Multi-stage Relational Programming

MICHAEL BALLANTYNE, Northeastern University, USA
RAFAELLO SANNA, Harvard University, USA

JASON HEMANN, Seton Hall University, USA

WILLIAM E. BYRD, University of Alabama at Birmingham, USA
NADA AMIN, Harvard University, USA

We transport multi-stage programming from functional to relational programming, with novel constructs to
give programmers control over staging and non-determinism. We stage interpreters written as relations, in
which the programs under interpretation can contain holes representing unknown expressions or values. By
compiling the known parts without interpretive overhead and deferring interpretation to run time only for the
unknown parts, we compound the benefits of staging (e.g., turning interpreters into compilers) and relational
interpretation (e.g., turning functions into relations and synthesizing from sketches). We extend miniKanren
with staging constructs and apply the resulting multi-stage language to relational interpreters for subsets
of Racket and miniKanren as well as a relational recognizer for context-free grammars. We demonstrate
significant performance gains across multiple synthesis problems, systematically comparing unstaged and
staged computation, as well as indicatively comparing with an existing hand-tuned relational interpreter.

CCS Concepts: » Software and its engineering — Constraint and logic languages; Interpreters; Auto-
matic programming.

Additional Key Words and Phrases: relational programming, staging, synthesis, miniKanren, Racket, Scheme

ACM Reference Format:

Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin. 2025. Multi-stage
Relational Programming. Proc. ACM Program. Lang. 9, PLDI, Article 211 (June 2025), 25 pages. https://doi.org/
10.1145/3729314

1 Introduction

This paper concerns extending the techniques of staged functional programming to the relational
programming context. Relational programming—pure, all-modes constraint logic programming—
provides concise uniform solutions to problems across a wide number of areas. Figure 1 shows
two illustrative examples. In the first example, we synthesize part of the append function from a
sketch [Solar-Lezama 2009] and some examples of its behavior. In the second, we invert [Harrison
and Khoshnevisan 1992] the behavior of append and derive the set of ways to split the given list. The
uniform solution for these two example tasks and a host of others [Byrd et al. 2017] hinges on using
an interpreter implemented as a relation [Byrd et al. 2012] in a relational programming language.
The price of interpretation is interpretive overhead, and presently, the performance penalty of
interpretation makes the relational interpreter approach impractical for most applications.

Authors’ Contact Information: Michael Ballantyne, Northeastern University, Boston, USA, ballantyne. m@northeastern.edu;
Rafaello Sanna, Harvard University, Cambridge, USA, rsanna@g.harvard.edu; Jason Hemann, Seton Hall University,
South Orange, USA, hemannja@shu.edu; William E. Byrd, University of Alabama at Birmingham, Birmingham, USA,
webyrd@uab.edu; Nada Amin, Harvard University, Cambridge, USA, namin@seas.harvard.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART211

https://doi.org/10.1145/3729314

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0007-9958-6281
HTTPS://ORCID.ORG/0009-0009-7266-7422
HTTPS://ORCID.ORG/0000-0002-5405-2936
HTTPS://ORCID.ORG/0000-0003-4730-5293
HTTPS://ORCID.ORG/0000-0002-0830-7248
https://doi.org/10.1145/3729314
https://doi.org/10.1145/3729314
https://orcid.org/0009-0007-9958-6281
https://orcid.org/0009-0009-7266-7422
https://orcid.org/0000-0002-5405-2936
https://orcid.org/0000-0003-4730-5293
https://orcid.org/0000-0002-0830-7248
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729314

211:2 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

(synth/sketch (e) (invert-execute
(Lappend (Lappend
(lambda (xs ys) (lambda (xs ys)
(if (null? xs) (if (null? xs)
ys ys
(cons (cons
,e (car xs)
(append (cdr xs) ys))))1) (append (cdr xs) ys))))1)
Cappend 'O 'O) > O] (@b)
[(append '(a) '(b)) —> (a b)] —
[(append '(c d) "(e f)) > (c de f)I) (O (@bc)
- (@ (b)
(car xs) ((a b) (<))
(@b ey O
(a) Example-based synthesis from a program (b) Function inversion generates the set of inputs
sketch. The first part sketches the append body that lead to an output. Here, we compute values
with , e creating a hole. The remainder provides of xs and ys so that (append xs ys) yields the
example invocations and expected outputs. list (a b ¢)

Fig. 1. Two examples of tasks the relational interpreter technique enables.

In the functional-programming world, staging [Jerring and Scherlis 1986; Taha 1999] is an effective
technique for eliminating interpretive overhead. Stratifying the computation into a sequence of
stages permits pre-computing earlier stages and thereby generating a residual program that may run
faster than the original. A multi-stage program is a conventional program plus staging annotations
that declare which program fragments should wait to be computed in a later stage.

What’s more, a multi-stage program can be instead understood as an ordinary single-stage
program by ignoring the staging annotations. This erasure property [Inoue and Taha 2016] distin-
guishes multi-stage programming from other program generation techniques, and offers a unique
advantage for programmers. With staging, program generators can often be derived simply by
starting with a correct but slow unstaged program and adding annotations. A programmer can
subsequently reason about a multi-stage program more easily by ignoring the staging annotations
and thinking about it as a single-stage program.

Combining staging with the relational programming model, however, requires grappling with
three challenges—non-determinism, pervasive partially-unknown data, and lazily checked com-
putations of constraints—that do not arise in the simpler functional programming context. Those
three facets are integral to the relational computation model: constraint-logic programming lan-
guages compute through accumulating information about unknowns (logic variables) and rely
on non-deterministic search to compute solutions to a query according to equations specified in
the program. All three features interact with staging and require new functionality in a staged
relational programming language.

This paper generalizes functional program staging to the context of all-modes relational pro-
gramming, in order to speed up relational interpreter-based programming tasks. In doing so we
solve the non-trivial task of reconciling staging with those three challenging features. Concretely,
we make the following contributions:

e We present a design (Section 3) and operational semantics (Section 4) for multi-stage miniKan-
ren, a staged relational programming language. Its design extends staging to accommodate
the unique features of relational programming. New kinds of staging annotations allow
programmers to control the effect of staging-time nondeterminism. Logic variables may

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:3

appear anywhere, so data that a staged program expects to know at staging time may in
fact only be available at run time. Execution falls back to run-time in the case that the data
are in fact dynamic. Logic variables in terms may have associated constraints. Multi-stage
miniKanren properly residualizes any such constraints attached to cross-stage persistent
values [Hanada and Igarashi 2014; Taha and Sheard 2000].

e We state a multi-stage programming erasure property for the relational programming context
(Section 4.1)

e We use multi-stage miniKanren to stage a relational interpreter and other similar programs
such as a relational recognizer for context-free grammars. We apply the staged relational
interpreter to accelerate program inversion and synthesis from sketches (Section 5).

e We demonstrate that our technique achieves orders-of-magnitude performance improvements
as compared to unstaged relational programs (Section 6).

We assume passing familiarity with Scheme and the concept of functional program staging.

2 Background

Our work lies at the intersection of multi-stage programming and relational programming. The
following subsections review the necessary essentials of both areas through some concrete examples.

2.1 Relational Programming in miniKanren

Relational programming uses equations and constraints to compute relations. An n-ary miniKanren
relation computes a subset of the n-fold product of the set of miniKanren terms—finite cons-based
binary trees over an infinite set of atomic terms. The miniKanren [Friedman et al. 2005, 2018]
language is a common substrate for relational programming. A miniKanren program consists of a
set of relations defined with defrel and a query written with run. This simple relation and example
queries shows the basics of miniKanren programming and its all-modes behavior:

(defrel (same a b) (run 1 (p gq) (same (cons 'dog p) (cons p q)))
(== a b)) < ((dog dog))

(run 1 (p q) (same 'dog p)) (run 1T (p q) (same (cons p (cons p 'dog)) q))

< ((dog _.0)) — ((_.0 (_.0 _.0 . dog)))

(run 1 (@) (== 5 6))

— 0O

The defrel form introduces a relation named same with parameters a and b, and its body is a
program that computes this relation. Here, that computation consists of a single goal that asserts
a and b describe the same tree. Equations are written with the == operator. Operationally, the ==
binary goal constructor unifies its arguments. Disequalities are written using the =/= operator, and
the language has several other basic constraints as well.

Having defined a set of relations, the programmer uses the run operator to query against this set
of relation definitions for satisfying terms. The first run asks for at most one solution of assignments
to variables p and g so that p is the same as the quoted symbol constant 'dog. The user can write
queries with respect to one or more variables (in this example the variables p and q) and miniKanren
expresses the answers with respect to these variables. Here we see miniKanren produces a list that
contains the single solution, (dog _.®@). This solution is itself a list, containing a value for each
queried variable. In this case the variable p is assigned the term dog, and g’s value is unknown.
In general, something that looks like _.n represents an unknown value. Rather than one single
concrete answer with a value for p and a value for g, miniKanren returns a solution that describes
an infinite set of answers; every value we could assign q would also yield a distinct answer. The

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:4 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

e €Expra=b|x|(A(x)e)| (oreey)] (e e)
v € Value :=b | closure(x,e, p)
x € Var (defrel (make-closo x e env clos)
b € Boolean := true | false (== clos ~(clos ,x ,e ,env)))
make-clos(x,e,p) = closure(x,e,p) (defrel (apply-closo clos v1 v)
(fresh (x e env)
,X:0 Fe=0 . R
P 1 CLOSURE (== clos (c}os ,X ,e ,env))
apply-clos(closure(x, e, p), 1) = v (evalo-or e “((,x . ,v1) . ,env) v)))
(defrel (evalo-or e env v)
— CONST
prb=b (conde
[(booleano e) (== e v)]
pre=u v, = false pre=uv L(fresh (el e2 v1)
OR-1 (== e “(or ,el ,e2))
prlorere)=o (evalo-or el env v1)
(conde
prea=wv v # false OR-2 [(== v1 #f) (evalo-or e2 env v)]
pr(oreie) =0 [(=/= v1 #f) (== v1 v)I))]
[(symbolo e) (lookupo e env v)]
plx) =0 [(fresh (x el)
—————— REF .
pFX=0 == e ~(lambda (,x) ,el))
(symbolo x)
(make-closo x el env v))]
ABS [(fresh (el e2 v1 v2
p+ (A(x) e) = make-clos(x, e, p) ((== e(‘(o1 e2)))
e = o (evalo-or el env v1)
pre ! (evalo-or e2 env v2)
pre=u apply-clos(vy, v2) = v

APP (apply-closo v1 v2 v))1))

prere) =0
(b) A relational interpreter for a small language.
(a) Big-step semantics. It relates expressions, environments, and values

Fig. 2. Big-step semantics for A-or and a corresponding miniKanren relation.

result of a run query is always a list of answers; the list is empty if the query fails (e.g., in the
second query terms 5 and 6 will fail to unify).

