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ABSTRACT. We prove that the group of strict contactomorphisms of the standard tight contact
structure on the three-sphere deformation retracts to its unitary subgroup U(2).

The group Aut1(ξ) of strict contactomorphisms of the standard tight contact structure ξ on
the three-sphere is known to be the total space of a fiber bundle S1 ↪→ Aut1(ξ) → SDiff+(S2)
over the group of orientation-preserving, area-preserving diffeomorphisms of the two-sphere
S2, where the projection P is the map given by descending under the Hopf map S3 → S2,
and the fiber S1 is the circle subgroup of diffeomorphisms of S3 which rotate all Hopf circles
within themselves by the same amount.

Theorem A. In the category of Fréchet Lie groups and C∞ maps, the fiber bundle

S1 ↪→ Aut1(ξ) → SDiff+(S2)
deformation retracts to its finite-dimensional subbundle

S1 ↪→ U(2) → SO(3),
where the S1 fibers move rigidly during the deformation.

It was already known that this bundle inclusion is a homotopy equivalence, and we im-
prove on that by showing how to lift Mu-Tao Wang’s deformation retraction of the group
SDiff+(S2) onto its subgroup SO(3) to one of Aut1(ξ) onto its subgroup U(2).

Here are the basic definitions.

The Hopf fibration ℋ of the three-sphere is a fiber bundle S1 ↪→ S3 p−→ S2 whose fibers
are the oriented unit circles on the complex lines through the origin in ℂ2. The Hopf vector
field Vℋ on S3 is the unit vector field tangent to these oriented great circles. The group
Aut(ℋ) of automorphisms of ℋ is the subgroup of Diff (S3) consisting of diffeomorphisms
which permute the oriented great circle fibers of ℋ , not necessarily rigidly. They are all
orientation-preserving. The subgroup Aut1(ℋ) of strict automorphisms of ℋ is the subgroup
of Aut(ℋ) permuting Hopf fibers rigidly, Aut1(ℋ) = {F ∈ Diff (S3) | F∗Vℋ = Vℋ }.

The standard tight contact structure ξ on S3 is the field of tangent two-planes which are
everywhere orthogonal to the great circle fibers of the Hopf fibration. The standard contact
one-form α is the inner product with the Hopf vector field, so that α(W) = 〈Vℋ ,W〉, and
therefore ξ = ker α. The group Aut(ξ) is the subgroup of Diff(S3) consisting of diffeomor-
phisms h whose differential h∗ permutes the tangent 2-planes of ξ, meaning that h∗ maps the
tangent 2-plane of ξ at x to the tangent 2-plane of ξ at h(x), for all x ∈ S3. We write h∗(ξ) = ξ
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and call h a a contactomorphism. We have that h∗(α) = λα for some smooth (always meaning
C∞ here) real-valued nowhere zero function λ on S3. If h∗(α) = α on the nose, then we call
h a strict contactomorphism or quantomorphism, and denote the group of these by Aut1(ξ).

We will show in Proposition 3.1 that the group Aut1(ξ) consists precisely of those diffeo-
morphisms of S3 which simultaneously preserve the Hopf fibrationℋ and the standard tight
contact structure ξ, that is,

Aut1(ξ) = Aut(ℋ) ∩ Aut(ξ).
This, in turn, will help us in the proof of the main theorem.

FIGURE 1. The standard tight contact structure on the three-sphere is the field
of tangent two-planes orthogonal to the great circle Hopf fibers.
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1. INTRODUCTION

We give some historical context. The study of the homotopy types of the groups Diff (M) of
diffeomorphisms of smooth manifoldsM and their subgroups has a rich history. By a result of
Smale, the diffeomorphism group Diff (S2) deformation retracts to the orthogonal groupO(3),
and by the celebrated Smale Conjecture proved by Hatcher in [Hat83], the diffeomorphism
group Diff (S3) deformation retracts to the orthogonal group O(4). It is natural to consider
diffeomorphisms of S3 which preserve extra structure there and the interplay and homotopy
types of resulting moduli spaces. In this paper we are focused on the subgroup Aut1(ξ) of
Diff (S3) which consists of strict contactomorphisms.

The following exact sequences and bundles have been studied in the literature, and we
have also presented detailed self-contained proofs in Part 2.

(1) The exact sequence of Fréchet Lie algebras, equivalently, tangent spaces at the identity

0→ TidS
1 −→ TidAut1(ξ) −→ TidSDiff+(S2) → 0,

(2) The exact sequence of Fréchet Lie groups

{1} → S1 −→ Aut1(ξ) −→ SDiff+(S2) → {1},

(3) The Fréchet fiber bundle

S1 ↪→ Aut1(ξ) −→ SDiff+(S2),

(4) The finite-dimensional subsequence of (2) and finite-dimensional subbundle of (3)

S1 ↪→ U(2) −→ SO(3).
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Leslie [Les67] introduced a differential structure on the group of diffeomorphisms of a
differentiable manifold, converting it into a Fréchet Lie group. Banyaga [Ban78b], [Ban78a]
presented the above exact sequence (2) of Fréchet Lie groups, attributing this to Souriau
[Sou70], and noted its finite-dimensional exact subsequence (4).

The fiber bundle result (3) was proved by Ratiu and Schmid in the Sobolev category
[RS81], building on work of Kostant [Kos70], Souriau [Sou70], Ebin and Marsden [EM70],
Omori [Omo74], and Banyaga [Ban78b], [Ban78a]. They attribute the exact sequences (1)
and (2) of Fréchet Lie algebras and Lie groups to Kostant [Kos70], and used these to derive
the bundle result.

Vizman [Viz97] worked in the C∞ category, and obtained the exact sequences (1) and
(2) above of Fréchet Lie algebras and Lie groups, as well as the Fréchet fiber bundle (3).
Casals and Spacil [CS16] also worked in the C∞ category, attributed the Fréchet fiber bundle
(3) above to Vizman, and showed that the inclusion of the finite-dimensional subbundle (4)
into this bundle is a homotopy equivalence. Their further conclusions depended on a result
of Eliashberg [Eli92] which was only stated though not proved by him, but later proved by
Eliashberg and Mishachev [EM21].

Mu-Tao Wang [Wan01, Wan13] showed how to deformation retract the group SDiff+(S2)
of orientation-preserving, area-preserving diffeomorphisms of the two-sphere to its subgroup
SO(3) of orthogonal transformations by applying mean curvature flow in S2 × S2 simultane-
ously to the graphs of all orientation-preserving, area-preserving diffeomorphisms of S2 to
itself. Our Theorem A will be proved by lifting this to a deformation retraction of Aut1(ξ) to
U(2).

Organization of the paper and plan of the proof of Theorem A. Part 1 begins with Sec-
tion 2 where we regard S3 as the group of unit quaternions, and quickly review left-invariant
vector fields and differential forms on S3. We also give a very brief overview of Fréchet
spaces, manifolds and Lie groups, which provide the setting for this paper. In Section 3 we
will examine the behavior of diffeomorphisms which lie in the group Aut1(ξ) of strict contac-
tomorphisms, and show that this group is the intersection of the groups Aut(ℋ) and Aut(ξ).
After that, here is the plan for proving the main theorem in Section 4.

We must show that the fiber bundle S1 ↪→ Aut1(ξ) −→ SDiff+(S2) deformation retracts to its
finite-dimensional subbundle S1 ↪→ U(2) → SO(3). We will start with Wang’s deformation
retraction [Wan01] of the base space SDiff+(S2) to SO(3), and show how to lift this to the
desired deformation retraction of the total space Aut1(ξ) to U(2), in a way that moves fibers
to fibers rigidly at all times, while keeping the fibers of the subbundle pointwise fixed.

To begin, we will put the standard L2 Riemannian metric on Aut1(ξ) and show that every
smooth path γ in SDiff+(S2) can be lifted to a smooth horizontal path γ in Aut1(ξ), meaning
one that is everywhere orthogonal to the fiber direction, and is unique once we specify its
starting point.

It is natural to aim to lift Mu-Tao Wang’s deformation retraction of the base space SDiff+(S2)
to a deformation retraction of the total space Aut1(ξ) by simply lifting the path followed by



STRICT CONTACTOMORPHISMS 5

each point in SDiff+(S2) to the horizontal path followed by each point in the S1 fiber above it.
The problem is that although we can see that the various lifted paths γ in Aut1(ξ) are smooth
in the time t direction, we don’t yet know that they are smooth in the transverse direction.

To address this, we will start with Mu-Tao Wang’s deformation in SDiff+(S2) and, using
the local product structure from the fiber bundle, define smooth “local lifts” of it to Aut1(ξ),
ignoring the fact that they do not fit together coherently to a global lift. Instead, we will show
how to smoothly “adjust” these smooth local lifts to the desired global “horizontal-in-time”
lifts there, and so conclude that these horizontal-in-time lifts are themselves smooth.

In Part 2, we begin by describing nearest neighbor maps, horizontal lifts and quantitative
holonomy in Section 5. In Section 6 we compute the tangent spaces at the identity of our
various Lie groups. In Section 7, Section 8 and Section 9, we give independent, self-contained
proofs of the exactness of sequences (1) and (2) of Lie algebras and Lie groups described
above, and the bundle structure of sequence (3). Finally, we give some background on
Fréchet manifolds in Appendix A.

Acknowledgements. It is a pleasure to acknowledge the contributions to this project arising
from conversations with Alexander Kupers and Jim Stasheff. We thank Ziqi Fang for percep-
tive comments on a draft of this paper. Merling acknowledges partial support from NSF DMS
grants CAREER 1943925 and FRG 2052988. Wang acknowledges partial support from NSF
GRFP 1650114.

Part 1. Deformation retraction of the strict contactomorphism group

2. PRELIMINARIES

2.1. Fréchet spaces and manifolds. Fréchet spaces, manifolds and Lie groups provide the
setting for extending the theory of finite-dimensional C∞ differentiable manifolds and C∞

maps between them to the infinite-dimensional case. We give a very brief overview here
and for more details, we refer the reader to the two papers of Eells [Eel58, Eel66] and that
of Leslie [Les67] for early developments and to Hamilton’s paper [Ham82] and the book
[KM97] of Kriegl and Michor for a good overview with details. We highlight in Appendix A
some results which we use in the present paper.

A Fréchet space V is a complete metrizable vector space whose topology is induced by
a countable family of semi-norms, where a semi-norm ρ behaves like a norm except that
ρ(v) = 0 does not imply that v = 0. A simple example is the space C∞[0, 1] of C∞ maps
from the interval [0, 1] to the real numbers. Another example is the space Vect(M) of C∞

vector fields on a compact C∞ manifold M, and yet another example is the space SVect(M)
of C∞ divergence-free vector fields on M with respect to a Riemannian metric on M. The
semi-norms are the usual Ck norms for k = 0, 1, 2, . . . on the Ck versions of these spaces.

As in the finite-dimensional case, C∞ maps between open subsets of Fréchet spaces are de-
fined in terms of the convergence of various difference quotients. A Fréchet manifold modeled
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on a Fréchet space V is a Hausdorff topological space with an atlas of charts which are homeo-
morphisms from open sets in V intoM such that the change of coordinate maps are C∞ maps.
Basic examples are the space Diff (M) of diffeomorphisms of a compact finite-dimensional C∞

manifoldM, equipped with the C∞ topology, which is modeled on the Fréchet space Vect(M),
and the space SDiff+(M) of orientation-preserving, volume-preserving diffeomorphisms of a
compact Riemannian manifold, modeled on the Fréchet space SVect(M). Both are Fréchet Lie
groups, meaning that multiplication via composition as well as inversion are smooth maps.

