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rtificial intelligence (AI) technologies have profound-

ly transformed the field of remote sensing (RS), revo-
lutionizing data collection, processing, and analysis. Tradi-
tionally reliant on manual interpretation and task-specific
models, RS research has been significantly enhanced by
the advent of foundation models (FMs)—large-scale pre-
trained AI models capable of performing a wide array of
tasks with unprecedented accuracy and efficiency. This ar-
ticle provides a comprehensive survey of FMs in the RS do-
main. We categorize these models based on their architec-
tures, pretraining datasets, and methodologies. Through
detailed performance comparisons, we highlight emerg-
ing trends and the significant advancements achieved by
those FMs. Additionally, we discuss technical challenges,
practical implications, and future research directions, ad-
dressing the need for high-quality data, computational
resources, and improved model generalization. Our re-
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search also finds that pretraining methods, particularly
self-supervised learning (SSL) techniques like contrastive
learning (CL) and masked autoencoders (MAEs), remark-
ably enhance the performance and robustness of FMs. This
survey aims to serve as a resource for researchers and prac-
titioners by providing a panorama of advances and promis-
ing pathways for the continued development and applica-
tion of FMs in RS.

INTRODUCTION

Al technologies have profoundly transformed the field of
RS, revolutionizing how data are collected, processed, and
analyzed. Traditionally, RS projects relied heavily on man-
ual interpretation and task-specific models that required
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extensive labeled datasets and significant computational re-
sources. However, the advent of Al and deep learning (DL)
has ushered in a new era in which large-scale pretrained
models, known as FMs, are capable of performing a wide
array of tasks with unprecedented accuracy and efficiency.
These advancements have not only enhanced the potential
applications of RS but have also opened new avenues for its
usage across various domains.

In recent years, numerous vision FMs have emerged,
demonstrating remarkable performance in handling di-
verse RS tasks. These models have shown the potential
to significantly improve performance on multiple down-
stream tasks such as scene classification, semantic seg-
mentation, object detection, and more. By leveraging vast
amounts of pretraining data and sophisticated architec-
tures, these FMs have set new benchmarks in the field,
making them indispensable tools for researchers and
engineers alike.

This article aims to provide a comprehensive survey of
vision FMs in the RS domain ad rem and is limited to FMs
released between June 2021 and June 2024. This time-
frame marks a surge in the development of modern FMs,
including vision transformers (ViTs) and advanced SSL
techniques. Although early models like Tile2Vec [47] and
others laid the groundwork for representation learning in
RS, they were typically limited in scale and generaliza-
tion capabilities. Furthermore, numerous review articles
and papers have already provided comprehensive over-
views of these pre-2021 models. Our review, therefore,
focuses on recent developments to highlight the unique
contributions and innovations that have emerged in the
past few years.

In Figure 1 [58], vision FMs are listed in chronological
order. To facilitate navigation and enhance utility for re-
searchers, we categorized existing models based on their
perception levels (e.g., image level, region level, and pixel

Akiva et al.

Maiias et al., Li et al.

level). This organization helps clarify which models have
been tested for general image-based challenges or special-
ized applications, such as environmental monitoring, land
cover mapping, archaeological exploration, disaster man-
agement, and more. It is essential to distinguish between
applications that models have been explicitly tested on and
those for which they could potentially be effective. In this
review, the fact that a model has not been tested on a par-
ticular application does not mean it won't perform well.

EMs, especially convolutional neural network (CNN) back-

bones like residual networks [Residual Neural Networks

(ResNets)| [36] and ViTs [25], may still be suitable for vari-

ous downstream tasks, even if prior work has not yet dem-

onstrated this (Figure 1).

Our contributions include the following:

1) We provide an exhaustive review of the current state of
vision FMs proposed in the field of RS, starting from the
background and methodologies of these models to spe-
cific applications across different domains and tasks in a
hierarchical and structured manner.

2) We provide the categorization and analysis of the mod-
els based on their application in both image analysis
(Table 1) and practical applications (Table 2). We discuss
the architecture, pretraining datasets, pretraining meth-
ods, and performance of each model.

3) We provide a discussion of challenges and unresolved
aspects related to FMs in RS. We pinpoint new trends,
raise important questions, and propose future direc-
tions for further exploration.

BACKGROUND

REMOTE SENSING

RS refers to the process of acquiring information about
objects or areas from a distance, typically using satellite
or airborne sensors. These technologies and techniques
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FIGURE 1. An overview of some well-known FMs for RS from June 2021 to June 2024. Detailed reference numbers are listed in Tables 2-4.
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serve vital roles in diverse fields, enabling the collection
of data over geographic areas without physical contact.
Applications of RS include Earth observation, digital ar-
chaeology, urban planning and development, and disaster
management. The field of RS has developed rapidly since
the mid-20th century. Initially, RS predominately consisted
of analog photographic techniques via aerial and satellite
platforms, which provided limited spectral and spatial
resolution. The launch of early Earth observation satellites,
such as the Landsat program (which commenced in 1967
[112]), marked a significant advancement, enabling con-
sistent and wide-ranging data collection for environmental
monitoring.

Modern RS employs a variety of sensors suited for spe-
cific types of data collection, including optical, thermal,
and radar. Optical sensors capture a wide variety of spec-
tral bands, including visible and near-infrared light, allow-
ing for the detailed imaging of land cover and vegetation
health. Thermal sensors detect heat emitted or reflected
from Earth’s surface, which is useful for monitoring vol-
canic activity, forest fires, and climate change monitoring.
Radar sensors can penetrate clouds and vegetation, provid-
ing critical information in all-weather conditions and for
applications such as soil moisture estimation and urban
infrastructure mapping [17], [71].

In recent years, RS has found applications in many
fields. With regard to environmental monitoring, it is used
to track deforestation, to monitor air and water quality,
and to assess the impacts of climate change [30], [39]. In
agriculture, RS helps in crop health monitoring, yield es-
timation, and efficient resource management [71]. Urban
planning and development benefit from RS through the
monitoring of urban sprawl, infrastructure development,

Panchromatic

True Color SAR

(a)

and land use planning [17], [48]. Furthermore, in disaster
management, RS is crucial for assessing the damage caused
by natural disasters, aiding in the planning and execution
of relief operations [1], [30].

The integration of RS data with Geographic Information
Systems (GIS) has further enhanced its utility. GIS provides
a framework for capturing, storing, analyzing, and visual-
izing spatial and geographic data. When combined with RS
data, GIS can be used to create detailed and dynamic maps
and models for various applications. This synergy is partic-
ularly valuable in resource management, urban planning,
and disaster response, where accurate and timely informa-
tion is critical [17], [30], [71].

FOUNDATION MODELS FOR REMOTE SENSING

FMs refer to large-scale pretrained models that provide a
robust starting point for various downstream tasks across
different domains [50]. These models leverage extensive
datasets and advanced architectures, enabling them to
capture complex patterns and features that can be fine-
tuned for specific applications with minimal addition-
al training. In RS, FMs are particularly valuable due to
the diverse and complex nature of the data (Figure 2),
including multispectral and multitemporal imagery.
Techniques such as SSL [51] and transformers [93] have
significantly enhanced the performance and efficiency
of tasks such as image classification, object detection,
and change detection, addressing the unique challenges
posed by RS data [19].

A major strength of these models lies in their abil-
ity to utilize SSL to learn effective representations from
largely unlabeled data, which is often abundant in RS
scenarios [38]. By integrating advanced architectures like

Segmentation

ObjeDetection

Z

(b)

FIGURE 2. Examples of (a) data types used in those FMs and (b) downstream tasks that can be done by FMs. (a) Data: 1) Panchromatic [4],
2) True Color, 3) SAR [94], 4) Hyperspectral [4], and 5) Multispectral [4]. (b) Downstream tasks: 1) Segmentation, 2) Object Detection, 3)
Classification [15], and 4) Change Detection [76]. (Source: True Color, Segmentation, and Object detection images copyright MAXAR 2024,

provided through the NextView License Agreement.)
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TABLE 1. A SUMMARY OF THE PRETRAINING METHODS UTILIZED AND IMAGE ANALYSIS TASKS EVALUATED ACROSS

DIFFERENT MODELS. IMAGE LEVEL, PIXEL LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL CLASSIFY THE TASKS IN IMAGE
ANALYSIS, WHILE CL AND PREDICTIVE CODING INDICATE THE DIFFERENT SELF-SUPERVISED PRETRAINING STRATEGIES THAT
EACH STUDY USED.