Even short queries can lead to some non-trivial constraints with partially ground data. In the
third query, we unify two partially ground terms. These represent two trees where some of the tree
structure is known and fixed, but other portions are unknown, indicated by these logic variables.
The first term is a pair (built with cons) where the left-branch is an atom dog and the right branch
is the unknown p. The structure of the second term is also only partially known; it must be at least
a pair, but its left child p and its right child q are unknown. Satisfying that equality constraint on
these trees forces assignments of variables that g and p must both be dog.

Unification produces a most general solution by only assigning variables as concrete a value
as is required. The last query dictates that the variable q must be the same as some term (cons
p (cons p 'dog)). Since there are no further restrictions on p, however, g’s value has no more
known structure than that. The two uses of p in the first tree of that query lead to the repetition of
_.0 in the solution—although unconstrained to what term it is, all valid assignments for q demand
the same tree occur in both positions.

Computing more complex relations and asking more complex queries require using a few
additional syntactic forms—namely fresh and conde—and several additional constraints. Figure 2b

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:5

(run 1 (e) (defrel (appendo xs ys zs)
(evalo (evalo
“(letrec “(letrec
(Lappend ([append
(lambda (xs ys) (lambda (xs ys)
(if (null? xs) ys (if (null? xs) ys
(cons ,e (cons (car xs)
(append (cdr xs) ys)))) D) (append (cdr xs) ys)))) D)
(list (append ',xs ',ys))
(append ') ') initial-env
(append '(a) '(b)) zs))
(append '(c d) "(e f))))
initial-env (runx (xs ys) (appendo xs ys '(a b c))
(O (@b) (cde) —
— (O (@bc)
((car xs)) (@ (b))
(@ b) ()
(@bcy O

Fig. 3. Relational interpreter based implementations of the tasks in Figure 1.

introduces evalo-or, a relational interpreter for a small lambda-calculus based language with
booleans and or-expressions. We use the code in this figure both to introduce new miniKanren
forms and to illustrate a relational interpreter. It relies on two helper relations, make-closo and
apply-closo, and an elided relation lookupo. On the left-hand side of the figure, we show a
big-step semantics for the same language.

The quasiquote (7) and unquote (,) syntax is merely convenient shorthand for building term
structures containing logic variables at certain positions. The second relation, apply-closo demon-
strates the syntactic form fresh. The fresh form introduces new auxiliary logic variables scoped
over the goals in the body of the form. A goal created with fresh succeeds whenever the conjunc-
tion of its body goals succeed. The apply-closo relation introduces x, e, and env, and succeeds
when both the variable clos can take the form of a four-element list beginning with the symbol
clos and also when the second goal succeeds. Relation definitions can contain calls to themselves
or to other relations. In the final line of the apply-closo definition, the second argument in the
call to evalo is an extended environment, represented in a first-order fashion as a list of pairs. The
call to evalo-or takes place against a pair of variables x and a added to the front of env.

The evalo-or relation connects three terms when the first has the shape of an expression and
the second has the shape of an environment in which the expression evaluates to the third element,
the value. The body of evalo-or is a conde expression. The conde form expresses disjunction of
its clauses. Each clause expresses the conjunction of its goals. The first clause relies on a booleano
constraint. The miniKanren language implements a small variety of type constraints, which are
lazily enforced as logic variables are unified with values.

2.1.1 Synthesis with Relational Interpreters. The evalo-or interpreter only supports a small lan-
guage, but it is sufficient to show how relational evaluation can accomplish synthesis. This query
simultaneously infers that the only sensible completion for the p query variable is 1ambda and
evaluates the application to the value #t:

(run 1T (p q) (evalo-or “((,p (x) x) #t) 'O q)) < ((lambda #t))

Previous work by Byrd et al. [2017, 2012] explores the use of relational interpreters for somewhat
larger functional languages to accomplish a surprising variety of synthesis tasks. Figure 3 shows how
the example-based synthesis and program inversion examples from Figure 1 can be accomplished

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:6 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

type orval = let rec eval_or (e : orexp) (env : env) : orval code =
| Bool of bool match e with
| Closure of (orval -> orval);; | Lit b => .< Bool b >.
| Or (el, e2) ->
type orexp = .< (match .~(eval_or el env) with
| Lit of bool | Bool false -> .~(eval_or e2 env)
| Or of orexp * orexp | vl => v1) >.
| Sym of string | Sym s -> List.assoc s env
| Lam of string * orexp | Lam (s, e) —>
| App of orexp * orexp ;; .< Closure
(fun v -> .~(eval_or e ((s, .<v>.) :: env))) >.
type env = (string * orval code) list | App (el, e2) —>

.< (match .~(eval_or el env) with
| Closure f -> f .~(eval_or e2 env)) >.

Fig. 4. A MetaOCaml implementation of a staged interpreter for the language from Figure 2.

using the larger evalo relation provided by Byrd et al. From the perspective of miniKanren, the
only difference between these tasks is the position of the variables in the argument to eval. For the
synthesis task, we place the query variable e in the text of the append body; for program inversion,
the query variables xs and ys stand for arguments of a call to append.

The appendo relation holds between xs, ys, and zs when the interpreter relates the letrec
expression, including the call to the append function on values xs and ys in the body, to a value zs.
As the query result indicates, this indeed defines the relationship between lists to append and their
result. The binding expression in the letrec argument to evalo is the function append written in
the interpreter’s subset of Racket. Instead of writing the appendo miniKanren relation on terms
in a direct style, however, the example in Figure 3 defines the relationship at a meta-level. Byrd
et al. [2017] introduce this trick of using a function to define the behavior of a relation through
a relational interpreter; this append/appendo is due to them. The relational interpreter-based
synthesis technique is expressive, but in the absence of staging, using the relational interpreter
to query Racket functions in this way suffers from interpretive overhead. Let us turn to staging,
which offers a strategy to reduce this cost.

2.2 Program Staging

We use MetaOCaml [Calcagno et al. 2003; Kiselyov 2014] to re-introduce traditional multi-stage
functional programming as background material. Figure 4 contains an interpreter for the same
language as in Figure 2, implemented as a staged function in MetaOCaml.

The type orexp of the argument e shows that the expression is staging-time. The return value is
wrapped in code, which means that this program generates code that will, at run time, produce an
orval. The environment argument is mixed-stage data: its keys come at staging time but its values
at run time. The matching on eval_or’s input expression happens at staging time, outside of any
quotation (.< ... >.). Any matching or construction of values happens inside the quotations,
because we are generating code to execute at run time.

Recursive calls to the evaluator are unquoted (.~). The upshot of this is that we will splice the
code generated by the recursion into the surrounding quoted code. Environment lookup happens at
staging time; the result of the environment lookup will be the orval code stored in the environment,
which will splice into the generated code in the context where the lookup occurs.

3 Introduction to Multi-stage miniKanren

As with traditional two-stage functional programming, staged relational programming separates
goal execution into a staging-time stage that generates goal code for run time, and a run-time stage in

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 2117

which those generated goals, together with goals not executed at staging time, are subsequently run
in a query. In this model the two stages are separate and disjoint, with the staging-time component
wholly preceding the run-time component. Portions of code for each stage can be inter-nested, and
code executed at run time can contain fragments generated at staging time within it.

The goal annotation staged promotes a goal from run time to staging time, and the annotation
later correspondingly demotes a goal at staging time to a run-time goal, deferring its computation.
The query in Figure 5 demonstrates both of these annotations in context. By itself the query is not

(run 1 (a) || generated code (simplified)
(staged (run 1 (q)
(fresh (p r) (fresh (r)
(== q (list p r)) (== q (list 'dog r))
(== p 'dog) (== r 'fish)))
(later (== r 'fish))))) < ((dog fish)) generated query's result

Fig. 5. Staging time and deferring to run time.

particularly interesting; the lone answer is the list (dog fish). Worth noticing however is the
stage at which each subgoal executes. Computation of the fresh goal will be performed during
staging because the goal is within a staged annotation. The (== r 'fish) unification executes
at run time because, while the staged annotation promotes the fresh goal to staging time, the
later annotation demotes its contents from staging time to run time.

A staging time computation produces code as its value. The run-time state is by definition not yet
available during staging time—in Figure 5 this includes the values of q and r. Therefore, sometimes
even some of the computation within a staged block must be deferred to run time. Other portions
of the computation, however, can be pre-computed during staging time and doing so simplifies
the residual task. Staging time computation simplifies the fresh goal, for example, by integrating
the value of pinto (== q (list 'dog r)). This residual goal expresses solutions to the original
equations, and makes no reference to variable p. From the perspective of logic programming, the
staging simplifies this constraint problem and residualizes the remainder. From the implementer’s
perspective as a staging-aware functional programmer, this is persisting values across staging—
specifically constraints, which can be equational or otherwise. In this case multi-stage miniKanren
can optimize away the introduction of variable p. Any of the goals in the body of the fresh can be
re-ordered, and the staging time computation would produce the same result, because miniKanren
is a relational programming language.

