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Artificial intelligence (AI) technologies have profound-
ly transformed the field of remote sensing (RS), revo-

lutionizing data collection, processing, and analysis. Tradi-
tionally reliant on manual interpretation and task-specific 
models, RS research has been significantly enhanced by 
the advent of foundation models (FMs)—large-scale pre-
trained AI models capable of performing a wide array of 
tasks with unprecedented accuracy and efficiency. This ar-
ticle provides a comprehensive survey of FMs in the RS do-
main. We categorize these models based on their architec-
tures, pretraining datasets, and methodologies. Through 
detailed performance comparisons, we highlight emerg-
ing trends and the significant advancements achieved by 
those FMs. Additionally, we discuss technical challenges, 
practical implications, and future research directions, ad-
dressing the need for high-quality data, computational 
resources, and improved model generalization. Our re-

search also finds that pretraining methods, particularly 
self-supervised learning (SSL) techniques like contrastive 
learning (CL) and masked autoencoders (MAEs), remark-
ably enhance the performance and robustness of FMs. This 
survey aims to serve as a resource for researchers and prac-
titioners by providing a panorama of advances and promis-
ing pathways for the continued development and applica-
tion of FMs in RS.

INTRODUCTION
AI technologies have profoundly transformed the field of 
RS, revolutionizing how data are collected, processed, and 
analyzed. Traditionally, RS projects relied heavily on man-
ual interpretation and task-specific models that required 
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extensive labeled datasets and significant computational re-
sources. However, the advent of AI and deep learning (DL) 
has ushered in a new era in which large-scale pretrained 
models, known as FMs, are capable of performing a wide 
array of tasks with unprecedented accuracy and efficiency. 
These advancements have not only enhanced the potential 
applications of RS but have also opened new avenues for its 
usage across various domains.

In recent years, numerous vision FMs have emerged, 
demonstrating remarkable performance in handling di-
verse RS tasks. These models have shown the potential 
to significantly improve performance on multiple down-
stream tasks such as scene classification, semantic seg-
mentation, object detection, and more. By leveraging vast 
amounts of pretraining data and sophisticated architec-
tures, these FMs have set new benchmarks in the field, 
making them indispensable tools for researchers and  
engineers alike.

This article aims to provide a comprehensive survey of 
vision FMs in the RS domain ad rem and is limited to FMs 
released between June 2021 and June 2024. This time-
frame marks a surge in the development of modern FMs, 
including vision transformers (ViTs) and advanced SSL 
techniques. Although early models like Tile2Vec [47] and 
others laid the groundwork for representation learning in 
RS, they were typically limited in scale and generaliza-
tion capabilities. Furthermore, numerous review articles 
and papers have already provided comprehensive over-
views of these pre-2021 models. Our review, therefore, 
focuses on recent developments to highlight the unique 
contributions and innovations that have emerged in the 
past few years.

In Figure 1 [58], vision FMs are listed in chronological 
order. To facilitate navigation and enhance utility for re-
searchers, we categorized existing models based on their 
perception levels (e.g., image level, region level, and pixel 

level). This organization helps clarify which models have 
been tested for general image-based challenges or special-
ized applications, such as environmental monitoring, land 
cover mapping, archaeological exploration, disaster man-
agement, and more. It is essential to distinguish between 
applications that models have been explicitly tested on and 
those for which they could potentially be effective. In this 
review, the fact that a model has not been tested on a par-
ticular application does not mean it won’t perform well. 
FMs, especially convolutional neural network (CNN) back-
bones like residual networks [Residual Neural Networks 
(ResNets)] [36] and ViTs [25], may still be suitable for vari-
ous downstream tasks, even if prior work has not yet dem-
onstrated this (Figure 1). 

Our contributions include the following:
1)	 We provide an exhaustive review of the current state of 

vision FMs proposed in the field of RS, starting from the 
background and methodologies of these models to spe-
cific applications across different domains and tasks in a 
hierarchical and structured manner.

2)	 We provide the categorization and analysis of the mod-
els based on their application in both image analysis 
(Table 1) and practical applications (Table 2). We discuss 
the architecture, pretraining datasets, pretraining meth-
ods, and performance of each model.

3)	 We provide a discussion of challenges and unresolved 
aspects related to FMs in RS. We pinpoint new trends, 
raise important questions, and propose future direc-
tions for further exploration.

BACKGROUND

REMOTE SENSING
RS refers to the process of acquiring information about 
objects or areas from a distance, typically using satellite 
or airborne sensors. These technologies and techniques 
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FIGURE 1. An overview of some well-known FMs for RS from June 2021 to June 2024. Detailed reference numbers are listed in Tables 2–4.
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serve vital roles in diverse fields, enabling the collection 
of data over geographic areas without physical contact. 
Applications of RS include Earth observation, digital ar-
chaeology, urban planning and development, and disaster 
management. The field of RS has developed rapidly since 
the mid-20th century. Initially, RS predominately consisted 
of analog photographic techniques via aerial and satellite 
platforms, which provided limited spectral and spatial 
resolution. The launch of early Earth observation satellites, 
such as the Landsat program (which commenced in 1967 
[112]), marked a significant advancement, enabling con-
sistent and wide-ranging data collection for environmental 
monitoring.

Modern RS employs a variety of sensors suited for spe-
cific types of data collection, including optical, thermal, 
and radar. Optical sensors capture a wide variety of spec-
tral bands, including visible and near-infrared light, allow-
ing for the detailed imaging of land cover and vegetation 
health. Thermal sensors detect heat emitted or reflected 
from Earth’s surface, which is useful for monitoring vol-
canic activity, forest fires, and climate change monitoring. 
Radar sensors can penetrate clouds and vegetation, provid-
ing critical information in all-weather conditions and for 
applications such as soil moisture estimation and urban 
infrastructure mapping [17], [71].

In recent years, RS has found applications in many 
fields. With regard to environmental monitoring, it is used 
to track deforestation, to monitor air and water quality, 
and to assess the impacts of climate change [30], [39]. In 
agriculture, RS helps in crop health monitoring, yield es-
timation, and efficient resource management [71]. Urban 
planning and development benefit from RS through the 
monitoring of urban sprawl, infrastructure development, 

and land use planning [17], [48]. Furthermore, in disaster 
management, RS is crucial for assessing the damage caused 
by natural disasters, aiding in the planning and execution 
of relief operations [1], [30].

The integration of RS data with Geographic Information 
Systems (GIS) has further enhanced its utility. GIS provides 
a framework for capturing, storing, analyzing, and visual-
izing spatial and geographic data. When combined with RS 
data, GIS can be used to create detailed and dynamic maps 
and models for various applications. This synergy is partic-
ularly valuable in resource management, urban planning, 
and disaster response, where accurate and timely informa-
tion is critical [17], [30], [71].

FOUNDATION MODELS FOR REMOTE SENSING
FMs refer to large-scale pretrained models that provide a 
robust starting point for various downstream tasks across 
different domains [50]. These models leverage extensive 
datasets and advanced architectures, enabling them to 
capture complex patterns and features that can be fine-
tuned for specific applications with minimal addition-
al training. In RS, FMs are particularly valuable due to 
the diverse and complex nature of the data (Figure  2), 
including multispectral and multitemporal imagery. 
Techniques such as SSL [51] and transformers [93] have 
significantly enhanced the performance and efficiency 
of tasks such as image classification, object detection, 
and change detection, addressing the unique challenges 
posed by RS data [19].

A major strength of these models lies in their abil-
ity to utilize SSL to learn effective representations from 
largely unlabeled data, which is often abundant in RS 
scenarios [38]. By integrating advanced architectures like 
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FIGURE 2. Examples of (a) data types used in those FMs and (b) downstream tasks that can be done by FMs. (a) Data: 1) Panchromatic [4], 
2) True Color, 3) SAR [94], 4) Hyperspectral [4], and 5) Multispectral [4]. (b) Downstream tasks: 1) Segmentation, 2) Object Detection, 3) 
Classification [15], and 4) Change Detection [76]. (Source: True Color, Segmentation, and Object detection images copyright MAXAR 2024, 
provided through the NextView License Agreement.)
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TABLE 1. A SUMMARY OF THE PRETRAINING METHODS UTILIZED AND IMAGE ANALYSIS TASKS EVALUATED ACROSS  
DIFFERENT MODELS. IMAGE LEVEL, PIXEL LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL CLASSIFY THE TASKS IN IMAGE 
ANALYSIS, WHILE CL AND PREDICTIVE CODING INDICATE THE DIFFERENT SELF-SUPERVISED PRETRAINING STRATEGIES THAT 
EACH STUDY USED.

MONTH 
AND YEAR ARCHITECTURE MODEL NAME 

IMAGE 
LEVEL 

PIXEL 
LEVEL 

REGION 
LEVEL 

SPATIAL-
TEMPORAL CL 

PREDICTIVE 
CODING 

June 2021 ResNet-50 CMC-RSSR [84]  

Oct. 2021 ResNet-50 SeCo [66]  

Oct. 2021 ResNet-50 GeoKR [56]   

Dec. 2021 ResNet-34 MATTER [2]    

Mar. 2022 ResNet-50 GASSL [6]    

May 2022 ViTAEv2-S RSP [96]    

June 2022 ViT-S/8 DINO-MM [105]  

June 2022 Swin Transformer Scheibenreif et al. [79]   

July 2022 ViT/Swin Transformer RingMo [87]     

Aug. 2022 ResNet-50 GeCO [57]    

Sep. 2022 BYOL RS-BYOL [45]   

Nov. 2022 ViT-B CSPT [104]   

Nov. 2022 ViT RVSA [100]    

Jan. 2023 MAE-based Framework SatMAE [16]   

Apr. 2023 TOV TOV [89]    

Apr. 2023 Teacher-Student Self-Distillation CMID [70]    

June 2023 CACo CACo [67]    

2023 Jun ResNet-18 IaI-SimCLR [77]  

June 2023 ResNet SSL4EO-L [83]  

Aug. 2023 Teacher-Student GFM [69]    

Aug. 2023 Swim Transformer SatLasPretrain [7]  

Sep. 2023 Multi-Branch RingMo-Sense [119]  

Sep. 2023 ViT Scale-MAE [78]   

Sep. 2023 CNN-Transformer RingMo-lite [109]     

Sep. 2023 Multimodel SSL DeCUR [102]   