MONTH
AND YEAR

June 2021
Oct. 2021
Oct. 2021
Dec. 2021
Mar. 2022
May 2022
June 2022
June 2022
July 2022
Aug. 2022
Sep. 2022
Nov. 2022
Nov. 2022
Jan. 2023
Apr. 2023
Apr. 2023
June 2023
2023 Jun
June 2023
Aug. 2023
Aug. 2023
Sep. 2023
Sep. 2023
Sep. 2023
Sep. 2023
Oct. 2023
Oct. 2023
Nov. 2023
Nov. 2023
Dec. 2023
Jan. 2024
Jan. 2024
Jan. 2024
Jan. 2024
Jan. 2024
Jan. 2024
Feb. 2024
Feb. 2024
Mar. 2024
Mar. 2024
Mar. 2024
Mar. 2024

Mar. 2024
Apr. 2024
Apr. 2024
May 2024
May 2024
May 2024
May 2024

ARCHITECTURE
ResNet:50
ResNet-50

ResNet-50

ResNet-34

ResNet-50

VIiTAEv2-S

ViT-S/8

Swin Transformer
ViT/Swin Transformer
ResNet-50

BYOL

ViT-B

ViT

MAE-based Framework
TOV

Teacher-Student Self-Distillation
CACo

ResNet-18

ResNet
Teacher-Student

Swim Transformer
Multi-Branch

ViT

CNN-Transformer
Multimodel SSL
MSFE+MMFH

ViT

ViT

Multimodal Encoder
ViT

ViT-B
Unet+Transformer
Autoregressive Transformer
Teacher-Student Network
Dual-Branch
Generative ConvNet
3D GPT

MAE-based Framework
SatMAE

Joint-Embedding Predictive Architecture

ViT

Factorized Multi-Modal Spatiotemporal

Encoder
Multi-Modules
Swim Transformer
DINO

OFA-Net

Shared Encoder, Task-Specific Decoders

ViT
MP-MAE

MODEL NAME
CMC-RSSR [84]
SeCo [66]
GeoKR [56]
MATTER [2]
GASSL [6]

RSP [96]
DINO-MM [105]
Scheibenreif et al. [79]
RingMo [87]
GeCO [57]
RS-BYOL [45]
CSPT [104]

RVSA [100]
SatMAE [16]

TOV [89]

CMID [70]

CACo [67]
lal-SimCLR [77]
SSL4EO-L [83]
GFM [69]
SatLasPretrain [7]
RingMo-Sense [119]
Scale-MAE [78]
RingMo-lite [109]
DeCUR [102]
Feng et al. [27]
FG-MAE [108]
Prithvi [46]
CROMA [28]
USat [44]
Cross-Scale MAE [88]
U-BARN [26]
EarthPT [82]
GeRSP [42]
SwiMDiff [91]
SMLFR [22]
SpectralGPT [40]
Presto [92]
SatMAE++ [73]
SAR-JEPA [58]
FoMo-Bench [8]
SkySense [32]

UPetu [24]
msGFM [33]
DINO-MC [111]
OFA-Net [118]
MTP [99]

BFM [11]
MMEarth [72]
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TABLE 1. A SUMMARY OF THE PRETRAINING METHODS UTILIZED AND IMAGE ANALYSIS TASKS EVALUATED ACROSS
DIFFERENT MODELS. IMAGE LEVEL, PIXEL LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL CLASSIFY THE TASKS IN IMAGE
ANALYSIS, WHILE CL AND PREDICTIVE CODING INDICATE THE DIFFERENT SELF-SUPERVISED PRETRAINING STRATEGIES THAT

EACH STUDY USED. (Continued)

MONTH
AND YEAR ARCHITECTURE MODEL NAME
May2024 PR CtxMIM[go]
May 2024 HiViT SARATR-X [54]
May 2024  Transformer SoftCon [106]
May 2024  ViT LeMeViT [49]
June 2024  Masked Autoencoder S2MAE [59]
June 2024  CNN-Transformer RS-DFM [110]
June 2024  MAE-based A2-MAE [122]
¢ June 2024 VIiT HyperSIGMA [95]
: June2024  Dynamic OFA DOFA [117]

transformers [93], FMs in RS can handle the unique char-
acteristics of geospatial data, such as varying spatial resolu-
tions and temporal dynamics, without requiring separate
task-specific models.

The evolution of FMs has been driven by advance-
ments in DL and the availability of large datasets. Ini-
tially, CNNs like ResNet [36] paved the way for improved
image recognition and classification tasks [65]. The intro-
duction of transformers, which use self-attention mech-
anisms to model long-range dependencies, has further
advanced the capabilities of FMs in handling large-scale
image data [16]. ViTs [25] extend the transformer archi-
tecture to process image data by treating image patches
as sequences of tokens, enabling models to learn both lo-
cal and global relationships. This capability makes trans-
formers particularly effective for semantic segmentation
and change detection tasks, where capturing long-range
dependencies is crucial, especially in high-resolution sat-
ellite imagery.

Notable FMs in RS include SatMAE [16], which pretrains
transformers for temporal and multispectral satellite im-
agery; Scale-MAE [78], a scale-aware MAE for multiscale
geospatial representation learning; and DINO-MC [111],
which extends global-local view alignment for SSL with
RS imagery. These models have shown remarkable perfor-
mance in various RS tasks, such as scene classification, ob-
ject detection, and change detection.

Despite their success, FMs face several challenges, in-
cluding the need for high-quality and diverse training data,
significant computational resources, and effective domain
adaptation to specific RS tasks [73]. Addressing these chal-
lenges will be crucial for the continued advancement of
FMs in RS.

RELATED REVIEW ARTICLES AND PAPERS

Al in RS has been a growing area of research, with numer-
ous review articles and papers providing insights into Al
advancements and their applications. In this section, we
summarize the most influential reviews on FMs in RS.

IMAGE  PIXEL REGION SPATIAL- PREDICTIVE
LEVEL LEVEL LEVEL TEMPORAL CL CODING
e e S e ERRIELER
v v v
v v v v

v v v
v v v

v v
v v v
v v v v v
v v v

In 2016, Zhang et al., in their foundational review,
“Deep Learning for Remote Sensing Data: A Technical Tuto-
rial on the State of the Art” [121], introduced DL techniques
to RS, focusing on CNNs for tasks such as image classifica-
tion and object detection. This work highlighted both the
promise and challenges of early Al integration in RS, setting
the stage for subsequent advancements.

In 2017, Zhu et al.'s “Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources” [37] delved
into diverse Al applications, including hyperspectral anal-
ysis and synthetic aperture radar (SAR) interpretation. It
also provided an extensive resource list, capturing the rapid
adoption of DL in addressing complex RS challenges, paving
the way for more advanced Al models in the following years.

More recent reviews have focused on advanced Al mod-
els and methods. Wang et al.s 2022 review, “Self-Super-
vised Learning in Remote Sensing” [103], highlighted the
ability of SSL methods to utilize large volumes of unlabeled
data, significantly reducing dependence on labeled datas-
ets while maintaining high performance in RS tasks. The
review also identified key challenges and future directions,
emphasizing SSLs potential to handle large-scale RS data
complexities.

Zhang and Zhang (2022), in “Artificial Intelligence for
Remote Sensing Data Analysis: A Review of Challenges
and Opportunities” [120], offered a comprehensive over-
view of Al algorithms, synthesizing findings from more
than 270 studies. It emphasized ongoing challenges such
as explainability, security, and integrating Al with other
computational techniques, serving as a road map for future
innovation in Al-driven RS.

Aleissaee et al's 2023 survey, “Transformers in Remote
Sensing” [3], explored the impact of transformer-based
models across various RS tasks, comparing them with
CNNes. It identified both strengths and limitations, along
with unresolved challenges, providing a detailed road map
for future research on transformers’ role in RS.

Li et al’s 2024 review, “Vision-Language Models in Re-
mote Sensing” [60], examined the increasing significance
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TABLE 2. THIS TABLE ILLUSTRATES VARIOUS TASKS IN DIFFERENT APPLICATIONS FOR RS. KEY AREAS INCLUDE
ENVIRONMENTAL MONITORING, AGRICULTURE, URBAN PLANNING AND DEVELOPMENT, DISASTER MANAGEMENT, AND
ARCHAEOLOGY. EACH DOMAIN COMPRISES SPECIFIC TASKS IN DIFFERENT IMAGE ANALYSIS LEVELS, LIKE IMAGE LEVEL, PIXEL
LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL. THE RELATIONSHIPS BETWEEN THESE TASKS AND THEIR APPLICATIONS ARE
DEPICTED THROUGH CHECKMARKS, EMPHASIZING THE INTERCONNECTED NATURE OF IMAGE ANALYSIS METHODS ACROSS
DIFFERENT FIELDS.

IMAGE PIXEL REGION  SPATIAL-

TASKS LEVEL LEVEL LEVEL TEMPORAL RELATED WORK
Environmental  Land cover change detection v [2], [24], [32], [40], [49], [59], [66], [67], [69],
monitoring [70], [87], [91], [95], [96], [99], [106], [109],
[111], [122]
Deforestation monitoring v [2], [e], [7]. [16], [22], [24], [26], [27], [28], [32],

[33], [40], [42], [45], [49], [56], [57], [67], [69],
[70], [78], [79], [87], [88], [89], [92], [95], [96],
[99], [100], [102], [106], [108], [109], [110],
[119], [117], [118], [122], [90]

Water body analysis v v v [27], [32], [49], [70], [87], [95], [96], [99]

Forest cover mapping v v [27], [40], [49], [59], [67], [69], [87], [95], [96].
[106], [109], [122]

Biomass estimation [77]

Weather/climate prediction v [82], [101], [119]

Cloud removal [33]

Moisture content [92]

measurement

Agriculture Crop type mapping v v v v [27], [32], [49], [70], [83], [87], [95], [96], [99]

Weed detection v [611 [8]r [22]1 [27]1 [3211 [49]: [56]1 [57]r [70]r [8711
[89], [95], [96], [99], [100], [104], [110], [90]

Disease monitoring v v v [6]. [27], [22], [32], [49], [56], [57], [70], [87],
[89], [95], [96], [99], [100], [110], [90]

Forecasting [82], [119]

Soil parameter estimation [117]

Yield estimation v v [21, [6], [7], [16], [24], [26], [27], [32], [33], [40],

[42], [45], [56], [57], [67], [69], [70], [78], [79],
[87], [88], [89], [95], [99], [96], [100], [102],
[106], [108], [109], [118], [117], [122], [90]

Agricultural pattern v [66]
segmentation

Archaeology Artifact classification and v v [2], [6], [7], [8], [16], [26], [24], [27], [32], [33],
recognition [40], [42], [44], [45], [56], [57], [59], [58], [66],

[67], [69], [70], [72], [77], [78], [82], [88], [91],
[89], [79], [84], [87], [95], [96], [99], [105],
[100], [102], [104], [106], [108], [109], [111],
[118], [90], [117], [122]

Detection of archaeological v [6], [8], [22], [27], [32], [49], [56], [57]. [70], [87],
structures [89], [95], [99], [96], [100], [104], [110], [90]
Semantic segmentation v [2], [6], [7]. [16], [22], [24], [26], [27], [28], [32],

[33], [40], [49], [42], [45], [56], [57], [67], [69],
[70], [78]. [79], [87], [89]. [96], [88]. [92], [95],
[99], [100], [102], [109], [119], [106], [108],
[110], [117], [118], [122], [90]