Like any other goal, a relation call can be executed at staging time—provided the relation
definition is itself defined and available at staging time. A relation is defined for staging time with
defrel/staged, for example:

(defrel/staged (pet q) ;3 using pet in both stages

(== q 'dog)) (run 1 (g) (staged (pet q)) (pet q))
(run 1 (g) (staged (pet q)))

The form defrel/staged defines a multi-stage relation. A use of this form creates at once both
a staged and a dynamic variant of the relation. The body of the static variant of a multi-stage
relation definition is a staging-time goal. The dynamic variant of the relation is created by erasing
the staging annotations from this body goal. The goal in the query resembles one of those from
Figure 5, except that the constraint is now indirectly stated through the relation pet. The second
query demonstrates this cross-stage persistence of the relation definition with a run-time relation
call to pet. A relation defined for staging time will persist into the run-time stage.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:8 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

Termination. A key requirement of staging, carried over from traditional functional multi-stage
programming is that the staging-time computation should terminate. The task of manually annotat-
ing the program puts the programmer in charge of determining where staging-time computation
begins and ends, and is what separates staging from partial evaluation more generally. Multi-stage
miniKanren programmers use the later annotation as needed to defer computations to runtime in
order to ensure termination at staging time.

Nondeterminism. Relational computations are in general non-deterministic, and the novel an-
notations in the multi-stage miniKanren system let the programmer specify how staging should
behave in the face of non-determinism. What’s more, a relation’s computation can be deterministic
or non-deterministic, depending on the values of the arguments in the call (see example in Figure 6).

(defrel/staged (noto p q) (runx (p q) (fresh (x) (noto p x) (noto #f q)))
(conde — ((#t #t) (#f #t))
[(==p #t) (== q #f)] (run 1 (p q) (staged (noto p q)))
[(==p #f) (== q #t)1)) ;; error due to non-determinism

Fig. 6. Staging-time evaluation must produce a single result, unlike a run-time query.

The aim of staging is to produce a single residual program, and thus staging-time evaluation must
only produce a single result. The programmer staging the noto relation needs to resolve staging-
time non-determinism. Multi-stage miniKanren provides two ways to defer staging-time non-
determinism to run-time: the gather and fallback annotations. Both forms should syntactically
contain goals, and they indicate two different approaches as to how staging should handle the
nondeterminism of their contents. If there are multiple successful branches at staging time, do
we want to generate specialized code for each branch (gather), or do we want to fall back to
un-specialized, dynamic code (fallback)? The queries in Figure 7 demonstrate these two different
annotations’ consequences on the generated code.

(defrel/staged (noto/gather p q) (runx (p q) (runx (p q)
(gather (staged (staged
(conde (fresh (x) (fresh (x)
[(==p #t) (== q #f)] (noto/gather #f q) (noto/fallback #f q)
[(==p #f) (== q #t)1))) (noto/gather p x)))) (noto/fallback p x))))
|| generated code (simplified) | generated code (simplified)
(defrel/staged (noto/fallback p q) (runx (p q) (runx (p q)
(fallback (fresh (x) (fresh (x)
(conde (== #t q) (== #t q)
[(== p #t) (== q #f)] (conde (invoke-fallback
[(==p #f) (== q #t)1))) [(==p #t) (== x #f)] noto/fallback/1 p x)))

[(==p #) (== x #)D))

Fig. 7. Two approaches to staging non-determinism in the noto relation.

The noto/gather and noto/fallback are exactly the noto of Figure 6, except with annota-
tions around the conde in their bodies. The annotations only affect code generation when non-
determinism arises at staging time. In each example, the second call to noto is deterministic because
the statically-known #f determines which branch to follow. As such, the generated code in both
queries contains an unconditional unification of the variable with #t.

When a staging-time use of the relation produces non-deterministic behavior, however, the
two annotations produce significantly different generated code. The first call to noto in the two
queries of Figure 7 illustrate the two possibilities. In such cases, annotating with gather causes

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:9

staging to generate non-deterministic code. That non-deterministic code can however, benefit
from improvements made during the staging process. Annotating with fallback, however, will
defer the computation of the entire annotated goal to run-time. Unlike with later, fallback only
has this effect when a staging-time use of the relation produces non-deterministic behavior. The
noto/fallback-1 referred to in the generated code is a run-time relation equivalent to noto of
Figure 6. Our multi-stage miniKanren generates the relation when noto/fallback is defined, by
simply erasing the staging annotations from the body of the fallback form. Each fallback form
in a given relation produces a different entry point into run-time code. The 1 in noto/fallback-1
indicates this is the first (but in this example the only) fallback form.

The gather and fallback annotations each offer a way to make deterministic what would
otherwise be a non-deterministic staging-time use of a relation. When we expect to get non-
determinism at run-time we use gather. However, in other situations we may not have non-
determinism in the dispatch. It might just be that some variable whose value we had expected
to know at staging time is still unavailable. In these cases we want to generate a branch in the
residual program that accounts for these possibilities. A staged interpreter demonstrates these two
possibilities in a more substantial and less contrived context.

3.1 Staged Interpreters in Multi-stage miniKanren

The evalo-or-staged relation is a staged version of the evalo-or interpreter, specialized with
respect to the expression e (the first argument of the interpreter) in the first stage. The result of
specialization is miniKanren code that interprets the specific expression without the overhead of
the interpreter’s dispatch.

Before we consider its implementation, let’s look at the code generated in a small example query:
(run* (x-val v) (staged (evalo-or-staged '(or #f x) ~((x . ,x-val)) v)))
|l generated code (simplified)

(runx (x-val v) (== v x-val))

— ((_.0 _.0))

Notice that there are no unifications matching the syntax of the or-expression in the generated
code. In that sense, staging removes the overhead of the interpreter dispatch.

For all examples in this paper, the actual generated code is more verbose than shown. For clarity,
we present cleaned up code with friendly variable names and some basic optimizations applied,
including constant folding and dead code elimination. In practice, multi-stage miniKanren will be
used in conjunction with a compiler that performs such optimizations, e.g., [Ballantyne et al. 2024].

Figure 8 shows the implementation of evalo-or-staged. This staged interpreter is much like
Figure 2b with the addition of staging annotations, typeset with underlines. This small language

(defrel/staged (evalo-or-staged e env v) [(=/=v1 #f) (== v1 v)I])))]
(fallback [(symbolo e) (lookupo e env v)]
(conde [(fresh (x e@)
[(booleano e) (== e v)] (== e “(lambda (,x) ,e0@))
[(fresh (el e2 v1) (symbolo x)
(== e “(or ,el ,e2)) (make-closo x €@ env v))]
(evalo-or-staged el env v1) [(fresh (el e2 v1 v2)
(gather (== e “(,el ,e2))
(conde (evalo-or-staged el env v1)
[(== v1 #f) (evalo-or-staged e2 env v2)
(evalo-or-staged e2 env v)] (later (apply-closo v1 v2 v)))1))

Fig. 8. A staged interpreter for the A-or language of Figure 2. Staging annotations are underlined.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:10 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

showcases the features and forms of multi-stage miniKanren. It uses later to delay a goal from
staging time to runtime and fallback and gather to control the staging of nondeterminism.

This interpreter uses the later form to delay the execution of function bodies via apply-closo
in applications until runtime. This delay ensures that staging terminates even for non-terminating
lambda calculus expressions. Constraints, including ==, are automatically residualized cross-stage
as needed, so later annotations are not needed most of the time.

3.1.1 Handling Nondeterminism. Nondeterminism that arises in a relational interpreter sometimes
indicates an incomplete expression, and sometimes represents a decision to be made based on
runtime values. The evalo-or-staged interpreter has two conde expressions: one to dispatch on
the syntax of the expression, and one to handle the branch in or-expressions.

Holes in Staging-Time Terms. For dispatch on the expression, since the expression is conceptually
static, nondeterminism means that there is an unknown hole in the program. In this case, we should
fall back to run-time evaluation—so we use fallback. This query demonstrates the scenario:
(run 3 (e v) (staged (evalo-or-staged ~(or (or #f ,e) #f) 'O v)))
|l generated code (simplified)

(run 3 (e v)
(fresh (e-val)
(invoke-fallback evalo/1 e '() e-val)
(conde
[(=/= v #f) (== e-val v)]
[(== e-val #f) (== v #f)1)))
— ((#t #t) @ #f) ((lambda (_.0) _.1) #<apply-rep>))

Runtime Nondeterminism. For the semantics of or, we want to specialize code for each option
and generate a run-time branch—so we use gather. This query demonstrates the result:

(run* (x-val v) (staged (evalo-or-staged ~(or x #t) ~((x . ,x-val)) v)))
| generated code (simplified)
(runx (x-val v)
(conde

[(=/= x-val #f) (== v x-val)]

[(== x-val #f) (== v #t)1))
— (((L.0 _.0) 33 (=/= ((_.0 #f)))) (#f #t))
When the interpreter’s first argument is fully ground, the dispatch on the parameter e is deter-
ministic. However, when evaluating (or x #t) we don’t know the value of x, mapped to the
query variable x-val in the environment. Therefore, we want to generate code in the residual
program that accounts for both possibilities, with each residual branch specialized to the expression.
Notice that in the second branch, v is unified with the concrete value #t from the expression being
evaluated, rather than being discovered through some recursive runtime call to the evaluator.

3.1.2 Sharing Code for Abstractions. When staging the interpretation of a program that applies a
lambda expression several times, we want to generate code corresponding to the lambda body once,
together with an invocation of that code for each application. A staged interpreter in a functional
language such as MetaOCaml uses host-language lambdas in the interpretation of object-language
lambdas. These host-language lambdas evaluate to first-class functions. This strategy is illustrated
in Figure 4. The case for Lam returns a quotation containing an ML function.

For miniKanren, the equivalent to a first-class function would be a first-class relation. Supporting
first-class relations in general requires higher-order unification. Multi-stage miniKanren instead
includes a restricted form of first-class relation, employed in Figure 9. The defrel-partial/staged
form defines a relation that can be partially applied. Such a definition has two lists of formal

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:11

(defrel-partial/staged (applyo rep [x e env] [v1 v])
(evalo-or-staged e ~((,x . ,v1) . ,env) Vv))

(defrel/staged (make-closo x e env clos)
(specialize-partial-apply clos applyo x e env))

(defrel (apply-closo clos v1 v)
(finish-apply clos applyo v1 v))

Fig. 9. Helpers for the small staged interpreter of Figure 8.

parameters: one for an initial partial application, and one for the final application. The goal forms
specialize-partial-apply and finish-apply execute these application steps.