Oct. 2023 MSFE+MMFH Feng et al. [27]     

Oct. 2023 ViT FG-MAE [108]   

Nov. 2023 ViT Prithvi [46]  

Nov. 2023 Multimodal Encoder CROMA [28]    

Dec. 2023 ViT USat [44]  

Jan. 2024 ViT-B Cross-Scale MAE [88]   

Jan. 2024 Unet+Transformer U-BARN [26]  

Jan. 2024 Autoregressive Transformer EarthPT [82]  

Jan. 2024 Teacher-Student Network GeRSP [42]     

Jan. 2024 Dual-Branch SwiMDiff [91] 

Jan. 2024 Generative ConvNet SMLFR [22]   

Feb. 2024 3D GPT SpectralGPT [40]    

Feb. 2024 MAE-based Framework Presto [92]   

Mar. 2024 SatMAE SatMAE++ [73]  

Mar. 2024 Joint-Embedding Predictive Architecture SAR-JEPA [58]  

Mar. 2024 ViT FoMo-Bench [8]    

Mar. 2024 Factorized Multi-Modal Spatiotemporal 
Encoder 

SkySense [32]     

Mar. 2024 Multi-Modules UPetu [24]    

Apr. 2024 Swim Transformer msGFM [33]   

Apr. 2024 DINO DINO-MC [111]   

May 2024 OFA-Net OFA-Net [118]   

May 2024 Shared Encoder, Task-Specific Decoders MTP [99]    

May 2024 ViT BFM [11]   

May 2024 MP-MAE MMEarth [72]   

(Continued)
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transformers [93], FMs in RS can handle the unique char-
acteristics of geospatial data, such as varying spatial resolu-
tions and temporal dynamics, without requiring separate 
task-specific models.

The evolution of FMs has been driven by advance-
ments in DL and the availability of large datasets. Ini-
tially, CNNs like ResNet [36] paved the way for improved 
image recognition and classification tasks [65]. The intro-
duction of transformers, which use self-attention mech-
anisms to model long-range dependencies, has further 
advanced the capabilities of FMs in handling large-scale 
image data [16]. ViTs [25] extend the transformer archi-
tecture to process image data by treating image patches 
as sequences of tokens, enabling models to learn both lo-
cal and global relationships. This capability makes trans-
formers particularly effective for semantic segmentation 
and change detection tasks, where capturing long-range 
dependencies is crucial, especially in high-resolution sat-
ellite imagery.

Notable FMs in RS include SatMAE [16], which pretrains 
transformers for temporal and multispectral satellite im-
agery; Scale-MAE [78], a scale-aware MAE for multiscale 
geospatial representation learning; and DINO-MC [111], 
which extends global-local view alignment for SSL with 
RS imagery. These models have shown remarkable perfor-
mance in various RS tasks, such as scene classification, ob-
ject detection, and change detection.

Despite their success, FMs face several challenges, in-
cluding the need for high-quality and diverse training data, 
significant computational resources, and effective domain 
adaptation to specific RS tasks [73]. Addressing these chal-
lenges will be crucial for the continued advancement of 
FMs in RS.

RELATED REVIEW ARTICLES AND PAPERS
AI in RS has been a growing area of research, with numer-
ous review articles and papers providing insights into AI 
advancements and their applications. In this section, we 
summarize the most influential reviews on FMs in RS.

In 2016, Zhang et al., in their foundational review, 
“Deep Learning for Remote Sensing Data: A Technical Tuto-
rial on the State of the Art” [121], introduced DL techniques 
to RS, focusing on CNNs for tasks such as image classifica-
tion and object detection. This work highlighted both the 
promise and challenges of early AI integration in RS, setting 
the stage for subsequent advancements.

In 2017, Zhu et al.’s “Deep Learning in Remote Sensing: 
A Comprehensive Review and List of Resources” [37] delved 
into diverse AI applications, including hyperspectral anal-
ysis and synthetic aperture radar (SAR) interpretation. It 
also provided an extensive resource list, capturing the rapid 
adoption of DL in addressing complex RS challenges, paving 
the way for more advanced AI models in the following years.

More recent reviews have focused on advanced AI mod-
els and methods. Wang et al.’s 2022 review, “Self-Super-
vised Learning in Remote Sensing” [103], highlighted the 
ability of SSL methods to utilize large volumes of unlabeled 
data, significantly reducing dependence on labeled datas-
ets while maintaining high performance in RS tasks. The 
review also identified key challenges and future directions, 
emphasizing SSL’s potential to handle large-scale RS data 
complexities.

Zhang and Zhang (2022), in “Artificial Intelligence for 
Remote Sensing Data Analysis: A Review of Challenges 
and Opportunities” [120], offered a comprehensive over-
view of AI algorithms, synthesizing findings from more 
than 270 studies. It emphasized ongoing challenges such 
as explainability, security, and integrating AI with other 
computational techniques, serving as a road map for future 
innovation in AI-driven RS.

Aleissaee et al.’s 2023 survey, “Transformers in Remote 
Sensing” [3], explored the impact of transformer-based 
models across various RS tasks, comparing them with 
CNNs. It identified both strengths and limitations, along 
with unresolved challenges, providing a detailed road map 
for future research on transformers’ role in RS.

Li et al.’s 2024 review, “Vision-Language Models in Re-
mote Sensing” [60], examined the increasing significance 

TABLE 1. A SUMMARY OF THE PRETRAINING METHODS UTILIZED AND IMAGE ANALYSIS TASKS EVALUATED ACROSS  
DIFFERENT MODELS. IMAGE LEVEL, PIXEL LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL CLASSIFY THE TASKS IN IMAGE 
ANALYSIS, WHILE CL AND PREDICTIVE CODING INDICATE THE DIFFERENT SELF-SUPERVISED PRETRAINING STRATEGIES THAT 
EACH STUDY USED.

MONTH 
AND YEAR ARCHITECTURE MODEL NAME 

IMAGE 
LEVEL 

PIXEL 
LEVEL 

REGION 
LEVEL 

SPATIAL-
TEMPORAL CL 

PREDICTIVE 
CODING 

May 2024 ViT CtxMIM [90]    

May 2024 HiViT SARATR-X [54]   

May 2024 Transformer SoftCon [106]    

May 2024 ViT LeMeViT [49]   

June 2024 Masked Autoencoder S2MAE [59]   

June 2024 CNN-Transformer RS-DFM [110]  

June 2024 MAE-based A2-MAE [122]   

June 2024 ViT HyperSIGMA [95]     

June 2024 Dynamic OFA DOFA [117]   

(Continued )
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TABLE 2. THIS TABLE ILLUSTRATES VARIOUS TASKS IN DIFFERENT APPLICATIONS FOR RS. KEY AREAS INCLUDE  
ENVIRONMENTAL MONITORING, AGRICULTURE, URBAN PLANNING AND DEVELOPMENT, DISASTER MANAGEMENT, AND 
ARCHAEOLOGY. EACH DOMAIN COMPRISES SPECIFIC TASKS IN DIFFERENT IMAGE ANALYSIS LEVELS, LIKE IMAGE LEVEL, PIXEL 
LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL. THE RELATIONSHIPS BETWEEN THESE TASKS AND THEIR APPLICATIONS ARE 
DEPICTED THROUGH CHECKMARKS, EMPHASIZING THE INTERCONNECTED NATURE OF IMAGE ANALYSIS METHODS ACROSS 
DIFFERENT FIELDS.

IMAGE ANALYSIS BY LEVELS

TASKS
IMAGE 
LEVEL

PIXEL  
LEVEL

REGION  
LEVEL

SPATIAL-
TEMPORAL RELATED WORK

Environmental 
monitoring 

Land cover change detection  [2], [24], [32], [40], [49], [59], [66], [67], [69], 
[70], [87], [91], [95], [96], [99], [106], [109], 
[111], [122]

Deforestation monitoring  [2], [6], [7], [16], [22], [24], [26], [27], [28], [32], 
[33], [40], [42], [45], [49], [56], [57], [67], [69], 
[70], [78], [79], [87], [88], [89], [92], [95], [96], 
[99], [100], [102], [106], [108], [109], [110], 
[119], [117], [118], [122], [90]

Water body analysis    [27], [32], [49], [70], [87], [95], [96], [99] 

Forest cover mapping   [27], [40], [49], [59], [67], [69], [87], [95], [96], 
[106], [109], [122] 

Biomass estimation [77] 

Weather/climate prediction  [82], [101], [119] 

Cloud removal [33] 

Moisture content  
measurement 

[92] 

Agriculture Crop type mapping     [27], [32], [49], [70], [83], [87], [95], [96], [99] 

Weed detection  [6], [8], [22], [27], [32], [49], [56], [57], [70], [87], 
[89], [95], [96], [99], [100], [104], [110], [90] 

Disease monitoring    [6], [27], [22], [32], [49], [56], [57], [70], [87], 
[89], [95], [96], [99], [100], [110], [90]

Forecasting [82], [119] 

Soil parameter estimation [117] 

Yield estimation   [2], [6], [7], [16], [24], [26], [27], [32], [33], [40], 
[42], [45], [56], [57], [67], [69], [70], [78], [79], 
[87], [88], [89], [95], [99], [96], [100], [102], 
[106], [108], [109], [118], [117], [122], [90]

Agricultural pattern  
segmentation 

 [66] 

Archaeology Artifact classification and 
recognition 

  [2], [6], [7], [8], [16], [26], [24], [27], [32], [33], 
[40], [42], [44], [45], [56], [57], [59], [58], [66], 
[67], [69], [70], [72], [77], [78], [82], [88], [91], 
[89], [79], [84], [87], [95], [96], [99], [105], 
[100], [102], [104], [106], [108], [109], [111], 
[118], [90], [117], [122] 

Detection of archaeological 
structures 

 [6], [8], [22], [27], [32], [49], [56], [57], [70], [87], 
[89], [95], [99], [96], [100], [104], [110], [90] 

Semantic segmentation  [2], [6], [7], [16], [22], [24], [26], [27], [28], [32], 
[33], [40], [49], [42], [45], [56], [57], [67], [69], 
[70], [78], [79], [87], [89], [96], [88], [92], [95], 
[99], [100], [102], [109], [119], [106], [108], 
[110], [117], [118], [122], [90] 

Texture/structural analysis [2] 

Pattern recognition   [6], [22], [32], [49], [27], [56], [57], [70], [87], 
[89], [95], [96], [99], [100], [110], [90] 

Urban  
planning and 
development 

Traffic monitoring    [27], [32], [49], [70], [87], [95], [96], [99] 

Land cover/use classification  [2], [6], [7], [8], [16], [24], [26], [27], [32], [33], 
[40], [45], [57], [59], [42], [44], [58], [56], [66], 
[67], [69], [70], [72], [77], [78], [79], [83], [84], 
[87], [89], [82], [88], [91], [96], [99], [95], [102], 
[117], [105], [100], [109], [104], [108], [106], 
[111], [118], [122], [90] 

Road crack detection  [6], [8], [27], [22], [32], [49], [56], [57], [70], [87], 
[89], [95], [96], [99], [100], [104], [110], [90]

(Continued)
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of vision-language models (VLMs), which combine visual 
and textual data. It highlighted VLMs’ potential in applica-
tions like image captioning and visual question answering, 
emphasizing a shift toward richer semantic understanding 
in RS tasks.