Texture/structural analysis [2]
Pattern recognition v v [6], [22], [32], [49], [27], [56], [57], [70], [87],
[89], [95], [96], [99], [100], [110], [90]
Urban Traffic monitoring v v v [27], [32], [49], [70], [87], [95], [96], [99]
planning and Land cover/use classification v 121, [61, [7], [8], [16], [24], [26], [27], [32], [33],
development [40], [45], [57], [59], [42], [44], [58], [56], [66],

[67], [69], [70], [72], [77], [78], [79], [83], [84],
[87], [89], [82], [88], [91], [96], [99], [95], [102],
[117], [105], [100], [109], [104], [108], [106],
[111], [118], [122], [90]

Road crack detection v [6]. [8], [27], [22], [32], [49], [56], [57], [70], [87],
[89], [95], [96], [99], [100], [104], [110], [90]

(Continued)
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TABLE 2. THIS TABLE ILLUSTRATES VARIOUS TASKS IN DIFFERENT APPLICATIONS FOR RS. KEY AREAS INCLUDE
ENVIRONMENTAL MONITORING, AGRICULTURE, URBAN PLANNING AND DEVELOPMENT, DISASTER MANAGEMENT, AND
ARCHAEOLOGY. EACH DOMAIN COMPRISES SPECIFIC TASKS IN DIFFERENT IMAGE ANALYSIS LEVELS, LIKE IMAGE LEVEL, PIXEL
LEVEL, REGION LEVEL, AND SPATIAL-TEMPORAL. THE RELATIONSHIPS BETWEEN THESE TASKS AND THEIR APPLICATIONS ARE
DEPICTED THROUGH CHECKMARKS, EMPHASIZING THE INTERCONNECTED NATURE OF IMAGE ANALYSIS METHODS ACROSS
DIFFERENT FIELDS. (Continued)

IMAGE PIXEL REGION  SPATIAL-
TASKS LEVEL LEVEL LEVEL TEMPORAL RELATED WORK
Air quality monitoring v [6], [22], [27], [33], [32], [49], [95], [56], [57],
[70], [87], [89], [96], [99], [100], [110], [90]
Building extraction v v [27]
Object/video tracking v [119]
Infrastructure monitoring [44], [119]
Disaster man- Landslide risk monitoring v v v [271, [32], [49], [70], [87], [95], [96], [99]
agement Disaster response [117]
Real-time detection and v v [27], [32], [49], [70], [87], [95], [96], [99]
mapping
Building damage assessment v v [27], [32], [49], [70], [87], [95], [96], [99]
Critical infrastructure v [6], [8], [ 22], [32], [49], [27], [56], [57], [70], [87],
detection [89], [96], [100], [95], [99], [104], [110], [90]
Flood/fire mapping and v v v [27], [40], [67], [69], [87], [96], [49], [95], [106],
prediction [109], [122]
Crowd and vehicle detection v [2], [24], [32], [49], [59], [40], [66], [67], [69], [70],

of vision-language models (VLMs), which combine visual
and textual data. It highlighted VLMs’ potential in applica-
tions like image captioning and visual question answering,
emphasizing a shift toward richer semantic understanding
in RS tasks.

Additionally, the recent work, “On the Foundations of
Earth and Climate Foundation Models” [97], provided a
comprehensive review of existing FMs, proposing features
like geolocation embedding and multisensory capability.
It outlined key traits for future Earth and climate models,
contributing to a broader discussion on foundational ad-
vancements in geospatial Al

Building on these reviews, our study provides a compre-
hensive analysis of FMs developed from June 2021 to June
2024, focusing on advances in SSL and transformer-based
architectures. Unlike previous reviews, which focused
mainly on individual techniques, we explore their com-
bined potential in RS tasks like semantic segmentation,
multispectral analysis, and change detection. For instance,
SatMAE [16] demonstrates the effective use of SSL for pre-
training transformers, enabling improved segmentation in
complex multispectral imagery, while Scale-MAE employs
scale-aware MAEs for better handling of varied spatial reso-
lutions in RS data.

Our study also highlights new models like DINO-MC
[111], which integrates global-local view alignment for SSL,
making it particularly effective for identifying changes in
high-resolution satellite imagery. By systematically exam-
ining these innovations, we illustrate how recent models
address persistent challenges like domain adaptation and

[87], [91], [95], [96], [99], [109], [106], [111], [122]

computational efficiency. For example, efficient self-atten-
tion mechanisms in Scale-MAE [78] help reduce compu-
tation costs, while enhanced geolocation embeddings in
models like SatMAE improve performance in geospatial
feature extraction.

In contrast to earlier reviews, which often remained the-
oretical, we emphasize both the theoretical advancements
and practical applications of recent models. For example,
DINO-MC’s [111] and ORBIT’s [101] real-world applica-
tions in environmental monitoring and disaster response
highlight their practical impact, demonstrating how new
FMs can be effectively leveraged to address pressing chal-
lenges in geospatial analysis.

PRETRAINING METHODS

Pretraining serves as a critical step in developing FMs, en-
abling them to learn transferable and generalized repre-
sentations from large-scale datasets. This process leverages
self-supervised or supervised learning methods to extract do-
main-agnostic features that can be adapted to various down-
stream tasks. In this section, we explore the key pretraining
methods utilized commonly in FMs for RS, explaining the
mechanism of these methods and their roles in enhancing
model performance and addressing challenges in this field.

SELF-SUPERVISED LEARNING

SSL has emerged as a cornerstone of pretraining FMs, of-
fering a paradigm where models learn representations by
predicting parts of the input data from other parts. This ap-
proach reduces reliance on expensive and time-consuming
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labeled datasets, making it particularly advantageous in
fields like RS, where labeled data are often scarce or chal-
lenging to obtain.

SSL allows models to exploit vast amounts of unlabeled
data, learning rich and generalizable representations that
transfer well to downstream tasks such as scene classifica-
tion, semantic segmentation, object detection, and change
detection. By uncovering underlying data structures and pat-
terns, SSL not only enhances model robustness but also im-
proves adaptability across diverse domains and resolutions
of RS imagery [103]. Figure 3 illustrates the general pipeline
of SSL. Two SSL methods commonly used in vision FMs
for RS are predictive coding and CL, each offering unique
mechanisms to harness information from unlabeled data.

PREDICTIVE CODING

Predictive coding leverages a generative approach, where
the model learns to predict missing or occluded parts of
an image based on visible portions. This strategy helps
capture spatial and contextual relationships in RS im-
agery, which often contains diverse textures, complex
scenes, and varying resolutions.

In RS, predictive coding can be applied to tasks such
as gap filling in satellite imagery, where the model learns
to infer missing data caused by sensor limitations or oc
clusions like cloud cover. Popular implementations of
predictive coding frameworks include autoencoder-based
architectures, masked image modeling (MIM) techniques

Pretraining Model

like those used in MAEs [34], and autoregressive models.
These methods are particularly effective in learning fine-
grained details critical for high-resolution imagery and spe-
cialized tasks.

CONTRASTIVE LEARNING

CL is another powerful SSL technique that focuses on dis-
tinguishing between similar and dissimilar samples in
the data. The key idea is to bring representations of simi-
lar (positive) samples closer together while pushing apart
those of dissimilar (negative) samples. This encourages the
model to learn discriminative and invariant features that
are crucial for RS tasks.

CL frameworks such as SimCLR [13], MoCo [35],
DINO [9], and BYOL [29] have shown promise in RS ap-
plications. They use augmentations like random cropping,
rotations, and spectral band dropping to generate positive
pairs, enabling the model to learn robust representations
invariant to these transformations. For instance, in mul-
tispectral or hyperspectral imagery, CL can help models
capture spectral signatures across varying conditions, im-
proving performance in tasks like crop classification or
land cover mapping [103]. CL is especially relevant in RS
when labeled datasets are highly imbalanced as it enables
models to learn from underrepresented classes or regions
without explicit labels.

By combining approaches like predictive coding and
CL, SSL has significantly advanced the development of

Pretext Tasks :
Input Image Mask Reconstruction :

Trainable

FIGURE 3. The general pipeline of SSL [51]. Diverse dataset images and pretext task images are acquired from ImageNet [18], BigEarthNet
[85], and MillionAlID [64]. The Finetune dataset includes images from DIOR [55]. (Source: Object Detection and Segmentation, copyright

MAXAR 2024, provided through the NextView License Agreement.)
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vision FMs in RS. These methods allow models to lever-
age vast unlabeled datasets while maintaining adaptabil-
ity across diverse spatial resolutions, spectral bands, and
application scenarios. On the other hand, it is important
to note that there are many other SSL methods that can
be employed for such tasks. Other innovative methods,
such as teacher-student self-distillation frameworks,
have also demonstrated potential in RS applications. For
example, CMID [70] achieves promising performance by
combining CL and MIM in a teacher-student self-distilla-
tion framework. This structure enables it to capture both
global and local features, making it effective for diverse
RS tasks. The diversity of SSL techniques highlights the
versatility and evolving nature of SSL, underscoring its
critical role in unlocking the full potential of RS imagery.

SUPERVISED PRETRAINING

Supervised pretraining is a fundamental approach in
DL, where models are trained using labeled datasets
to minimize prediction errors for specific tasks, such
as image classification. This method allows models to
learn direct mappings between input features and tar-
get labels, fostering the development of detailed and
task-specific representations. For instance, models
like ResNet [36] and Visual Geometry Group Network
(VGGNet) [81] trained on large-scale datasets such as
ImageNet [18] have demonstrated how supervised pre-
training can capture robust feature hierarchies that are
highly transferable to related tasks, including semantic
segmentation and object detection.