In Figure 9, the applyo relation handles a function application: it evaluates the function body e in
an environment env extended with a binding of the function parameter x to a value v1. The staged
relational interpreter represents closures as a partial application of this relation via make-closo. A
function application is evaluated by finishing the applyo relation application, providing the value
for the function argument and the term to unify the evaluation result with via apply-closo.

To avoid the complexities of higher-order unification, we require that both the partial-apply
and finish-apply forms specify the name of the relation that is partially applied. That way, when
the partially applied relation value (here, clos) is not known, miniKanren can nonetheless continue
evaluation by falling back to a runtime version of the original relation, using fresh logic variables
to represent the values from the initial partial application (here, x, v, and env).

Figure 10 shows the code generated by the relational interpreter for a small example using a
first-class function: the identity function passed to a lambda, binding the function to the name f
and applying it twice. The generated code contains two apply-rep terms, one for each lambda in
the source program. An apply-rep term represents the result of a partial application and includes
the name of the partially applied relation, the arguments given in the partial application, and a
function representing specialized code for the partial application. Notice that the specialized code
for the first lambda contains finish-apply forms that invoke the partially applied relation used
to represent the second function, passed as f.

(runx (v)
(staged (evalo-or-staged '((lambda (f) (or (f #t) (f #f)))
(lambda (x) x))
O v)))
|l generated code (simplified)
(runx (v)
(fresh (procl proc2)
(== procl (apply-rep 'applyo '(f (or (f #t) (f #f)) ()
(A (f out)
(fresh (f-res)
(finish-apply f applyo #t f-res)
(conde [(=/= f-res #f) (== f-res out)]
[(== f-res #f) (finish-apply f applyo #f out)1)))))
(== proc2 (apply-rep 'applyo '(x x ()) (A (x out) (== x out))))
(finish-apply procl applyo proc2 v)))
< ((_.0 #t))

Fig. 10. Generated code with first-class values for partially applied relations, used to represent the staged
evaluation of object-language lambda expressions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:12 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

term var tv, term ¢
goal cpe(rsiy i= (=tt)y | (=/=t1t) | et

| (fresh (tv ...) gp ...) | (conde (gp ...) ...)
|

(partial-apply t rname t ...) | (finish-apply t rname t ...)

runtime goal g, n= cr | (staged gs)
staging-time goal gs i= cs | (later g;) | (gather gs) | (fallback gs)
| (specialize-partial-apply ¢t r t ...)
later goal g; = c
definition d (defrel (rname param ...) gr)

(defrel/staged (rname param ...) gs)
(defrel-partial (rname tv [tv ...]1 [tv ...]) gr)
(defrel-partial/staged (rname tv [tv ...] [tv ...]1) gs)

(runx (tv ...) gr) | (run n (tv ...) gr)

expression e

Fig. 11. The syntax of multi-stage miniKanren.

Name Description

Sempty The unique empty stream.

$singleton(x) Returns a stream of length 1 whose only element is x.

$append(sy, s2) Returns a stream whose elements include those of s; and s. This operation

interleaves, taking elements from each stream as they become available.
$append-map(f, s) | Given a function f which returns a stream, returns the result of mapping f
over s, producing a stream of streams, then $append-ing all of the streams
together. Appears elsewhere as »= or flatMap.

$take(n, s) Returns the first n elements of the stream s as a list.

$takeAll(s) Returns all the elements of the stream s as a list.

Fig. 12. Stream operations

4 Semantics

This section presents the syntax of multi-stage miniKanren together with a semantics for staging-
time evaluation of a desugared core language, focusing on the treatment of nondeterminism. Due
to space limitations the presentation does not address relation definitions and applications or the
disequality, type, and absence constraints [Byrd et al. 2012] provided by the implementation.

The hallmark of relational programming is a pure, nondeterministic mental model. Like many
miniKanren implementations, our semantics is based on interleaving streams [Hemann et al. 2016;
Kiselyov et al. 2005]. One way to understand this model is in terms of “many worlds”, where
nondeterministic choice splits the world into two, one for each option. The central definition of
our semantics, presented in Figure 13, is the denotation of a staged goal, G[g] 5. Each world is
represented as a state o, and the denotation of a staged goal g is a function G[g] ,c from an initial
state o and environment p to a stream of states in which the goal holds. These streams are lazy
and potentially infinite. The metafunctions for manipulating streams are outlined in Figure 12 and
correspond to the implementation from Hemann et al. [2016].

The denotation is defined for a desugared core syntax; Figure 11 shows the surface syntax.
Desugaring transforms a conde into a disjunction (disj) of conjunctions (conj). Desugaring also
replaces the implicit conjunction in the body of a fresh with an explicit conj.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:13

o = (subst, code, determinacy-check)

vars(p), vars(o) Find the set of variables appearing anywhere in the environment or state.

add-code(gy, p, 0) Conjoin the code accumulated for runtime evaluation in ¢ with a new goal,
where term variable references in the goal are replaced by their values from p.

walk™(t, sb), walk*(stx,sb) Apply a substitution to all logic variables in a term or syntax object containing
terms until a fixed point is reached.

T[tp Replace variable references in the term with their value from p.

Gl(== t1 t)]po = sb=unify(T[t1]p, T[t2] p, subst(c))
if sb then $singleton(set-subst(sb, o))
else $empty
Iv ¢ (vars(p) U vars(o))
p’ = plto - o]
Glyslpo
Gl(conj gsy gso)]po = Sappend-map(Ac’.Glgs;]por. Glgsilpo)
G[(disj gs1 gs2)]po = Sappend(Glgs,]po. Glgsalpo)
G[(later gp)]po $singleton(add-code(g;, p, o))
G[(fallback gs)]ps = if determinacy-check(c) then $singleton(o)
o’ = set-determinacy-check(c, T)
case $take(2, G[gs]po’)
else [= Sempty
[x] = Glgslps
_ = $singleton(add-code(erase(gs), p, o))
if determinacy-check(o) then $singleton(o)
else $singleton(add-code((disj . capture-syntax(gs, p,0)),p, o))

G[(fresh (tv) gs)]po

G[(gather gs)]po

capture-syntax(gs, p, o) = generate-syntax(p, o) (o’) =
o’ = set-code(o, succeed) sb = subst(c”)
states = $takeAll(G[gs] po’) Leypst = for (x,t) € s: (== x walk*(t, sb))
map(generate-syntax(p, o), states) Ls; = walk*(code(c”), sb)

v = wvars(a’) \ (vars(c) U vars(p))
(fresh (v...) Lgypst---Lst-..)

erase : gs — ¢

erase(later g;) = g

erase(gather gs) = erase(gs)

erase(fallback gs) = erase(gs)
erase(specialize-partial-apply tort;...) = partial-apply(tyrt; ...)

Fig. 13. The semantics of multi-stage miniKanren.

The staging-time state o includes three pieces of information: a substitution, which stores all the
information we know about the program’s logic variables; a code store, which accumulates code to
be evaluated at run time; and a flag used during fallback’s determinism check, explained below.
The environment p is a map from the set of syntactic variables to terms. We require that multi-stage
miniKanren programmers write their programs such that staging-time evaluation produces only a
single state. The code stored in this state is then evaluated at runtime.

The semantics of unification (==), existential variable binding (fresh), conjunction (conj), dis-
junction (disj) are standard, following the implementation of Hemann et al. [2016]. The denotations
for the staging annotations later, gather, and fallback are the novel portion.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:14 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

(defrel/staged (listso x 1s)
(fallback (disj (== 1s ')
(fresh (rest) (conj (== 1ls (cons x rest)) (listso x rest))))))
(run 1 (q) (staged (listso 7 q)))

(a) The listso relation builds lists 1s of every length that contain only the value x. The query provides a fresh
logic variable q for the 1s argument, leading to nondeterminism that triggers fallback to runtime evaluation.
If instead a ground value were to be provided for 1s, the relation evaluation would complete at staging time.

G[(listso 7 ®)]{q q'}(0.succeed F)
= (Evaluate the relation call by inlining the body of listso.)
G[(fallback (disj (== 1s '())
(fresh (rest) (conj (== 1ls (cons 7 rest)) (listso 7 rest)))))]]{lsHq-)(@,succeedyp)

Evaluation of the fallback form checks whether the argument may produce more than one result:

Stake(2, G[(disj (== 1s '())

(fresh (rest) (conj (== 1ls (cons 7 rest)) (listso 7 rest))))ﬂ(ls > q'}(0,succeed,T))
= (Evaluate the denotation of the fallback argument; the recursive call to 1listso yields an inner fallback.)
$take(2, $append($singleton(({q' — []}, succeed, T)),

G[(fallback ...)]s e rest'}({q' o [7 | rest'T}.succeed.T)))
= (Because the determinacy-check flag is set, the inner (fallback ...) trivially succeeds.)
$take(2, $append($singleton(({q' — []}, succeed, T)),

$singleton(({q' +— [7 | rest']}, succeed,T))))
= (Fully evaluating the stream $take yields a list of two result states with different substitutions.)
[({a" = []},succeed, T), ({q' = [7 | rest']},succeed,T)]

= (As there are multiple possibilities, the evaluation of fallback residualizes the erasure of its argument.)
$singleton(add-code(erase((disj ...)),{1ls — q'}, (0, succeed, F)))

(b) Steps of staging-time evaluation. In this case, evaluation of fallback discovers that its argument goal is
not determinate, so it residualizes a version of the argument goal with all staging annotations erased.

Fig. 14. A program and staging-time evaluation trace illustrating the semantics of fallback.

The denotation of a later goal G[(later g¢;)],s is a stream containing a single state which
defers the evaluation of the goal g; to run time by including it in the code field.

The denotation of a fallback goal G[(fallback g)],o is either the result of evaluating g, at
staging time, or is a stream containing a state in which evaluation of g; has been deferred to
run-time. The goal g, evaluates at staging time if it is proved to be determinate—that is, if it is
certain to produce only a single answer at staging time. Otherwise, the goal is deferred to run time.
The check to decide whether a goal is determinate is approximate. Precisely deciding determinacy
could require evaluating the goal fully, which might lead to nontermination.! Instead, our design
assumes that programmers use fallback and gather goals such that recursive evaluation within
a fallback eventually reaches one of these goals. The determinacy check conservatively assumes
that such nested fallback or gather goals always succeed, without evaluating them.

