data to construct node features.
However, there is no cross-modality in terms of node features.
Epidemic Di"usion Process. The di!usion process, the key com-
ponent in epidemiological tasks, can be both spatial and temporal.
All GNN-based methods discussed above involve information aggre-
gation at one or several time points in a discrete manner. However,
in the real world, disease spreading is a continuous process, which
is incompatible with current methods. To address this problem,
Continuous GNNs [130, 131, 132], inspired by Neural ODE [133],
can be applied to model the continuous spreading process. Another
challenge arises from the temporal nature of disease transmission
and infection processes, which can occur asynchronously. The
work [64] considers di!erent time-space e!ects and models the ef-
fects using the attention mechanism. Yet, it is still done in a discrete
manner, creating gaps in the real-world transmission process.
Interventions for Epidemics. In epidemiology, control measures
are vital for controlling disease spread and safeguarding public
health. They include intervention strategies like vaccination, quar-
antine, and public health education to limit transmission and mini-
mize outbreaks, ultimately saving lives and reducing the burden
on healthcare systems [134, 135, 136]. Among the methods men-
tioned in this paper, most of the research incorporates interven-
tion strategy in agent-based models [58, 91, 27] or other neural
models [93]. Generally, the interventions in these methods include
deleting nodes, altering nodes, and altering edge weights. However,
each method only includes one type of intervention, either node-
level or edge-level. In practice, however, interventions can happen
at di!erent graph levels and also at di!erent scales. To better model
the real situation, multi-level interventions need to be introduced.
Generating Explainable Predictions. Epidemic modeling seeks
not just accurate forecasts but also interpretability, crucial for mak-
ing informed decisions based on model predictions. Interpretability
allows for understanding disease dynamics, identifying risk factors,
and assessing uncertainty. Despite its importance, neural models
have often overlooked interpretability, with hybrid models depend-
ing onmechanistic models for explanations. However, recent e!orts
to enhance GNN interpretability [137, 138, 139] could prove valu-
able in epidemiology, suggesting a growing recognition of the need
for models that can explain their predictions in this critical "eld.

6 Conclusion
In this survey, we o!er a comprehensive overview of Graph Neural
Networks in epidemic modeling. First, we introduce the funda-
mental concepts relevant to both GNNs and epidemic modeling.
Following this, we propose detailed and organized taxonomies for
existing epidemiological tasks, datasets, and graph construction. In
terms of methodologies, we have systematically categorized the lit-
erature into two primary groups: Neural Models and HybridModels,
thoroughly reviewing the characteristics of current work in each
category. Finally, we identify and discuss some of the persistent
challenges, providing insightful directions for future research. The
primary goal of this survey is to promote a more seamless integra-
tion of GNNs into epidemiology, motivating both epidemiologists
and data scientists to delve into this rapidly advancing area.
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