In RS, supervised pretraining has shown promise for
tasks such as land cover classification and object detec-
tion using high-resolution satellite imagery [96]. How-
ever, the dependency on large-scale labeled datasets
presents a major limitation. Creating labeled datasets
for RS tasks, particularly when involving multispectral
or hyperspectral data, is resource intensive and often
requires domain expertise for annotation. For example,
labeling pixel-level data for land cover classification or
delineating objects in complex urban environments can
be prohibitively time consuming. Furthermore, labeled
data in RS are often domain specific, limiting the gen-
eralizability of models trained on one dataset to other
applications or regions [37].

These challenges highlight the need for innovative strate-
gies to address the reliance on labeled data. Such limitations
have motivated the development of alternative approaches,
including self-supervised pretraining methods, which lever-
age the abundance of unlabeled data to learn general-pur-
pose representations without manual annotation.

IMAGE ANALYSIS METHODS

IMAGE PERCEPTION AT DIFFERENT LEVELS
FMs in RS enable image analysis at three primary levels:
the image level, region level, and pixel level. These levels

address varying spatial, contextual, and application-specif-
ic needs, providing the foundation for a wide range of tasks,
such as environmental monitoring, urban planning, disas-
ter response, and more. The following sections outline the
distinct objectives and applications at each level. A detailed
summary of the models evaluated for these tasks is provid-
ed in Table 3. The following sections outline the distinct
objectives and applications at each level.

IMAGE LEVEL

Image-level analyses focus on classification tasks, categoriz-
ing entire images or large image segments into predefined
classes, such as urban, forest, water bodies, or agricultural
areas. This approach provides broad high-level insights into
geographic regions and is instrumental in large-scale ap-
plications like land use mapping, land cover classification,
and resource management. By classifying entire scenes, this
level of analysis enables the efficient monitoring of exten-
sive areas, supporting decision making in environmental
management and policy planning.

REGION LEVEL

Region-level analysis identifies and localizes specific ob-
jects within an image, such as buildings, vehicles, ships,
or other structures. Unlike image-level analysis, which
provides holistic classifications, region-level tasks focus
on object detection, which is used to detect individual
entities and their spatial locations. This analysis is critical
for targeted applications like urban planning, where the
detection of infrastructure is essential, as well as disaster
response and security, where identifying damaged build-
ings or vulnerable areas can significantly aid in timely
interventions.

PIXEL LEVEL

Pixel-level analysis offers the most granular form of im-
age perception, assigning a label to every pixel within an
image. This includes tasks such as semantic segmentation,
where each pixel is classified into categories like vegeta-
tion, water, or buildings; it also includes change detection,
which identifies temporal differences between images cap-
tured at different times. Pixel-level analysis is indispensable
for creating highly detailed maps used in applications like
precision agriculture, deforestation tracking, and disaster
management. The ability to analyze fine-grained details
enables more accurate assessments and actionable insights
for these critical areas.

BACKBONE

CONVOLUTIONAL NEURAL NETWORKS

CNNs5s [74] are a fundamental architecture in DL, designed
to extract hierarchical spatial features from images through
the use of convolutional layers. Each convolutional layer
applies filters to the input data, detecting patterns like
edges, textures, and shapes at different levels of abstraction.
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TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE
NUMBER OF PARAMETERS.

MODEL NAME

CMC-RSSR [84]

SeCo [66]

GeoKR [56]

MATTER [2]

GASSL [6]

RSP [96]

DINO-MM [105]
Scheibenreif et
al. [79]

RingMo [87]
GeCO [57]
RS-BYOL [45]
CSPT [104]
RVSA [100]
SatMAE [16]
TOV [89]

CMID [70]

CACo [67]

lal-SimCLR [77]
SSL4EO-L [83]

GFM [69]

SatlasPretrain
[7]
RingMo-Sense
[119]
Scale-MAE [78]

RingMo-lite
[109]

ARCHITECTURE

ResNet-50

ResNet-50

ResNet-50

ResNet-34

ResNet-50

VIiTAEv2-S

ViT-S/8
Swin Transformer

ViT/Swin Trans-
former

ResNet-50
BYOL

ViT-B

ViT
MAE-based
Framework

TOV

Teacher-student
Self-Distillation

ResNet-18/50

ResNet-18

ResNet/ViT

Teacher-Student

SatlasNet

Multi-Branch

ViT-Large

CNN-Transformer

PRETRAINING
DATASET

NWPU-DOTA [113],
BigEarthNet [85],
ImageNet [18]

Sentinel-2 imagery

Levir-KR [56]

Sentinel-2 Imagery

fMoW [15],
GeolmageNet [18]

MillionAlID [63],
[64]

BigEarthNet-MM
[86]
SEN12MS [80]

2 million RS images

Levir-KR [56]
Sen12MS [80]
ImageNet-1K [18]

MillionAID [63],

[64]

fMoW Sentinel-2
[15]

TOV-NI, TOV-RS

MillionAID [63],
[64]

Sentinel-2 imagery

SEN12MS

ImageNet [18],
MoCo [35],
SimCLR [13]

GeoPile [69]
GeoPile [69]

RS Spatiotemporal
Dataset

FMoW [15]

AID [115]

RESOLUTION
™
0.2-60

10, 20, 60

0.8-16

0.5-153

0.3-30

0.8-16

10-20

0.5-153

10, 20, 60

Varied

10

30

GEOGRAPHIC
COVERAGE

Global

200,000 locations
worldwide

Global

Rural and
remote regions
with few
changes

Seven
continents

Global
Global
Global

Six Continents

Global
Global
Global
Global
Global
Global

Global

Global

Global
Global
Global
Global
Global
Global

Global

IMAGE ANALYSIS
LEVELS

Image level

Image level,
spatial-temporal
Image level, pixel
level, region level

Image level, pixel
level

Image level, pixel
level region level
Image level, pixel
level, region level,
spatial-temporal
Image level

Image level, pixel
level

Image level, pixel
level, region level,
spatial-temporal
Image level, pixel
level, region level
Image level, pixel
level

Image level,
region level
Image level, pixel
level, region level
Image level, pixel
level

Image level, pixel
level, region level
Image level, pixel
level, region level,
spatial-temporal
Image level,

pixel level,
spatial-temporal
Image level

Pixel level

Image level, pixel
level

Image level, pixel
level

Pixel level

Image level, pixel
level

Image level, pixel

level, region level,
spatial-temporal

PRETRAIN
METHODS

Contrastive
multiview
coding

CL

Geo-
graphical
knowledge
supervision

SSL

CL

Supervised
learning

SSL
CL

MIM

SSL
SSL
SSL
MAE
MAE
SSL

SSL

SSL

CL
SSL

Continual
pretraining

Multitask
learning
SSL

MAE

FD-MIM

NO. OF PARAMS

23 million

23.5 million

23.5 million/
138 million

21.3 million

23.5 million

24.8 million/
23.5 million/
29 million

22 million

23.5 million
23.5 million
86 million

100 million

307 million

25.6 million/
87.8 million

11.7 million/
23.5 million

11.7 million
11.7 million/

23.5 million/
86 million

88 million

322.9 million

60% less than
RingMo

(Continued)
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TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE
NUMBER OF PARAMETERS. (Continued)

MODEL NAME

DeCUR [102]

Feng et al. [27]

FG-MAE [108]

Prithvi [46]

CROMA [28]

USat [44]
Cross-Scale

MAE [88]
U-BARN [26]
EarthPT [82]
GeRSP [42]
SwiMDiff [91]

SMLFR [22]

SpectralGPT
[40]

Presto [92]
SatMAE++ [73]

SAR-JEPA [58]

FoMo-Bench [8]

SkySense [32]

UPetu [24]

msGFM [33]
DINO-MC [111]
OFA-Net [118]

MTP [99]

BFM [11]

MMEarth [72]

ARCHITECTURE

Multimodel SSL

MSFE+MMFH

ViT

ViT

Multimodal
Encoder

ViT
ViT-B

Unet+Transformer
Transformer

Teacher-Student
Network

Dual-Branch

Generative Con-
vNet

3D GPT

MAE-based
framework

SatMAE

Joint-Embedding
Predictive Archi-
tecture

ViT

Factorized Multi-
Modal Spatiotem-
poral Encoder

Multi-Modules
Swin Transformer
DINO

OFA-Net

Shared Encoder
Task-Specific

Decoders
ViT

MP-MAE

PRETRAINING
DATASET

SSL4EO-S12 [107],
RGB-DEM/depth

Multimodal Dataset
SSL4E0-S12 [107]
Harmonized Land-

sat Sentinel-2
SSL4EO [107]

Satlas [7]

fMoW [15]
Sentinel-2 imagery
Sentinel-2 Imagery
ImageNet [18], Mil-
lionAID [63], [64]
Sen12MS [80]

GeoSense [22]

Sentinel-2 imagery

Presto-21.5M [92]
fMoWw [15]

100,000 SAR Im-
ages

Multiple

Multiple

GeoSense [22]

GeoPile-2 [69]
SeCo-100K [66]
Multimodal Dataset

SAMRS [98]

MillionAlID [63],
[64]

Multimodal, geo-
spatial data

RESOLUTION
L)
Varied

Varied

Varied

Varied
10
0.5-153
Varied
0.05-150

Varied

10
Varied

Varied

Varied

Varied

0.1-153
10-60
Varied

Varied

0.5-153

GEOGRAPHIC
COVERAGE

Global

Global

Global
Contiguous

United States

Areas surround-
ing human
settlements

Global
Global

France

United Kingdom
Global

Global

Multiple conti-
nents

Global

Global

Global

Global

Global

Global

Global

Global
Global
Global

Global

Global

Global

IMAGE ANALYSIS
LEVELS

Image level, pixel
level

Image level, pixel
level, region level,
spatial-temporal
Image level, pixel
level

Pixel level

Image level, pixel
level

Pixel level

Image level, pixel
level

Image level, pixel
level

Image level

Image level, pixel
level, region level

Image level,
spatial-temporal
Pixel level, region
level

Image level, pixel
level, spatial-tem-
poral

Crop-type seg-
mentation

Image level

Image level

Image level, pixel
level, region level

Image level, pixel
level, region level,
spatial-temporal
Image level, pixel
level, spatial-tem-
poral