The fallback determinacy check is implemented by evaluating the goal g; with the “determinacy-
check” flag set. With the flag set, any fallback or gather goal within g; trivially succeeds. The
check uses the $take metafunction to evaluate the stream just far enough to find out whether or
not it contains at least two answers. Figure 14 demonstrates this process with an evaluation trace.

10ur semantics does not include relation application, so all goals terminate. In the full system, goals may diverge.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:15

G[(gather (disj (conj (== p #t) (== q #f))

(conj (==p #f) (== ¢q #t))))]]{p — p',q — q'}(0,succeed,F)
To evaluate the gather, we first evaluate all possible results of the form’s argument goal:

capture-syntax((disj (conj (== p #t) (== q #f)) (conj (== p #f) (== q #t))),
{p—p,a—q'}, (0, succeed, F))
= (Evaluate the call to the capture metafunction and the denotation of the disjunction.)
map(generate-syntax({p — p',q — q'}, (0, succeed, F)),
[({p' — T,q' — F},succeed,F), ({p' — F,q' — T}, succeed, F)])
= (Generate the syntax for each disjunct.)
[(fresh () (== p' #t) (== q' #f)),(fresh () (== p' #f) (== q' #1))]

= (Assemble the syntaxes from each result into a residualized disj.)
$singleton(add-code((disj (fresh () (== p' #t) (== q' #f))
(fresh O (==p' #f) (== q' #))),{p—p'.qa—q'}, (0,succeed,F)))

Fig. 15. An evaluation trace illustrating the semantics of gather. The argument goal is evaluated to produce
all of its result states, which are reified as syntax and residualized as a disjunction.

The denotation of a gather goal G[(gather g)],s is a singleton stream that residualizes a
disjunction with reified code for each state produced by the evaluation of gs. Producing code for all
the alternatives requires fully evaluating the stream produced by gs, so staging will only terminate
if g5 terminates with a finite stream. Figure 15 shows an example evaluation trace.

Code generated by gather should not include code residualized outside the gather form. The
capture-syntax(gs, p, o) metafunction thus evaluates g5 using a state with an empty code field. The
generate-syntax(p, o)(c’) metafunction is applied to each state ¢’ in the stream produced by gs.
This metafunction constructs a conjunction that includes the goals explicitly residualized in ¢’ as
well as unification goals that reconstruct the substitution extension in ¢’. Logic variables allocated
during the evaluation of g; are fresh-bound in the generated code, whereas others refer to the
surrounding context. These local variables are identified by comparing ¢’ with the the p and o
provided as input to gs. Generating code as described in the semantics may residualize unification
goals for substitution elements left over from staging-time evaluation that are irrelevant at run
time. In the real system, a simple dead-code analysis removes these extra unifications.

Semantics for logic programs are often defined in terms of sets such as in Rozplokhas et al. [2020],
but our semantics use streams. In the context of staging, programmers often need precise control
over the code that is generated. For gather, the generated code depends on answer order, which is
preserved by streams. Streams also allow the fallback determinacy check to discover whether the
goal produces at least two answers without evaluating the entire stream.

4.1 Erasure

An important property of many multi-stage programming languages is erasure. The erasure of a
staged program is the unstaged program resulting from removing all staging annotations. Assuming
staging terminates, a staged program should have the same extensional behavior as its erasure
though different performance characteristics [Inoue and Taha 2016]. Figure 13 defines the erasure of
multi-stage miniKanren goals. Because of miniKanren’s nondeterministic semantics, the equivalence
between staged evaluation and erasure works modulo answer order. That is, staged evaluation
should produce the same answer set as erasure followed by unstaged evaluation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:16 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

5 Removing Interpretive Overhead from Relational Queries with Staging

As discussed in Section 2.1.1, relational interpreters make it surprisingly easy to specify a variety
of synthesis tasks. However, this flexibility comes at the cost of interpretive overhead. Staging can
alleviate that cost by eliminating interpretive overhead for statically-known program text. This
section discusses a number of concrete applications that benefit from staging. Section 6 evaluates
the performance improvements in detail.

5.1 Interpreting Functions Relationally

Figure 3 illustrates how functions such as append yield behavior equivalent to relations such as
appendo when executed within a relational interpreter, at the cost of interpretive overhead.

We created a staged relational interpreter, evalo-staged, for a similar subset of Racket as Byrd
et al. [2017]’s evalo. Similar to our simplified illustration in Figure 8, the evalo-staged interpreter
is staged with respect to the first argument—the program text. When program text is known in
advance, staging-time computation specializes the interpreter to the specific program.

Figure 16 revisits the earlier example from Figure 3 using staging. The definition in Figure 16a
mirrors the original appendo definition but includes a staged annotation and calls evalo-staged.
Because the function definition is fully known, staging generates miniKanren code that executes
the function without the overhead of the interpreter’s dispatch. The code, shown in Figure 16b,
constructs a term representing a specialized partial application of the apply-letrec relation from
the staged-evalo interpreter. The appendo-rep definition contains the specialized relation body.

The generated code in appendo-rep differs from what a miniKanren programmer would write by
hand because it is derived from the structure of the staged interpreter. For example, the interpretation
of the if expression and the null? check from the append definition yield separate conde goals in
the generated code, whereas a hand-written implementation would contain a single conde goal.

(a). With staging-time computation (c). Generated appendo rep, simplified
(defrel (appendo xs ys zs) (define appendo-rep
(staged (A (xs-and-ys zs)
(evalo-staged (fresh (b xs ys)
“(letrec (absento 'struct xs) (absento 'struct ys)
(Lappend #| elided defn [# 1) (== (list xs ys) xs-and-ys)
(append ',xs ',ys)) (conde
initial-env [(==xs ")) (== b #t)]
zs))) [(=/=xs "O) (== b #)D)
U (conde
(b). Generated appendo relation [(=/= b #f) (== ys zs)]
(defrel (appendo xs ys zs) [(fresh (a r d)
(fresh (rep) (=/= a 'struct)
(== rep (apply-rep (== b "#f)
#| elided partial app args |# (== xs (cons a d))
'apply-letrec (== zs (cons a r))
appendo-rep)) (finish-apply rep
(finish-apply rep (apply-letrec
(apply-letrec (list xs ys) zs)))) (list d ys) r)H)))

Fig. 16. Rather than write miniKanren relations such as appendo directly, a programmer can write the append
function in Racket and use the staged relational interpreter to work with it as a relation, without interpretive
overhead. This definition of appendo stages the one in Figure 3. The generated code performs similarly to a
hand-written relation despite including some additional code due to the structure of the interpreter.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:17

The generated code also includes constraints to ensure that the list values do not overlap with the
interpreter’s other data types, which are represented by lists beginning with the tag 'struct.

5.2 Accelerating Program Synthesis By Sketch

When a relational interpreter evaluates a program where some of the program text is unknown, it
performs program synthesis. Staging can eliminate interpretive overhead for evaluations of known
parts of the program that occur during synthesis of the unknown parts. The query in Figure 17
synthesizes parts of an accumulator-passing style Fibonacci program that uses Peano numerals.’

(run 1 (el e2 e3 accl acc2)
(staged
(evalo-staged
“(letrec (#| definitions of zero?, +, and - elided |#
[fib (lambda (n al a2)
(if (zero? n)
,el
(if (zero? (subl n))
a2
(fib (= n '"(s . 2)) ,e2 ,e3))ND
(list (fib 'z ',accl ',acc2) #| six more examples elided [#))
initial-env
'(z #]| six more outputs elided [#))))
<~ ((al a2 (+ al a2) z (s . z)))

Fig. 17. Synthesizing parts of a Fibonacci function that uses a library of Peano arithmetic functions.

The query includes partial text for the Fibonacci function (a sketch) and complete definitions of the
arithmetic helper functions zero?, +, and - (elided for space). Staging the query generates specialized
code for the known portions of the program. When staged interpretation encounters a hole in the
program text (e.g., €1, e2, or e3), the fallback feature (Section 3.1.1) automatically generates a
call to the run-time interpreter. The run-time interpretation required for synthesizing expressions
in the holes incurs interpretive overhead. However, when runtime evaluation synthesizes a call to
one of the statically known helper functions such as the Peano + function, evaluation of the call
uses the specialized code that was generated for the definition.

5.3 Other Staged Interpreters

We have also created staged relational interpreters for two other object languages: miniKanren,
and context-free grammars. As with staged-evalo, synthesis using these interpreters avoids
interpretive overhead when parts of the object-language program text are statically known.

miniKanren-in-miniKanren. Joshi and Byrd [2021] introduce metaKanren, a relational interpreter

for a minimalist miniKanren. The following query uses our staged version of this interpreter to
complete a definition of the appendo relation:

(run 1 (relcall)
(fresh (w x y)
(symbolo w) (symbolo x) (symbolo y)
(synth-appendo-recursive-call ~(call-rel appendo ,w ,x ,y))))
< ((call-rel appendo d ys res))

Specifically, it synthesizes variable references to fill three holes in the recursive call to appendo.

2Original code available at https://github.com/k-tsushima/Shin-Barliman/blob/master/transformations/peano.scm.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

https://github.com/k-tsushima/Shin-Barliman/blob/master/transformations/peano.scm

211:18 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

Relational Recognizer. We also implemented a staged relational recognizer for strings of a provided
context-free grammar. The three-place relation recognizeo holds between a grammar, its start
symbol, and a string derivable from the start symbol using the grammar’s production rules. Staging
specializes the recognizer to the grammar provided, eliminating overhead from the grammar data
structures. Such a relation can be used either to validate that a given string matches the grammar,
or to generate matching strings by leaving a logic variable in place of the string argument. The
query below generates 200 strings in the language of a small arithmetic expression grammar.

(define E-grammar
"((E . (or 'S (seq 'S * 'S))) (S . (or 'T (seq 'T + 'T))) (T . (or @ (seq < 'E >)))))
(run 200 (str) (recognizeo E-grammar 'E str))

5.4 Interpreting Interpreters

Writing a relational interpreter in miniKanren is one way of implementing a synthesizer for a
language. However, there is a second, easier way: write an interpreter in Racket, and run it within
the evalo-staged relational interpreter. A programmer can write an eval function for an object
language L in evalo-staged’s subset of Racket and then query the function like a relation. Staging
eliminates the interpretive overhead of evalo-staged, yielding performance akin to writing a
relational interpreter for L directly. The following applications follow this pattern.