In this paper, we focus on the Fréchet Lie group Aut1(ξ) of strict contactomorphisms (or
quantomorphisms) of the standard tight contact structure ξ on the 3-sphere S3. Since Aut1(ξ)
is the total space of an S1-bundle over SDiff+(S2), it is modeled, just like SDiff+(S2) × S1, on
the Fréchet space SVect(S2)×ℝ. This in turn is isomorphic to the Fréchet space C∞(S2) of C∞

real-valued functions on the two-sphere S2. The Fréchet Lie groups Aut(ℋ) of automorphisms
of the Hopf fibrationℋ of S3, and Aut(ξ) of contactomorphisms of the standard tight contact
structure ξ on S3, appear briefly in this paper in the proposition that their intersection is
precisely the group Aut1(ξ), which in turn helps us to better understand Aut1(ξ). We will
study Aut(ℋ) in a forthcoming paper.

2.2. Left-invariant vector fields and differential forms on S3. We view the 3-sphere S3 as
the space of unit quaternions and make the following definitions. Let

(2.1) A(x) = xi, B(x) = xj, C(x) = xk,

be the standard left invariant vector fields given by right multiplication by i, j, k. Any smooth
vector field X on S3 can be written in the basis from Equation 2.1 as

(2.2) X = fA + gB + hC

where f,g and h are smooth real-valued functions on S3.

The Lie brackets of these vector fields satisfy

(2.3) [A, B] = 2C, [B, C] = 2A, [C, A] = 2B.

The dual left-invariant one-forms to A, B and C on S3 with respect to the standard metric
will be denoted by α,β and Υ, so that

α(A) = 1, α(B) = 0, α(C) = 0,

and likewise for β and Υ. Their exterior derivatives are given by

(2.4) dα = −2β ∧ Υ, dβ = −2Υ ∧ α, dΥ = −2α ∧ β.

We choose the great circle orbits of the vector field A as the fibers of our Hopf fibration
ℋ , so that Vℋ = A. It then follows that A is the Reeb vector field of ξ, i.e., α(A) = 1 and
dα(A,−) = 0.

Viewing A, B and C as directional derivative operators, the differential operators div and
curl, acting on a vector field X as above, are

(2.5) div(X) = Af + Bg + Ch and
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(2.6) curl(X) = (Bh − Cg)A + (Cf −Ah)B + (Ag − Bf)C − 2X.

The gradient of a smooth function φ : S3 → ℝ is

(2.7) grad(φ) = (Aφ)A + (Bφ)B + (Cφ)C
The formula for curl is derived from the identities curl(A) = −2A, curl(B) = −2B, and
curl(C) = −2C, which can be verified directly, together with the Leibniz rule

curl(φX) = grad(φ) × X + φcurl(X).

3. THE GROUP Aut1(ξ) OF STRICT CONTACTOMORPHISMS

In this section we characterize the strict contactomorphisms of the standard tight contact
structure ξ.

Proposition 3.1. The group of strict contactomorphisms is the intersection of the contactomor-
phism group with the automorphism group of the Hopf fibration,

Aut1(ξ) = Aut(ℋ) ∩ Aut(ξ).

Proof. We begin by showing that Aut1(ξ) ⊆ Aut(ℋ) ∩ Aut(ξ). Suppose F ∈ Aut1(ξ), so by
definition F is a diffeomorphism of S3 that satisfies F∗α = α. Recall that the Reeb vector field
A associated with the 1-form α is uniquely characterized by

α(A) = 1 and dα(A,−) = 0.

We consider the pushforward F∗A of the vector field A by the diffeomorphism F, and note
that

α(F∗A) = (F∗α)(A) = α(A) = 1,

and
dα(F∗A,−) = F∗(dα)(A,−) = d(F∗α)(A,−) = dα(A,−) = 0.

By uniqueness of Reeb vector fields, we have F∗A = A, so F ∈ Aut(ℋ). Therefore F is in the
intersection Aut(ℋ) ∩ Aut(ξ).

Next, suppose that F ∈ Aut(ℋ) ∩ Aut(ξ), so that

F∗A = λA and F∗α = µα,

where λ and µ are smooth real-valued, positive functions on S3. This gives us that

(F∗α)(A) = α(F∗A) = α(λA) = λα(A) = λ,

while at the same time
(F∗α)(A) = (µα)(A) = µ(α(A)) = µ,

so it follows that λ = µ. We now show that λ = 1, so that F∗α = α, which will imply
F ∈ Aut1(ξ).

Recall that A,B,C is the left-invariant orthonormal frame field on S3. Note that

(dα)(F∗A, F∗B) = (dα)(λA, F∗B) = λ(dα)(A, F∗B) = 0,
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while at the same time

(dα)(F∗A, F∗B) = F∗(dα)(A,B) = d(F∗α)(A,B) = d(µα)(A,B) = d(λα)(A,B)
= (dλ ∧ α + λdα)(A,B) = (dλ ∧ α)(A,B)
= (dλ)(A)α(B) − (dλ)(B)α(A) = −(dλ)(B) = −B(λ).

Thus B(λ) = 0. Similarly, we can show C(λ) = 0. Lastly,

A(λ) = 1
2 [B,C]λ = 1

2 (BC − CB)λ = 0,

and hence the function λ : S3 → ℝ must be constant. But since Hopf fibers are taken to
Hopf fibers with F∗A = λA for constant λ, then λ must be identically 1. Thus µ = 1, and so
F ∈ Aut1(ξ). �

We collect a few more useful properties of strict contactomorphisms. Note that the follow-
ing proposition falls out of the proof of Proposition 3.1, where we showed that for diffeomor-
phisms F ∈ Aut1(ξ) = Aut(ℋ) ∩ Aut(ξ), we must have F∗A = A, namely they permute Hopf
fibers rigidly.

Proposition 3.2. The strict contactomorphism group Aut1(ξ) is a subgroup of the strict auto-
morphism group Aut1(ℋ) of the Hopf fibration.

Lastly, we record how elements in the simultaneous automorphism group of the Hopf
fibration and the standard tight contact structure behave with respect to volume on S3 and
area on S2.

Proposition 3.3. The diffeomorphisms of S3 in Aut1(ξ) are volume-preserving on S3 and project
to area-preserving diffeomorphisms of S2 under the Hopf projection map p.

Proof. Let F ∈ Aut1(ξ), so that F∗α = α. Hence F takes the contact tangent 2-plane dis-
tribution ξ to itself. We show that F∗ takes these tangent 2-planes to one another in an
area-preserving way, as follows.

Recall the formulas that the dual forms to A,B,C satisfy from Equation 2.4 and note that
the area form on the tangent 2-planes in the distribution ξ is β ∧ Υ. We compute

(β ∧ Υ)(F∗B, F∗C) = −1
2dα(F∗B, F∗C) = −1

2 (F∗dα)(B,C)
= −1

2d(F∗α)(B,C) = −1
2dα(B,C)

= (β ∧ Υ)(B,C) = 1.

Thus indeed F∗ takes the 2-planes in the distribution ξ to one another in an area preserving
way.

We finish as follows. By Proposition 3.1, F∗(A) = A, telling us that F permutes Hopf fibers
rigidly. And as we just saw above, F∗ is area-preserving on the tangent 2-planes orthogonal
to the Hopf fibers. So it follows that F is volume-preserving on S3. Finally, since the Hopf
projection p : S3 → S2 is up to scale a Riemannian submersion (it doubles lengths in S3

orthogonal to the Hopf fibers), it follows that the diffeomorphism F of S3 projects to an
area-preserving diffeomorphism of S2, as claimed. �
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4. BUNDLE DEFORMATION RETRACTION

Since we have shown that Aut1(ξ) = Aut(ℋ) ∩ Aut(ξ), we know that each diffeomorphism
F of S3 which lies in Aut1(ξ) also lies in Aut(ℋ), which means that it permutes the fibers
of the Hopf fibration ℋ and hence induces a diffeomorphism f of S2. The projection map
P : Aut1(ξ) → SDiff+(S2) is then defined by P(F) = f. We know from [Viz97] that this is a
bundle with fiber S1. We now begin the proof of our main theorem, namely that the bundle

(4.1) S1 ↪→ Aut1(ξ)
P−→ SDiff+(S2)

deformation retracts to its finite-dimensional subbundle

(4.2) S1 ↪→ U(2) → SO(3).

We will prove this by starting with Wang’s deformation retraction [Wan01] of the bigger
base space SDiff+(S2) to the smaller base space SO(3) and lifting it to the desired deformation
retraction of the bigger total space Aut1(ξ) to the smaller one, U(2), in a way that moves
fibers rigidly throughout the deformation retraction while keeping fibers of the subbundle
fixed pointwise.

4.1. The standard L2 Riemannian metric on Aut1(ξ). To facilitate the lifting, we equip
Aut1(ξ) with the L2 Riemannian metric. Let X and Y be C∞ vector fields on S3. We define
their inner product as

〈X, Y〉L2 =
1

2π2

∫
S3

〈X(x), Y(x)〉 dvolx,(4.3)

where the point x ranges over S3 and where dvolx is the Euclidean volume element on S3.
The scale factor 1

2π2 lets unit vector fields on S3 have L2 length equal to 1, since the volume
of S3 is 2π2, and this will simplify expressions later on.

The left-invariant vector field A on S3, given by A(x) = xi, lies in TidAut1(ξ), and its L2

length is 1. By contrast, the left-invariant vector fields B and C on S3 do not lie in TidAut1(ξ).

At other points F ∈ Aut1(ξ), an element of the tangent space TFDiff (S3) is a vector field in
S3 along the diffeomorphism F, meaning that it assigns to each point x ∈ S3 a tangent vector
to S3 at the point F(x). We will denote such an element of TFDiff (S3) by the symbol X ◦ F,
where X is a smooth vector field on S3 and where X ◦ F assigns to each point x ∈ S3 the
tangent vector X(F(x)) ∈ TF(x)S3.

Then our L2 Riemannian metric at the point F ∈ Aut1(ξ) is given by

〈X ◦ F, Y ◦ F〉L2 =
1

2π2

∫
S3

〈(X ◦ F)(x), (Y ◦ F)(x)〉 dvolx

=
1

2π2

∫
S3

〈X(x), Y(x)〉 dvolx,
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and is well-defined because all the diffeomorphisms F of S3 which lie in Aut1(ξ) are volume-
preserving by Proposition 3.3.

This is a smooth, weak Riemannian metric on Aut1(ξ) in the sense that the topology in-
duced on Aut1(ξ) by the L2 norm has fewer open sets than the C∞ topology.

The L2 Riemannian metric on Aut1(ξ) is right-invariant, but not left-invariant. The S1

subgroup of Aut1(ξ)which rotates all Hopf fibers by the same amount consists of isometries in
this metric, and is the center of the group Aut1(ξ). The Fréchet group Aut1(ξ) is a Fréchet Lie
subgroup of the Fréchet Lie group SDiff+(S3) of volume-preserving and orientation-preserving
diffeomorphisms of S3.