Image level, pixel
level

Image level,
spatial-temporal
Image level, Pixel
level

Image level, pixel
level, region level,
spatial-temporal
Pixel level, region
level

Image level, pixel
level

PRETRAIN
METHODS

MAE

MAE

CL, MAE
MAE

MAE

SSL
Autoregres-
sive SSL
SSL, SL

SSL

SSL

MAE

MAE
Multiscale
pretraining
SSL

MAE

CL

SSL

MIM
SSL
MIM

Multitask
pretraining

MAE

MP-MAE

NO. OF PARAMS

23.5 million

100 million

86 million

86 million

700 million

11.7 million

88 million/
197 million

100 million/
300 million/
600 million

402,000

101 million/
110 million

2.06B

0.65 million

89 million

More than 300
million

86 million/
605.26 million/
1.36 billion/
2.42 billion

3.7 million to
650 million

(Continued)
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TABLE 3. OVERVIEW OF RECENT FMS IN RS, CATEGORIZED BY ARCHITECTURE, MODEL NAME, PRETRAINING DATASET,
RESOLUTION, GEOGRAPHIC COVERAGE, IMAGE ANALYSIS LEVELS, VISUAL ENCODER, PRETRAINING METHODS, AND THE
NUMBER OF PARAMETERS. (Continued)

PRETRAINING RESOLUTION  GEOGRAPHIC IMAGE ANALYSIS PRETRAIN
MODEL NAME  ARCHITECTURE DATASET (m) COVERAGE LEVELS METHODS NO. OF PARAMS
CtxMIM [90] ViT WorldView-3 Varied Asia Image level, pixel MIM 88 million
imagery level, region level
SARATR-X [54]  HiViT SAR datasets 0.1-3 Global Image level, MIM 66 million
region level
SoftCon [106]  Siamese Network SSL4EO-S12-ML — Global Image level, pixel ~Multilabel 23 million,
with ResNet and [107] level, spatial-tem- soft CL 23 million,
ViT Backbones poral 86 million
LeMeViT [49] Hierarchical ViT MillionAID [63], - - Image level, pixel Dual cross-  8.33 million to
[64] level, region level, attention 52.61 million
spatial-temporal ~ with
learnable
meta token
adaptation
S2MAE [59] 3D Transformer- ~ fMoW-Sentinel [15], — Global Image level, 3D MAE -
based MAE BigEarthNet [85] spatial-temporal
RS-DFM [110] Multiplatform AirCo-MultiTasks - - 3D region level, General- -
Inference Frame-  [110] pixel level ized feature
work mapping
with relative
depth esti-
mation
A2-MAE [122] ViT-Large Spatial-Temporal- 0.8-30 m Global Image level, pixel  Anchor- 304 million
Spectral Structured level, spatial-tem- aware
Dataset (STSSD) poral masking
strategy and
geographic
encoding
module
HyperSIGMA ViT based HyperGlobal-450K 30 m Global Image level, MAE More than
[95] [95] region level, 1 billion
anomaly detec-
tion, spatial-tem-
poral
DOFA [117] Dynamic OFA Multiple 1-30 Global Image level, pixel MIM 111 million/
level 337 million

:-. FD-MIM: feature-distilled masked image modeling.

This makes CNNs well suited for handling complex visual
tasks in RS, such as image classification, segmentation, and
object detection.

ResNets [36], a type of CNN, address the degradation
problem in deep neural networks by introducing residual
connections, which allow gradients to bypass certain layers,
facilitating the training of very deep networks. This capabil-
ity is particularly beneficial in RS, where deep models are
often required to capture the intricate details and variations
in satellite images. ResNet, as an example, is characterized
by its residual blocks, which include shortcut connections
that bypass one or more layers. The residual block can be
described by the following equation:

y=Fx{Wi}) +x
where y is the output, J represents the residual map-

ping to be learned, x is the input, and {W;} are the layer
weights [36].

IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

ResNet has various architectures, like ResNet-50,
ResNet-101, and ResNet-152, with the number indicating
the total layers. These networks have shown remarkable
performance in various vision tasks due to their ability
to train deeper networks without degradation. In RS,
ResNets are widely used for image classification, object
detection, and change detection tasks [30]. For example,
ResNet-based models can classify different land cover
types [31], [114], detect objects like buildings and vehi-
cles [30], and monitor changes [31], [75] in the landscape
over time by comparing temporal sequences of satellite
images.

TRANSFORMERS AND VISION TRANSFORMERS

Transformers, adapted for computer vision as ViTs, model
long-range dependencies through self-attention, making
them effective for complex geospatial data. Figure 4 illus-
trates the architecture of ViT. ViTs treat images as sequences
of patches, capturing global and local patterns, which is
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useful for segmentation and change detection. The self-
attention mechanism computes the following:

Attention (Q, K, V) = softmax( QK )V
’ ’ Jd—k

where Q (query), K (key), and V (value) are the input ma-
trices, and d is the dimension of the key vectors [93].

By incorporating these methodologies, FMs for RS can
leverage vast amounts of data, handle complex structures,
and achieve state-of-the-art performance across various
applications. These methodologies enable models to ef-
fectively address the unique challenges of RS, such as large
image sizes, diverse data sources, and the need for high ac-
curacy in environmental monitoring and analysis. In the
following sections, we will explore specific applications of
these methodologies in different RS tasks, analyze their
performance, and discuss the datasets used to train and
evaluate these models.

DATA AND TASKS

DATA

Datasets play a crucial role in RS, providing the foundation
for training and evaluating models. High-quality datasets
enable models to learn accurate representations of Earth'’s
surface, improving their performance on various RS tasks.
In Figure 2, we showcase some examples of the data used
for training FMs and their downstream tasks. In this sec
tion, we provide an overview of commonly used datasets in
Table 4 for RS, discussing their characteristics, applications,
and relevance to FMs. These datasets, with their varying
resolutions, categories, and geographic coverage, provide a
rich resource for advancing RS research and applications.
They facilitate the development of robust models capable of

addressing diverse challenges in understanding and inter-
preting Earth'’s surface through RS technologies.

Datasets used in RS vary significantly in size, from
hundreds of thousands of samples, as seen in RSD46-
WHU [62], [116], to more than a million, as seen in Mil-
lionAID [63], [64]. Generally, larger datasets contribute
to model generalization by encompassing diverse geo-
graphic areas, seasonal variations, and environmental
conditions. Dataset resolutions also range from high
(submeter), suitable for tasks requiring detailed spatial
analysis, to moderate (10-60 m), as with SEN12MS [80]
and SSL4EO-S12 [107], which support broader pattern
recognition applications.

These datasets leverage various sensor types, includ-
ing red, green, blue (RGB), multispectral, hyperspectral,
and SAR. For instance, SEN12MS [80] integrates both SAR
and multispectral imagery, enabling models to learn from
distinct data modalities. This diversity in sensor types is
critical for robust model development as each sensor type
captures unique surface characteristics, supporting tasks
that benefit from cross-modal information.

FMs, in particular, benefit from such large-scale mul-
timodal datasets, which support self-supervised and su-
pervised training approaches across tasks such as scene
classification, segmentation, and object detection. For fur-
ther insight, “Commonly Used Pretrain Dataset for Remote
Sensing” includes detailed descriptions of each dataset’s
structure, unique characteristics, and application roles, en-
hancing the understanding of their impact on RS advance-
ments.

TASKS

Different applications in RS address particular real-world

challenges by leveraging the capabilities of FMs. These tasks

include environmental monitoring, archaeology, agricul-
ture, urban planning and develop-
ment, and disaster management. To
highlight the versatility of FMs in RS,
we present Table 3, which categorizes
models based on their applicabil-

t Segmentation Decoder

} ity to various applications as well as
the different image analysis methods

Sementation

Transformer Encoder

| used. This table serves as a quick ref-
erence for researchers to identify suit-

i@iﬁ#@@##@

able models for their specific needs.

ENVIRONMENTAL MONITORING

RGB Image

Linear Projection of Flattened Patches

According to Himeur et al. [39], en-
vironmental monitoring utilizes RS

FIGURE 4. The Vision transformer architecture. (Source: RGB Image and Segmentation, copy-
right MAXAR 2024, provided through the NextView License Agreement.)

models to observe and track environ-
mental changes, including deforesta-
tion, desertification, and pollution.
These models play a crucial role in
analyzing the effects of human ac
tivities and natural phenomena on
the environment.
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AGRICULTURE

In agriculture, RS models are used to monitor crop health,
estimate yields, and manage agricultural practices. Accord-
ing to Kamilaris and Prenafeta-Boldu [52], these models help
optimize resource use and improve agricultural productivity.

ARCHAEOLOGY

In archaeology, RS models have been used to identify and
analyze archaeological features and sites. According to
Argyrou and Agapiou [5], these models help detect features
such as ruins, artifacts, and ancient structures from satel-
lite imagery, leveraging technologies like CNNs and ViTs
to process high-resolution images and capture fine details.
Mantovan and Nanni [68] also highlight the effectiveness of
Al'models, particularly CNNs, in locating challenging terres-
trial archaeological sites and processing multispectral data.

URBAN PLANNING AND DEVELOPMENT

In urban planning and development, RS models are used
to monitor and analyze urban expansion, infrastructure
development, and land use changes. According to Jha et al.
[48], these models play a critical role in managing urban
growth, planning new developments, and assessing the im-
pact of urbanization by providing essential data for smart
city planning and sustainable development.

DISASTER MANAGEMENT

RS models play a crucial role in disaster management by
providing timely information on affected areas. According
to Abid et al. [1], these models are used to detect and assess
damage from natural disasters like earthquakes, hurricanes,
and floods, enabling rapid response and recovery efforts.