Quines with Quasiquote. Byrd et al. [2017] propose generating a quine expressed with quasiquote
using a nested interpreter. The language of their relational interpreter evalo (like our evalo-staged)
does not support quasiquotation. To work around this, Byrd et al. [2017] use an interpreter for
a subset of Racket that does include quasiquote, written in the language of their evalo. The
interpreter consists of two mutually recursive evaluation functions—one for standard evaluation
and one for evaluation under a quasiquote [Bawden 1999]. The query searches for a value q such
that interpreting it with the nested interpreter yields q itself:

(run 1 (@)
(absento 'error q) (absento 'struct q)
(staged
(evalo-staged
“(letrec ([eval-expr #| elided |#]
[eval-quasi #| elided |#1])
(eval-expr ',q (lambda (x) 'error)))
initial-env
D)
The query yields the quine ((lambda (x) ~(,x ',x)) '(lambda (x) ~(,x ',x))).

Regular Expressions. This example is adapted from Might et al. [2011]. The regex-match function
decides if a string is in the language defined by a regular expression, using repeated application of the
Brzozozwksi derivative [Brzozowski 1964]. The function can be viewed as an interpreter for regular
expressions. With evalo-staged, we can use this function to synthesize regular expressions:
(run 1 (regex) (regex-matcho regex '(foo bar foo bar foo bar) #t))

This query generates the regular expression (foo bar)*, which indeed matches the given string.

Theorem Checker Turned Prover. Figure 18 presents a quoted lambda expression for a prf?
function that checks proofs for a fragment of propositional logic. Aside from being quoted, it is an
ordinary program written in a subset of Racket. Just as in Figure 16 we turn append into appendo,
in Figure 18 we use staged interpretation to turn prf? into a relation proofo. The run query calls
the newly compiled relation with a partially instantiated term prf. The term includes a proposition
but leaves a hole, body, for the actual proof. The result of evaluation is constrained to be true (#t),
so the query searches for a proof that satisfies the prf? predicate.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:19

(define prf?-fn (defrel (proofo prf is-valid)
'(lambda (prf) (staged
(match prf (evalo-staged

[(,A ,prems Assm ()) (mem? A prems)] “(letrec

[*(,B ,prems ModusPonens (#| mem? binding elided |#
(((,A => ,B) ,prems ,r1 ,prfl) [prf? ,prf?-fnl)
(,A ,prems ,r2 ,prf2))) (prf? ',prf))

(and (prf? “((,A => ,B) ,prems ,r1 ,prf1)) initial-env

(prf? ~(,A ,prems ,r2 ,prf2)))] is-valid)))

[*((,A = ,B) ,prems =>Intro
(,B (LA . ,prems) ,r ,tr1)))
(prf? ~(,B (LA . ,prems) ,r ,tr1))1)))

(run 1 (prf) ((C (A (A =>B) (B =>C)) ModusPonens
(fresh (body) (((B=>0C) (A (A=>B) (B=>C)) Assm ())
;3 Prove C, assuming A,A = B,andB = C (B (A (A =>B) (B=>C)) ModusPonens

== prf “(C (A (A =>B) (B=>C)) . ,body)) (((A=>B) (A (A=>B) (B=>C)) Assm ())
(proofo prf #t))) (A (A (A=>B) (B=>C)) Assm ()))))))
PN

Fig. 18. A propositional logic theorem checker turned automatic prover. The proofo relation can both check
and generate proofs. It is defined by staged relational interpretation of the Racket prf? predicate, which in
its usual functional meaning can only check a proof’s validity.

6 Evaluation

In empirically evaluating multi-stage miniKanren, we consider the following research questions:

Q1 Is it feasible to stage a variety of relational programs, and in particular relational interpreters?

Q2 Does staging substantially reduce the runtime cost of solving synthesis problems and other
queries that take advantage of the flexibility of relational interpreters?

Q3 Is the time cost of staging reasonable?

To address these questions, we stage a collection of relational programs and evaluate the perfor-
mance of staged and unstaged benchmark queries. Table 1 presents the results.

Relational programs from the literature inspire many of our benchmarks. Byrd et al. [2017]
introduce the possibility of querying functions via a relational interpreter (Section 5.1) and lifting
relational behavior through additional layers of interpretation (Section 5.4). The specific tasks of
using the append function as a relation (the “invert-append” benchmark), lifting synthesis to proofs
(the “proofo” benchmarks), and lifting synthesis to a language with quasiquote via a metacircular
evaluator (“quasi-quine”) all come from Byrd et al. [2017]. The “pow-8-backward” benchmark exer-
cises staging in the context of the relational arithmetic library from Kiselyov et al. [2008]. The task
of synthesizing portions of the function defining the Fibonacci series (“synth-fib”, “synth-fib-larger”)
is inspired by Chirkov et al. [2020], which uses this example in the context of a relational interpreter
for JavaScript. Finally, Joshi and Byrd [2021] presents a relational interpreter for miniKanren,
written in miniKanren, which makes it possible to synthesize fragments of miniKanren programs.
Our “metaKanren” benchmark is one such synthesis task. The remaining benchmarks are programs
we created to explore the capabilities of multi-stage miniKanren.

The benchmarks in Table 1 are organized into four categories. The first category comprises
the simplest benchmarks, which are straightforward uses of relations staged with respect to
one argument. The benchmarks in the second category apply the evalo-staged interpreter to
Racket programs that include fully-ground function definitions. As described in Section 5.1, staging
has the effect of compiling such functions to miniKanren code. The benchmarks in the third

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:20 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

Table 1. Times are in milliseconds. [> 5m] indicates an execution that failed to terminate within 5 minutes.
Each benchmark represents a single execution on a 2021 Apple MacBook Pro with an M1 Max CPU and
64GB of RAM running macOS 14.2 and Racket v8.15. For benchmarks labeled with a multiplier (e.g., X1000),
timings reflect repeatedly running the query that number of times to yield measurable results.

Staging
Staged
Unstaged
Speedup

Name Description

relations: Simple relations staged with respect to one staging-time argument.

replicate-unknown 6 288 237 0.82 Find a Peano numeral n and a list of values [such that replicating n
times each value in [gives a given output (x1000)

replicate-partial 4 266 552 2.08 Given a partially-instantiated Peano numeral and fixed input list, repli-
cate n times each value in [/ (x10000)

pow8-backward 0 1650 2079 1.26 Solve n® = 6561 via relational arithmetic [Kiselyov et al. 2008] (x1000)

grammar-synthesis 12 12 51 4.25 Find 200 strings that match a given grammar as in Section 5.3

functions: Functions written in Racket executing within the evalo-staged interpreter, exhibiting relational behavior.

invert-append 6 26 480 18.46 Use append to split a list as in Figure 3 (x1000)

fib 29 59 2800 47.46 Synthesize an input value for which fib returns 13 (x100)

fib-exprs 29 121 10490 86.69 Synthesize 5 input expressions for which fib returns 13

nnf 400 65 453 6.97 Transformation to negation normal form [Szeredi et al. 2014] (x1000)
interpreters: Queries that leverage interpreters within the evalo-staged interpreter to lift relational behavior to new languages.

eval-or 105 An interpreter written in Racket for the language of Figure 2b

eval-or 1 223 1869 8.38 Synthesize inputs and outputs to Ax.or x x (x1000)

eval-or 2 108 1898 17.57 Synthesize 5 programs that evaluate to #t (x1000)

proofo 325 Checks the validity of proofs for implicational propositional calculus

proofo 1 1 22 22.00 Synthesize a proof of C from assumptions as in Figure 18

proofo 2 59 554 9.39 Synthesize a proof of (A= B) = ((B=C) = (A= 0())

proofo 3 1097 [> 5m] [>273.47] Synthesize a proof of a longer chain of inferences

regex-match 186 Check that a string matches a regex

regex-match 1 214 12723 59.45 Check that a string matches a regex (x100)

regex-match 2 431 77047 178.76 Synthesize a regex that matches a given string as in Section 5.4 (x10)

list-eval 218 1647 9991 6.07 Synthesis within a metacircular evaluator with list functions

quasi-quine 117 1737 25636 14.76 Synthesize a quine that employs quasiquote as in Section 5.4
ground context: Synthesis queries in which a provided sketch of the program or library of helper functions is compiled by staging.

synth-fib 38 945 46440 49.14 Fib function base case from examples (x1000)

synth-fib-larger 43 1797 [> 5m] [>166.94] Fib function accumulators and three holes as in Figure 17

map-eval 251 61 518 8.49 Body of function mapped via anonymous recursion in an evaluator

metaKanren 20 6812 23175 3.40 The recursive call arguments in appendo as in Section 5.3

evalo-map 13 20 58 2.90 The body of a function mapped over several examples

synth-append 9 84 201 2.39 Portion of append from examples as in Figure 3 (x100)

category similarly use fully-ground functions running in evalo-staged, but in these benchmarks
the functions are themselves interpreters for another language, as discussed in Section 5.4. The
benchmarks of the fourth category are synthesis problems with a provided sketch or library of helper
functions. Staging generates code for the statically-known portions, as described in Section 5.2.

One benchmark shows a slowdown: “replicate-unknown”. The replicate relation is staged with
the expectation that the first argument will be known at staging time. However, this query provides
a fresh logic variable for this argument, which precludes any specialization. The benchmark shows
a slowdown relative to the original, unstaged program because the staged version of the replicate
relation uses partial-apply in the recursion to enable staging. Our partial-application mechanism
adds some overhead, and because in this example there is no benefit to staging, the overhead leads
to a slowdown. All the rest of our benchmarks test situations where staging has some benefit.

Comparison to a Hand-Tuned Relational Interpreter. Table 2 reports benchmarks comparing our
(un)staged relational interpreter to an interpreter that integrates specialized search heuristics.
Byrd et al. [2017, p. 15-16] describe the heuristics in detail. The most important heuristic reorders
parts of the evaluation of a function application. Normally the interpreter evaluates the argument

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:21

Table 2. Our (un)staged interpreter vs. Byrd et al. [2017]’s unstaged interpreter with hand-tuned heuristics.
Barliman tests were conducted under Chez Scheme version 10.1.0.