4.2. Lifting a single curve in SDiff +(S2) to Aut1(ξ). A path in Aut1(ξ) will be said to be
horizontal if it is everywhere orthogonal to the S1 fiber direction with respect to the L2 Rie-
mannian metric. Lifting paths in SDiff+(S2) to horizontal paths in Aut1(ξ) will play a key role
in the proof of our main theorem, so we establish the following lemma first.

Lemma 4.4 (Lifting Lemma). Let γ : [0, 1] → SDiff+(S2) be a smooth path in SDiff+(S2) with
γ(0) = f0, and let F0 be an element of Aut1(ξ) such that P(F0) = f0. Then there exists a unique
horizontal path γ : [0, 1] → Aut1(ξ) such that γ(0) = F0 and P(γ) = γ.

FIGURE 2. The path γ in SDiff+(S2) lifts to the horizontal path γ in Aut1(ξ)

Proof. We start with the quantomorphism bundle

(4.5) Q : S1 ↪→ Aut1(ξ)
P−→ SDiff+(S2)

and then use the map γ : [0, 1] → SDiff+(S2) to construct the pullback bundle

(4.6) γ∗Q : S1 ↪→ E→ [0, 1]
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over the interval [0, 1]. The familiar pullback construction extends to the category of Fréchet
manifolds and smooth maps [KM97]. The points of the total space E are, as usual, the pairs
(t, F), where t ∈ [0, 1] and F ∈ P−1(γ(t)). Since the base space is an interval, the total space
E is trivial, that is, an annulus diffeomorphic to the product [0, 1] × S1. The bundle map
G : γ∗Q→ Q is defined by G(t, F) = F.

The smooth L2 Riemannian metric on the Fréchet manifold Aut1(ξ) pulls back to a smooth
Riemannian metric on the annulus E. The horizontal tangent hyperplane distribution on
Aut1(ξ) is by definition the L2 orthogonal complement to the one-dimensional vertical fiber
direction there. It pulls back to a smooth tangent line field on the annulus E which is trans-
verse to the vertical fiber direction there. Though it may not look horizontal to Euclidean
eyes, we will say that this line field is “horizontal” on E.

Since E is finite-dimensional, by the usual existence and uniqueness theorems for ordinary
differential equations we get a horizontal path t ↦→ g(t) on Ewhich begins at the point (0, F0).
In particular, it is a cross-section of the pullback bundle γ∗Q.

Pushing this horizontal path g in E forward by the bundle map G : γ∗Q → Q, we get the
desired lift γ(t) = G(g(t)) of γ to a horizontal path in Aut1(ξ) which begins at the given point
F0 in the fiber P−1(f0).

This completes the proof of the lifting lemma for single curves. �

Remark 4.7. If we let F0 vary over all the points in the S1-fiber P−1(γ(0)), we get a circle’s
worth of disjoint lifts of γ which are carried to one another by the action of the subgroup S1

of Aut1(ξ).

4.3. Lifting families of curves in SDiff +(S2) to Aut1(ξ). Let

Φ : SDiff+(S2) × [0, 1] → SDiff+(S2)

be any smooth deformation of SDiff+(S2) within itself, meaning that Φ(f, 0) = f, without any
other requirements. Then for each f ∈ SDiff+(S2) we have a smooth path γ(t) = Φ(f, t) in
SDiff+(S2), and these paths vary smoothly with the choice of initial point f. By the Lifting
Lemma 4.4, we can lift each of these paths uniquely to a horizontal path γ in Aut1(ξ) once
we specify its initial point F ∈ P−1(f).

We know that each lifted path is smooth in the time parameter t, but we do not yet know
that the collection of lifts is smooth in the “transverse direction”, meaning smoothly depen-
dent on the initial points F ∈ Aut1(ξ). In this section we prove smooth dependence on initial
points.

As mentioned earlier, our plan is to define smooth “local lifts” of these paths, ignoring the
fact that they do not fit together coherently to a global lift, and then show how to smoothly
“adjust” these to the desired “horizontal-in-time” lifts, which are defined globally, and so
conclude that they are indeed smoothly dependent on their initial points.

We start with the following lemma.
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Lemma 4.8. For each point f in SDiff+(S2), there is an open neighborhoodU of f and a partition
0 = t0 < t1 < · · · < tn = 1 of the interval [0, 1] such that each image Φ(U × [tk−1, tk]) lies in
an open set in SDiff+(S2) over which the Aut1(ξ) bundle is trivial.

FIGURE 3. The Aut1(ξ) bundle is trivial over each piece.

Proof. It follows from the continuity of our deformation Φ that for each point (f, t) in its
domain, there is an open neighborhood Ut of f in SDiff+(S2) and a real number εt such that
the imageΦ(Ut×(t−εt, t+εt)) lies in an open set in SDiff+(S2) over which our Aut1(ξ)-bundle
is trivial.

By compactness finitely many of these open intervals (t−εt, t+εt) cover [0, 1], and we can
simply let U be the intersection of the finitely many corresponding open sets Ut, and choose
a partition of [0, 1] subordinate to this covering of [0, 1]. This proves the lemma. �

Defining the smooth local lifts. We choose any point f ∈ SDiff+(S2) and focus on one of the
piecesΦ(U×[tk−1, tk]) of our tubular neighborhoodΦ(U×[0, 1]) of the curve γ = Φ(f×[0, 1]).
By Lemma 4.8, there is an open set V ⊂ SDiff+(S2) which contains this piece and over which
the bundle

S1 ↪→ Aut1(ξ)
P−→ SDiff+(S2)

is trivial. Let σ : V × S1 → Aut1(ξ) be a smooth trivialization of this bundle over V. Then,
picking and fixing any point ϕ ∈ S1, we have a smooth local lift

σ(Φ(f, t),ϕ), where f ∈ U, t ∈ [tk−1, tk]
of the kth piece of Φ(U × [0, 1]) to the total space Aut1(ξ) of our bundle, as desired.

Adjusting the local lifts to prove that the global horizontal lift is smooth. To simplify the nota-
tion, let F ∈ P−1(f), and define

Ft = σ(Φ(f, t),ϕ) ∈ Aut1(ξ) ⊂ Diff (S3).
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We want to adjust each such diffeomorphism Ft along the S1 fiber through it in Aut1(ξ) by
an angle θ(f, t) so that the corrected family of diffeomorphisms

Gt = Ft e
iθ(f,t)

is horizontal with respect to t in the L2 Riemannian metric on Aut1(ξ) for each f ∈ U. In this
notation, eiθ(f,t) denotes the diffeomorphism of Aut1(ξ) which rotates all S1 fibers through
the angle θ(f, t). For simplicity of notation we will write θ(t) instead of θ(f, t), and tacitly
understand dependence of this angle on the initial diffeomorphism f of S2.

Regard the right side of the equation

Gt = Ft e
iθ(t)

as a product in the group Aut1(ξ), and apply the Leibniz Rule when differentiating it with
respect to time t to get

d

dt
Gt =

d

dt
(Ft eiθ(t))

=

(
d

dt
Ft

)
eiθ(t) + Ft

(
d

dt
eiθ(t)

)
= (Xt ◦ Ft) eiθ(t) + Ft(eiθ(t)iθ′(t))
= Xt ◦Gt +Gt iθ′(t),

where Xt is the time-dependent vector field on S3 generated by the one-parameter family of
diffeomorphisms Ft of S3, so that d

dtFt = Xt ◦ Ft, and where Xt ◦ Gt is a vector field along
Gt.

In the last equation, the first term Xt ◦ Gt is a vector field on S3, and so is the second
term Gtiθ

′(t), even though it may not look so at first glance. The vector field Gtiθ′(t), when
evaluated at a point x ∈ S3, lies in TGt(x)S

3, is tangent to the Hopf fiber through that point,
and is scaled to have length θ′(t). That is the same as the vector field A at the point Gt(x),
scaled to length θ′(t). So we can write

Gt(x) iθ′(t) = A(Gt(x)) θ′(t),

or dropping the point x from the notation, we have

Gt iθ
′(t) = (A ◦Gt) θ′(t).

Inserting this into the last term of our above computation of the derivative d
dtGt, we get

d

dt
Gt = Xt ◦Gt + (A ◦Gt) θ′(t),

and will continue on from here.

We keep in mind that our goal is to find the family of rotations eiθ(t) of S3 which will make
the “adjusted” curves of quantomorphisms

Gt(x) = Ft(x) eiθ(t)
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horizontal in time with respect to the L2 Riemannian metric on Aut1(ξ). To this end, we
consider the tangent space to Aut1(ξ) at any point G, and let π denote its projection to the
one-dimensional “vertical” subspace tangent to the S1-fiber direction,

π : TGAut1(ξ) → VertG.

Then we write

π(X ◦G) = 〈X ◦G,A ◦G〉L2 (A ◦G)
= 〈X,A〉L2 (A ◦G),

thanks to the invariance of our L2 metric under the action of G, and to the fact that A ◦G is
a unit vector tangent to Aut1(ξ) at G.

Now we apply this vertical projection π to our earlier equation, and set the result equal to
zero to require it to be horizontal,

0 = π

(
d

dt
Gt

)
= π

(
Xt ◦Gt + (A ◦Gt) θ′(t)

)
= 〈Xt,A〉L2 (A ◦Gt) + 〈A,A〉L2 θ′(t) (A ◦Gt).

We drop the vertical vector (A ◦ Gt) from above and save only its coefficient, recall that
〈A,A〉L2 = 1, and are left with the scalar equation

0 = 〈Xt,A〉L2 + θ′(t),
or equivalently

θ′(t) = −〈Xt,A〉L2 .

We recall that d
dtFt = Xt ◦ Ft, so Xt = d

dtFt ◦ F−1
t . Inserting this above, we get

〈Xt,A〉L2 =

〈
d

dt
Ft ◦ F−1

t ,A
〉
L2

=

〈
d

dt
Ft,A ◦ Ft

〉
L2

.

Thus

θ′(t) = −
〈
d

dt
Ft,A ◦ Ft

〉
L2

.

This makes sense because we want to eliminate the vertical component of ddtFt in order to
move Ft to Gt. Integrating, we get

θ(t) = θ(tk−1) −
∫ t
tk−1

〈
d

ds
Fs,A ◦ Fs

〉
L2

ds

= θ(tk−1) −
1

2π2

∫ t
tk−1

∫
S3

〈
d

ds
Fs(x),A ◦ Fs(x)

〉
dvolx ds.

The last equation tells us that the adjusting angle θ(t) depends smoothly on the initial
angle θ(tk−1) and on Ft = σ(Φ(f, t),ϕ), which itself depends smoothly on the diffeomorphism
f ∈ SDiff+(S2) and the time t.
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On each subinterval [tk−1, tk], the initial angle θ(tk−1) = θ(f, tk−1) depends smoothly on
f by the above construction for the preceding time interval [tk−2, tk−1], and we start with
θ(0) = 0.

Thus the adjusted family of quantomorphisms

Gt(x) = Ft(x) eiθ(t),
with Ft = σ(Φ(f, t),ϕ), f ∈ U and t ∈ [tk−1, tk], is horizontal in time and depends smoothly
on (f, t), which is exactly what we were aiming for.