DISCUSSION

The rapid advancement in FMs for RS underscores their
transformative potential across various applications. As the
field continues to evolve, it is crucial to synthesize the find-
ings, address technical challenges, understand the practi-
cal implications, and identify future research directions.
In this section, we make a comprehensive analysis of these
aspects, aiming to offer insights and guidance for future de-
velopment and application of RS FMs.

SYNTHESIS OF FINDINGS

In our survey of FMs for RS, we identified significant ad-
vancements and trends that highlight the evolving capa-
bilities and applications of these models. The performance
metrics of various models across different downstream
tasks, such as scene classification, semantic segmentation,
object detection, and change detection, reveal the follow-
ing key findings.

MODEL PERFORMANCE

In this section, we present the performance metrics
of recent FMs in RS based on results reported in the
original articles and papers. All performance numbers
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mentioned here are sourced directly from the original stud-
ies to ensure accuracy and consistency in evaluating these
models. These metrics provide insights into the models’
effectiveness across tasks like semantic segmentation,
object detection, and change detection, highlighting
their strengths and limitations under different experi-
mental setups.

IMAGE LEVEL

The performance of FMs on the BigEarthNet dataset [85] for
classification tasks shows variations in accuracy, as present-
ed in Table 5. Overall, msGFM [33] has the top performance
of 92.90% [mean average precision (mAP)], followed close-
ly by SkySense [32] with a performance of 92.09%. Other
notable performers include DeCUR [102], which achieved
an mAP of 89.70%, and DINO-MC [111], with an mAP of
88.75%. SeCo [66] also demonstrated strong performance
with an mAP of 87.81%, while DINO-MM [105] reached an
mAP of 87.10%. On the other hand, models like CACo [67]

and FoMo-Bench [8] have an mAP of 74.98% and F1 score
of 68.33%, respectively, showing competitiveness but room
for improvement.

The high mAP scores of msGFM [33] and SkySense
[32] highlight their efficiency in classification tasks, mak-
ing them suitable for applications requiring high accuracy.
Other FMs, such as DINO-MM [105] and DeCUR [102],
also provide strong performance with the potential for
further optimization. The variety in performance metrics
underscores the evolving capabilities and specialization of
FMs in handling complex classification tasks within datas-
ets like BigEarthNet [85].

The classification advancements observed in RS models
stem from sophisticated pretraining techniques that cap-
ture both spatial and spectral complexity across vast datas-
ets. SkySense, for example, shows an average improvement
of 2.76% over recent models by implementing multigranu-
larity CL on a diverse dataset of 21.5 million optical and
SAR sequences [32]. This approach enables SkySense to

COMMONLY USED PRETRAIN DATASET FOR REMOTE SENSING
The RSD46-WHU [62], [116] dataset, introduced in 2017, is sourced from
Google Earth and Tianditu. It contains 117,000 images with a patch size of 256
pixels and spatial resolutions ranging from 0.5 to 2 m per pixel. Covering 46
categories globally, this dataset is primarily used for scene classification.
Similarly, the Functional Map of the World (fMoW) [15], released in April 2018,
comprises more than 1 million images from Digital Globe. Spanning 63 catego-
ries across 207 countries, it includes multispectral images used for both scene
classification and object detection.

In May 2019, the DOTA [113] dataset was proposed, known for its large-
scale aerial image object detection capabilities. It includes 11,268 images of
various resolutions from Google Earth, the GF-2 satellite, and aerial sources,
covering 18 categories globally. Another significant dataset, SEN12MS [80],
released in June 2019, contains 541,986 images from Sentinel-1, Sentinel-2, and
MODIS Land Cover. With a patch size of 256x256 pixels, it supports land cover
dlassification and change detection tasks.

BigEarthNet [85], also from June 2019, consists of 590,326 images with
varying sizes from 20x20 to 120x120 pixels, sourced from Sentinel-2. It covers
43 categories across Europe and is used for scene classification and object
detection. The SeCo [66] dataset, another June 2019 release, contains approxi-
mately 1 million images with a resolution of 2.65x2.65 km from Sentinel-2. It is
designed for seasonal change detection and land cover classification over
seasons.

The MillionAID dataset [63], [64], introduced in March 2021, includes more
than 1 million images of various sizes from Google Earth. Covering 51 catego-
ries globally, it is used for scene classification. Levir-KR, released in July 2021,
contains 1,431,950 images from the Gaofen-1, Gaofen-2, and Gaofen-6 satel-
lites, supporting change detection and scene classification applications.

SoundingEarth [S1], introduced in August 2021, comprises 50,545 images
of 1,024-pixel size from Google Earth, combining RGB and audio data for RS.
The TOV-RS-Balanced dataset [89] from April 2022 includes 500,000 images
with a 600-pixel size from Google Earth, covering 31 categories globally, and is
used for scene classification, object detection, and semantic segmentation.

SeasoNet [53], released in July 2022, features 1,759,830 images from
Sentinel-2 with patch sizes from 20 to 120 pixels, supporting seasonal scene
classification, segmentation, and retrieval over Germany. Lastly, the
SSL4EQ-S12 dataset [107] from November 2022 contains more than 3 million
images from Sentinel-1 and Sentinel-2, with a patch size of 264x264 pixels.
Since this dataset does not contain any labels, it is commonly used for SSL.

In recent years, additional datasets have further enriched the resources

available for RS research. The SAMRS dataset [98], released in October 2023,
offers a high-resolution collection of images sourced from datasets like
HRSC2016 and FAIRIM-2.0, tailored for advanced segmentation tasks. With
more than 105,000 images and resolutions up to 1,024x1,024 pixels, SAMRS
supports semantic and instance segmentation as well as object detection, con-
tributing to the development of scalable segmentation models for RS.

Focusing on change-aware learning, CACo [67], launched in June 2023,
provides a variable patch-size dataset sourced from Sentinel-2. This dataset is
optimized for change detection and CL, specifically addressing urban and rural
landscapes. By prioritizing contrastive and self-supervised tasks, CACo aids in
developing models that can adapt to changes in satellite imagery across various
environments.

The SatlasPretrain [7] dataset, introduced in October 2023, is a large-scale
collection with more than 856,000 images combining Sentinel-2 and NAIP
high-resolution sources. With multispectral and high-resolution imagery,
SatlasPretrain supports applications such as land cover classification, segmen-
tation, and change detection, further advancing research in high-resolution sat-
ellite image analysis.

The SSL4EO-L [83] dataset, released in October 2023, represents a vast
resource with more than 5 million images from Landsat, designed for SSL in
cloud detection and land cover classification. By focusing on multiyear Landsat
imagery, SSL4EO-L enables robust training for applications that benefit from
long-term temporal coverage and cloud-resilient classification.

Finally, MMEarth [72], introduced in July 2024, combines data from
Sentinel-1, Sentinel-2, and Aster DEM, providing more than 1.2 million images
for multimodal applications. This dataset supports land cover classification and
semantic segmentation, enabling researchers to leverage multiple sensor types
and climate data for improved geospatial representation learning.

These datasets, with their varying resolutions, categories, and geographic
coverage, provide a rich resource for advancing RS research and applications.
They facilitate the development of robust models capable of addressing diverse
challenges in understanding and interpreting Earth’s surface through RS tech-
nologies.

Reference
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learn nuanced spatial and temporal relationships across
modalities, enhancing generalization in varied environ-
mental conditions. Such multigranular representation
proves crucial in RS, where scene classification often de-
pends on subtle spectral differences that simpler models
may overlook. Likewise, HyperSIGMA [95], pretrained on

TABLE 5. THIS TABLE PROVIDES AN OVERVIEW OF THE
PERFORMANCE METRICS FOR VARIOUS MODELS APPLIED TO
THE BIGEARTHNET DATASET [85] FOR IMAGE-LEVEL TASKS.
THE PERFORMANCE IS MEASURED USING MEAN AVERAGE
PRECISION (MAP) AND F1 SCORE.

DATASET MODEL PERFORMANCE (%) METRICS

SeCo[66] Gy
CMC-RSSR [84] 82.9 mAP
DINO-MM [105] 87.1 mAP
CACo [67] 74.98 mAP
GFM [69] 86.3 mAP
DINO-MC [111] 88.75 mAP
CROMA [28] 86.46 mAP
DeCUR [102] 89.7 mAP
CtxMIM [90] 86.88 mAP

BigEarthNet [85] FG-MAE [108] 78 mAP
USat [44] 85.82 mAP
FoMo-Bench [8] 69.33 F1 score
SwiMDiff [91] 81.1 mAP
SpectralGPT [40] 88.22 mAP
SatMAE++ [73] 85.11 mAP
msGFM [33] 92.9 mAP
SkySense [32] 92.09 mAP
MMEarth [72] 78.6 mAP
Shallow CNN* [85] 70.98 F1 score

*Performance for the shallow CNN model is sourced from the original BigEarthNet [85]

:3 paper. Bold values indicate the best-performing model for the corresponding metric.

............................................................................

TABLE 6. THIS TABLE PROVIDES AN OVERVIEW OF THE PER-
FORMANCE METRICS FOR VARIOUS MODELS APPLIED TO THE
ISPRS POTSDAM [43] DATASET FOR PIXEL-LEVEL TASKS. THE
PERFORMANCE IS MEASURED USING MEAN INTERSECTION
OVER UNION (MIOU) AND OVERALL ACCURACY (OA).

DATASET MODEL PERFORMANCE (%) METRICS
GeoKR[56] oA
RSP [96] 65.3 mioU
RingMo [87] 91.74 OA
RVSA [100] 91.22 OA
TOV [89] 60.34 mloU
CMID [70] 87.04 mloU
el RingMo-lite [109] 90.96 oA
Potsdam
Cross-Scale MAE [88] 76.17 mloU
SMLFR [22] 91.82 OA
SkySense [32] 93.99 mF1
UPetu [24] 83.17 mloU
BFM [11] 92.58 OA
R-SegNet* [23] 91.37 OA

:~. *Non-FM. Bold values indicate the best-performing model for the corresponding metric.
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the expansive HyperGlobal-450K hyperspectral dataset
[95], leverages its sparse sampling attention mechanism
to optimize spectral-spatial feature extraction in high-
dimensional hyperspectral data. By selectively focusing
on critical spectral bands and reducing redundancy, Hy-
perSIGMA achieves high classification accuracy across hy-
perspectral scenes, a marked improvement over previous
models that struggled with hyperspectral data complexity.
These models highlight the importance of designing pre-
training strategies that capture multimodal features and
effectively utilize dataset diversity as these elements di-
rectly impact the robustness and accuracy of classification
in RS applications.

