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ABSTRACT

A highly optimized E-field Parallel Imaging Correlator (EPIC), currently under commissioning on the Long
Wavelength Array in Sevilleta, New Mexico, can image the sky at a rate of 25,000 FPS per polarization and
frequency. The system consists of six processing nodes, each producing images of the visible sky with a 1-degree
spatial resolution at an 80 ms temporal resolution, covering a 3.2 MHz spectral window below 100 MHz, yielding
a total bandwidth of 19.2 MHz. Light curves for selected sources of interest will be extracted from each image
into a distributed database, and 5-minute accumulations are archived on the disk for further analysis. In this
paper, we describe the components of our real-time imaging system, designed as a plug-and-play solution to
deploy EPIC on similar arrays with only minor modifications.
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1. INTRODUCTION

Studies of extreme transient phenomena like the Fast Radio Bursts (FRBs) in the dynamic radio sky are at the
forefront of modern radio astronomy. Their need for wide imaging fields and high sensitivity have driven radio
telescopes towards dense layouts with several antennas, and advances in general purpose Graphics Computing
Units (GPUs) allowed for achieving high bandwidth and time resolution [1, for example]. However, traditional
correlators, which compute the integrated pair-wise antenna cross-correlations to form images of the sky, become
computationally expensive to implement on modern telescopes with hundreds to thousands of antennas as their
complexity scales as the square of the number of antennas. Hence, an efficient processing algorithm that produces
an identical scientific output is desirable.

EPIC is a direct imaging algorithm designed to produce full-sky observations at a high cadence using telescopes
with dense but otherwise arbitrary layouts.? Unlike traditional correlators, EPIC directly transforms antenna
electric fields into sky images. That means the computational complexity decreases from an extreme N3 to a
gentle N, log, Ny where N4 is the number of antennas and N, is the size of the aperture plane grid or equivalently
the number of pixels in the output image.?

We selected the Long Wavelength Array in Sevilleta,* New Mexico (LWA-SV), observing in the 3-88 MHz
range to deploy EPIC to detect FRBs below 100 MHz through continuous sky-monitoring. LWA-SV is an
excellent system for our purpose as it contains 256 dipole antennas arranged in a dense configuration within a
100m region. The F-Engine at this station applies a Fourier transform to digitized electric field time series from
each antenna in 40us windows, yielding a channel width of 25 KHz. That means the correlator must generate
25000 images of the visible sky per second for each frequency and polarization to operate in real-time. The
F-Engine also divides the observing bandwidth of about 20 MHz into 6 subbands, each with 132 channels (3.3
MHz), and multicasts the raw channelized data over a 100G ethernet link that will be utilized by the EPIC
imaging system.

In the development phase, EPIC was initially implemented in Python? and was later ported to GPUs to
be run on a single node at LWA-SV.> The GPU code generated full-sky full-polarization images in real-time
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with a ~4 deg spatial resolution (32 sq. pixels) covering a bandwidth of 2.25 MHz and integrated to yield a
time resolution of about 80 ms. Although further rounds of optimizations, including utilizing the Bifrost stream
processing framework, allowed increasing the image size to 64 sq. pixels with a spatial resolution of ~2 deg,® the
bandwidth was limited to 1.8 MHz per GPU and allowed imaging a single polarization. We identified several
bottlenecks through extensive profiling that prompted a rebuild of the imaging code” from scratch with state-
of-the-art features in NVIDIA’s GPU programming platform. The new imager® generates 128 sq. pixel full-sky
full-polarization images of the sky with a spatial resolution of ~1 deg, covering a 3.2 MHz bandwidth on a single
GPU, which although is slightly smaller than the desired 3.3 MHz. That means we effectively generate 12.8
million full-sky images per second across all frequencies and polarizations per GPU. They are integrated in time
to yield typical 40-80 ms time-resolutions.

We are deploying the optimized EPIC imager on six GPU nodes at LWA-SV to continuously monitor the
sky for transient events with a bandwidth of 19.2 MHz. With an 80 ms cadence, the imager will produce
about 110 TB of images per day that will be reduced to analyze the spectral nature of sources of interest.
Operating a monitoring system with this throughput requires significant computing resources with reliable and
high-performance software pipelines.

Here, we describe the architecture of our EPIC-based real-time full-sky monitoring system, code-named
“Alchemist”, that is being deployed at LWA-SV. Section 2 provides an overview of the system requirements of
the Alchemist, section 3 provides the architecture and implementation details, and 4 summarizes the deployment
and describes a way forward.