Additionally, the recent work, “On the Foundations of 
Earth and Climate Foundation Models” [97], provided a 
comprehensive review of existing FMs, proposing features 
like geolocation embedding and multisensory capability. 
It outlined key traits for future Earth and climate models, 
contributing to a broader discussion on foundational ad-
vancements in geospatial AI.

Building on these reviews, our study provides a compre-
hensive analysis of FMs developed from June 2021 to June 
2024, focusing on advances in SSL and transformer-based 
architectures. Unlike previous reviews, which focused 
mainly on individual techniques, we explore their com-
bined potential in RS tasks like semantic segmentation, 
multispectral analysis, and change detection. For instance, 
SatMAE [16] demonstrates the effective use of SSL for pre-
training transformers, enabling improved segmentation in 
complex multispectral imagery, while Scale-MAE employs 
scale-aware MAEs for better handling of varied spatial reso-
lutions in RS data.

Our study also highlights new models like DINO-MC 
[111], which integrates global-local view alignment for SSL, 
making it particularly effective for identifying changes in 
high-resolution satellite imagery. By systematically exam-
ining these innovations, we illustrate how recent models 
address persistent challenges like domain adaptation and 

computational efficiency. For example, efficient self-atten-
tion mechanisms in Scale-MAE [78] help reduce compu-
tation costs, while enhanced geolocation embeddings in 
models like SatMAE improve performance in geospatial 
feature extraction.

In contrast to earlier reviews, which often remained the-
oretical, we emphasize both the theoretical advancements 
and practical applications of recent models. For example, 
DINO-MC’s [111] and ORBIT’s [101] real-world applica-
tions in environmental monitoring and disaster response 
highlight their practical impact, demonstrating how new 
FMs can be effectively leveraged to address pressing chal-
lenges in geospatial analysis.

PRETRAINING METHODS
Pretraining serves as a critical step in developing FMs, en-
abling them to learn transferable and generalized repre-
sentations from large-scale datasets. This process leverages 
self-supervised or supervised learning methods to extract do-
main-agnostic features that can be adapted to various down-
stream tasks. In this section, we explore the key pretraining 
methods utilized commonly in FMs for RS, explaining the 
mechanism of these methods and their roles in enhancing 
model performance and addressing challenges in this field.

SELF-SUPERVISED LEARNING
SSL has emerged as a cornerstone of pretraining FMs, of-
fering a paradigm where models learn representations by 
predicting parts of the input data from other parts. This ap-
proach reduces reliance on expensive and time-consuming 

TABLE 2. THIS TABLE ILLUSTRATES VARIOUS TASKS IN DIFFERENT APPLICATIONS FOR RS. KEY AREAS INCLUDE  
ENVIRONMENTAL MONITORING, AGRICULTURE, URBAN PLANNING AND DEVELOPMENT, DISASTER MANAGEMENT, AND 
ARCHAEOLOGY. EACH DOMAIN COMPRISES SPECIFIC TASKS IN DIFFERENT IMAGE ANALYSIS LEVELS, LIKE IMAGE LEVEL, PIXEL 
LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL. THE RELATIONSHIPS BETWEEN THESE TASKS AND THEIR APPLICATIONS ARE 
DEPICTED THROUGH CHECKMARKS, EMPHASIZING THE INTERCONNECTED NATURE OF IMAGE ANALYSIS METHODS ACROSS 
DIFFERENT FIELDS.

IMAGE ANALYSIS BY LEVELS

TASKS
IMAGE 
LEVEL

PIXEL  
LEVEL

REGION  
LEVEL

SPATIAL-
TEMPORAL RELATED WORK

Air quality monitoring   [6], [22], [27], [33], [32], [49], [95], [56], [57], 
[70], [87], [89], [96], [99], [100], [110], [90] 

Building extraction   [27] 

Object/video tracking   [119] 

Infrastructure monitoring [44], [119] 

Disaster man-
agement 

Landslide risk monitoring     [27], [32], [49], [70], [87], [95], [96], [99] 

Disaster response [117] 

Real-time detection and 
mapping 

   [27], [32], [49], [70], [87], [95], [96], [99] 

Building damage assessment    [27], [32], [49], [70], [87], [95], [96], [99] 

Critical infrastructure 
detection 

  [6], [8], [ 22], [32], [49], [27], [56], [57], [70], [87], 
[89], [96], [100], [95], [99], [104], [110], [90]

Flood/fire mapping and  
prediction 

   [27], [40], [67], [69], [87], [96], [49], [95], [106], 
[109], [122] 

Crowd and vehicle detection   [2], [24], [32], [49], [59], [40], [66], [67], [69], [70], 
[87], [91], [95], [96], [99], [109], [106], [111], [122]

(Continued )
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labeled datasets, making it particularly advantageous in 
fields like RS, where labeled data are often scarce or chal-
lenging to obtain.

SSL allows models to exploit vast amounts of unlabeled 
data, learning rich and generalizable representations that 
transfer well to downstream tasks such as scene classifica-
tion, semantic segmentation, object detection, and change 
detection. By uncovering underlying data structures and pat-
terns, SSL not only enhances model robustness but also im-
proves adaptability across diverse domains and resolutions 
of RS imagery [103]. Figure 3 illustrates the general pipeline 
of SSL. Two SSL methods commonly used in vision FMs 
for RS are predictive coding and CL, each offering unique 
mechanisms to harness information from unlabeled data.

PREDICTIVE CODING
Predictive coding leverages a generative approach, where 
the model learns to predict missing or occluded parts of 
an image based on visible portions. This strategy helps 
capture spatial and contextual relationships in RS im-
agery, which often contains diverse textures, complex 
scenes, and varying resolutions.

In RS, predictive coding can be applied to tasks such 
as gap filling in satellite imagery, where the model learns 
to infer missing data caused by sensor limitations or oc-
clusions like cloud cover. Popular implementations of 
predictive coding frameworks include autoencoder-based 
architectures, masked image modeling (MIM) techniques 

like those used in MAEs [34], and autoregressive models. 
These methods are particularly effective in learning fine-
grained details critical for high-resolution imagery and spe-
cialized tasks.

CONTRASTIVE LEARNING
CL is another powerful SSL technique that focuses on dis-
tinguishing between similar and dissimilar samples in 
the data. The key idea is to bring representations of simi-
lar (positive) samples closer together while pushing apart 
those of dissimilar (negative) samples. This encourages the 
model to learn discriminative and invariant features that 
are crucial for RS tasks.

CL frameworks such as SimCLR [13], MoCo [35], 
DINO [9], and BYOL [29] have shown promise in RS ap-
plications. They use augmentations like random cropping, 
rotations, and spectral band dropping to generate positive 
pairs, enabling the model to learn robust representations 
invariant to these transformations. For instance, in mul-
tispectral or hyperspectral imagery, CL can help models 
capture spectral signatures across varying conditions, im-
proving performance in tasks like crop classification or 
land cover mapping [103]. CL is especially relevant in RS 
when labeled datasets are highly imbalanced as it enables 
models to learn from underrepresented classes or regions 
without explicit labels.

By combining approaches like predictive coding and 
CL, SSL has significantly advanced the development of 

Knowledge Transfer

Diverse Datasets

Finetune Dataset

Target Model

Pretraining Model

Downstream Tasks

Object Detection Segmentation

Trainable

Pretext Tasks

Colorizing

Input Image ReconstructionMask

MAE Reconstruction

Contrastive Task

FIGURE 3. The general pipeline of SSL [51]. Diverse dataset images and pretext task images are acquired from ImageNet [18], BigEarthNet 
[85], and MillionAID [64]. The Finetune dataset includes images from DIOR [55]. (Source: Object Detection and Segmentation, copyright 
MAXAR 2024, provided through the NextView License Agreement.)
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vision FMs in RS. These methods allow models to lever-
age vast unlabeled datasets while maintaining adaptabil-
ity across diverse spatial resolutions, spectral bands, and 
application scenarios. On the other hand, it is important 
to note that there are many other SSL methods that can 
be employed for such tasks. Other innovative methods, 
such as teacher-student self-distillation frameworks, 
have also demonstrated potential in RS applications. For 
example, CMID [70] achieves promising performance by 
combining CL and MIM in a teacher-student self-distilla-
tion framework. This structure enables it to capture both 
global and local features, making it effective for diverse 
RS tasks. The diversity of SSL techniques highlights the 
versatility and evolving nature of SSL, underscoring its 
critical role in unlocking the full potential of RS imagery.

SUPERVISED PRETRAINING
Supervised pretraining is a fundamental approach in 
DL, where models are trained using labeled datasets 
to minimize prediction errors for specific tasks, such 
as image classification. This method allows models to 
learn direct mappings between input features and tar-
get labels, fostering the development of detailed and 
task-specific representations. For instance, models 
like ResNet [36] and Visual Geometry Group Network 
(VGGNet) [81] trained on large-scale datasets such as 
ImageNet [18] have demonstrated how supervised pre-
training can capture robust feature hierarchies that are 
highly transferable to related tasks, including semantic 
segmentation and object detection.