PIXEL LEVEL

For the segmentation tasks, we compared 12 FMs that have
been tested on the International Society for Photogram-
metry and Remote Sensing (ISPRS) Potsdam dataset. As
shown in Table 6, SkySense [32] has the better performance
out of all 12 models, with an mF1 score of 93.99%. CMID
[70] stands out with the highest mean intersection over
union (mloU) of 87.04%, demonstrating its superior ca-
pability in accurately segmenting different regions within
the dataset. For overall accuracy (OA) performance, BEM
[11] has the highest OA score of 91.82%. Cross-Scale MAE
[88], UPetu [24], and RSP [96] have mIoU scores of 76.17%,
83.17%, and 65.30%, respectively, showing competitive
segmentation capabilities. GeoKR [56] reaches an mIoU of
70.48%, indicating robust segmentation performance but
with room for improvement compared to CMID [70]. TOV
scores the lowest mIoU at 60.34%, suggesting that it may
struggle with finer segmentation tasks compared to the
other models.

The performance metrics for the models applied to the
ISPRS Potsdam dataset reveal significant variations in their
effectiveness in segmentation tasks. SkySense [32] and
CMID [70] emerge as top performers in mF1 score and
mloU, respectively, while SMLFR [22], RingMo [87], and
RingMo-lite [109] demonstrate strong OA. These insights
can guide the selection and optimization of models for
specific RS applications, ensuring the best possible perfor-
mance for the task at hand.

For the change detection tasks, we compared the per-
formance of FMs on the OSCD and LEVIR-CD datasets
(Table 7). The models were evaluated based on their F1
scores, which provide a balanced measure of precision and
recall. As shown in the table, the performance varies signifi-
cantly across different models and datasets.

SkySense [32] achieves the highest F1 score of 60.06%
on the OSCD dataset, demonstrating its superior ability
to accurately detect changes. GFM [69] follows with an F1
score of 59.82%, indicating strong performance in change
detection tasks. SpectralGPT [40] also performs well with
an F1 score of 54.29%. Other notable models include DI-
NO-MC [111] with an F1 score of 52.71% and CACo [67]
with an F1 score of 52.11%. SeCo [66] records the lowest
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F1 score at 46.94%, suggesting that it may require further
optimization to enhance its change detection capabilities.

In contrast, the LEVIR-CD dataset reveals higher per-
formance metrics across the models. MTP [99] achieves
the highest F1 score of 92.67%, and SkySense [32] follows
closely with an F1 score of 92.58%, demonstrating their
robust performance. SWiMDiff reaches a lower F1 score of
80.90% compared to its peers but still indicates effective
performance in the LEVIR-CD [12] dataset.

REGION LEVEL

In Table 8, the performance of FMs on the DOTA, DIOR,
and DIOR-R datasets for object detection is evaluated based
on their mAP and average precision at 50% (AP50). On the
DOTA dataset, RVSA [100] achieves the highest mAP of
81.24% in accurately detecting objects, followed by SMLFR
[22] and RSP [96] with mAPs of 79.33% and 77.72%. CMID
[70], GeRSP [42], and BFM [11] also demonstrate moderate
performances with mAPs of 72.12%, 67.40%, and 58.69%.
For the DIOR and DIOR-R datasets, MTP [99] and SkySense
[32] are the top performers with an AP50 of 78% and an
mAP of 78.73%, respectively, showcasing their superior
object detection capabilities. These insights can guide the
selection and optimization of models to ensure the best
possible performance for specific RS applications.

INFLUENCE OF PRETRAINING METHODS

Various pretraining methods have a substantial impact on
the performance of FMs in RS. Models pretrained using
SSL techniques, such as CL and MAE, consistently exhibit
superior performance compared to those pretrained with
traditional supervised learning. For instance, SkySense,
which uses a multigranularity CL approach, outperforms
other models by approximately 3.6% in scene classification
and object detection tasks [32]. Similarly, Seco, based on
seasonal contrast learning, yields superior performance for
land cover classification, improving metrics by up to 7%
over ImageNet-pretrained models [66]. In handling multi-
temporal and multispectral data, models like SatMAE [16]
and Scale-MAE [78], using masked autoencoding, achieve
improvements in change detection, with SatMAE showing
up to a 14% performance gain in land cover classification
[16] and Scale-MAE offering a 1.7% mloU improvement for
segmentation across varied resolutions [78]. These findings
highlight the critical role of innovative pretraining methods
in maximizing the effectiveness of FMs and suggest that the
continued exploration and refinement of these techniques
are essential for advancing RS capabilities.

FMs like SatMAE, RingMo, A2-MAE, and ORBIT each
demonstrate strong performance, but practical tradeoffs
are essential to consider, especially for application-specific
constraints [16], [ [87], [ [101], [ [122]. SatMAE, based on
a transformer architecture, effectively leverages temporal
and multispectral embeddings to capture complex spa-
tial-temporal patterns in satellite imagery. This strength,
however, comes at the cost of significant computational
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TABLE 7. THIS TABLE PROVIDES AN OVERVIEW OF THE F1
SCORE FOR VARIOUS MODELS APPLIED TO THE ONERA
SATELLITE CHANGE DETECTION (OSCD) DATASET [10] AND
THE LEVIR-CD DATASET [12] FOR SPATIOTEMPORAL
DOWNSTREAM TASKS.

DATASET MODEL F1 SCORE
S .[.66] ween
MATTER [2] 49.48
CACo [67] 52.11
GFM [69] 59.82
SWiMDiff [91] 49.6
0SCD [10] SpectralGPT [40] 54.29
SkySense [32] 60.06
DINO-MC [111] 52.71
HyperSIGMA [95] 59.28
MTP [99] 53.36
CNNs* [10] 89.66 (OA)
RSP [96] 90.93
RingMo [87] 91.86
RIngMo-lite [109] 91.56
LEVIR-CD [12] SwiMDiff [91] 80.9
SkySense [32] 92.58
UPetu [24] 88.5
STANet* [12] 85.4

*Performance for the models is sourced from the original dataset articles and papers.
STANet is the Spatial-Temporal Attention Network. Bold values indicate the best-perform-

1-. ing model for the corresponding metric.

TABLE 8. THIS TABLE PROVIDES AN OVERVIEW OF THE
PERFORMANCE METRICS FOR VARIOUS MODELS APPLIED TO
THE DOTA [20], [21], [113] DATASET, DIOR [55], AND DIOR-R
[14] DATASET FOR REGION-LEVEL TASKS. THE PERFORMANCE
IS MAINLY MEASURED USING MAP.

DATASET MODEL PERFORMANCE (%) METRICS
RSP [96] 77.72 mAP
RVSA [100] 81.24 mAP
TOV [89] 26.1 mAP50
CMID [70] 72.12 mAP
DOTA
GeRSP [42] 67.4 mAP
SMLFR [22] 79.33 mAP
BFM [11] 58.69 mAP
YOLOv2-D* [21] 60.51 AP
RingMo [87] 75.8 mAP
CSPT [104] 69.8 mAP
RingMo-lite [109] 73.4 mAP
DIOR
GeRSP [42] 72.2 mAP
MTP [99] 78 AP50
Faster R-CNN* [55] 74.05 mAP
RVSA [100] 71.05 mAP
SMLFR [22] 72.33 mAP
SkySense [32] 78.73 mAP
DIOR-R
MTP [99] 74.54 mAP
BFM [11] 73.62 mAP
AOPG* [14] 64.41 mAP

*Model performance is acquired from original dataset articles and papers. AOPG: Anchor-
free Oriented Proposal Generator. Bold values indicate the best-performing model for the

%, corresponding metric.
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requirements, which may not be feasible for real-time mon-
itoring applications in resource-constrained environments.

In contrast, RingMo provides a more lightweight vision
transformer architecture, offering efficient model inference
and a balance between performance and computational de-
mands. This makes RingMo particularly suitable for rapid-
inference tasks like disaster response monitoring, where
real-time processing is critical [87]. A2-MAE introduces
an anchor-aware masking strategy, optimizing spatial-
temporal-spectral representations and allowing the effec
tive integration of multisource data. This design enhances
its adaptability to varied data resolutions and modalities,
yet the model’s complex encoding techniques add to its
computational load, suggesting a fit for applications that
require high accuracy over efficiency [122].

Finally, ORBIT, designed with 113 billion parameters,
is exceptionally scalable, achieving high-throughput per-
formance for Earth system predictability tasks. While it ex-
cels in large-scale predictive tasks, the model’s considerable
resource requirements limit its deployment to specialized
high-performance computing environments [101]. These
tradeoffs highlight the importance of selecting a model that
aligns with specific operational goals, whether for maxi-
mizing accuracy or minimizing computational overhead.

Furthermore, recent studies comparing SSL approaches
highlight the distinct advantages of generative methods like
MAEs over contrastive methods for time-series data, espe-
cially when labeled data are limited [61]. Unlike contrastive
approaches that emphasize distinguishing between similar
and dissimilar pairs, generative methods such as MAE re-
construct data from masked segments, allowing them to
capture complex underlying structures and relationships
within the data. This reconstruction-based learning proves
particularly advantageous for time-series and multispectral
applications in RS, where temporal and spectral depen-
dencies are essential. Consequently, MAE-based models
can achieve stronger representations under sparse labeling
conditions, positioning them as powerful tools for RS tasks
that require nuanced temporal analysis.