2. SYSTEM REQUIREMENTS

Full-sky imaging capability allows simultaneous monitoring of an arbitrary number of sources in the sky. Hence,
although the imaging system is primarily aimed at detecting FRBs below 100 MHz, we will also monitor the sky
for other sources of emission, including pulsars, the Sun and Jupiter, and meteors. The Alchemist will follow up
FRB event triggers from multiple high-frequency radio sky monitors, including the Canadian Hydrogen Intensity
Mapping Experiment (CHIME), the Deep Synoptic Array (DSA), and the Realfast project running commen-
sally on the Jansky Very Large Array (JVLA), and gravitational wave events from the Laser Interferometer
Gravitational-Wave Observatory (LIGO).

We will initially monitor a selected list of pulsars, FRBs, and the sun and later expand the monitoring to
the entire visible sky with a real-time transient detection pipeline. Storing the images at the desired cadence
of 80 ms is challenging, requiring about 110 TB per day. To enable rapid follow-up and analysis of events from
sources of interest and to alleviate the storage requirements, light curves for each source can be extracted from
the pixels of output images and ingested into a database. A 25 FPS video of the sky can be streamed to an
online platform to support quick look-up. Longer accumulations can be archived on the disk to retain imaging
data for future analyses. With an 80 ms cadence and assuming at least six sources are visible in the sky at any
time, the six-node EPIC imager will yield at least ~1 billion rows (~1 TB) of light curve data daily. In addition,
a storage space of about 300 GB per day is required to store 3-minute image accumulations and video streams.
The 80 ms cadence light curves will be stored for 6 months from extraction, while longer accumulations and
video streams will be permanently stored and made available to the community on a web platform.

Operating and maintaining a high throughput imager described above needs robust pipelines capable of
handling large data streams with minimal latency. Using extensive software instrumentation to monitor the
system will allow us to identify bottlenecks, optimize the system performance, and alert operators to resolve
issues, reducing downtime quickly. Horizontal scalability is another key aspect that allows the expansion of
computational and storage resources to accommodate higher spatial and temporal resolutions. In addition to
these performance requirements, we are developing the Alchemist with a modular architecture that allows the
deployment of an EPIC imager on any telescope array, requiring only minor changes to the configuration. The
deployment scripts are built using Ansible and will be open-sourced.
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3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

We adopted a client-server model to implement Alchemist where a subset of nodes in the cluster act as coor-
dinators or servers that designate work to the remaining worker or client nodes. Scalability is built into this
model as all nodes work independently, and increased performance can be achieved by adding more nodes to the
cluster. Furthermore, this model allows centralized management and control of the system. Figure 1 shows the
architecture of Alchemist that is under deployment at LWA-SV. Although our setup includes one server node
with six client nodes, we only show the setup for a single client server as the configuration is identical for the
remaining nodes. Below, we describe the system’s individual components and provide the deployment status.
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Figure 1. System architecture with individual components for the EPIC-based continuous sky monitor on LWA-SV.
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3.1 Data Storage

We use the PostgreSQL database to store light curves of transient sources. Pixel values from a 5x5 grid centered
around each source on output images are inserted into the database as individual rows in binary format (postgres
BYTEA type). With an 80 ms cadence, we insert about 7 million rows per hour for each source. To minimize
insertion and query times, we split the table into multiple partitions based on the timestamp, with each partition
covering a period of 1 hour. We use a Postgres extension called pg_partman’ to automate creating partitions
periodically. We store 3-minute accumulations in fits format and single-channel quick-look images in PNG format
on a 100 TB network-attached storage. We also store the associated metadata for each image in the database to
facilitate querying and downloading data. In addition to high cadence light curves and long-term accumulations,
the imager also generates a 25 FPS video of the sky using the FFmpeg!'© library. The videos are streamed to an
instance of PeerTube,'! an open-source video streaming platform, and are publicly available for live streaming.
Replays are posted every 24 hrs and are saved to the network drive.

3.2 Nomad, Consul, and Vault

Alchemist comprises several processes, like imaging, monitoring, and live streaming, distributed across all nodes
in the cluster. We use HashiCorp’s open-source tools, namely Nomad,'? Consul,'® and Vault,'* to deploy and
manage these processes. Nomad is a flexible and scalable cluster manager and scheduler. It orchestrates deploying
and managing containerized and standalone applications responsible for various stages in our sky monitoring
pipeline. To enable robust service discovery and coordination within the cluster, we integrate HashiCorp Consul.
Consul provides a dynamic, service-oriented architecture, where each service involved in the sky-monitoring
pipeline can be easily discovered and accessed by other services. It also offers health checking and service
monitoring features, ensuring that each service is operating correctly and allowing for automatic failover and
recovery, thereby enhancing the reliability of the overall system. Finally, we integrate HashiCorp Vault to manage
secrets and protect sensitive information. Vault provides a secure method for storing and accessing secrets like
credentials and API keys required by the applications running within the cluster.