In RS, supervised pretraining has shown promise for 
tasks such as land cover classification and object detec-
tion using high-resolution satellite imagery [96]. How-
ever, the dependency on large-scale labeled datasets 
presents a major limitation. Creating labeled datasets 
for RS tasks, particularly when involving multispectral 
or hyperspectral data, is resource intensive and often 
requires domain expertise for annotation. For example, 
labeling pixel-level data for land cover classification or 
delineating objects in complex urban environments can 
be prohibitively time consuming. Furthermore, labeled 
data in RS are often domain specific, limiting the gen-
eralizability of models trained on one dataset to other 
applications or regions [37].

These challenges highlight the need for innovative strate-
gies to address the reliance on labeled data. Such limitations 
have motivated the development of alternative approaches, 
including self-supervised pretraining methods, which lever-
age the abundance of unlabeled data to learn general-pur-
pose representations without manual annotation.

IMAGE ANALYSIS METHODS

IMAGE PERCEPTION AT DIFFERENT LEVELS
FMs in RS enable image analysis at three primary levels: 
the image level, region level, and pixel level. These levels 

address varying spatial, contextual, and application-specif-
ic needs, providing the foundation for a wide range of tasks, 
such as environmental monitoring, urban planning, disas-
ter response, and more. The following sections outline the 
distinct objectives and applications at each level. A detailed 
summary of the models evaluated for these tasks is provid-
ed in Table 3. The following sections outline the distinct 
objectives and applications at each level.

IMAGE LEVEL
Image-level analyses focus on classification tasks, categoriz-
ing entire images or large image segments into predefined 
classes, such as urban, forest, water bodies, or agricultural 
areas. This approach provides broad high-level insights into 
geographic regions and is instrumental in large-scale ap-
plications like land use mapping, land cover classification, 
and resource management. By classifying entire scenes, this 
level of analysis enables the efficient monitoring of exten-
sive areas, supporting decision making in environmental 
management and policy planning.

REGION LEVEL
Region-level analysis identifies and localizes specific ob-
jects within an image, such as buildings, vehicles, ships, 
or other structures. Unlike image-level analysis, which 
provides holistic classifications, region-level tasks focus 
on object detection, which is used to detect individual 
entities and their spatial locations. This analysis is critical 
for targeted applications like urban planning, where the 
detection of infrastructure is essential, as well as disaster 
response and security, where identifying damaged build-
ings or vulnerable areas can significantly aid in timely 
interventions.

PIXEL LEVEL
Pixel-level analysis offers the most granular form of im-
age perception, assigning a label to every pixel within an 
image. This includes tasks such as semantic segmentation, 
where each pixel is classified into categories like vegeta-
tion, water, or buildings; it also includes change detection, 
which identifies temporal differences between images cap-
tured at different times. Pixel-level analysis is indispensable 
for creating highly detailed maps used in applications like 
precision agriculture, deforestation tracking, and disaster 
management. The ability to analyze fine-grained details 
enables more accurate assessments and actionable insights 
for these critical areas.

BACKBONE

CONVOLUTIONAL NEURAL NETWORKS
CNNs [74] are a fundamental architecture in DL, designed 
to extract hierarchical spatial features from images through 
the use of convolutional layers. Each convolutional layer 
applies filters to the input data, detecting patterns like 
edges, textures, and shapes at different levels of abstraction. 
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TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,  
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE  
NUMBER OF PARAMETERS. 

MODEL NAME ARCHITECTURE 
PRETRAINING 
DATASET 

RESOLUTION 
(M) 

GEOGRAPHIC 
COVERAGE 

IMAGE ANALYSIS 
LEVELS 

PRETRAIN 
METHODS NO. OF PARAMS 

CMC-RSSR [84] ResNet-50 NWPU-DOTA [113], 
BigEarthNet [85], 
ImageNet [18] 

0.2–60 Global Image level Contrastive 
multiview 
coding 

23 million 

SeCo [66] ResNet-50 Sentinel-2 imagery 10, 20, 60 200,000 locations 
worldwide 

Image level, 
spatial-temporal 

CL 23.5 million 

GeoKR [56] ResNet-50 Levir-KR [56] 0.8–16 Global Image level, pixel 
level, region level 

Geo-
graphical 
knowledge 
supervision 

23.5 million/ 
138 million 

MATTER [2] ResNet-34 Sentinel-2 Imagery — Rural and 
remote regions 
with few 
changes 

Image level, pixel 
level 

SSL 21.3 million 

GASSL [6] ResNet-50 fMoW [15],  
GeoImageNet [18] 

— Seven  
continents 

Image level, pixel 
level region level 

CL 23.5 million 

RSP [96] ViTAEv2-S MillionAID [63], 
[64] 

0.5–153 Global Image level, pixel 
level, region level, 
spatial-temporal 

Supervised 
learning 

24.8 million/ 
23.5 million/ 
29 million 

DINO-MM [105] ViT-S/8 BigEarthNet-MM 
[86] 

10 Global Image level SSL 22 million 

Scheibenreif et 
al. [79] 

Swin Transformer SEN12MS [80] 10 Global Image level, pixel 
level 

CL — 

RingMo [87] ViT/Swin Trans-
former 

2 million RS images 0.3–30 Six Continents Image level, pixel 
level, region level, 
spatial-temporal 

MIM — 

GeCO [57] ResNet-50 Levir-KR [56] 0.8–16 Global Image level, pixel 
level, region level 

SSL 23.5 million 

RS-BYOL [45] BYOL Sen12MS [80] 10–20 Global Image level, pixel 
level 

SSL 23.5 million 

CSPT [104] ViT-B ImageNet-1K [18] — Global Image level, 
region level 

SSL 86 million 

RVSA [100] ViT MillionAID [63], 
[64] 

0.5–153 Global Image level, pixel 
level, region level 

MAE 100 million 

SatMAE [16] MAE-based 
Framework 

fMoW Sentinel-2 
[15] 

10, 20, 60 Global Image level, pixel 
level 

MAE 307 million 

TOV [89] TOV TOV-NI, TOV-RS — Global Image level, pixel 
level, region level 

SSL — 

CMID [70] Teacher-student 
Self-Distillation 

MillionAID [63], 
[64] 

Varied Global Image level, pixel 
level, region level, 
spatial-temporal 

SSL 25.6 million/ 
87.8 million 

CACo [67] ResNet-18/50 Sentinel-2 imagery 10 Global Image level,  
pixel level,  
spatial-temporal 

SSL 11.7 million/ 
23.5 million 

IaI-SimCLR [77] ResNet-18 SEN12MS — Global Image level CL 11.7 million 

SSL4EO-L [83] ResNet/ViT ImageNet [18], 
MoCo [35],  
SimCLR [13] 

30 Global Pixel level SSL 11.7 million/ 
23.5 million/ 
86 million 

GFM [69] Teacher-Student GeoPile [69] — Global Image level, pixel 
level 

Continual 
pretraining 

— 

SatlasPretrain 
[7] 

SatlasNet GeoPile [69] 1, 10 Global Image level, pixel 
level 

Multitask 
learning 

88 million 

RingMo-Sense 
[119] 

Multi-Branch RS Spatiotemporal 
Dataset 

— Global Pixel level SSL — 

Scale-MAE [78] ViT-Large FMoW [15] — Global Image level, pixel 
level 

MAE 322.9 million 

RingMo-lite 
[109] 

CNN-Transformer AID [115] 0.3–30 Global Image level, pixel 
level, region level, 
spatial-temporal 

FD-MIM 60% less than 
RingMo 

(Continued)
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TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,  
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE  
NUMBER OF PARAMETERS. 

MODEL NAME ARCHITECTURE 
PRETRAINING 
DATASET 

RESOLUTION 
(M) 

GEOGRAPHIC 
COVERAGE 

IMAGE ANALYSIS 
LEVELS 

PRETRAIN 
METHODS NO. OF PARAMS 

DeCUR [102] Multimodel SSL SSL4EO-S12 [107], 
RGB-DEM/depth 

Varied Global Image level, pixel 
level 

SSL 23.5 million 

Feng et al. [27] MSFE+MMFH Multimodal Dataset Varied Global Image level, pixel 
level, region level, 
spatial-temporal 

SSL — 

FG-MAE [108] ViT SSL4EO-S12 [107] 10 Global Image level, pixel 
level 

MAE — 

Prithvi [46] ViT Harmonized Land-
sat Sentinel-2 

30 Contiguous 
United States 

Pixel level MAE 100 million 

CROMA [28] Multimodal 
Encoder 

SSL4EO [107] 10 Areas surround-
ing human 
settlements 

Image level, pixel 
level 

CL, MAE 86 million 

USat [44] ViT Satlas [7] Varied Global Pixel level MAE — 

Cross-Scale 
MAE [88] 

ViT-B fMoW [15] — Global Image level, pixel 
level 

MAE 86 million 

U-BARN [26] Unet+Transformer Sentinel-2 imagery Varied France Image level, pixel 
level 

SSL — 

EarthPT [82] Transformer Sentinel-2 Imagery 10 United Kingdom Image level Autoregres-
sive SSL 

700 million 

GeRSP [42] Teacher-Student 
Network 

ImageNet [18], Mil-
lionAID [63], [64] 

0.5–153 Global Image level, pixel 
level, region level 

SSL, SL — 

SwiMDiff [91] Dual-Branch Sen12MS [80] Varied Global Image level, 
spatial-temporal 

SSL 11.7 million 

SMLFR [22] Generative Con-
vNet 

GeoSense [22] 0.05–150 Multiple conti-
nents 

Pixel level, region 
level 

SSL 88 million/ 
197 million 

SpectralGPT 
[40] 

3D GPT Sentinel-2 imagery Varied Global Image level, pixel 
level, spatial-tem-
poral 

MAE 100 million/ 
300 million/ 
600 million 

Presto [92] MAE-based 
framework 

Presto-21.5M [92] 10 Global Crop-type seg-
mentation 

MAE 402,000

SatMAE++ [73] SatMAE fMoW [15] Varied Global Image level Multiscale 
pretraining 

— 

SAR-JEPA [58] Joint-Embedding 
Predictive Archi-
tecture 

100,000 SAR Im-
ages 

Varied Global Image level SSL — 

FoMo-Bench [8] ViT Multiple Varied Global Image level, pixel 
level, region level 

MAE 101 million/ 
110 million 

SkySense [32] Factorized Multi-
Modal Spatiotem-
poral Encoder 

Multiple Varied Global Image level, pixel 
level, region level, 
spatial-temporal 

CL 2.06B 

UPetu [24] Multi-Modules GeoSense [22] — Global Image level, pixel 
level, spatial-tem-
poral 

SSL 0.65 million 

msGFM [33] Swin Transformer GeoPile-2 [69] 0.1–153 Global Image level, pixel 
level 

MIM 89 million 

DINO-MC [111] DINO SeCo-100K [66] 10–60 Global Image level, 
spatial-temporal 

SSL — 

OFA-Net [118] OFA-Net Multimodal Dataset Varied Global Image level, Pixel 
level 

MIM — 

MTP [99] Shared Encoder 
Task-Specific 
Decoders 

SAMRS [98] Varied Global Image level, pixel 
level, region level, 
spatial-temporal 

Multitask 
pretraining 

More than 300 
million 

BFM [11] ViT MillionAID [63], 
[64] 

0.5–153 Global Pixel level, region 
level 

MAE 86 million/ 
605.26 million/  
1.36 billion/ 
2.42 billion 

MMEarth [72] MP-MAE Multimodal, geo-
spatial data 

— Global Image level, pixel 
level 

MP-MAE 3.7 million to 
650 million 

(Continued)
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This makes CNNs well suited for handling complex visual 
tasks in RS, such as image classification, segmentation, and 
object detection.