Name Unstaged Staged Hand-tuned Speedup (Staged vs. Hand-tuned)
proofo 1 0.022s 0.001s 0.20s 200x
proofo 2 0.554s 0.059s 9.12s 155x
synth-fib-larger [> 5m] 1.797s 11.11s 6x
quasi-quine 25.636s 1.737s 119.84s 69x

expressions first, and then the body of the function. The heuristic reverses this order when the
argument expressions are unknown but the body is ground. Other heuristics include deferring
certain non-deterministic goal evaluations, a depth-limited search, and manual weighting of the
interpreter’s main branch. The benefits of these search heuristics are orthogonal to the benefits
of removing interpretive overhead that multi-stage miniKanren provides. The subset of Racket
supported by our relational interpreter differs somewhat from that of Byrd et al. [2017] and the
systems use different host Scheme implementations and versions of miniKanren, so the comparison
is imprecise. Nonetheless the results suggest that staging a straightforward interpreter produces
results competitive to an unstaged interpreter that uses carefully-tuned search heuristics.

Summary. With these results in hand we can summarize the answers to our research questions.

e Q1 Our examples demonstrate that staged versions of a variety of relational programs are
expressible in multi-stage miniKanren, including interpreters for a subset of Racket, grammars,
and for miniKanren itself (metaKanren). Staging these programs requires adding staging
annotations as well as small refactorings to use partially applied relations.

e Q2 The results in Table 1 indicate that staging is effective at removing overhead introduced
by layers of interpretation. Queries that evaluate ground functions within the evalo-staged
interpreter exhibit speedups between 7x and 87x (the “functions” category in the benchmark
table). Similarly, queries that leverage additional interpreters executing within evalo-staged
all benefit from staging, with speedups between 6x and 178x (the “interpreters” category).
Queries where a sketch or library of helpers can be compiled via staging exhibit speedups
ranging from 2x to 49x (the “ground context” category).

e Q3 Improved run-time performance easily pays for the time cost of staging in the case of
difficult synthesis queries such as “proofo 3”, “regex-match”, “quasi-quine”, “synth-fib-larger”,
and “metaKanren”. For smaller queries that return within a few hundred milliseconds, staging
may not be beneficial unless many queries are made using the same generated code.

7 Related Work

Staged relational programming continues a long line of investigation into multi-stage programming
and related efforts in partial evaluation and metaprogramming [Lilis and Savidis 2019].

Relational Programming. Lozov et al. [2019] and Verbitskaia et al. [2020] explore partial deduction
in the context of a typed miniKanren dialect in OCaml [Kosarev and Boulytchev 2016], We go
further by allowing holes in programs and by supporting higher-order patterns. Lozov et al. [2018]
translate functions to relational programs, but not using staging. Abramov and Gliick [2001, 2002]
achieve program inversion via non-standard interpretations and also remove overhead of one layer
of interpretation. In our terminology, they are able to run “backwards” but not with arbitrary holes.

Multi-Stage Programming. Multi-stage programming systems for functional programming lan-
guages include MetaML [Taha and Sheard 2000], MetaOCaml [Kiselyov 2014], Lightweight Modular
Staging [Rompf and Odersky 2010, 2012], and Terra [DeVito et al. 2013]. Our work adapts multi-stage

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

211:22 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

programming to the context of relational programming. We require that staging-time evaluation
produces a unique answer via a dynamic check. Systems such as Mercury [Somogyi et al. 1996]
and Ciao Prolog [Bueno et al. 1996] can statically check the determinism of relations. Such a
static property could make correct staged programs easier, but it is unclear how to combine such
reasoning with our fallback feature.

Partial Deduction. The literature on partial evaluation in logic programming (partial deduction)
is vast. The Art of Prolog [Sterling and Shapiro 1994] provides a good introduction in Chapter 18.
Offline partial deduction relies on an intermediate representation in which binding-time annota-
tions serve a similar role to staging annotations, but are automatically inferred by binding-time
analysis [Bruynooghe et al. 1998; Craig et al. 2005]. The tradeoff between multi-stage miniKanren
and partial deduction mirrors the tradeoff between multi-stage functional languages and partial
evaluation: manual staging is less automatic but more predictable.

Leuschel et al. [2004a,b] specialize interpreters in Prolog using offline partial deduction. They rely
on manual annotations rather than the inference that is typical in partial evaluation. A memoization
annotation handles recursion while “binding types” specify which part of an argument to treat
statically vs. dynamically. E.g., the spine of an environment and the variables should be static but
the values dynamic. Our work has a different character as it is geared towards synthesis. We can
fall back to dynamic evaluation, which supports specializing large compiled contexts around a
small interpreted hole. We also leverage interpretation to convert from functions to relations.

Gallagher [1986] applies partial deduction to specialize Prolog meta-interpreters that realize
alternate control strategies such as co-routining conjunction and breadth-first search. The resulting
programs thus leverage those strategies without suffering interpretive overhead.

Synthesis. Solar-Lezama [2008] coined the term “sketching” for synthesis with holes in the pro-
gram to be synthesized, which is similar in spirit to our work. A type-driven approach to sketching
is also possible [Osera and Zdancewic 2015]. Semantics-Guided Synthesis (SemGuS) [Kim et al.
2021] is a framework for program synthesis with user-defined semantics specified in Constrained
Horn Clauses, which resemble relational interpreters. However, existing SemGus implementations
do not specialize to sketches or lift synthesis through nested layers of interpretation.

8 Conclusion

The design of multi-stage miniKanren took several iterations. The initial version allowed pro-
grammers to accumulate code for a later stage but required them to carefully manage fallback
by non-relational inspection of whether terms were ground. Eventually, this experiment led to
a more intuitive design tailored to relational programming, with new constructs to help with
nondeterminism in the first stage as well as compilation of closures. A key feature is automatic
fallback: a staged relation can be used as a code generator during staging or can be deferred entirely
to the runtime, with the semantic correspondence automatically established by erasure of staging
annotations. The new design has been motivated by writing relational interpreters, and has proven
fruitful for other applications including a relational recognizer for context-free grammars.

Multi-stage miniKanren fits within a trend towards more generality and meta-reuse in synthesis
systems; e.g., parameterizing over the object language [Kim et al. 2021; Martins et al. 2019; Polozov
and Gulwani 2015]. We anticipate that our approach to specializing based on partially known
expressions and collapsing added layers of interpretation via staging could be a fruitful technique
for improving performance in other such synthesis systems.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

Multi-stage Relational Programming 211:23

Acknowledgments

We thank Kaiwen He for pair-programming on the NNF example with William E. Byrd. William
E. Byrd wrote the peano-fib code while visiting Kanae Tsushima at the National Institute for
Informatics (NII) in Tokyo, and also received helpful advice from Youyou Cong of the Tokyo
Institute of Technology and Kenichi Asai of Ochanomizu University. Laura Zharmukhametova
helped explore applications of an early version of multi-stage miniKanren. Chung-chieh Shan
helped Michael Ballantyne adapt the well-known staging example of exponentiation to multi-stage
miniKanren, which appears as our “pow8-backward” benchmark. Alex Bai helped explore potential
connections to SemGuS. We thank Anastasiya Kravchuk-Kirilyuk for feedback on drafts and Adam
Chlipala, Steve Chong, and Matthias Felleisen for insightful discussions.

William E. Byrd’s work on this publication was supported by the National Center For Advancing
Translational Sciences of the National Institutes of Health under Award Number OT2TR003435.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health. William E. Byrd thanks Matt Might for his leadership
and support at the Hugh Kaul Precision Medicine Institute. The research of Jason Hemann has
been partially supported by NSF grant CCF-2348408. The research of Nada Amin has been partially
supported by NSF grant 2303983. The research of Michael Ballantyne has been partially supported
by NSF grants SHF 2116372 and 2315884.

Artifact Availability

Multi-stage miniKanren is developed as open-source software at https://github.com/namin/staged-
miniKanren. A snapshot of the implementation, our benchmark suite, and instructions for repro-
ducing our results are packaged as an artifact available on Zenodo [Ballantyne et al. 2025].

References

Sergei Abramov and Robert Gliick. 2001. From standard to non-standard semantics by semantics modifiers. International
Journal of Foundations of Computer Science 12, 02 (April 2001), 171-211. doi:10.1142/S0129054101000448

Sergei Abramov and Robert Gliick. 2002. Principles of inverse computation and the universal resolving algorithm. In The
essence of computation. Lecture notes in computer science, Vol. 2566. 269-295. doi:10.1007/3-540-36377-7_13

Michael Ballantyne, Mitch Gamburg, and Jason Hemann. 2024. Compiled, Extensible, Multi-language DSLs (Functional
Pearl). Proc. ACM Program. Lang. 8, ICFP, Article 238 (Aug. 2024). doi:10.1145/3674627

Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin. 2025. Multi-Stage Relational
Programming Artifact. doi:10.5281/zenodo.15233194

Alan Bawden. 1999. Quasiquotation in Lisp. In Proc. Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion. 4-12. https://www.brics.dk/NS/99/1/BRICS-NS-99-1.pdf

Maurice Bruynooghe, Michael Leuschel, and Konstantinos Sagonas. 1998. A polyvariant binding-time analysis for off-line
partial deduction. In Proc. European Symposium on Programming. 27-41. doi:10.1007/BFb0053561

Janusz A. Brzozowski. 1964. Derivatives of regular expressions. J. ACM 11, 4 (Oct. 1964), 481-494. doi:10.1145/321239.321249

Francisco Bueno, Manuel Hermenegildo, Pedro Lopez, and German Puebla. 1996. The Ciao Preprocessor. Technical Report
CLIP 1/06. The Computational logic, Languages, Implementation, and Parallelism (CLIP) Lab at IMDEA Software
Institute. https://ciao-lang.org/legacy/files/ciao/ciao-1.15/13954560f564e08056ce53d86ebffad604b000dd/CiaoDE-1.15-
1653-g1395456_ciaopp.pdf

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A unified approach to solving seven
programming problems (functional pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8 (Aug. 2017). doi:10.1145/3110252