Each tool in the HashiCorp stack, namely Nomad, Consul, and Vault, is offered as a standalone binary run
with configuration files written using HashiCorp Language (HCL). Nomad and Consul processes on each node,
commonly called agents, can be run in client and server modes. In the server mode, Nomad schedules tasks on
the client nodes, monitors their resource usage, and maintains the overall state of the cluster. Nomad servers also
expose a user interface (UI) to manage the cluster interactively. Nomad clients receive task assignments from
the servers and execute them. They report tasks’ health and resource usage back to the servers, allowing servers
to make informed scheduling decisions. Consul agents operate similarly. Consul servers store key-value data
and service catalogs and handle service registration and de-registration, enabling clients to discover all services
running in the cluster. Consul clients forward service discovery requests to the servers, perform health checks
on local services, and report the results to the servers. Unlike Nomad and Consul, Vault lacks distinct client
and server modes. Instead, Vault agents are run on multiple nodes that each maintain a copy of the secrets and
authorized services in the cluster, which are the Vault clients, can retrieve them.

In our deployment at LWA-SV, we run Nomad and Consul in client mode on all client nodes and in server
mode on the server node. Nomad client mode is also enabled on the server node to support running tasks
described below. After one or more consul server agents are initialized, all Nomad, Consul, and Vault agents can
auto-discover themselves using the service discovery feature provided by Consul. That means we can add new
compute nodes to the cluster on-site and off-site without modifying any configuration files. Vault always starts
in an uninitialized or sealed state where the master key that decrypts the secrets is encrypted. This encrypted
master key is split into five parts; at least three keys are required to unseal the Vault. Hence, to prevent Vault
from being stuck in a sealed state due to unscheduled node restarts, we store these encrypted keys in a secondary
Vault cluster running on a mutually exclusive set of nodes that auto-unseals the primary Vault. All nomad
agents are provided an access key to the Vault, allowing tasks to access the required secrets.

3.3 Monitoring and Alerting

We use Prometheus'® to monitor the overall performance of the system. It collects (scrapes) metrics on regular
intervals from HTTP endpoints exposed by processes (exporters) and ingests them into a time series database
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(TSDB). The endpoints must be passed in a configuration file to Prometheus for initialization. However, many
processes are required to run sky monitoring (see section 3.4), and manually adding them to the configuration
files can introduce errors. Hence, we configure Prometheus servers to auto-discover new and existing processes
that expose metrics endpoints through Consul and scrape metrics from them. Prometheus also analyzes real-
time and historical data to generate alerts based on pre-defined rules. These alerts are sent to an instance of
AlertManage'Sr that broadcasts them to a slack channel for quick resolution of issues. Finally, we use Grafana'”
to visualize metrics scraped by Prometheus. Grafana provides several interactive visualizations, such as time
series plots and gauges, that can be organized into dashboards. We created multiple dashboards to track the
computing, storage, and network resource usage of all nodes in the cluster. Figure 2 shows a GPU monitoring
dashboard with visualizations tracking various properties of a GPU like fan speed, memory usage, and power
usage that runs the imaging pipeline.
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Figure 2. Grafana dashboard showing metrics collected by Prometheus from GPU exporter on a client node executing
the real-time imaging pipeline.

3.4 Nomad Tasks

We divide the workload of Alchemist into multiple processes distributed across the cluster. Nomad launches
these processes or jobs using configuration files written in HCL. Each job contains one or more tasks that are
executed using task drivers. For our deployment, we use docker and raw_exec drivers that allow launching
docker containers and standalone executables, respectively. Tasks are launched as long-running services or are
scheduled periodically. We also register all services on Consul to allow them to discover each other, eliminating
the need to set up accesses between them manually. Below, we describe each job orchestrated by the Nomad
cluster at LWA-SV and indicate the types of nodes (client and server) where the job is launched in parentheses.