4.4. Completing the proof of the main theorem. We adjust notation as follows. Let γ(t)
be a smooth path in SDiff+(S2), with t ∈ [0, 1], beginning at the point γ(0) = f0, and let F0 be
a point in P−1(f0). Then we will write

γ(t) = γ(γ, F0, t)
to designate the horizontal path in Aut1(ξ) which covers γ and which begins at the point
γ(0) = F0. This is the path of quantomorphisms that we called Gt above.

Now we have all the ingredients we need to complete the proof of our main theorem,
which we restate.

Theorem 4.9. In the category of Fréchet Lie groups and C∞ maps, the fiber bundle

S1 ↪→ Aut1(ξ) → SDiff+(S2)
deformation retracts to its finite-dimensional subbundle

S1 ↪→ U(2) → SO(3),
where the S1 fibers move rigidly during the deformation.

Proof. Let Φ : SDiff+(S2) × [0, 1] → SDiff+(S2) be the deformation retraction of SDiff+(S2) to
the orthogonal group SO(3) given by Mu-Tao Wang’s theorem from [Wan01]. We lift Φ to a
deformation retraction

(4.10) Φ : Aut1(ξ) × [0, 1] → Aut1(ξ)
of Aut1(ξ) to its subgroup U(2) by defining

(4.11) Φ(F0, t) = γ
(
γ, F0, t

)
,

where γ is the path in SDiff+(S2) which starts at the point f0 = P(F0) and follows Wang’s
deformation retraction, γ(t) = Φ(f0, t), and where γ(γ, F0, t) is the horizontal lift of γ defined
above.

The deformation retraction Φ of Aut1(ξ) moves along horizontal curves which cover the
corresponding paths of the deformation retraction Φ of SDiff+(S2). The subgroup S1 of
Aut1(ξ) which rotates all Hopf fibers by the same amount consists of isometries in this metric,
and so carries horizontal paths to horizontal paths. Thus the S1 fibers of Aut1(ξ)move rigidly
among themselves during the deformation retraction Φ.
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FIGURE 4. Deformation retraction of Aut1(ξ) onto U(2)

At the end of the deformation retraction, Φ has compressed SDiff+(S2)× {1} to the orthog-
onal group SO(3), and Φ has compressed Aut1(ξ) × {1} to the unitary group U(2).

A point f0 in SDiff+(S2) which starts out in the subgroup SO(3) does not move during this
process, and likewise a point F0 in Aut1(ξ) which starts out in the subgroup U(2) does not
move. This completes the proof of our main theorem. �
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Part 2. The Fréchet bundle structure of the space of strict contactomorphisms

We begin this part of our paper by describing nearest neighbor maps, horizontal lifts and
quantitative holonomy, and then compute the tangent spaces at the identity of our various
Lie groups. After that, we give independent, self-contained proofs of the exactness of our se-
quence of Lie algebras and the exactness and bundle structure of our sequence of Lie groups,
proved earlier by the many mathematicians cited in Section 1.

5. NEAREST NEIGHBOR MAPS, HORIZONTAL LIFTS AND QUANTITATIVE HOLONOMY

5.1. Nearest neighbor maps. Let C and C′ be two Hopf fibers on S3 which are not orthog-
onal to one another, or equivalently, whose projections to S2 are not antipodal. These two
Hopf fibers are a constant distance, say δ < π/2 apart on S3.

Thus, each point x on C has a unique nearest neighbor x′ on C′, which is the point that
minimizes the distance between x andC′. Similarly, x′ onC′ has x onC as its nearest neighbor
there. Furthermore, the correspondence between x on C and x′ on C′ is an isometry between
these two circles.

The nearest neighbor map between the Hopf fibers C′ and C takes the point

x′ = (cos δ cos θ, cos δ sin θ, sin δ cosφ, sin δ sinφ) on C′

to the point x = (cos θ, sin θ, 0, 0) on C, as depicted in Figure 5.

FIGURE 5. The points x and x′ are nearest neighbors on the great circles C and C′

The composition of nearest neighbor maps C → C′ → C′′ is not necessarily the nearest
neighbor map C → C′′, and if we move along a succession of nearest neighbor maps out
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from C and eventually back again to C, the composition will be some rotation of C. In
related settings, a similar phenomenon is called holonomy, so we will use that term here as
well.

5.2. Horizontal lifts. Consider the Hopf projection p : S3 → S2 and let γ : [0, 1] → S2 be
a smooth curve. Given a point x on the Hopf fiber p−1(y), there exists a smooth curve
γ : [0, 1] → S3 which is unique and runs always orthogonal to Hopf fibers, covers γ in the
sense that p ◦ γ = γ and satisfies γ(0) = x. We refer to γ as a horizontal lift of γ because
we think of Hopf fibers as being “vertical” and the orthogonal tangent 2-planes as being
“horizontal”. In fact, viewing S3 as a principal U(1)-bundle over S2, the horizontal lift is
parallel transport with respect to the connection defined by the 1-form α. If γ is a geodesic
in S2 between the non-antipodal points y1 and y2, then the horizontal lifts of γ give us the
nearest neighbor map between the Hopf fibers p−1(y1) and p−1(y2).

5.3. Quantitative holonomy. In the Hopf fibration ℋ , we choose radius 1/2 for the base
2-sphere, so that the projection map p : S3 → S2(12 ) is a Riemannian submersion, meaning
that its differential takes tangent 2-planes orthogonal to the Hopf fibers isometrically to their
images in S2(12 ).

FIGURE 6. Holonomy

In Figure 6 we consider a loop γ in S2(12 ) based at the point y, and the region Σ of S2(12 )
that it bounds. We pick a point x1 ∈ p−1(y), and consider the horizontal lift γ of γ beginning
at x1.1

1We warn the reader about the very similar notation for paths, which are denoted by γ and the dual form to
C, which is denoted by Υ, since they both appear in this subsection.
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The holonomy here is illustrated by the fact that when the lift γ returns to the fiber p−1(y),
it does so at a point x2 of that fiber, displaced by an angle θ from the starting point x1. So γ
followed by the arc on p−1(y) from x2 to x1 is a loop in S3. This loop bounds a region Σ∗ in
S3, which projects down via p to the region Σ on S2(12 ).

We claim that the holonomy angle θ is given by

θ = 2(area of Σ) on S2(12 ),
and confirm this as follows:

area of Σ on S2(12 ) =
∫
Σ

d(area) =
∫
Σ∗
p∗d(area) =

∫
Σ∗
β ∧ Υ,

using the fact that the Hopf projection p : S3 → S2(12 ) is a Riemannian submersion, and so is
area-preserving on the 2-form β∧Υ, down to the usual area form on S2(12 ). From Equation 2.4
we have that dα = −2β ∧ Υ, and hence d(−1

2α) = β ∧ Υ.

Using Stokes’ theorem, we get∫
Σ∗
β ∧ Υ =

∫
Σ∗
d(−1

2
α) = −1

2

∫
∂Σ∗

α.

Now ∂Σ∗ consists of two pieces, the arc γ followed by the arc on p−1(y) from x2 to x1. Since
the arc γ is horizontal, the one-form α is identically zero along it, so we get no contribution
to the last integral above. And since the angle along the Hopf great circle p−1(y) measured
from x1 to x2 is θ, the integral of α along this arc in the opposite direction is −θ.

Putting all this together, we have

area of Σ on S2(12 ) =
∫
Σ∗
β ∧ Υ = −1

2

∫
∂Σ∗

α = −1
2
(−θ) = 1

2
θ.

Hence the holonomy of horizontal transport in S3 induced by the loop γ on S2(12 ) is given
by the

holonomy angle θ = 2 area of Σ on S2(12 ),
as claimed above.

Example 5.1. The equator γ on S2(12 ) bounds a hemisphere Σ of area π
2 . The inverse image

p−1(γ) of γ is a Clifford torus in S3, filled with Hopf fibers. The orthogonal trajectories are
Hopf fibers of the opposite handedness and are horizontal with respect to the original Hopf
fibration. Starting at any location along any original Hopf fiber on this Clifford torus and
then following a horizontal circle will bring us back to the antipodal point on the starting
fiber. So the holonomy angle in this case is θ = π, which is twice the area of Σ.

6. COMPUTATION OF THE LIE ALGEBRAS

In this section, we give an explicit description of the Lie algebras, or equivalently, the
tangent spaces at the identity, of the various Fréchet Lie groups we consider.
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Proposition 6.1. The tangent spaces at the identity to our various subgroups of Diff (S3) are as
follows.

(a) The tangent space TidAut(ℋ) consists of vector fields X = fA + gB + hC such that

f = any smooth function on S3, g = −1
2Ah, and h = 1

2Ag.

(b) The tangent space TidAut(ξ) consists of vector fields X = fA + gB + hC such that

f = any smooth function on S3, g = 1
2Cf, and h = −1

2Bf.

(c) The tangent space TidAut1(ξ) consists of vector fields X = fA + gB + hC such that

Af = 0, and hence f is constant along fibers of ℋ , g = 1
2Cf, and h = −1

2Bf,

and these vector fields are divergence-free.

Remark 6.2. In view of Proposition 3.1, it is natural to ask whether the pair of Lie algebras
Tid(Aut(ℋ) ∩ Aut(ξ)) and TidAut(ℋ) ∩ TidAut(ξ) are the same. The left side is certainly con-
tained in the right side, and we leave it to the reader to establish the reverse inclusion by
manipulating the conditions in parts (a) and (b) of Proposition 6.1.

We start with an intermediary proposition that gives conditions on the vector fields which
are in the tangent spaces of interest.

Proposition 6.3. The tangent spaces at the identity to our various subgroups of Diff (S3) admit
the following descriptions.

(a) TidAut(ℋ) = {X ∈ VF(S3) | LXA = λA for smooth λ : S3 → ℝ},

(b) TidAut(ξ) = {X ∈ VF(S3) | LXα = λα for smooth λ : S3 → ℝ},

(c) TidAut1(ξ) = {X ∈ VF(S3) | LXα = 0}.

We will see from the proof of Proposition 6.1 that the functions λ : S3 → ℝ appearing in
parts (a) and (b) above have the property that they integrate to zero over each Hopf fiber.
Furthermore, for any such function λ, there exists a vector field X on S3 for which LXA = λA,
and similarly there exists a vector field X on S3 for which LXα = λα.

We prove part (a) here. Parts (b) and (c) can be found in [Gei08, Lemma 1.5.8]. Before
we delve into the proof, we make some remarks about the definition of Lie derivatives. Let
V and W be smooth vector fields on the smooth manifold M, let x ∈ M and let {ft} be the
local one-parameter group generated by V, meaning that

(6.4) f0 = id and for each x ∈M we have
dft(x)
dt

����
t=0

= V(x).

Then, the Lie derivative is traditionally defined as

(LVW)(x) = lim
t→0

(f−1
t )∗W(ft(x)) −W(x)

t
=
d

dt

����
t=0
(f−1
t )∗W(ft(x)) =

d

dt

����
t=0
(f−t)∗W(ft(x)).
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In this definition, the one-parameter group {ft} of diffeomorphisms provides the service
of pulling the tangent vector W(ft(x)) in the tangent space to M at ft(x) back to a vector in
the tangent space to M at x, so that one can subtract from it the tangent vector W(x) living
there. But it is easy to check that any smooth curve ft ∈ Diff (M) satisfying Equation 6.4
can be used to define the Lie derivative LVW as above, and that requiring {ft} to be a one-
parameter subgroup is just a convention, but not essential. Of course, when {ft} is not a
one-parameter group, the pullback of W(ft(x)) can only be defined to be (f−1

t )∗W(ft(x)).