ResNets [36], a type of CNN, address the degradation 
problem in deep neural networks by introducing residual 
connections, which allow gradients to bypass certain layers, 
facilitating the training of very deep networks. This capabil-
ity is particularly beneficial in RS, where deep models are 
often required to capture the intricate details and variations 
in satellite images. ResNet, as an example, is characterized 
by its residual blocks, which include shortcut connections 
that bypass one or more layers. The residual block can be 
described by the following equation:

( ,{ })Wy x xF i= +

where y  is the output, F  represents the residual map-
ping to be learned, x  is the input, and { }Wi  are the layer 
weights [36].

ResNet has various architectures, like ResNet-50, 
ResNet-101, and ResNet-152, with the number indicating 
the total layers. These networks have shown remarkable 
performance in various vision tasks due to their ability 
to train deeper networks without degradation. In RS, 
ResNets are widely used for image classification, object 
detection, and change detection tasks [30]. For example, 
ResNet-based models can classify different land cover 
types [31], [114], detect objects like buildings and vehi-
cles [30], and monitor changes [31], [75] in the landscape 
over time by comparing temporal sequences of satellite 
images.

TRANSFORMERS AND VISION TRANSFORMERS
Transformers, adapted for computer vision as ViTs, model 
long-range dependencies through self-attention, making 
them effective for complex geospatial data. Figure 4 illus-
trates the architecture of ViT. ViTs treat images as sequences 
of patches, capturing global and local patterns, which is 

TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,  
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE  
NUMBER OF PARAMETERS. 

MODEL NAME ARCHITECTURE 
PRETRAINING 
DATASET 

RESOLUTION 
(M) 

GEOGRAPHIC 
COVERAGE 

IMAGE ANALYSIS 
LEVELS 

PRETRAIN 
METHODS NO. OF PARAMS 

CtxMIM [90] ViT WorldView-3 
imagery 

Varied Asia Image level, pixel 
level, region level 

MIM 88 million 

SARATR-X [54] HiViT SAR datasets 0.1–3 Global Image level, 
region level 

MIM 66 million 

SoftCon [106] Siamese Network 
with ResNet and 
ViT Backbones 

SSL4EO-S12-ML 
[107] 

— Global Image level, pixel 
level, spatial-tem-
poral 

Multilabel 
soft CL 

23 million,  
23 million,  
86 million 

LeMeViT [49] Hierarchical ViT MillionAID [63], 
[64] 

— — Image level, pixel 
level, region level, 
spatial-temporal 

Dual cross-
attention 
with 
learnable 
meta token 
adaptation 

8.33 million to 
52.61 million 

S2MAE [59] 3D Transformer-
based MAE

fMoW-Sentinel [15], 
BigEarthNet [85] 

— Global Image level, 
spatial-temporal 

3D MAE — 

RS-DFM [110] Multiplatform 
Inference Frame-
work 

AirCo-MultiTasks 
[110] 

— — 3D region level, 
pixel level 

General-
ized feature 
mapping 
with relative 
depth esti-
mation 

— 

A2-MAE [122] ViT-Large Spatial-Temporal-
Spectral Structured 
Dataset (STSSD) 

0.8–30 m Global Image level, pixel 
level, spatial-tem-
poral 

Anchor-
aware 
masking 
strategy and 
geographic 
encoding 
module 

304 million 

HyperSIGMA 
[95] 

ViT based HyperGlobal-450K 
[95] 

30 m Global Image level, 
region level, 
anomaly detec-
tion, spatial-tem-
poral 

MAE More than  
1 billion 

DOFA [117] Dynamic OFA Multiple 1–30 Global Image level, pixel 
level 

MIM 111 million/ 
337 million 

FD-MIM: feature-distilled masked image modeling.

(Continued )
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useful for segmentation and change detection. The self-
attention mechanism computes the following:

( , , )Q K V
d

QK
VAttention softmax

k

T

= d n

where Q  (query), K  (key), and V  (value) are the input ma-
trices, and dk  is the dimension of the key vectors [93].

By incorporating these methodologies, FMs for RS can 
leverage vast amounts of data, handle complex structures, 
and achieve state-of-the-art performance across various 
applications. These methodologies enable models to ef-
fectively address the unique challenges of RS, such as large 
image sizes, diverse data sources, and the need for high ac-
curacy in environmental monitoring and analysis. In the 
following sections, we will explore specific applications of 
these methodologies in different RS tasks, analyze their 
performance, and discuss the datasets used to train and 
evaluate these models.

DATA AND TASKS

DATA
Datasets play a crucial role in RS, providing the foundation 
for training and evaluating models. High-quality datasets 
enable models to learn accurate representations of Earth’s 
surface, improving their performance on various RS tasks. 
In Figure 2, we showcase some examples of the data used 
for training FMs and their downstream tasks. In this sec-
tion, we provide an overview of commonly used datasets in 
Table 4 for RS, discussing their characteristics, applications, 
and relevance to FMs. These datasets, with their varying 
resolutions, categories, and geographic coverage, provide a 
rich resource for advancing RS research and applications. 
They facilitate the development of robust models capable of 

addressing diverse challenges in understanding and inter-
preting Earth’s surface through RS technologies.

Datasets used in RS vary significantly in size, from 
hundreds of thousands of samples, as seen in RSD46-
WHU [62], [116], to more than a million, as seen in Mil-
lionAID [63], [64]. Generally, larger datasets contribute 
to model generalization by encompassing diverse geo-
graphic areas, seasonal variations, and environmental 
conditions. Dataset resolutions also range from high 
(submeter), suitable for tasks requiring detailed spatial 
analysis, to moderate (10–60 m), as with SEN12MS [80] 
and SSL4EO-S12 [107], which support broader pattern 
recognition applications.

These datasets leverage various sensor types, includ-
ing red, green, blue (RGB), multispectral, hyperspectral, 
and SAR. For instance, SEN12MS [80] integrates both SAR 
and multispectral imagery, enabling models to learn from 
distinct data modalities. This diversity in sensor types is 
critical for robust model development as each sensor type 
captures unique surface characteristics, supporting tasks 
that benefit from cross-modal information.

FMs, in particular, benefit from such large-scale mul-
timodal datasets, which support self-supervised and su-
pervised training approaches across tasks such as scene 
classification, segmentation, and object detection. For fur-
ther insight, “Commonly Used Pretrain Dataset for Remote 
Sensing” includes detailed descriptions of each dataset’s 
structure, unique characteristics, and application roles, en-
hancing the understanding of their impact on RS advance-
ments.

TASKS
Different applications in RS address particular real-world 
challenges by leveraging the capabilities of FMs. These tasks 
include environmental monitoring, archaeology, agricul-

ture, urban planning and develop-
ment, and disaster management. To 
highlight the versatility of FMs in RS, 
we present Table 3, which categorizes 
models based on their applicabil-
ity to various applications as well as 
the different image analysis methods 
used. This table serves as a quick ref-
erence for researchers to identify suit-
able models for their specific needs.

ENVIRONMENTAL MONITORING
According to Himeur et al. [39], en-
vironmental monitoring utilizes RS 
models to observe and track environ-
mental changes, including deforesta-
tion, desertification, and pollution. 
These models play a crucial role in 
analyzing the effects of human ac-
tivities and natural phenomena on 
the environment.

Linear Projection of Flattened Patches

Transformer Encoder

*0 1 2 3 4 5 6 7 8 9

Segmentation Decoder

Segmentation

RGB Image

FIGURE 4. The Vision transformer architecture. (Source: RGB Image and Segmentation, copy-
right MAXAR 2024, provided through the NextView License Agreement.)
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AGRICULTURE
In agriculture, RS models are used to monitor crop health, 
estimate yields, and manage agricultural practices. Accord-
ing to Kamilaris and Prenafeta-Boldú [52], these models help 
optimize resource use and improve agricultural productivity.

ARCHAEOLOGY
In archaeology, RS models have been used to identify and 
analyze archaeological features and sites. According to 
Argyrou and Agapiou [5], these models help detect features 
such as ruins, artifacts, and ancient structures from satel-
lite imagery, leveraging technologies like CNNs and ViTs 
to process high-resolution images and capture fine details. 
Mantovan and Nanni [68] also highlight the effectiveness of 
AI models, particularly CNNs, in locating challenging terres-
trial archaeological sites and processing multispectral data.

URBAN PLANNING AND DEVELOPMENT
In urban planning and development, RS models are used 
to monitor and analyze urban expansion, infrastructure 
development, and land use changes. According to Jha et al. 
[48], these models play a critical role in managing urban 
growth, planning new developments, and assessing the im-
pact of urbanization by providing essential data for smart 
city planning and sustainable development.

DISASTER MANAGEMENT
RS models play a crucial role in disaster management by 
providing timely information on affected areas. According 
to Abid et al. [1], these models are used to detect and assess 
damage from natural disasters like earthquakes, hurricanes, 
and floods, enabling rapid response and recovery efforts.

DISCUSSION
The rapid advancement in FMs for RS underscores their 
transformative potential across various applications. As the 
field continues to evolve, it is crucial to synthesize the find-
ings, address technical challenges, understand the practi-
cal implications, and identify future research directions. 
In this section, we make a comprehensive analysis of these 
aspects, aiming to offer insights and guidance for future de-
velopment and application of RS FMs.

