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A B S T R A C T

Three-center, two-electron bonding arrays in σ-complexes between C–C bonds and transition metals were
examined using density functional theory computations. Variations in ligands and metals were connected to
variations in strengths of bonding interactions in these arrays.

1. Introduction

The interaction between transition metal complexes and σ-bonds
results in so-called σ-complexes, held together by three-center, two-
electron bonding arrays [1–4]. These bonding units arise from the
donation of electrons from a σ-bond to a vacant orbital on the transition
metal. σ-Complexes are considered to be key intermediates in C–H and
C–C bond activation processes [5]. We were intrigued by previous re-
ports of isolable σ-complexes involving interactions between C–C
σ-bonds and rhodium (Fig. 1) [5–8]. Building on seminal computational
work from the Weller group [7,8], we used density functional theory
(DFT) to explore this type of structure here, along with variations
involving different ligands, transition metals, and other possible
bridging groups.

The orbital interactions leading to the three-center, two-electron
bonds in σ-complexes are shown qualitatively in Fig. 2. Stabilization
arises through both the interaction of the 昀椀lled C–C σ orbital a vacant
metal-X σ*-orbital (sometimes formulated simply as a p-orbital on the
metal) – to which we refer as a σ-type interaction – and the interaction of
a 昀椀lled metal d orbital with the vacant C–C σ* orbital – to which we
refer as a π-type interaction [2].

2. Computational methods

All calculations were performed using Gaussian 16 Revision C.01
[9]. Structure optimizations and frequency analyses were carried out
with the PBE0 functional[10,11] and the def2-SVP basis set, and
single-point energies were calculated using the def2-TZVP basis set [12].
This approach was chosen based on previous studies showing that this
level of theory is effective for accurately calculating C–C activation
mechanisms [13]. While the Weller group previous used
Atoms-In-Molecules (AIM) methods to characterize bonding in the types
of σ-complexes examined here [7,8], we made use of Mayer bond orders
[14] (determined using the Multiwfn software package version 3.8
(dev)) [15,16] and Natural Bond Orbital (NBO)[18] analyses (carried
out with NBO 7.0) [19]. Conformational searches were conducted with
CREST (Conformer-Rotamer Ensemble Sampling Tool) [17].

3. Results and discussion

We 昀椀rst explored how the R group on the phosphine ligand affects
the stabilization of the σ-complex (Fig. 3a). We calculated the Natural
Bond Orbital (NBO) interaction energies for the σ-type and π-type in-
teractions (Fig. 3b), and the former were consistently dominant. While
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sensitivity to the identity of the alkyl group on the phosphine ligands
was not observed, substituting these groups with hydrogen enhances the
interaction strength. Suspecting that this effect resulted from a better
energy match between the interacting orbitals with PH3, we examined
the frontier molecular orbitals (FMOs) associated with each interaction
(Fig. 4 left), which validated this simple conjecture.

Bond lengths and Mayer bond orders for each complex are summa-
rized in Fig. 3c-d. Although the NBO interaction energy increases when
the R group on the phosphine ligand is hydrogen, the Mayer bond order
between Rh and carbon decreases. However, the bond order between Rh
and phosphorus increases. The geometries of each complex with key
distances are shown in Fig. 3d.

Next, we investigated how the transition metal itself in昀氀uences the
stabilization of the σ-complex by substituting rhodium with cobalt and
iridium (Fig. 5a). The NBO interaction energies, bond lengths, and
Mayer bond orders are summarized in Fig. 5b-d. As the metal is replaced
by those lower in the periodic table, NBO interaction energies within the
three-center, two-electron array increase (Fig. 5b). However, examining
the FMO energies shows that the energy match for σ-type interaction
worsens concomitantly (Fig. 6 left), suggesting that the increase in
interaction strength is likely a result of enhanced orbital overlap.

For the cobalt complex (and only this complex), the triplet con昀椀gu-
ration is approximately 22 kcal/mol lower in energy than the singlet
con昀椀guration (Fig. 7). However, the geometry of the triplet state differs
signi昀椀cantly from the singlet, with the metal positioned much closer to
the center of the hydrocarbon framework. The unpaired spins in this
structure are localized on the metal (Fig. 7, right).

Next, we replaced the transition metals with main group non-metals,
including boron, carbon, silicon, and germanium, to determine whether
three-center two-electron arrays might persist in these structures [20,
21]. Our hope was to build bridges between transition metal, main
group and organic chemistry. However, when the metals were replaced
by CCH3 or CH, the structure rearranged (Fig. 8, top). These structures

contain cyclic three-center two-electron arrays, but they are not located
in the molecule’s center. The results for other main group-containing
structures are shown in Fig. 9. While the BH-containing species does
not delocalize much, the SiH- and GeH-containing species do. Both
display strong σ-type interactions (but of course lack π-type in-
teractions). Additional minor orbital interactions also contribute (see
supporting information for details). The observed orbital interaction
trends are again consistent with FMO energy gaps (Fig. 10).

Finally, we evaluated the energy required to transfer the metal group
from one side of the hydrocarbon framework to the other. As shown in
Fig. 11, this process actually requires two steps, with the intermediacy of
an approximately symmetrically bridged intermediate. This intermedi-
ate (whose wavefunction appears to be stable; i.e., lacks diradical
character) resides on a 昀氀at portion of the free energy surface, however.
The overall free energy barrier for transferring the metal group is pre-
dicted to be approximately 10–11 kcal/mol, suggesting that this process
is fast. The Weller group previously predicted a similar scenario [8].

4. Conclusion

The factors in昀氀uencing the stability of σ-complexes were evaluated
by examining the effects of substituents on phosphine ligands, different
transition metals, and main group non-metals, starting from an isolable
σ-complex model. Our results indicate that the identity of the ligand and
metal can indeed modulate the interactions in these complexes, some-
times opening up additional reaction pathways involving diradicals and
rearranged frameworks. Straightforward FMO arguments appear to
work well for these systems.
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Fig. 1. Structure for analysis in this study.

Fig. 2. Orbital interaction representation for three-center, two electron complexes.
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Fig. 3a). Structures analyzed. b) NBO interaction energies for each structure. c) Bond lengths and Mayer bond orders in σ-complexes with different R groups. d)
Optimized geometries of σ-complexes and selected distances (Å).
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Fig. 4. Frontier molecular orbitals and orbital energy gaps for σ-complexes with PtBu2Me, PCy2Ph, and PH3 ligands. The 昀椀gure on the left corresponds to σ-type
bonding, while the 昀椀gure on the right corresponds to π-type bonding.
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Fig. 5a). Structures analyzed. b) NBO interaction energies for each structure. c) Bond lengths and Mayer bond orders in σ-complexes with different metals. d)
Optimized geometries of σ-complexes and selected distances (Å).
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Fig. 6. Frontier molecular orbitals and orbital gaps for different structure with different metals, including Co, Rh, and Ir. The 昀椀gure on the left represents the
interaction involving the σ-type, while the 昀椀gure on the right represents the interaction involving the π-type.

Fig. 7. Geometry for triplet with Co (left) and spin density surface for this
molecule (right).

Fig. 8. Rearranged structures obtained when transition metal was replaced
with carbon.
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Fig. 9a). Structures analyzed here. b) NBO interaction energies for each structure. c) Bond lengths and Mayer bond orders. d) Optimized geometries and selected
distances (Å).
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Fig. 10. Frontier molecular orbitals and orbital gaps for σ-type in different complexes.

Fig. 11. Energy pro昀椀le for translating the metal group from one side of the hydrocarbon framework to the other.
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