Proof of Proposition 6.3(a). Let X be a smooth vector field which lies in TidAut(ℋ). By def-
inition, this means that there is a smooth curve ft in Aut(ℋ) with f0 = id and such that
X(x) = d

dt |t=0ft(x) for all x ∈ S3. Then, as discussed above, the Lie derivative LXA is defined
as

(LXA)(x) = lim
t→0

(f−1
t )∗A(ft(x)) −A(x)

t
.

But note that here {ft} is a path in Aut(ℋ) with f0 = id, so we can write

(ft)∗A(x) = λ(x, t)A(ft(x)),

since each ft takes Hopf fibers to Hopf fibers. Therefore in the definition of LXA(x), for any
given t, both terms in the numerator are multiples of A(x), so we can factor A(x) out of the
limit, and we get that LXA = λA for a smooth λ : S3 → ℝ.

Conversely, suppose X is a smooth vector field on S3 with LXA = λA for some smooth
function λ : S3 → ℝ. Let {ft} be the one-parameter group of diffeomorphisms of S3 generated

by the vector field X, i.e., f0 = id and for each x ∈ S3 we have dft(x)
dt

���
t=0

= X(x). Using the

group property of this flow, which says that fs+t(x) = fs(ft(x)), we compute

d

dt

����
t

ft(x) =
d

ds

����
s=0

fs+t(x) =
d

ds

����
s=0

fs(ft(x)) = X(ft(x)).

Thus dft(x)dt = X(ft(x)) holds for all t not just t = 0.

We need to show that the one-parameter group {ft} lies entirely in Aut(ℋ). Let us use
local coordinates (x,y, θ) in a tubular neighborhood of a Hopf fiber, with (x,y) ∈ ℝ2 and
θ ∈ S1 and with ∂

∂θ as the unit vector field along the Hopf fibers.

We write the vector field X in local coordinates as

X = u(x,y, θ) ∂
∂x
+ v(x,y, θ) ∂

∂y
+w(x,y, θ) ∂

∂θ
.
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Then we can compute the Lie derivative

LXA = [X,A] = −[A,X] = −
[
∂

∂θ
, X

]
= −

[
∂

∂θ
, u

∂

∂x
+ v ∂
∂y
+w ∂

∂θ

]
= −∂u

∂θ

∂

∂x
− ∂v
∂θ

∂

∂y
− ∂w
∂θ

∂

∂θ

= λA = λ
∂

∂θ
.

From this we see that ∂u∂θ = 0 and ∂v
∂θ = 0, so the functions u and v only depend on x and y

and not on θ. We incorporate this by writing

X = u(x,y) ∂
∂x
+ v(x,y) ∂

∂y
+w(x,y, z) ∂

∂θ
.

We also note from above that ∂w∂θ = −λ, which integrates to zero around Hopf circles, and
hence

w(x,y, θ) = w(x,y, θ + 2π).

Thus locally the flow {ft} covers a flow on the xy-plane and takes vertical circles to vertical
circles, which tells us that each diffeomorphism ft takes Hopf circles to Hopf circles, and
hence X ∈ TidAut(ℋ), as desired. �

Now we turn to the proof of Proposition 6.1, and prove each of its parts separately.

Proof of Proposition 6.1(a). Let X = fA+gB+hC be a smooth vector field on S3, written in
terms of the orthonormal basis of left-invariant vector fields A,B and C on S3, following the
conventions introduced in Section 2. By Proposition 6.3(a), X lies in TidAut(ℋ) if and only
if LXA = λA for some smooth real-valued function λ on S3. We compute LXA to see what
constraints this conditions imposes on the coefficients f,g and h.

Notationally, we switch from Lie derivatives to Lie brackets and compute

LXA = [X,A] = [fA + gB + hC,A] = [fA,A] + [gB,A] + [hC,A]
= −[A, fA] − [A,gB] − [A,hC]
= −(Af)A − f[A,A] − (Ag)B − g[A,B] − (Ah)C − h[A,C]
= −(Af)A − (Ag)B − g(2C) − (Ah)C − h(−2B)
= −(Af)A + (2h −Ag)B − (2g +Ah)C,

using the bracket relations from Equation 2.3.

Therefore, X ∈ TidAut(ℋ) if and only if −Af = λ for some smooth real-valued function λ,
and 2h −Ag = 0 and 2g +Ah = 0. This completes the proof of Proposition 6.1(a).

�
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Note in this proof that since λ = −Af is the negative of the directional derivative of the
coefficient f around a Hopf circle, we see why λ must integrate to zero around the Hopf
fibers.

Proof of Proposition 6.1(b). Again, let X = fA+ gB+hC be a smooth vector field on S3. By
Proposition 6.3(b), X lies in TidAut(ξ) if and only if LXα = λα for some smooth λ.

Suppose X lies in TidAut(ξ) so that LXα = λα for some λ. Rewrite α(A) = 1 as 〈α,A〉 = 1
and then differentiate to get

0 = LX〈α,A〉 = 〈LXα,A〉 + 〈α,LXA〉 = 〈λα,A〉 + 〈α,LXA〉.

Thus
〈α,LXA〉 = −〈λα,A〉 = −λ〈α,A〉 = −λ.

Using the computation for LXA from part (a), we get

〈α,LXA〉 = −Af,

thus Af = λ.

Analogously to the computation of LXA in part (a), we can compute

LXB = −(Bf + 2h)A − (Bg)B + (2f − Bh)C
LXC = (−Cf + 2g)A − (2f + Cg)B − (Ch)C.

Proceeding as before with rewriting the equations α(B) = 0 and α(C) = 0 as 〈α,B〉 = 0
and 〈α,C〉 = 0, and differentiating, we get

(6.5) 〈α,LXB〉 = 0 and 〈α,LXC〉 = 0.

Combining with the computations of LXB and LXC above, we get that

h = −1
2Bf and g = 1

2Cf,

as desired.

Conversely, assuming the coefficients of X satisfy the conditions in Proposition 6.1(b), us-
ing the computations of LXA, LXB and LXC, and working backwards from the computations
of the differentiation of the brackets we get

〈LXα,A〉 = Af, 〈LXα,B〉 = 0 and 〈LXα,C〉 = 0,

so LXα = (Af)α = λα.

�

Note again that λ is the directional derivative of the coefficient f around Hopf circles, so
we reaffirm the observation made after part (a) that λ must integrate to zero around Hopf
fibers.

Proof of Proposition 6.1(c). Let X = fA + gB + hC be a smooth vector field on S3. By
Proposition 6.3(c), X lies in TidAut1(ξ) if and only if LXα = 0.
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Suppose X lies in TidAut1(ξ) so that LXα = 0. Just as in Proposition 6.1(b), rewriting
α(A) = 1 as 〈α,A〉 = 1 and then differentiating, we get

0 = LX〈α,A〉 = 〈LXα,A〉 + 〈α,LXA〉 = 〈α,LXA〉.

But again, by the computation for LXA from part (a), we have 〈α,LXA〉 = −Af, thus
Af = 0. Just as in part (b), combining the computations for LXB and LXC from part (b) with
Equation 6.5, we get

h = −1
2Bf and g = 1

2Cf,

as desired.

Conversely, if we assume that the conditions in Proposition 6.1(c) hold, as we saw in the
proof of (b), we get that LXα = (Af)α. Thus if Af = 0, we immediately get LXα = 0, so by
Proposition 6.3(c), X lies in TidAut1(ξ).

Lastly, we check that any X ∈ TidAut1(ξ) is divergence free. We have

divX = Af + Bg + Ch = 0 + B(12Cf) + C(−1
2Bf)

= 1
2 (BC − CB)f = 1

2 [B,C]f = 1
2 (2A)f = Af = 0.

�

Remark 6.6. The conditions on the coefficients of X = fA + gB + hC in Proposition 6.1 may
seem mysterious at first glance, and it is a rewarding exercise to try to decode their geometric
meaning. We give some hints. In part (a), you can take the conditions on the coefficients g
and h and differentiate again in the A-direction to show that as the flow of A moves a Hopf
fiber off itself, it assumes a coiling shape so as to approximate a nearby Hopf fiber. In part
(b), another approach to describing TidAut(ξ) is to observe that a vector field X is in this space
if and only if LXB and LXC both lie in the 2-plane spanned by B and C, and then compute
with Lie brackets.

Having given in Proposition 6.1 a description of the tangent space at the identity to our
various subgroups of Diff (S3), we end Section 6 now with a similar description of the tangent
spaces TidDiff (S2) and TidSDiff+(S2).

We can doubly appreciate our ability to write vector fields on S3 in terms of left-invariant
vector fields A,B, and C when we turn to S2 and seek a similar description there. But we
can use the Hopf projection p : S3 → S2 to uniquely lift smooth vector fields on S2 to smooth
horizontal fields on S3, that is, vector fields which are orthogonal to the Hopf fibers and,
by virtue of lifting from S2, twist around each Hopf fiber so they lie in TidAut(ℋ). This
allows us to think of TidDiff (S2) and TidSDiff+(S2) as subspaces of TidAut(ℋ), and therefore
rely on expressions in terms of A,B and C to describe the vector fields therein. With this
identification in mind, we prove the following proposition.

Proposition 6.7. The tangent spaces TidDiff (S2) and TidSDiff+(S2) have the following descrip-
tions.
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(a) The tangent space TidDiff (S2) consists of vector fields X = fA + gB + hC such that

f = 0, g = −1
2Ah, and h = 1

2Ag.

(b) The tangent space TidSDiff+(S2) consists of vector fields X = fA + gB + hC such that

f = 0, g = −1
2Ah, h = 1

2Ag, and Bg + Ch = 0.

Proof. For part (a), note that we know from Proposition 6.1(a) that the tangent space
TidAut(ℋ) consists of vector fields X = fA + gB + hC such that f is any smooth function
on S3, g = −1

2Ah, and h = 1
2Ag. If X is horizontal, then f = 0. Thus the conditions in part

(a) are certainly necessary for X to be the horizontal lift of a vector field in TidDiff (S2).

Conversely, suppose that a vector field X on S3 satisfies the conditions in part (a), and since
f = 0, write X = gB + hC.

We claim that the horizontal vector field X = gB+ hC is the lift of a vector field X′ on S2 if
and only if LAX = 0. To see this, note that the left-invariant vector field A on S3 is the infin-
itesimal generator of the one parameter subgroup of Aut(ℋ) consisting of diffeomorphisms
of S3, rotθ : x ↦→ xeiθ for 0 ≤ θ ≤ 2π, which uniformly rotate all Hopf fibers by the same
amount. Then the horizontal vector field X is the lift of a vector field on S2 if and only if
(rotθ)∗X(x) = X(xeiθ), which is equivalent to LAX = 0.

From our computation of LAX in the proof of Proposition 6.1(a), and setting f = 0, we
have

LAX = (Ag − 2h)B + (Ah + 2g)C,

which is equal to 0 by our conditions in part (a). Thus X is the lift of a vector field on S2. So
the stated conditions are both necessary and sufficient for X to lie in TidDiff (S2).