SYNTHESIS OF FINDINGS
In our survey of FMs for RS, we identified significant ad-
vancements and trends that highlight the evolving capa-
bilities and applications of these models. The performance 
metrics of various models across different downstream 
tasks, such as scene classification, semantic segmentation, 
object detection, and change detection, reveal the follow-
ing key findings.

MODEL PERFORMANCE
In this section, we present the performance metrics 
of recent FMs in RS based on results reported in the 
original articles and papers. All performance numbers 
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mentioned here are sourced directly from the original stud-
ies to ensure accuracy and consistency in evaluating these 
models. These metrics provide insights into the models’ 
effectiveness across tasks like semantic segmentation, 
object detection, and change detection, highlighting 
their strengths and limitations under different experi-
mental setups.

IMAGE LEVEL
The performance of FMs on the BigEarthNet dataset [85] for 
classification tasks shows variations in accuracy, as present-
ed in Table 5. Overall, msGFM [33] has the top performance 
of 92.90% [mean average precision (mAP)], followed close-
ly by SkySense [32] with a performance of 92.09%. Other 
notable performers include DeCUR [102], which achieved 
an mAP of 89.70%, and DINO-MC [111], with an mAP of 
88.75%. SeCo [66] also demonstrated strong performance 
with an mAP of 87.81%, while DINO-MM [105] reached an 
mAP of 87.10%. On the other hand, models like CACo [67] 

and FoMo-Bench [8] have an mAP of 74.98% and F1 score 
of 68.33%, respectively, showing competitiveness but room 
for improvement.

The high mAP scores of msGFM [33] and SkySense 
[32] highlight their efficiency in classification tasks, mak-
ing them suitable for applications requiring high accuracy. 
Other FMs, such as DINO-MM [105] and DeCUR [102], 
also provide strong performance with the potential for 
further optimization. The variety in performance metrics 
underscores the evolving capabilities and specialization of 
FMs in handling complex classification tasks within datas-
ets like BigEarthNet [85].

The classification advancements observed in RS models 
stem from sophisticated pretraining techniques that cap-
ture both spatial and spectral complexity across vast datas-
ets. SkySense, for example, shows an average improvement 
of 2.76% over recent models by implementing multigranu-
larity CL on a diverse dataset of 21.5 million optical and 
SAR sequences [32]. This approach enables SkySense to 

COMMONLY USED PRETRAIN DATASET FOR REMOTE SENSING
The RSD46-WHU [62], [116] dataset, introduced in 2017, is sourced from 
Google Earth and Tianditu. It contains 117,000 images with a patch size of 256 
pixels and spatial resolutions ranging from 0.5 to 2 m per pixel. Covering 46 
categories globally, this dataset is primarily used for scene classification. 
Similarly, the Functional Map of the World (fMoW) [15], released in April 2018, 
comprises more than 1 million images from Digital Globe. Spanning 63 catego-
ries across 207 countries, it includes multispectral images used for both scene 
classification and object detection.

In May 2019, the DOTA [113] dataset was proposed, known for its large-
scale aerial image object detection capabilities. It includes 11,268 images of 
various resolutions from Google Earth, the GF-2 satellite, and aerial sources, 
covering 18 categories globally. Another significant dataset, SEN12MS [80], 
released in June 2019, contains 541,986 images from Sentinel-1, Sentinel-2, and 
MODIS Land Cover. With a patch size of 256×256 pixels, it supports land cover 
classification and change detection tasks.

BigEarthNet [85], also from June 2019, consists of 590,326 images with 
varying sizes from 20×20 to 120×120 pixels, sourced from Sentinel-2. It covers 
43 categories across Europe and is used for scene classification and object 
detection. The SeCo [66] dataset, another June 2019 release, contains approxi-
mately 1 million images with a resolution of 2.65×2.65 km from Sentinel-2. It is 
designed for seasonal change detection and land cover classification over 
seasons.

The MillionAID dataset [63], [64], introduced in March 2021, includes more 
than 1 million images of various sizes from Google Earth. Covering 51 catego-
ries globally, it is used for scene classification. Levir-KR, released in July 2021, 
contains 1,431,950 images from the Gaofen-1, Gaofen-2, and Gaofen-6 satel-
lites, supporting change detection and scene classification applications.

SoundingEarth [S1], introduced in August 2021, comprises 50,545 images 
of 1,024-pixel size from Google Earth, combining RGB and audio data for RS. 
The TOV-RS-Balanced dataset [89] from April 2022 includes 500,000 images 
with a 600-pixel size from Google Earth, covering 31 categories globally, and is 
used for scene classification, object detection, and semantic segmentation.

SeasoNet [53], released in July 2022, features 1,759,830 images from 
Sentinel-2 with patch sizes from 20 to 120 pixels, supporting seasonal scene 
classification, segmentation, and retrieval over Germany. Lastly, the 
SSL4EO-S12 dataset [107] from November 2022 contains more than 3 million 
images from Sentinel-1 and Sentinel-2, with a patch size of 264×264 pixels. 
Since this dataset does not contain any labels, it is commonly used for SSL.

In recent years, additional datasets have further enriched the resources 

available for RS research. The SAMRS dataset [98], released in October 2023, 
offers a high-resolution collection of images sourced from datasets like 
HRSC2016 and FAIR1M-2.0, tailored for advanced segmentation tasks. With 
more than 105,000 images and resolutions up to 1,024×1,024 pixels, SAMRS 
supports semantic and instance segmentation as well as object detection, con-
tributing to the development of scalable segmentation models for RS.

Focusing on change-aware learning, CACo [67], launched in June 2023, 
provides a variable patch-size dataset sourced from Sentinel-2. This dataset is 
optimized for change detection and CL, specifically addressing urban and rural 
landscapes. By prioritizing contrastive and self-supervised tasks, CACo aids in 
developing models that can adapt to changes in satellite imagery across various 
environments.

The SatlasPretrain [7] dataset, introduced in October 2023, is a large-scale 
collection with more than 856,000 images combining Sentinel-2 and NAIP 
high-resolution sources. With multispectral and high-resolution imagery, 
SatlasPretrain supports applications such as land cover classification, segmen-
tation, and change detection, further advancing research in high-resolution sat-
ellite image analysis.

The SSL4EO-L [83] dataset, released in October 2023, represents a vast 
resource with more than 5 million images from Landsat, designed for SSL in 
cloud detection and land cover classification. By focusing on multiyear Landsat 
imagery, SSL4EO-L enables robust training for applications that benefit from 
long-term temporal coverage and cloud-resilient classification.

Finally, MMEarth [72], introduced in July 2024, combines data from 
Sentinel-1, Sentinel-2, and Aster DEM, providing more than 1.2 million images 
for multimodal applications. This dataset supports land cover classification and 
semantic segmentation, enabling researchers to leverage multiple sensor types 
and climate data for improved geospatial representation learning.

These datasets, with their varying resolutions, categories, and geographic 
coverage, provide a rich resource for advancing RS research and applications. 
They facilitate the development of robust models capable of addressing diverse 
challenges in understanding and interpreting Earth’s surface through RS tech-
nologies.

Reference
[S1]	 K. Heidler et al., “Self-supervised audiovisual representation learning for remote sensing 

data,” Int. J. Appl. Earth Observ. Geoinf., vol. 116, Feb. 2023, Art. no. 103130, doi: 10.1016/ 
j.jag.2022.103130.
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learn nuanced spatial and temporal relationships across 
modalities, enhancing generalization in varied environ-
mental conditions. Such multigranular representation 
proves crucial in RS, where scene classification often de-
pends on subtle spectral differences that simpler models 
may overlook. Likewise, HyperSIGMA [95], pretrained on 

the expansive HyperGlobal-450K hyperspectral dataset 
[95], leverages its sparse sampling attention mechanism 
to optimize spectral-spatial feature extraction in high-
dimensional hyperspectral data. By selectively focusing 
on critical spectral bands and reducing redundancy, Hy-
perSIGMA achieves high classification accuracy across hy-
perspectral scenes, a marked improvement over previous 
models that struggled with hyperspectral data complexity. 
These models highlight the importance of designing pre-
training strategies that capture multimodal features and 
effectively utilize dataset diversity as these elements di-
rectly impact the robustness and accuracy of classification 
in RS applications.

PIXEL LEVEL
For the segmentation tasks, we compared 12 FMs that have 
been tested on the International Society for Photogram-
metry and Remote Sensing (ISPRS) Potsdam dataset. As 
shown in Table 6, SkySense [32] has the better performance 
out of all 12 models, with an mF1 score of 93.99%. CMID 
[70] stands out with the highest mean intersection over 
union (mIoU) of 87.04%, demonstrating its superior ca-
pability in accurately segmenting different regions within 
the dataset. For overall accuracy (OA) performance, BFM 
[11] has the highest OA score of 91.82%. Cross-Scale MAE 
[88], UPetu [24], and RSP [96] have mIoU scores of 76.17%, 
83.17%, and 65.30%, respectively, showing competitive 
segmentation capabilities. GeoKR [56] reaches an mIoU of 
70.48%, indicating robust segmentation performance but 
with room for improvement compared to CMID [70]. TOV 
scores the lowest mIoU at 60.34%, suggesting that it may 
struggle with finer segmentation tasks compared to the 
other models.

The performance metrics for the models applied to the 
ISPRS Potsdam dataset reveal significant variations in their 
effectiveness in segmentation tasks. SkySense [32] and 
CMID [70] emerge as top performers in mF1 score and 
mIoU, respectively, while SMLFR [22], RingMo [87], and 
RingMo-lite [109] demonstrate strong OA. These insights 
can guide the selection and optimization of models for 
specific RS applications, ensuring the best possible perfor-
mance for the task at hand.

For the change detection tasks, we compared the per-
formance of FMs on the OSCD and LEVIR-CD datasets  
(Table 7). The models were evaluated based on their F1 
scores, which provide a balanced measure of precision and 
recall. As shown in the table, the performance varies signifi-
cantly across different models and datasets.