PRACTICAL IMPLICATIONS

FMs offer transformative capabilities in RS by building
upon established applications like multispectral and time-
series data analysis. While these applications have tradi-
tionally relied on machine learning and DL, FMs reduce
the need for labeled data and enable rapid adaptation to
new tasks, providing robust solutions in areas previously
limited by data constraints and task-specific architectures.
Consequently, the advancements in FMs have significant
practical implications across various areas.

) Environmental monitoring: Models like GASSL [6] and Sat-
MAE [16] offer detailed assessments of environmental
changes, aiding in conservation efforts and policy-mak-
ing. These models excel in monitoring deforestation, de-
sertification, and pollution levels, providing actionable
insights for environmental management. By integrating

multispectral and temporal data, these models can track
changes over time, allowing for the early detection of en-
vironmental degradation and the formulation of timely
interventions. This capability is particularly important
for the sustainable management of natural resources as
well as reducing the impacts of climate change.

b Agriculture and forestry: FMs such as EarthPT [82] and
GeCo [57] deliver valuable insights into crop health,
yield predictions, and land use management, optimiz-
ing agricultural practices and resource allocation. For in-
stance, RSP [96], leveraging multispectral data, enhances
precision agriculture by accurately monitoring crop con-
ditions and predicting yields. These models can detect
the early signs of crop stress, diseases, and pest infesta-
tions, enabling farmers to take proactive measures. Ad-
ditionally, they aid in forestry management by providing
detailed maps of forest cover, estimating biomass, and
monitoring deforestation activities, thereby supporting
conservation efforts and sustainable forestry practices.

b Archaeology: The use of FMs in archaeology revolution-
izes the way archaeological features and sites are dis-
covered, mapped, and analyzed. Models such as GeoKR
[56], RingMo [87], etc. can process high-resolution sat-
ellite imagery and multispectral data to enhance the
detection and mapping of archaeological features that
might be difficult to discern with the naked eye. Others,
like MATTER |[2], can accomplish texture and material
analysis to help identify various surfaces. They enable
large-scale surveys, allowing archaeologists to identify
potential sites of interest over vast areas efficiently. Al-
though thorough exploration still requires on-site vis-
its and excavations or other terrestrial investigations,
these significantly improve the initial identification and
mapping process. Additionally, these models can track
changes over time, helping archaeologists monitor en-
vironmental and human impacts and providing crucial
information for preservation and restoration. This en-
hances the efficiency and accuracy of surveys and opens
new possibilities for discovering unknown sites.

b Urban planning and development: RS models like CMID
[70] and SkySense [32] are pivotal for monitoring ur-
ban expansion, infrastructure development, and land
use changes. These models facilitate sustainable urban
growth and development planning by providing high-
resolution data analysis and trend forecasting. They en-
able city planners to assess the impact of urbanization
on natural habitats, optimize land use, and plan infra-
structure projects more effectively.

b Disaster management: Models such as OFA-Net [118],
DOFA [117], and Prithvi [46] are instrumental in flood
mapping as well as fire detection. These models provide
critical real-time data that help in identifying affected
areas quickly, enabling timely and effective response
measures. This capability supports emergency respond-
ers in prioritizing resource allocation and implementing
evacuation plans, thereby reducing the impact of natu-
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ral disasters. Additionally, these models assist in post-
disaster recovery by assessing damage and monitoring
the recovery process over time. By integrating various
data sources, they enhance the ability to make informed
decisions, coordinate response efforts, and plan for fu-
ture disaster mitigation strategies.

The improvements in accuracy across the models dis-
cussed have profound implications for real-world RS appli-
cations. In deforestation monitoring, for instance, models
like GFM achieve high pixel-level accuracy in semantic
segmentation, showing up to a 4.5% improvement over
baseline models, which enhances the precision of map-
ping forest cover changes, supporting conservation efforts
[101]. Similarly, HyperSIGMA achieves an impressive 6.2%
accuracy boost in hyperspectral vegetation monitoring,
providing invaluable data for assessing forest health and
biodiversity [95].

In urban planning, models like UPetu excel in infra-
structure mapping by integrating multimodal data, such as
optical and radar imagery, achieving more than 5% higher
accuracy compared to single-modality models, which al-
lows urban planners to make more informed land use deci-
sions [24]. Additionally, RingMo enhances object detection
accuracy by 3.7% over traditional supervised models, effec-
tively identifying dense urban features critical for disaster
management and urban infrastructure assessment [87].

Finally, ORBIT demonstrates exceptional scalability,
processing large climate datasets with a scaling efficiency
of up to 85%, which supports applications in long-term en-
vironmental monitoring, such as climate change prediction
and seasonal forecasting. This scalability not only advances
traditional RS workflows but also enables complex mul-
titemporal analyses and predictive modeling, which were
previously challenging with conventional methods [101].

While RS has long benefited from multispectral and
temporal data, the adaptability, scalability, and efficiency
of FMs unlock a new level of precision and accessibility
in these applications. This advancement opens up oppor-
tunities to tackle complex and evolving challenges across
domains—from environmental conservation to urban
planning—that traditional models have struggled to ad-
dress at scale.

FUTURE DIRECTIONS

Future research should prioritize several key areas as fol-

lows:

b Efficient model development: Exploring techniques such
as model distillation, pruning, and quantization to re-
duce computational requirements without compromis-
ing performance is crucial. Additionally, developing
scalable architectures that efficiently handle ultra-high-
resolution images is essential. For instance, applying
pruning techniques to models like SatMAE [16] could
maintain performance while reducing computational
load. Model adaptation techniques such as Low-Rank
Adaptation (LoRA) [41] have emerged as effective meth-
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ods for fine-tuning large-scale models with minimal
computational overhead. By decomposing weight up-
dates into low-rank matrices, LoRA [41] enables effi-
cient adaptation without the need to modify the entire
set of model parameters, making it suitable for resource-
constrained environments or when frequent retraining
is required. Incorporating methods like LoRA [41] can
further enhance the applicability of FMs across diverse
tasks and domains.

) Multimodal data integration: Enhancing methods for inte-
grating and processing multimodal data (e.g., combining
optical and radar imagery) will provide more compre-
hensive insights. Research on advanced SSL techniques
capable of leveraging multimodal data is necessary. The
OFA-Net [118] framework, which integrates multimodel
data, serves as a promising direction for future models
to emulate and improve upon.

b Interdisciplinary collaboration: Promoting collaboration
among RS experts, Al researchers, and domain special-
ists can address complex challenges and drive innova-
tion. For example, partnerships between Al researchers
and environmental scientists can refine models like
GASSL [6] for better environmental monitoring and
conservation efforts.

Looking ahead, the consistent success of SSL methods
in FMs marks an exciting frontier for future research. These
models’ ability to learn from unlabeled data and adapt to
diverse RS tasks with minimal fine-tuning suggests that
advancements in unsupervised learning techniques could
greatly reduce reliance on large labeled datasets, which
remain a significant bottleneck in many RS applications.
However, as these models grow in size and complexity, bal-
ancing computational demands with the need for efficien-
cy will become increasingly crucial. Future work may focus
on developing more resource-efficient versions of FMs that
maintain high performance, particularly for deployment in
real-time monitoring systems or environments with lim-
ited computational resources.

LIMITATIONS
This survey has several limitations as follows:

b Scope and coverage: The review focuses on FMs released
between June 2021 and June 2024. While the scope of
this review is extensive and covers many significant de-
velopments, it is not exhaustive. Some recent advance-
ments and innovations in the field may not be included
due to their release timing or the lack of sufficient evalu-
ation metrics at the time of writing. Consequently, cer-
tain cutting-edge models that have emerged in the latter
part of this period or that have not yet been thoroughly
evaluated might be omitted. This limitation underscores
the need for readers to seek out the most current research
and updates beyond the scope of this survey. Addition-
ally, while FMs have been empirically tested on a specific
set of downstream applications, their robust architec-
tures and general-purpose training paradigms, such as
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convolutional networks (e.g., ResNet) and ViTs, indicate
their potential to perform well across a much broader
range of tasks. The limited testing observed in current
literature should not be seen as a constraint on their ap-
plicability but rather as an indication of the focus of ex-
isting research efforts. Given their design, these models
are expected to generalize effectively to a wide variety
of RS tasks, even beyond those explicitly tested. Future
work should aim to explore and validate their perfor-
mance across more diverse applications to unlock their
full potential.

) Evolving field: The field of Al and RS is rapidly evolving,
with continuous advancements and breakthroughs oc-
curring at a fast pace. This dynamic nature necessitates
ongoing reviews and updates to ensure the relevance
and comprehensiveness of the survey. New techniques,
methodologies, and models are constantly being devel-
oped, which can significantly impact the state of the art.
Therefore, it is essential to recognize that this survey rep-
resents a snapshot in time and that continuous moni-
toring of the literature is required to capture the latest
advancements and emerging trends. This approach will
help maintain an up-to-date understanding of the field
and incorporate new findings as they become available.

CONCLUSION

In this comprehensive survey, we have reviewed the recent
advancements in FMs for RS. We categorized these models
based on their pretraining methods, image analysis tech-
niques, and applications across different areas, highlight-
ing their unique methodologies and capabilities.

Our analysis covered various advanced techniques,
including SSL, ViTs, and ResNets. These models have sig-
nificantly improved performance on different image per-
ception levels, like the region level, pixel level, and image
level, as well as in applications like environmental moni-
toring, digital archaeology, agriculture, urban planning,
and disaster management.

While significant progress has been made, several chal-
lenges persist, such as the need for more diverse and high-
quality datasets, high computational requirements, and
difficulties for different applications. Addressing these
challenges will require further research and collaboration
across disciplines.

In summary, this survey provides a detailed overview
of the current state of FMs in RS, offering valuable insights
and identifying future research directions. We recommend
continued efforts in developing efficient model architec-
tures, enhancing multimodal data integration, and ex-
panding dataset diversity to fully realize the potential of
these models in RS.
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