For part (b) of our current proposition, it is easy to check that TidSDiff+(S2) consists of all
divergence-free vector fields on S2. We claim that a vector field X′ ∈ TidDiff (S2) is divergence-
free if and only if its horizontal lift to X = gB + hC ∈ TidAut(ℋ) is divergence-free, which in
turn is equivalent to the condition that Bg + Ch=0. This will show that the extra condition
in part (b) is both necessary and sufficient for a vector field X from part (a) to actually lie in
the subspace TidSDiff+(S2).

To prove the claim, let {ϕ′t} be the one-parameter group of diffeomorphisms of S2 gener-
ated by the vector field X′, and let {ϕt} be their lifts to a one-parameter group of diffeomor-
phisms of S3 generated by the lifted vector field X.

If we assume that the lifted field X is divergence-free, then the diffeomorphisms ϕt are
volume-preserving on S3. Moreover, since X is orthogonal to the Hopf fibers, the diffeomor-
phisms ϕt take Hopf fibers rigidly to Hopf fibers. It then follows that the diffeomorphisms ϕ′t
must be area-preserving on S2 and their generating vector field X′ must be divergence-free
on S2.

Conversely, if we assume that the vector field X′ on S2 is divergence-free, it follows that
the diffeomorphisms ϕ′t are area-preserving there. Then, since the horizontally lifted vector
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field X on S3 is the infinitesimal generator of a one-parameter subgroup of diffeomorphisms
ϕt of S3 which take Hopf fibers rigidly to one another, and which cover the area-preserving
diffeomorphisms ϕ′t of S2, the diffeomorphisms ϕt must be volume-preserving on S3 and
hence the vector field X must be divergence-free there.

This proves the claim, and completes the proof of Proposition 6.7.

�

7. THE EXACT SEQUENCE OF LIE ALGEBRAS

In this section, we establish the exactness of the following sequence on the level of Lie
algebras. We note that this result also appears in [RS81], where Ratiu and Schmid attribute
it to [Kos70], but give their own proof. We give our own version of a proof here, building on
our explicit computation from the previous section.

Proposition 7.1. The sequence of tangent spaces

0→ TidS
1 J−→ TidAut1(ξ)

P−→ TidSDiff+(S2) → 0

is an exact sequence of Lie algebras.

Before turning to the proof, we give explicit descriptions of the tangent spaces in the
sequence, which are computed in detail in Section 6. Writing a smooth vector field on S3 as
X = fA+gB+hC as in Section 2, the conditions on the coefficients f,g and h, which describe
membership in the tangent spaces in question are as follows:

(1) X ∈ TidS
1 if and only if

f = constant, g = 0, h = 0,

(2) X ∈ TidAut1(ξ) if and only if

Af = 0, g = 1
2Cf, h = −1

2Bf.

We view TidSDiff+(S2) as horizontal vector fields on S3, which push forward consistently
along Hopf fibers to divergence-free vector fields on S2, where by “consistently” we mean
that p∗(X)|x = p∗(X)|y for all x,y in the same Hopf fiber. With this interpretation, we get the
following description.

(3) X ∈ TidSDiff+(S2) if and only if

f = 0, g = −1
2Ah, h = 1

2Ag, Bg + Ch = 0.

It is easy to see (1), whereas (2) is proved as part (c) of Proposition 6.1 and (3) is Propo-
sition 6.7.

Proof of Proposition 7.1. We start by showing that the maps J and P do restrict to maps
between tangent spaces. First, in order for fA ∈ TidS

1, f must be constant, so we have
J(fA) = fA ∈ TidAut1(ξ).
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For fA+gB+hC ∈ TidAut1(ξ), we have P(fA+gB+hC) = 0A+gB+hC. To show that this
lives in TidSDiff+(S2), we need to verify that if f,g, and h satisfy the conditions in (2), then
g,h satisfy the conditions in (3). Using the description of g and h from (2), note that the
condition g = −1

2Ah is equivalent to 2Cf = ABf. This equality can be seen to be true using
the bracket formula 2C = AB − BA and the fact that Af is also assumed to be 0. In a similar
fashion, we can show that h = 1

2Ag. Lastly, again using the description of g and h from (2),
we get that Bg + Ch = 1

2 (BC − CB)f = Af = 0.

Now we turn to exactness of the sequence. The map J is injective, so we have exactness
at TidS

1. To see exactness at TidAut1(ξ), first note that by definition it follows immediately
that im(J) ⊆ ker(P). To see the reverse inclusion, suppose X = fA + gB + hC and suppose
P(X) = gB + hC = 0. Then g = 1

2Cf = 0 and h = −1
2Bf = 0. But then Af = 1

2 (BC − CB)f = 0.
Thus f is constant on S3, and X = fA ∈ im(J).

Lastly, to verify exactness at TidSDiff+(S2) we need to check that P is surjective. Suppose
that Y = gB + hC ∈ TidSDiff+(S2), so the coefficients satisfy the conditions in (3). We need
to find a smooth function f : S3 → ℝ such that the vector field X = fA + gB + hC lies in
TidAut1(ξ), i.e., so that f,g and h satisfy the equations in (2). Combining the conditions on
f,g and h from (2) and (3), we have Af = 0, Bf = −Ag and Cf = −Ah.

Plugging this into the gradient formula from Equation 2.7, we are seeking f so that

grad(f) = (Af)A + (Bf)B + (Cf)C = −(Ag)B − (Ah)C.

On S3 we can solve for f if and only if curl
(
(−Ag)B + (−Ah)C

)
= 0. From Equation 2.6,

after simplifying, we get

curl
(
(−Ag)B + (−Ah)C

)
= (CAg − BAh)A + (2Ag +A2h)B + (2Ah −A2g)C.

Differentiating the equations g = −1
2Ah and h = 1

2Ag with respect to A, we get A2h = −2Ag
and A2g = 2Ah, thus our equation reduces to

curl
(
(−Ag)B + (−Ah)C

)
= (CAg − BAh)A.

Furthermore, using the equations Ag = 2h, Ah = −2g and Ch + Bg = 0, we conclude that
curl

(
(−Ag)B+ (−Ah)C

)
= 0, and thus (−Ag)B+ (−Ah)C = grad(f) for some smooth function

f : S3 → ℝ, as desired. This completes the proof of the proposition, namely that our sequence
of tangent spaces is exact. �

8. THE EXACT SEQUENCE OF FRÉCHET LIE GROUPS

In this section we establish the exactness of the sequence on the level of Lie groups. More
precisely, we give an independent proof of the following theorem, originally due to Banyaga
[Ban78b, Ban78a], Souriau [Sou70] and Kostant [Kos70].
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Theorem 8.1. The sequence of Fréchet Lie groups

(8.2) {1} → S1 J−→ Aut1(ξ)
P−→ SDiff+(S2) → {1}

is exact.

The S1 subgroup in the above exact sequence is the set of diffeomorphisms which rotate
the Hopf fibers within themselves by the same angle. The projection P : Aut1(ξ) → SDiff+(S2)
starts with a diffeomorphism F in Aut1(ξ) and then records the resulting permutation of the
Hopf fibers. We can write

(8.3) P(F)(y) = p ◦ F ◦ p−1(y)
where p : S3 → S2 is the Hopf map.

The proof of Theorem 8.1 is broken down into two lemmas, corresponding to the two main
challenges: proving that the kernel of P is no larger than the subgroup S1, and proving that
the map P is onto SDiff+(S2). The map from S1 into Aut1(ξ) is just the inclusion, so exactness
there is automatic.

Lemma 8.4. The sequence from Equation 8.2 is exact at Aut1(ξ).

Proof. The map P takes the subgroup S1 of Aut1(ξ) to the identity of SDiff+(S2), because the
elements of this subgroup just rotate the fibers within themselves, and so induce the identity
map of S2 to itself. Thus, to confirm exactness at Aut1(ξ), the challenge is to show that the
kernel of P is no larger than this subgroup.

FIGURE 7. Exactness at Aut1(ξ)
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We start with an element F ∈ Aut1(ξ) which takes each Hopf fiber rigidly to itself, and
show that it rotates each fiber within itself by the same amount.

We consider two Hopf fibers p−1(y1) and p−1(y2), and connect the points y1 and y2 of S2

by a geodesic arc γ there. We can assume these points y1 and y2 are not antipodal, since we
only need to show that the amount each Hopf fiber is rotated by F is locally constant. With
this choice, the geodesic arc γ connecting y1 and y2 is unique, and we have a well-defined
nearest neighbor map between p−1(y1) and p−1(y2).

Then we choose two points x1 and x′1 on the fiber p−1(y1), and consider the two horizontal
lifts γ and γ′ of γ which begin at x1 and x′1. These horizontal lifts are geodesics in S3, and
they end on the fiber p−1(y2) at the points x2 and x′2 which are the nearest neighbors there
to the points x1 and x′1, respectively, on p−1(y1).

Since the nearest neighbor map from p−1(y1) to p−1(y2) is an isometry between Hopf
fibers, the angle θ between x1 and x′1 on the first fiber is the same as the angle θ between x2

and x′2 on the second fiber.

Now given x1 ∈ p−1(y1), we choose x′1 to be F(x1). Since F is a contactomorphism, it
permutes the contact tangent 2-planes ξ = ker(α) among themselves, and so in particular
takes horizontal curves to horizontal curves in S3.

It follows that F(γ) = γ′, and in particular F(x2) = x′2. This means that the angle θ between
the points x1 and x′1 = F(x1) on the Hopf fiber p−1(y1) is the same as the angle θ between
the points x2 and x′2 = F(x2) on the Hopf fiber p−1(y2). Thus, F rotates all fibers by the
same amount, which means that F ∈ S1, which is what we wanted to prove. This confirms
exactness of our sequence of Fréchet Lie groups at Aut1(ξ). �

We turn now to exactness at SDiff+(S2), following the approach introduced by Ratiu and
Schmid in [RS81]. Given the Hopf projection p : S3 → S2 and a path γ in S2, we denote by

(8.5) Hγ : p−1(γ(0)) → p−1(γ(1))

the horizontal transport along γ, in which each point of the first fiber moves along the hori-
zontal lift of γ to a point on the second fiber, as introduced in Section 5.2. This rigid motion
between great circle fibers is the continuous analog of our nearest neighbor maps. Recall
from Section 5.2 that if the path γ in S2 is a geodesic arc, then the map in Equation 8.5 is
precisely the nearest neighbor map between these two Hopf fibers.

Recall that the subgroup Aut1(ℋ) of strict automorphisms of ℋ is the subgroup of Aut(ℋ)
permuting Hopf fibers rigidly,

Aut1(ℋ) = {F ∈ Diff (S3) | F∗A = A}.

The following lemma characterizes the strict automorphisms of the Hopf fibration which
commute with horizontal transport.
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Lemma 8.6. Let F ∈ Aut1(ℋ) induce f ∈ SDiff+(S2) through f(y) = p ◦ F ◦ p−1(y). Then
F ∈ Aut1(ξ) if and only if

(8.7) F ◦Hγ = Hfγ ◦ F

for all smooth curves γ in S2.

FIGURE 8. Horizontal transport

Proof. If F ∈ Aut1(ξ), then F takes horizontal curves in S3 to horizontal curves. In particu-
lar, in Figure 8, F takes the horizontal curve labeled Hγ, which runs from x0 to x1, to the
horizontal curve labeled Hfγ, which runs from F(x0) to F(x1). Thus, F ◦Hγ = Hfγ ◦ F.