SkySense [32] achieves the highest F1 score of 60.06% 
on the OSCD dataset, demonstrating its superior ability 
to accurately detect changes. GFM [69] follows with an F1 
score of 59.82%, indicating strong performance in change 
detection tasks. SpectralGPT [40] also performs well with 
an F1 score of 54.29%. Other notable models include DI-
NO-MC [111] with an F1 score of 52.71% and CACo [67] 
with an F1 score of 52.11%. SeCo [66] records the lowest 

TABLE 5. THIS TABLE PROVIDES AN OVERVIEW OF THE  
PERFORMANCE METRICS FOR VARIOUS MODELS APPLIED TO 
THE BIGEARTHNET DATASET [85] FOR IMAGE-LEVEL TASKS. 
THE PERFORMANCE IS MEASURED USING MEAN AVERAGE 
PRECISION (MAP) AND F1 SCORE.

DATASET MODEL PERFORMANCE (%) METRICS 

BigEarthNet [85] 

SeCo [66] 87.81 mAP

CMC-RSSR [84] 82.9 mAP

DINO-MM [105] 87.1 mAP

CACo [67] 74.98 mAP

GFM [69] 86.3 mAP

DINO-MC [111] 88.75 mAP

CROMA [28] 86.46 mAP

DeCUR [102] 89.7 mAP

CtxMIM [90] 86.88 mAP

FG-MAE [108] 78 mAP

USat [44] 85.82 mAP

FoMo-Bench [8] 69.33 F1 score

SwiMDiff [91] 81.1 mAP

SpectralGPT [40] 88.22 mAP

SatMAE++ [73] 85.11 mAP

msGFM [33] 92.9 mAP

SkySense [32] 92.09 mAP

MMEarth [72] 78.6 mAP

Shallow CNN* [85] 70.98 F1 score 

*Performance for the shallow CNN model is sourced from the original BigEarthNet [85] 
paper. Bold values indicate the best-performing model for the corresponding metric. 

TABLE 6. THIS TABLE PROVIDES AN OVERVIEW OF THE PER-
FORMANCE METRICS FOR VARIOUS MODELS APPLIED TO THE 
ISPRS POTSDAM [43] DATASET FOR PIXEL-LEVEL TASKS. THE 
PERFORMANCE IS MEASURED USING MEAN INTERSECTION 
OVER UNION (MIOU) AND OVERALL ACCURACY (OA).

DATASET MODEL PERFORMANCE (%) METRICS 

ISPRS  
Potsdam 

GeoKR [56] 70.48 mIoU 

RSP [96] 65.3 mIoU 

RingMo [87] 91.74 OA 

RVSA [100] 91.22 OA 

TOV [89] 60.34 mIoU 

CMID [70] 87.04 mIoU 

RingMo-lite [109] 90.96 OA 

Cross-Scale MAE [88] 76.17 mIoU 

SMLFR [22] 91.82 OA 

SkySense [32] 93.99 mF1 

UPetu [24] 83.17 mIoU 

BFM [11] 92.58 OA 

R-SegNet* [23] 91.37 OA 

*Non-FM. Bold values indicate the best-performing model for the corresponding metric. 
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F1 score at 46.94%, suggesting that it may require further 
optimization to enhance its change detection capabilities.

In contrast, the LEVIR-CD dataset reveals higher per-
formance metrics across the models. MTP [99] achieves 
the highest F1 score of 92.67%, and SkySense [32] follows 
closely with an F1 score of 92.58%, demonstrating their 
robust performance. SWiMDiff reaches a lower F1 score of 
80.90% compared to its peers but still indicates effective 
performance in the LEVIR-CD [12] dataset.

REGION LEVEL
In Table 8, the performance of FMs on the DOTA, DIOR, 
and DIOR-R datasets for object detection is evaluated based 
on their mAP and average precision at 50% (AP50). On the 
DOTA dataset, RVSA [100] achieves the highest mAP of 
81.24% in accurately detecting objects, followed by SMLFR 
[22] and RSP [96] with mAPs of 79.33% and 77.72%. CMID 
[70], GeRSP [42], and BFM [11] also demonstrate moderate 
performances with mAPs of 72.12%, 67.40%, and 58.69%. 
For the DIOR and DIOR-R datasets, MTP [99] and SkySense 
[32] are the top performers with an AP50 of 78% and an 
mAP of 78.73%, respectively, showcasing their superior 
object detection capabilities. These insights can guide the 
selection and optimization of models to ensure the best 
possible performance for specific RS applications.

INFLUENCE OF PRETRAINING METHODS
Various pretraining methods have a substantial impact on 
the performance of FMs in RS. Models pretrained using 
SSL techniques, such as CL and MAE, consistently exhibit 
superior performance compared to those pretrained with 
traditional supervised learning. For instance, SkySense, 
which uses a multigranularity CL approach, outperforms 
other models by approximately 3.6% in scene classification 
and object detection tasks [32]. Similarly, Seco, based on 
seasonal contrast learning, yields superior performance for 
land cover classification, improving metrics by up to 7% 
over ImageNet-pretrained models [66]. In handling multi-
temporal and multispectral data, models like SatMAE [16] 
and Scale-MAE [78], using masked autoencoding, achieve 
improvements in change detection, with SatMAE showing 
up to a 14% performance gain in land cover classification 
[16] and Scale-MAE offering a 1.7% mIoU improvement for 
segmentation across varied resolutions [78]. These findings 
highlight the critical role of innovative pretraining methods 
in maximizing the effectiveness of FMs and suggest that the 
continued exploration and refinement of these techniques 
are essential for advancing RS capabilities.

FMs like SatMAE, RingMo, A2-MAE, and ORBIT each 
demonstrate strong performance, but practical tradeoffs 
are essential to consider, especially for application-specific 
constraints [16], [ [87], [ [101], [ [122]. SatMAE, based on 
a transformer architecture, effectively leverages temporal 
and multispectral embeddings to capture complex spa-
tial-temporal patterns in satellite imagery. This strength, 
however, comes at the cost of significant computational 

TABLE 7. THIS TABLE PROVIDES AN OVERVIEW OF THE F1 
SCORE FOR VARIOUS MODELS APPLIED TO THE ONERA  
SATELLITE CHANGE DETECTION (OSCD) DATASET [10] AND 
THE LEVIR-CD DATASET [12] FOR SPATIOTEMPORAL  
DOWNSTREAM TASKS.

DATASET MODEL F1 SCORE

OSCD [10] 

SeCo [66] 46.94

MATTER [2] 49.48

CACo [67] 52.11

GFM [69] 59.82

SWiMDiff [91] 49.6

SpectralGPT [40] 54.29

SkySense [32] 60.06

DINO-MC [111] 52.71

HyperSIGMA [95] 59.28

MTP [99] 53.36

CNNs* [10] 89.66 (OA)

LEVIR-CD [12] 

RSP [96] 90.93

RingMo [87] 91.86

RIngMo-lite [109] 91.56

SwiMDiff [91] 80.9

SkySense [32] 92.58

UPetu [24] 88.5

STANet* [12] 85.4 

*Performance for the models is sourced from the original dataset articles and papers. 
STANet is the Spatial-Temporal Attention Network. Bold values indicate the best-perform-
ing model for the corresponding metric. 

TABLE 8. THIS TABLE PROVIDES AN OVERVIEW OF THE  
PERFORMANCE METRICS FOR VARIOUS MODELS APPLIED TO 
THE DOTA [20], [21], [113] DATASET, DIOR [55], AND DIOR-R 
[14] DATASET FOR REGION-LEVEL TASKS. THE PERFORMANCE 
IS MAINLY MEASURED USING MAP. 

DATASET MODEL PERFORMANCE (%) METRICS 

DOTA 

RSP [96] 77.72 mAP

RVSA [100] 81.24 mAP

TOV [89] 26.1 mAP50 

CMID [70] 72.12 mAP

GeRSP [42] 67.4 mAP

SMLFR [22] 79.33 mAP

BFM [11] 58.69 mAP

YOLOv2-D* [21] 60.51 AP 

DIOR

RingMo [87] 75.8 mAP

CSPT [104] 69.8 mAP

RingMo-lite [109] 73.4 mAP

GeRSP [42] 72.2 mAP

MTP [99] 78 AP50 

Faster R-CNN* [55] 74.05 mAP

DIOR-R 

RVSA [100] 71.05 mAP

SMLFR [22] 72.33 mAP

SkySense [32] 78.73 mAP

MTP [99] 74.54 mAP

BFM [11] 73.62 mAP

AOPG* [14] 64.41 mAP

*Model performance is acquired from original dataset articles and papers. AOPG: Anchor-
free Oriented Proposal Generator. Bold values indicate the best-performing model for the 
corresponding metric. 
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requirements, which may not be feasible for real-time mon-
itoring applications in resource-constrained environments.

In contrast, RingMo provides a more lightweight vision 
transformer architecture, offering efficient model inference 
and a balance between performance and computational de-
mands. This makes RingMo particularly suitable for rapid-
inference tasks like disaster response monitoring, where 
real-time processing is critical [87]. A2-MAE introduces 
an anchor-aware masking strategy, optimizing spatial-
temporal-spectral representations and allowing the effec-
tive integration of multisource data. This design enhances 
its adaptability to varied data resolutions and modalities, 
yet the model’s complex encoding techniques add to its 
computational load, suggesting a fit for applications that 
require high accuracy over efficiency [122].

Finally, ORBIT, designed with 113 billion parameters, 
is exceptionally scalable, achieving high-throughput per-
formance for Earth system predictability tasks. While it ex-
cels in large-scale predictive tasks, the model’s considerable 
resource requirements limit its deployment to specialized 
high-performance computing environments [101]. These 
tradeoffs highlight the importance of selecting a model that 
aligns with specific operational goals, whether for maxi-
mizing accuracy or minimizing computational overhead.

Furthermore, recent studies comparing SSL approaches 
highlight the distinct advantages of generative methods like 
MAEs over contrastive methods for time-series data, espe-
cially when labeled data are limited [61]. Unlike contrastive 
approaches that emphasize distinguishing between similar 
and dissimilar pairs, generative methods such as MAE re-
construct data from masked segments, allowing them to 
capture complex underlying structures and relationships 
within the data. This reconstruction-based learning proves 
particularly advantageous for time-series and multispectral 
applications in RS, where temporal and spectral depen-
dencies are essential. Consequently, MAE-based models 
can achieve stronger representations under sparse labeling 
conditions, positioning them as powerful tools for RS tasks 
that require nuanced temporal analysis.