Watchdog (Server): This job runs a gRPC-based!® watchdog server that maintains a list of sources of interest.
It exposes endpoints to add new sources or query existing sources in the watch list. In the current deployment
phase, the watch list only consists of a small set of bright pulsars, the sun, and sources from the A-team. Future
versions of the watchdog will add the ability to dynamically add sources based on external triggers like CHIME.
EPIC Imager (Client): The job launches an imaging pipeline on each node that transforms raw data received
from the telescope array into images. It queries the watchdog on regular intervals to fetch a watchlist and filters
sources that fall within the current field of view. Light curves for these sources are extracted from the output
images and are ingested into a Postgres database. Database credentials are fetched from Vault, and the pipeline
configuration is fetched from the Consul key-value store. Nomad always restarts the pipeline with a change in
any of these parameters. This allows us to control individual pipelines with minimal downtime. The imager
streams a 25 FPS video to an RTMP endpoint hosted on a local NGINX server. It also exposes a metrics
endpoint that tracks the execution times of each stage in the imaging pipeline and registers itself with Consul
for use by Prometheus.
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EPIC Streamer (Client): The streamer job exports live streams from local NGINX instances to the PeerTube
instance running on the server node. The streamer is configured to restart every 24 hours to trigger PeerTube
to post a replay of the stream over the past 24 hours. Figure 3 shows a replay of a video stream of the sky at
34.8 MHz on the EPIC TV website. The streamer job fetches PeerTube live stream keys from Vault.
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Figure 3. EPIC TV website (available at https://livetv.epic-astronomy.org replaying a video of the sky from an
imager operating at 34.8 MHz. The Milky Way is seen as a bright stripe across the video, and the bright objects from top
to bottom are Cas A and Cygnus A, respectively. This video also depicts the capability of EPIC to monitor any number
of sources in the sky simultaneously.

Cluster Monitor (Client and Server): This job is executed on all nodes and launches four Prometheus
exporters: NVIDIA GPU exporter, systemd exporter, node exporter, and Postgres exporter. Metrics collected
by these exporters are visualized on Grafana dashboards (see fig. 2, for example).

Vouch Proxy (Server): This job launches Vouch Proxy, which runs a single sign-on solution for NGINX. We
configure it to use a Github team as an authentication method for the administration Uls exposed by Nomad,
Consul, Vault, Prometheus, and AlertManager. Prometheus, AlertManager and Grafana (Server): We
launch each tool described in section 3.3 as a separate job on the server. Prometheus auto-discovers all the
metrics endpoints available in the cluster using consul. The Alertmanager, which broadcasts alerts to a slack
channel, fetches the authorization key from Vault.

WikiJS (Server): This job hosts an internal wiki with detailed documentation on Alchemist. WikiJS is
an open-source wiki platform that supports hosting and adding documentation in multiple formats, including
HTML, plain text, and markdown. It stores all the data in a Postgres database where the credentials are fetched
from Vault.

Waterfalls (Server): This job hosts a web application called Waterfalls that allows interactively exploring live
and historical spectrograms for all sources in our watchlist. Figure 4 shows the visualization interface, including
a spectrogram of the Sun during a flaring event. The front end for this web application is built using Nuxt UI
web components and is launched using a NodeJS-based server. The backend server is built using FastAPI and
exposes HTTP endpoints based on the Open API specification to access data from the light curve database.
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Figure 4. Waterfalls web application interface (available at https://epic-astronomy.org/waterfalls/spectrograms/
lwasv), showing a spectrogram of the Sun during a flaring event on May 10.

4. SUMMARY

In this paper, we describe Alchemist, a full-sky monitoring system aimed at detecting FRBs, currently under
deployment on LWA-SV. The underlying EPIC-based imager can generate 25000 full-sky images per second,
frequency, and polarization on a single GPU and are integrated to produce images with an 80 ms time resolution.
Light curves for selected sources are ingested into a partitioned Postgres database, allowing efficient storage and
retrieval. Imagers also export 25 FPS video streams of the sky to a publicly available PeerTube instance. We
are monitoring a set of pulsars, FRBs, and the Sun in the current deployment. Future deployments will allow
monitoring the entire visible sky and responding to triggers from other facilities such as CHIME and DSA-110.

The cluster comprises one coordinator node, and six other compute nodes, each processing a bandwidth of 3.2
MHz to yield a total coverage of 19.2 MHz below 100 MHz. The system uses HashiCorp’s Nomad, Consul, and
Vault to deploy and manage processes in the cluster. We elected HashiCorp’s stack due to its horizontal scalability
and centralized management. Nomad cluster integrates with Consul and Vault to orchestrate the deployment
and management of processes responsible for different segments in the sky-monitoring system. Furthermore,
configuration for the imaging pipelines is stored in Consul’s key-value store, allowing us to dynamically modify
imaging parameters with minimal downtime. We use Prometheus, AlertManager, and Grafana to monitor the
system’s health. Prometheus auto-discovers metrics endpoints exposed by services using Consul, eliminating the
need for manual configuration. It also sends alerts to AlertManager, which broadcasts them to a Slack channel
for rapid resolution. We developed Alchemist as a modular and scalable system that can be deployed on any
radio telescope array with dense and compact layouts, requiring only minimal changes to the configuration.
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