Conversely, suppose that F ◦ Hγ = Hfγ ◦ F for all smooth curves γ in S2. Then given any
point x ∈ S3, choose two horizontal curves through x whose tangent vectors at x span the
tangent 2-plane ξx. Since F takes horizontal curves in S3 to horizontal curves, its differential
dF(x) must take ξx to ξF(x), which means F ∈ Aut(ξ). Since we started out with F ∈ Aut1(ℋ),
we have F ∈ Aut1(ℋ) ∩ Aut(ξ) = Aut1(ξ). �

Lemma 8.8. The sequence of Fréchet Lie groups

{1} → S1 → Aut1(ξ)
P−→ SDiff+(S2) → {1}

from Equation 8.2 is exact at SDiff+(S2). That is, the map P : Aut1(ξ) → SDiff+(S2) is onto.
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FIGURE 9. Path lifting

Proof. We start out with a diffeomorphism f ∈ SDiff+(S2), which we want to lift to an auto-
morphism F ∈ Aut1(S3).

We fix a point y0 ∈ S2 to serve as our base point throughout the proof and then begin
the definition of the diffeomorphism F of S3 by requiring that it take the Hopf fiber p−1(y0)
rigidly to the Hopf fiber p−1(f(y0)) in an orientation-preserving but otherwise arbitrary way.
We let

(8.9) F0 : p−1(y0) → p−1(f(y0))

be this map, which is determined up to a rigid rotation.

Next, consider an arbitrary point x ∈ S3 and its projection y = p(x) in S2. We connect y0

and y with an arbitrary smooth path γ in S2, so that γ(0) = y0 and γ(1) = y, and let γ denote
its unique horizontal lift to a path in S3 which ends at x, meaning γ(1) = x, as in Figure 9.

Let x0 = γ(0) be the beginning point of this lifted path, so that x0 lies somewhere on the
Hopf fiber p−1(y0). In the notation of horizontal transport, we can write x0 = H−1

γ (x). The
diffeomorphism F0 has already been defined on this “base” Hopf fiber, so we know the point
F0(x0).

Now consider the smooth path f(γ) in S2, which runs from f(y0) to f(y). The unique
horizontal lift of this path which begins at F0(x0) is shown in the figure. Horizontal transport
in S3 along this horizontal lift takes the point F0(x0) to the point that we will define to be
F(x), that is,

(8.10) F(x) = Hfγ ◦ F0 ◦H−1
γ (x)
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We will show that the definition of F does not depend on the choice of the path γ from y0 to
y in S2, and this will follow from the fact that the diffeomorphism f of S2 is area-preserving.
To that end, let γ′ be another smooth path in S2 from y0 to y, shown in Figure 9.

We must show that

(8.11) Hfγ′ ◦ F0 ◦H−1
γ′ = Hfγ ◦ F0 ◦H−1

γ

Consider the loop σ = γ(γ′)−1 in S2 based at y0 that runs through γ and then γ′ backwards.
The image under f of this loop is the loop fσ = (fγ)(fγ′)−1 based at f(y0). Then a little
transposing of terms in Equation 8.11 gives us

(8.12) F0 ◦Hσ = Hfσ ◦ F0

Since f is area-preserving, the areas enclosed by the loops σ and fσ are the same. Hence, by
the results of Section 5.3, the holonomy experienced by the horizontal lifts of these loops are
equal, and preserved by the rigid motion F0 between the fibers. This confirms Equation 8.12,
and hence that F does not depend on the choice of the path γ in S2 running from y0 to y.
A different choice of basepoint y∗0 in S2 in this construction would result in a new map F∗
which differs from F by a uniform rotation on all Hopf fibers.

We note that by construction F covers f, i.e., P ◦ F = f ◦ P. Equation 8.10, which defines F,
together with Lemma 8.6 show that F is in Aut1(ξ). Since F takes Hopf fibers rigidly to Hopf
fibers and covers the diffeomorphism f, its differential dF(x) at each point x ∈ S3 cannot have
a nontrivial kernel. Hence F is a submersion from S3 to itself, thus a covering map, and since
S3 is simply connected, F is a diffeomorphism. We leave the proof of smoothness of F for
Appendix A. �

This concludes the proof of exactness of the sequence of Fréchet Lie groups stated in
Theorem 8.1.

9. THE FIBER BUNDLE STRUCTURE

The goal of this section is to give an independent proof of the following theorem, originally
due to Vizman [Viz97].

Theorem 9.1. The sequence

(9.2) S1 ↪→ Aut1(ξ)
P−→ SDiff+(S2)

is a fiber bundle in the Fréchet category.

Proof. This amounts to constructing slices over small open sets in SDiff+(S2), and then using
the action of the subgroup S1 to promote these slices to the product neighborhood needed to
confirm the bundle structure.

First, we note that F, which was defined by the formula

(9.3) F(x) = Hfγ ◦ F0 ◦H−1
γ (x)
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depends smoothly on f ∈ SDiff+(S2). This follows from the fact that the composition map

◦ : SDiff+(S2) × Path(S2) → Path(S2)
(f,γ) ↦→ f ◦ γ

(9.4)

is smooth in the Fréchet category, together with the fact that F is smooth as a function of
x ∈ S3, γ ∈ Path(S2) and f ∈ SDiff+(S2) (see Proposition A.14 and Proposition A.22).

Second, we restrict attention to a small neighborhood of the identity id ∈ SDiff+(S2), for
example the set

(9.5) U =
{
f ∈ SDiff+(S2) : d(y, f(y)) < π/4, ∀y ∈ S2},

where we regard S2 as the sphere of radius 1
2 so that the Hopf projection p : S3 → S2 is

a Riemannian submersion. Restricting f to this open set U will let us uniquely define the
nearest neighbor map from p−1(y0) to p−1(f(y0)) to serve as the map F0.

To construct our slice, define ϕ : U→ Aut1(ξ) by

(9.6) ϕ(f) = F, where F is the map F(x) = Hfγ ◦ F0 ◦H−1
γ .

Note that the nearest neighbor map F0 : p−1(y0) → p−1(f(y0)) between Hopf fibers depends
smoothly on f [Eel66], and γ is chosen as the (unique) shortest geodesic connecting y0 and
f(y0), which is possible since f ∈ U.

Hence ϕ : U→ Aut1(ξ) is a smooth map of Fréchet manifolds, with

(9.7) P ◦ϕ = idU : U→ U.

This is the slice over U for the proposed bundle (9.2). We now promote this slice to a product
neighborhood in Aut1(ξ) over U by using the action of the circle group S1 as follows. Let

Φ : S1 ×U→ Aut1(ξ)
(θ, f) ↦→ eiθϕ(f) = eiθF

(9.8)

where the right hand side takes the element ϕ(f) of Aut1(ξ) and either follows or precedes it
(same result) by uniformly rotating all Hopf fibers through the angle θ. Since multiplication
in the Fréchet Lie group Aut1(ξ) is smooth, it follows that (9.8) is a smooth map of Fréchet
manifolds. To check that it gives the local product structure required to confirm that (9.2)
is a Fréchet fiber bundle, we write down its inverse Φ−1 explicitly and check that it is also
smooth.

To define Φ−1 : P−1(U) → S1 × U, let G be any diffeomorphism of S3 lying in the tube
P−1(U) ⊆ Aut1(ξ) and let f = P(G) ∈ U. Then define F = ϕ(f), and since P(F) = f, the
diffeomorphisms G and F lie in the same circular fiber P−1(f), separated by some angle θ. We
identify this angle by θ = GF−1. Define

Φ−1 : P−1(U) → S1 ×U
G ↦→ (G ◦ F−1, P(G))

(9.9)

where F = ϕ
(
P(G)

)
. Since f depends smoothly on G and F depends smoothly on f, and since

inversion and multiplication in the Fréchet Lie group Aut1(ξ) are smooth maps, we see that
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FIGURE 10. Local product structure

GF−1 = θ also depends smoothly on G. The equations

Φ ◦Φ−1(G) = Φ(G ◦ F−1, f) = G ◦ F−1 ◦ F = G
Φ−1 ◦Φ(θ, f) = Φ−1(eiθF) = (θ, f)

(9.10)

confirm that Φ and Φ−1 are indeed inverses of each other, and this proves that Φ is a diffeo-
morphism, so that we have a bundle structure over the open neighborhood U of the identity
in SDiff+(S2).

Finally, the fact that the map P : Aut1(ξ) → SDiff+(S2) is a smooth homomorphism of
Fréchet Lie groups provides the homogeneity needed to transfer the above argument to small

open sets throughout SDiff+(S2). This completes our proof that S1 → Aut1(ξ)
P−→ SDiff+(S2)

is a fiber bundle in the world of Fréchet manifolds and smooth maps between them. �

APPENDIX A. FRÉCHET SPACES AND MANIFOLDS

For convenience, we give a brief introduction to Fréchet spaces and manifolds in this appen-
dix. After that, we prove some technical results which are used in the proof of the main
theorem. For more on this subject, we refer the reader to [Ham82] and [Omo74].

A.1. Fréchet spaces. Let � be a vector space. A seminorm on � is a function ρ : �→ [0,∞)
satisfying the following properties:

(1) ρ(λv) = |λ|ρ(v),∀v ∈ �, λ ∈ ℝ;
(2) ρ(v +w) ≤ ρ(v) + ρ(w),∀v,w ∈ �.
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If ρ(v) = 0 implies v = 0, then ρ is called a norm.

An arbitrary collection {ρα} of seminorms on � induces a unique topology T on � by
declaring that a sequence {vn} in � converges to v ∈ � if and only if ρα(vn − v) → 0 for
all α. From this, we declare that a subset F ⊆ � is closed if it contains its limit points. This
topology makes � into a topological vector space, in the sense that the operations of addition
and multiplication by scalars are continuous.

Fix a collection {ρα} of seminorms on � and let T be the topology generated by them.
We say that two collections of seminorms are equivalent if they generate the same topology.
Then T is metrizable if and only if it admits an equivalent countable family of seminorms,
{ρj}j∈ℕ. In this case, we can define an explicit metric by

(A.1) d(u, v) =
∞∑
j=1

2−j
ρj(u − v)

1 + ρj(u − v)

In this paper, we are interested in the metrizable case, so we work under this assumption
from now on. The topology T is Hausdorff if and only if ρj(v) = 0 for all j implies v = 0,
and it is complete if every Cauchy sequence converges. A sequence {vn} in � is Cauchy if, for
each fixed j, we have ρj(vn − vm) → 0 as n,m→∞.

A vector space � equipped with a countable family of seminorms {ρj}j∈ℕ is a Fréchet
space provided that the topology induced by {ρj}j∈ℕ, as described above, is Hausdorff and
complete.

Let � and � be Fréchet spaces andU ⊆ � be an open set. We say that a continuous map
F : U ⊆ �→� is differentiable at p ∈ � in the direction v ∈ � provided that the limit

(A.2) DF(p)v = lim
t→0

F(p + tv) − F(p)
t

exists. If this limit exists for all p ∈ U and all v ∈ �, we can form the map

dF : U ×�→�

(p, v) ↦→ dF(p)v(A.3)

If dF is continuous, as a map fromU ×� with the product topology into �, then we say F is
C1 or continuously differentiable. We avoid thinking of F as a map into L(�,�), since this is
usually not a Fréchet space in a natural way. This definition is weaker than the one usually
given for maps between Banach spaces.