William E. Byrd, Eric Holk, and Daniel P. Friedman. 2012. miniKanren, live and untagged: Quine generation via relational
interpreters (programming pearl). In Proc. Workshop on Scheme and Functional Programming. 8-29. doi:10.1145/2661103.
2661105

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing multi-stage languages using ASTs,
gensym, and reflection. In Proc. Generative Programming and Component Engineering. 57-76. doi:10.1007/978-3-540-
39815-8_4

Artem Chirkov, Gregory Rosenblatt, Matthew Might, and Lisa Zhang. 2020. A relational interpreter for synthesizing
JavaScript. In Proc. miniKanren and Relational Programming Workshop. 123-155. http://hdl.handle.net/2047/D20413639

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

https://github.com/namin/staged-miniKanren
https://github.com/namin/staged-miniKanren
https://doi.org/10.1142/S0129054101000448
https://doi.org/10.1007/3-540-36377-7_13
https://doi.org/10.1145/3674627
https://doi.org/10.5281/zenodo.15233194
https://www.brics.dk/NS/99/1/BRICS-NS-99-1.pdf
https://doi.org/10.1007/BFb0053561
https://doi.org/10.1145/321239.321249
https://ciao-lang.org/legacy/files/ciao/ciao-1.15/13954560f564e08056ce53d86ebffad604b000dd/CiaoDE-1.15-1653-g1395456_ciaopp.pdf
https://ciao-lang.org/legacy/files/ciao/ciao-1.15/13954560f564e08056ce53d86ebffad604b000dd/CiaoDE-1.15-1653-g1395456_ciaopp.pdf
https://doi.org/10.1145/3110252
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1007/978-3-540-39815-8_4
http://hdl.handle.net/2047/D20413639

211:24 Michael Ballantyne, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada Amin

Stephen-John Craig, John P. Gallagher, Michael Leuschel, and Kim S. Henriksen. 2005. Fully automatic binding-time analysis
for Prolog. In Proc. Symposium on Logic-Based Program Synthesis and Transformation. 53-68. doi:10.1007/11506676_4
Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013. Terra: a multi-stage language for high-
performance computing. In Proc. Programming Language Design and Implementation. 105-116. doi:10.1145/2491956.
2462166

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. 2005. The Reasoned Schemer. The MIT Press, Cambridge, MA, USA.

Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. 2018. The Reasoned Schemer (2nd ed.). The MIT
Press, Cambridge, MA, USA.

John Gallagher. 1986. Transforming logic programs by specialising interpreters. In Proc. European Conference on Artificial
Intelligence. 313-326.

Yuichiro Hanada and Atsushi Igarashi. 2014. On cross-stage persistence in multi-stage programming. In Proc. Functional
and Logic Programming. 103-118. doi:10.1007/978-3-319-07151-0_7

P. G. Harrison and H. Khoshnevisan. 1992. On the synthesis of function inverses. Acta Informatica 29, 3 (1992), 211-239.
doi:10.1007/BF01185679

Jason Hemann, Daniel P. Friedman, William E. Byrd, and Matthew Might. 2016. A small embedding of logic programming
with a simple complete search. In Proc. Symposium on Dynamic Languages. 96—107. doi:10.1145/2989225.2989230

Jun Inoue and Walid Taha. 2016. Reasoning about multi-stage programs. Journal of Functional Programming 26, Article e22
(2016). do0i:10.1017/S0956796816000253

Ulrik Jorring and William L. Scherlis. 1986. Compilers and staging transformations. In Proc. Principles of Programming
Languages. 86-96. doi:10.1145/512644.512652

Ramana Joshi and William E. Byrd. 2021. metaKanren: Towards a metacircular relational interpreter. In Proc. miniKanren
and Relational Programming Workshop. 47-73. http://hdLhandle.net/1807/110263

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-guided synthesis. Proc. ACM Program. Lang.
5, POPL, Article 30 (Jan. 2021). doi:10.1145/3434311

Oleg Kiselyov. 2014. The design and implementation of BER MetaOCaml. In Proc. Functional and Logic Programming. 86—102.
do0i:10.1007/978-3-319-07151-0_6

Oleg Kiselyov, William E. Byrd, Daniel P. Friedman, and Chung-chieh Shan. 2008. Pure, declarative, and constructive
arithmetic relations (declarative pearl). In Proc. Functional and Logic Programming. 64-80. doi:10.1007/978-3-540-78969-
7.7

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, interleaving, and terminating
monad transformers (functional pearl). In Proc. International Conference on Functional Programming. 192-203. doi:10.
1145/1086365.1086390

Dmitry Kosarev and Dmitry Boulytchev. 2016. Typed embedding of a relational language in OCaml. Proc. Workshop on ML.
d0i:10.48550/arXiv.1805.11006

Michael Leuschel, Stephen J. Craig, Maurice Bruynooghe, and Wim Vanhoof. 2004a. Specialising interpreters using offline
partial deduction. In Program Development in Computational Logic. Lecture notes in computer science, Vol. 3049. 340-375.
do0i:10.1007/978-3-540-25951-0_11

Michael Leuschel, Jesper Jorgensen, Wim Vanhoof, and Maurice Bruynooghe. 2004b. Offline specialisation in Prolog using
a hand-written compiler generator. Theory and Practice of Logic Programming 4, 1-2 (2004), 139-191. doi:10.1017/
$1471068403001662

Yannis Lilis and Anthony Savidis. 2019. A survey of metaprogramming languages. ACM Comput. Surv. 52, 6, Article 113
(Oct. 2019). doi:10.1145/3354584

Petr Lozov, Ekaterina Verbitskaia, and Dmitry Boulytchev. 2019. Relational interpreters for search problems. In Proc.
miniKanren and Relational Programming Workshop. 43-57. http://nrs.harvard.edu/urn-3:HUL.InstRepos:41307116

Petr Lozov, Andrei Vyatkin, and Dmitry Boulytchev. 2018. Typed relational conversion. In Proc. Trends in Functional
Programming. 39-58. doi:10.1007/978-3-319-89719-6_3

Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity: an extensible synthesis framework for data
science. Proc. VLDB Endow. 12, 12 (Aug. 2019), 1914-1917. doi:10.14778/3352063.3352098

Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: A functional pearl. In Proc. International
Conference on Functional Programming. 189-195. doi:10.1145/2034773.2034801

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In Proc. Programming
Language Design and Implementation. 619-630. doi:10.1145/2737924.2738007

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for inductive program synthesis. In Proc. Object-
Oriented Programming, Systems, Languages, and Applications. 107-126. doi:10.1145/2814270.2814310

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: A pragmatic approach to runtime code generation
and compiled DSLs. In Proc. Generative Programming and Component Engineering. 127-136. doi:10.1145/1868294.1868314

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

https://doi.org/10.1007/11506676_4
https://doi.org/10.1145/2491956.2462166
https://doi.org/10.1145/2491956.2462166
https://doi.org/10.1007/978-3-319-07151-0_7
https://doi.org/10.1007/BF01185679
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1017/S0956796816000253
https://doi.org/10.1145/512644.512652
http://hdl.handle.net/1807/110263
https://doi.org/10.1145/3434311
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-540-78969-7_7
https://doi.org/10.1007/978-3-540-78969-7_7
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.48550/arXiv.1805.11006
https://doi.org/10.1007/978-3-540-25951-0_11
https://doi.org/10.1017/S1471068403001662
https://doi.org/10.1017/S1471068403001662
https://doi.org/10.1145/3354584
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41307116
https://doi.org/10.1007/978-3-319-89719-6_3
https://doi.org/10.14778/3352063.3352098
https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/1868294.1868314

Multi-stage Relational Programming 211:25

Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging: A pragmatic approach to runtime code generation
and compiled DSLs. Commun. ACM 55, 6 (June 2012), 121-130. doi:10.1145/2184319.2184345

Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev. 2020. Certified semantics for relational programming. In Proc.
Asian Symposium on Programming Languages and Systems. 167-185. doi:10.1007/978-3-030-64437-6_9

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation. USA. Advisor(s) Bodik, Rastislav.

Armando Solar-Lezama. 2009. The sketching approach to program synthesis. In Proc. Asian Symposium on Programming
Languages and Systems. 4—13. doi:10.1007/978-3-642-10672-9_3

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. 1996. The execution algorithm of Mercury, an efficient purely
declarative logic programming language. The Journal of Logic Programming 29, 1 (1996), 17-64. doi:10.1016/S0743-
1066(96)00068-4

Leon Sterling and Ehud Shapiro. 1994. The Art of Prolog (2nd Ed.): Advanced Programming Techniques. MIT Press, Cambridge,
MA, USA.

Péter Szeredi, Gergely Lukacsy, Tamas Benkd, and Zsolt Nagy. 2014. The Semantic Web Explained: The Technology and
Mathematics behind Web 3.0. Cambridge University Press. doi:10.1017/CB09781139194129

Walid Taha. 1999. Multi-Stage Programming: Its Theory and Applications. Ph. D. Dissertation. Advisor(s) Tim Sheard.

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theoretical Computer
Science 248, 1 (2000), 211-242. doi:10.1016/S0304-3975(00)00053-0

Ekaterina Verbitskaia, Danil Berezun, and Dmitry Boulytchev. 2020. An empirical study of partial deduction for miniKanren.
In Proc. miniKanren and Relational Programming Workshop. 13-21. http://hdlhandle.net/2047/D20413639

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.

https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1007/978-3-030-64437-6_9
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1016/S0743-1066(96)00068-4
https://doi.org/10.1016/S0743-1066(96)00068-4
https://doi.org/10.1017/CBO9781139194129
https://doi.org/10.1016/S0304-3975(00)00053-0
http://hdl.handle.net/2047/D20413639

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Programming in miniKanren
	2.2 Program Staging

	3 Introduction to Multi-stage miniKanren
	3.1 Staged Interpreters in Multi-stage miniKanren

	4 Semantics
	4.1 Erasure

	5 Removing Interpretive Overhead from Relational Queries with Staging
	5.1 Interpreting Functions Relationally
	5.2 Accelerating Program Synthesis By Sketch
	5.3 Other Staged Interpreters
	5.4 Interpreting Interpreters

	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