PRACTICAL IMPLICATIONS
FMs offer transformative capabilities in RS by building 
upon established applications like multispectral and time-
series data analysis. While these applications have tradi-
tionally relied on machine learning and DL, FMs reduce 
the need for labeled data and enable rapid adaptation to 
new tasks, providing robust solutions in areas previously 
limited by data constraints and task-specific architectures. 
Consequently, the advancements in FMs have significant 
practical implications across various areas.

	◗ Environmental monitoring: Models like GASSL [6] and Sat-
MAE [16] offer detailed assessments of environmental 
changes, aiding in conservation efforts and policy-mak-
ing. These models excel in monitoring deforestation, de-
sertification, and pollution levels, providing actionable 
insights for environmental management. By integrating 

multispectral and temporal data, these models can track 
changes over time, allowing for the early detection of en-
vironmental degradation and the formulation of timely 
interventions. This capability is particularly important 
for the sustainable management of natural resources as 
well as reducing the impacts of climate change.

	◗ Agriculture and forestry: FMs such as EarthPT [82] and 
GeCo [57] deliver valuable insights into crop health, 
yield predictions, and land use management, optimiz-
ing agricultural practices and resource allocation. For in-
stance, RSP [96], leveraging multispectral data, enhances 
precision agriculture by accurately monitoring crop con-
ditions and predicting yields. These models can detect 
the early signs of crop stress, diseases, and pest infesta-
tions, enabling farmers to take proactive measures. Ad-
ditionally, they aid in forestry management by providing 
detailed maps of forest cover, estimating biomass, and 
monitoring deforestation activities, thereby supporting 
conservation efforts and sustainable forestry practices.

	◗ Archaeology: The use of FMs in archaeology revolution-
izes the way archaeological features and sites are dis-
covered, mapped, and analyzed. Models such as GeoKR 
[56], RingMo [87], etc. can process high-resolution sat-
ellite imagery and multispectral data to enhance the 
detection and mapping of archaeological features that 
might be difficult to discern with the naked eye. Others, 
like MATTER [2], can accomplish texture and material 
analysis to help identify various surfaces. They enable 
large-scale surveys, allowing archaeologists to identify 
potential sites of interest over vast areas efficiently. Al-
though thorough exploration still requires on-site vis-
its and excavations or other terrestrial investigations, 
these significantly improve the initial identification and 
mapping process. Additionally, these models can track 
changes over time, helping archaeologists monitor en-
vironmental and human impacts and providing crucial 
information for preservation and restoration. This en-
hances the efficiency and accuracy of surveys and opens 
new possibilities for discovering unknown sites.

	◗ Urban planning and development: RS models like CMID 
[70] and SkySense [32] are pivotal for monitoring ur-
ban expansion, infrastructure development, and land 
use changes. These models facilitate sustainable urban 
growth and development planning by providing high-
resolution data analysis and trend forecasting. They en-
able city planners to assess the impact of urbanization 
on natural habitats, optimize land use, and plan infra-
structure projects more effectively.

	◗ Disaster management: Models such as OFA-Net [118], 
DOFA [117], and Prithvi [46] are instrumental in flood 
mapping as well as fire detection. These models provide 
critical real-time data that help in identifying affected 
areas quickly, enabling timely and effective response 
measures. This capability supports emergency respond-
ers in prioritizing resource allocation and implementing 
evacuation plans, thereby reducing the impact of natu-
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ral disasters. Additionally, these models assist in post-
disaster recovery by assessing damage and monitoring 
the recovery process over time. By integrating various 
data sources, they enhance the ability to make informed 
decisions, coordinate response efforts, and plan for fu-
ture disaster mitigation strategies.
The improvements in accuracy across the models dis-

cussed have profound implications for real-world RS appli-
cations. In deforestation monitoring, for instance, models 
like GFM achieve high pixel-level accuracy in semantic 
segmentation, showing up to a 4.5% improvement over 
baseline models, which enhances the precision of map-
ping forest cover changes, supporting conservation efforts 
[101]. Similarly, HyperSIGMA achieves an impressive 6.2% 
accuracy boost in hyperspectral vegetation monitoring, 
providing invaluable data for assessing forest health and 
biodiversity [95].

In urban planning, models like UPetu excel in infra-
structure mapping by integrating multimodal data, such as 
optical and radar imagery, achieving more than 5% higher 
accuracy compared to single-modality models, which al-
lows urban planners to make more informed land use deci-
sions [24]. Additionally, RingMo enhances object detection 
accuracy by 3.7% over traditional supervised models, effec-
tively identifying dense urban features critical for disaster 
management and urban infrastructure assessment [87].

Finally, ORBIT demonstrates exceptional scalability, 
processing large climate datasets with a scaling efficiency 
of up to 85%, which supports applications in long-term en-
vironmental monitoring, such as climate change prediction 
and seasonal forecasting. This scalability not only advances 
traditional RS workflows but also enables complex mul-
titemporal analyses and predictive modeling, which were  
previously challenging with conventional methods [101].

While RS has long benefited from multispectral and 
temporal data, the adaptability, scalability, and efficiency 
of FMs unlock a new level of precision and accessibility 
in these applications. This advancement opens up oppor-
tunities to tackle complex and evolving challenges across 
domains—from environmental conservation to urban 
planning—that traditional models have struggled to ad-
dress at scale.

FUTURE DIRECTIONS
Future research should prioritize several key areas as fol-
lows:

	◗ Efficient model development: Exploring techniques such 
as model distillation, pruning, and quantization to re-
duce computational requirements without compromis-
ing performance is crucial. Additionally, developing 
scalable architectures that efficiently handle ultra-high-
resolution images is essential. For instance, applying 
pruning techniques to models like SatMAE [16] could 
maintain performance while reducing computational 
load. Model adaptation techniques such as Low-Rank 
Adaptation (LoRA) [41] have emerged as effective meth-

ods for fine-tuning large-scale models with minimal 
computational overhead. By decomposing weight up-
dates into low-rank matrices, LoRA [41] enables effi-
cient adaptation without the need to modify the entire 
set of model parameters, making it suitable for resource-
constrained environments or when frequent retraining 
is required. Incorporating methods like LoRA [41] can 
further enhance the applicability of FMs across diverse 
tasks and domains.

	◗ Multimodal data integration: Enhancing methods for inte-
grating and processing multimodal data (e.g., combining 
optical and radar imagery) will provide more compre-
hensive insights. Research on advanced SSL techniques 
capable of leveraging multimodal data is necessary. The 
OFA-Net [118] framework, which integrates multimodel 
data, serves as a promising direction for future models 
to emulate and improve upon.

	◗ Interdisciplinary collaboration: Promoting collaboration 
among RS experts, AI researchers, and domain special-
ists can address complex challenges and drive innova-
tion. For example, partnerships between AI researchers 
and environmental scientists can refine models like 
GASSL [6] for better environmental monitoring and 
conservation efforts.
Looking ahead, the consistent success of SSL methods 

in FMs marks an exciting frontier for future research. These 
models’ ability to learn from unlabeled data and adapt to 
diverse RS tasks with minimal fine-tuning suggests that 
advancements in unsupervised learning techniques could 
greatly reduce reliance on large labeled datasets, which 
remain a significant bottleneck in many RS applications. 
However, as these models grow in size and complexity, bal-
ancing computational demands with the need for efficien-
cy will become increasingly crucial. Future work may focus 
on developing more resource-efficient versions of FMs that 
maintain high performance, particularly for deployment in 
real-time monitoring systems or environments with lim-
ited computational resources.

LIMITATIONS
This survey has several limitations as follows:

	◗ Scope and coverage: The review focuses on FMs released 
between June 2021 and June 2024. While the scope of 
this review is extensive and covers many significant de-
velopments, it is not exhaustive. Some recent advance-
ments and innovations in the field may not be included 
due to their release timing or the lack of sufficient evalu-
ation metrics at the time of writing. Consequently, cer-
tain cutting-edge models that have emerged in the latter 
part of this period or that have not yet been thoroughly 
evaluated might be omitted. This limitation underscores 
the need for readers to seek out the most current research 
and updates beyond the scope of this survey. Addition-
ally, while FMs have been empirically tested on a specific 
set of downstream applications, their robust architec-
tures and general-purpose training paradigms, such as 
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convolutional networks (e.g., ResNet) and ViTs, indicate 
their potential to perform well across a much broader 
range of tasks. The limited testing observed in current 
literature should not be seen as a constraint on their ap-
plicability but rather as an indication of the focus of ex-
isting research efforts. Given their design, these models 
are expected to generalize effectively to a wide variety 
of RS tasks, even beyond those explicitly tested. Future 
work should aim to explore and validate their perfor-
mance across more diverse applications to unlock their 
full potential.

	◗ Evolving field: The field of AI and RS is rapidly evolving, 
with continuous advancements and breakthroughs oc-
curring at a fast pace. This dynamic nature necessitates 
ongoing reviews and updates to ensure the relevance 
and comprehensiveness of the survey. New techniques, 
methodologies, and models are constantly being devel-
oped, which can significantly impact the state of the art. 
Therefore, it is essential to recognize that this survey rep-
resents a snapshot in time and that continuous moni-
toring of the literature is required to capture the latest 
advancements and emerging trends. This approach will 
help maintain an up-to-date understanding of the field 
and incorporate new findings as they become available.

CONCLUSION
In this comprehensive survey, we have reviewed the recent 
advancements in FMs for RS. We categorized these models 
based on their pretraining methods, image analysis tech-
niques, and applications across different areas, highlight-
ing their unique methodologies and capabilities.

Our analysis covered various advanced techniques, 
including SSL, ViTs, and ResNets. These models have sig-
nificantly improved performance on different image per-
ception levels, like the region level, pixel level, and image 
level, as well as in applications like environmental moni-
toring, digital archaeology, agriculture, urban planning, 
and disaster management.

While significant progress has been made, several chal-
lenges persist, such as the need for more diverse and high-
quality datasets, high computational requirements, and 
difficulties for different applications. Addressing these 
challenges will require further research and collaboration 
across disciplines.

In summary, this survey provides a detailed overview 
of the current state of FMs in RS, offering valuable insights 
and identifying future research directions. We recommend 
continued efforts in developing efficient model architec-
tures, enhancing multimodal data integration, and ex-
panding dataset diversity to fully realize the potential of 
these models in RS.
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