Proceeding inductively, we define the second derivative of F as

(A.4) d2F(p)(v1, v2) = lim
t→0

dF(p + tv1)(v2) − dF(p)(v2)
t

and say that F is C2 provided that the map

d2F : U ×� ×�→�

(p, v1, v2) ↦→ d2F(p)(v1, v2)
(A.5)

exists and is continuous, and likewise for Ck.
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We say that F is smooth provided it is Ck for all k. This notion of smoothness agrees with
the standard one in the case where � and � are finite dimensional.

A standard example of a Fréchet space is C∞[a,b], the set of all smooth functions from
[a,b] to ℝ, equipped with the family of seminorms given by

(A.6) ρj(f) = sup
x∈[a,b]

|Djf(x)|

for j ≥ 0, with the convention that D0f = f. One can readily check the Hausdorff and
completeness conditions.

A.2. Fréchet manifolds. A Fréchet manifold modeled on � is a Hausdorff topological space
ℳ with an atlas A = {ϕi} of homeomorphisms ϕi : Ui ⊆ ℳ → Vi ⊆ � between open sets
Ui ofℳ and Vi of � such that the transition maps

ϕ−1
j ◦ϕi : Ui ∩Uj → Ui ∩Uj

are smooth maps between Fréchet spaces.

Let ℳ be a Fréchet manifold and N a closed subset of ℳ. We say that N is a Fréchet
submanifold ofℳ if for every p ∈ N , there exists a coordinate chart ϕ : U ⊆ ℳ → V ⊆ �

ofℳ with p ∈ U and a subspace � of � such that

(A.7) ϕ
(
U ∩N

)
=

(
{0} ×�

)
∩ V

We say that ϕ is a coordinate chart adapted to N .

At any point p ∈ ℳ, the tangent space Tpℳ can be defined as follows. First, consider the
set of all triples (U ,ϕ, v), where ϕ is a local chart at p and v ∈ �. We say that two triples
(Ui,ϕi, vi), i = 1, 2, are equivalent if

d(ϕ2 ◦ϕ−1
1 )v1 = v2

Then Tpℳ is the set of all such equivalence classes. Although this is a rather cumbersome
description of the tangent space, in many situations a much more concrete one is available,
as we shall see below. In what follows, we describe in detail a number of Fréchet manifolds
that are used throughout the paper.

A.3. Examples. Let M be a smooth, closed, finite-dimensional manifold. Then the group
Diff(M) of all diffeomorphisms from M to itself, equipped with the C∞ topology, is a Fréchet
manifold. Following [Eel66], we describe an atlas for Diff(M), modeled on Fréchet spaces of
vector fields.

Let C∞(TM) be the space of all smooth vector fields on M. Choose a Riemannian metric g
on M and let ∇ denote its Levi-Civita connection. For each n ∈ ℕ, let

(A.8) ‖v‖n = sup
x∈M



(∇nv)(x)
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where

(A.9)


(∇nv)(x)

 = sup

‖ei‖=1
i=1,...,n



∇e1 · · · ∇env(x)




The vector space C∞(TM) equipped with the collection of seminorms {‖ ‖n} is a Fréchet
space (cf [Ham82]). More generally, given f ∈ Diff(M), we let

(A.10) C∞(f∗TM) = {v ◦ f : v ∈ C∞(TM)}
The set C∞(f∗TM) of vector fields along f is again a Fréchet space, and the map v ↦→ v ◦ f is
a linear isomorphism between C∞(TM) and C∞(f∗TM).

Let expp : TpM→M be the exponential map associated with the Riemannian metric g on
M. Given a diffeomorphism f ∈ Diff(M), there exists an open neighborhoodUf ⊆ C∞(f∗TM)
containing the zero section, and an open neighborhood Vf ⊆ Diff(M) containing f such that

Expf : Uf ⊆ C∞(f∗TM) → Vf ⊆ Diff(M)
v ◦ f ↦→ exp

(
v ◦ f

)(A.11)

is a homeomorphism ([Les67], [Omo74], [KM97]). We see from the definition that the tran-
sition maps are smooth. The collection of maps {Expf : f ∈ Diff(M)} cover Diff(M), and
the maximal atlas compatible with this collection defines the manifold structure on Diff(M).
Furthermore, this manifold structure makes Diff(M) a Fréchet Lie group, in the sense that the
natural operations of multiplication

◦ : Diff(M) × Diff(M) → Diff(M)
(f, g) ↦→ f ◦ g(A.12)

and inversion
inv : Diff(M) → Diff(M)

f ↦→ f−1(A.13)

are smooth. We remark that it is possible to model Diff(M) as a Banach manifold, if we
choose to work with the Ck topology, or a Hilbert manifold, using L2 Sobolev topologies.
In this case, we could construct coordinate charts in the same way as (A.11). However, the
resulting Banach or Hilbert manifold would not be a Lie group: both the composition and the
inversion maps above would be continuous but not differentiable.

On the other hand, a disadvantage of working in the Fréchet category, as opposed to the
Banach or Hilbert category, is that the classical Inverse Function Theorem is no longer true.
Instead, it must be replaced by the celebrated Nash-Moser Inverse Function Theorem; see
[Ham82] for a detailed account of this. We will not need this theorem here.

The propositions to follow, Proposition A.14 through Proposition A.22, are there to help
us prove that the diffeomorphism F ∈ Aut1(ξ) from Lemma 8.8 and Theorem 9.1 depends
smoothly on the point x ∈ S3, the path γ ∈ Path(S2) and the diffeomorphism f ∈ SDiff+(S2),
the ingredients which went into its construction.

Proposition A.14. The space Path(Sn) of C∞ maps from the interval [0, 1] into Sn is a Fréchet
manifold.
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Proof. Fix a curve γ ∈ Path(Sn). Then we can parametrize nearby curves in Path(Sn) by the
Fréchet space

TγPath(Sn) = {V : [0, 1] → TSn : π ◦ V = γ}

of vector fields on Sn along γ, where π : TSn → Sn is the projection from the tangent bundle
of Sn to Sn. The correspondence between these vector fields and curves near γ is given by
the Riemannian exponential map

Exp: U ⊂ TγPath(Sn) → Path(Sn)
V ↦→ Expγ(V)

whereU is the subset of vector fields along γ with magnitude less than π/2.

The inverse of this map is given as follows. If β ∈ Path(Sn) is a curve close to γ, meaning
that the spherical distance dSn(β(t),γ(t)) < π/2 for all t, then there exists a unique geodesic
from γ(t) to β(t) with initial velocity V(t). By construction,

Expγ(t)(V(t)) = β(t), ∀t ∈ [0, 1]

This proves that Path(Sn) is a Fréchet manifold (cf [Ham82, Example 4.2.3]). �

FIGURE 11. β = Expγ(V)

Proposition A.15. The set

Path∗ = {(γ, x) : γ ∈ Path(S2) and x ∈ S3 with γ(0) = p(x) ∈ S2 }

is a Fréchet manifold, and a smooth submanifold of Path(S2) × S3.

Proof. Fix a point (γ, x) ∈ Path∗. We will show that points in Path∗ near (γ, x) can be
parametrized by vectors in the Fréchet space

T(γ,x)Path∗ =
{
(V,w) : V ∈ TγPath(S2), w ∈ TxS3 and V(0) = dp(x)w

}
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Choose a local trivialization of the Hopf fibration

Ψ : U0 × S1 → p−1(U0)
containing p(x) ∈ U0. Using this trivialization, for each y ∈ p−1(U0) we write

(A.16) TyS
3 = Tp(y)S

2 ⊕ ℝ.

FIGURE 12. Path∗ is a Fréchet manifold

Now, given (V,w) ∈ T(γ,x)Path∗ with V and w sufficiently small, we first let

β(t) = Expγ(t)
(
V(t)

)
as before, so β is a curve in S2 near the original γ. Then write w = (w0, r) according to the
decomposition Equation A.16, and set

y = Ψ
(
Exp(w0), eir

)
where Exp is the exponential map in S3. The geodesic s ↦→ Exp(sw0) is horizontal to the
Hopf fibers, since it starts that way and p is a Riemannian submersion. The map

(A.17) Ẽxp(V,w) = (β,y)
is our coordinate chart for Path∗. It is clear that any pair (β,y) ∈ Path∗ sufficiently close to
(γ, x) can be obtained in this way as the image of some (V,w) under Ẽxp.

�

Proposition A.18. The map Lift : Path∗ → Path(S3), which takes a pair (γ, x) to the unique
horizontal lift γ of γ starting at x, is smooth.
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Proof. Let γ(t) = Lift(γ, x)(t). By definition, γ is the unique solution of the system

〈γ ′,A〉 = 0

p ◦ γ(t) = γ(t)
γ(0) = x

(A.19)

which depends smoothly on the initial condition x and the parameter γ. We will compute
this dependence explicitly when lifting curves from SDiff+(S2) to Aut1(ξ).

�

FIGURE 13. The path γ in S2 lifts to the horizontal path γ in S3

Borrowing notation from the proof of Proposition A.18, we let Eval : Path∗ → S3 be the
map that sends (γ, x) to the endpoint γ(1) of its lift. Then this is also a smooth map.

Proposition A.20. The map Eval : Path∗ → S3 is smooth.

Proof. Note that Eval(γ, x) = E1 ◦ Lift(γ, x), where

E1 : Path(S3) → S3

c ↦→ c(1)
The map E1 is smooth: its first derivative at any α is

dE1(α) : TαPath(S3) → Tα(1)S
3

V ↦→ V(1)
which is a bounded map between Fréchet spaces. The same remark applies for higher deriva-
tives. Since Eval is a composition of smooth maps, it is also smooth by the Chain rule. �
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We now turn to our main goal in this appendix, which is to prove explicitly that the map
F : S3 → S3 defined in Equation 8.10 is smooth. Recall that to define this map, we first fix a
point y0 ∈ S2 and a rigid motion

F0 : p−1(y0) → p−1(f(y0))
between the Hopf fibers p−1(y0) and p−1(f(y0)), where f : S2 → S2 is a given area-preserving
diffeomorphism. Then, F is given by the composition

(A.21) F(x) = Hfγ ◦ F0 ◦H−1
γ (x)

where γ is any path in S2 between y0 and y = p(x) and the maps H are the horizontal
transport maps defined in Equation 8.5.

Proposition A.22. The map F is smooth as a function of the point x ∈ S3, the path γ ∈ Path(S2)
and the diffeomorphism f ∈ SDiff+(S2).

Proof. It suffices to check that each of the factors in Equation A.21 is smooth. To do that, we
first focus on the points x ∈ S3 with y = p(x) close to the base point y0. Given such an x,
choose γy to be the unique shortest geodesic between y and y0. Then γy depends smoothly
on y and

(A.23) H−1
γy
(x) = Eval(γ−1

y , x)
in turn depends smoothly on x, by Proposition A.18 and Proposition A.20. Similarly,

(A.24) Hfy = Eval(f ◦ γ, F0(x0))
and since F0 is a fixed rigid motion, it follows that F is smooth, at least on a neighborhood
of the fiber p−1(y0). To treat the case where x is far away from this fiber, it suffices to note
that we can choose a different base point y0 whose fiber p−1(y0) is close to x, since this new
choice of base point will yield the same map F up to a uniform rotation of all fibers. Thus, F
is everywhere smooth. �
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