
Approximation with Random Shallow ReLU Networks with

Applications to Model Reference Adaptive Control

Andrew Lamperski and Tyler Lekang

Abstract— Neural networks are regularly employed in adap-
tive control of nonlinear systems and related methods of
reinforcement learning. A common architecture uses a neural
network with a single hidden layer (i.e. a shallow network), in
which the weights and biases are fixed in advance and only
the output layer is trained. While classical results show that
there exist neural networks of this type that can approximate
arbitrary continuous functions, they are non-constructive, and
the networks used in practice have no approximation guaran-
tees. Thus, the approximation properties required for control
with neural networks are assumed, rather than proved. In this
paper, we aim to fill this gap by showing that for sufficiently
smooth functions, ReLU networks with randomly generated
weights and biases achieve L8 error of Opm´1{2q with high
probability, where m is the number of neurons. We show how
the result can be used to construct approximators of required
accuracy in a model reference adaptive control application.

I. INTRODUCTION

Neural networks have wide applications in control sys-

tems, particularly for nonlinear systems with unknown dy-

namics. In adaptive control they are commonly used to model

unknown nonlinearities [1]. In reinforcement learning and

dynamic programming, they are used to approximate value

functions and to parameterize control strategies [2]–[4].

A theoretical gap arises in the current use of neural

networks in adaptive control and reinforcement learning,

since the approximation properties are assumed rather than

proved [2], [5]–[11]. See [12], [13] for discussion. The

underlying problem is to use a neural network of the form

ΘΦpWx ` bq, where W are weights, b are biases, Φ is a

vector of nonlinear functions, and Θ is a matrix of output

parameters, to approximate an unknown function fpxq. The

specific assumption in the cited work is that pW, bq have

been chosen such that infΘ supxPB }fpxq ´ ΘΦpWx ` bq}
is small. While suitable pW, bq are known to exist (see [14]),

there has been no practical means to compute them or verify

that the deployed pW, bq satisfy the requirements.

The main result of this paper shows that if W

and b are chosen randomly, then for any smooth f ,

infΘ supxPB }fpxq´ΘΦpWx`bq} “ Opm´1{2q holds with

high probability, where m is the number of neurons. Here

Φ is constructed from ReLU activation functions and affine

terms. This gives a simple algorithm to generate pW, bq which

satisfy the required approximation properties by construction.
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To prove our approximation theorem, we derive a new

integral representation theorem for ReLU activations over

bounded domains. Similar integral representations are com-

monly employed in constructive approximation theory for

neural networks [15]–[18]. The advantage of our new integral

representation is that the integrand can be precisely bounded.

We apply our approximation method to get guaranteed

performance for a neural-network-based controller. In par-

ticular, quantify the number of neurons sufficient to achieve

the required accuracy for a control algorithm from [1].

Over the last several years, the theoretical properties of

neural networks with random initializations have been stud-

ied extensively. Well-known results show that as the width of

a randomly initialized neural network increases, the behavior

approaches a Gaussian process [19]–[21]. Related work

shows that with sufficient width, [22], [23], gradient descent

reaches near global minima from random initializations.

The closest work on approximation is [24]. In comparison

with [24], our error bound is substantially simpler and more

explicit. (The error from [24] is a complex expression with

unquantified constants.) Additionally, we bound the L8
error, which is commonly required in control, while [24]

bounds the L2 error. The work in [24] has the advantage of

applying to a broader class of functions, and also includes

lower bounds that match the achievable approximation error.

Other closely related research includes [25], [26]. In

[25], it is shown that learning a non-smooth function with

a randomized ReLU network requires a large number of

neurons. (We approximate smooth functions in this paper.)

Lower bounds on achievable errors for a different class of

randomized single-hidden-layer networks are given in [26].

Related work by the authors includes [27], which gives

sufficient conditions for persistency of excitation of neural

network approximators, and [28], which shows that shallow

neural networks with randomly generated weights and biases

define linearly independent basis functions. Persistency of

excitation and linear independence are commonly assumed

without proof in the adaptive control literature.

The paper is organized as follows. Section II presents

preliminary notation. Section III gives the main result on

approximation. Section IV presents an application to Model

Reference Adaptive Control. Section V gives conclusions.

II. NOTATION

We use R,C to denote the real and complex numbers.

Random variables are denoted as bold symbols, e.g. x. Erxs
denotes the expected value of x and PpAq denotes the

probability of event A. BpRq Ă R
n denotes the radius R
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Euclidean ball centered at 0. The Euclidean norm is denoted

}w}, while if M is a matrix, then }M} denotes the induced

2-norm. If f is a complex-valued function, and p P r1,8s,
}f}p denotes the corresponding Lp norm.

III. APPROXIMATION BY RANDOMIZED RELUS

This section gives our main technical result, which shows

that all sufficiently smooth functions can be approximated by

an affine function and a single-hidden-layer neural network

with ReLU activations, where the weights and biases are

generated randomly. The worst-case error over a compact set

decays like Opm´1{2q, where m is the number of neurons.

A. Background

If f : Rn Ñ C, its Fourier transform f̂ : Rn Ñ C satisfies

f̂pωq “
ż

Rn

e´j2πωJxfpxqdx

fpxq “
ż

Rn

ej2πω
Jxf̂pωqdω.

Let S
n´1 “ tx P R

n|}x} “ 1u denote the pn ´ 1q-

dimensional unit sphere. Let µn´1 be the area measure over

S
n´1, with µ0 the counting measure. The area of Sn´1 is

An´1 :“
ż

Sn´1

µn´1pdαq “ 2πn{2

Γpn{2q (1)

where Γ is the gamma function. The area is maximized at

n “ 7, and decreases geometrically with n.

Let σ denote the ReLU activation function:

σptq “ maxt0, tu. (2)

B. Approximation with Random ReLU Networks

Our approximation result below holds for functions f :

R
n Ñ R which satisfy the following smoothness assumption:

Assumption 1: There exists k ě n ` 3 and ρ ą 0 such

that supωPRn |f̂pωq|p1 ` }ω}kq ď ρ.

This assumption implies, in particular, that f and all of its

derivatives up to order k ´ 2 are bounded.

Our main technical result is stated below. It is proved in

Subsections III-C, III-D, and III-E.

Theorem 1: Let R ą 0 and let m and n be positive

integer. Let P be a probability density function over S
n´1 ˆ

r´R,Rs with infpα,tqPSn´1ˆr´R,Rs P pα, tq “ Pmin ą 0.

Let pα1, t1q, . . . , pαm, tmq be independent, identically dis-

tributed samples from P . If f satisfies Assumption (1), then

there is a vector a P R
n, a number b P R, and coefficients

c1, . . . , cm with

}a} ď 4πAn´1ρ

|b| ď p1 ` p2πRqqAn´1ρ

|ci| ď 8π2ρ

mPmin

such that for all ν P p0, 1q, with probability at least 1 ´ ν,

the neural network approximation

fN pxq “ aJx` b`
mÿ

i“1

ciσpαJ
i x´ tiq (3)

satisfies

sup
xPBpRq

|fN pxq ´ fpxq| ď 1?
m

´
κ0 ` κ1

a
logp4{νq

¯
.

Here

κ0 “ 800n1{2π5{2Rρ

ˆ
π

Pmin

`An´1

˙

κ1 “ 264π2ρR

Pmin

` ρAn´1 p4 ` 256Rπq .
The uniform distribution has P pα, tq “ 1

2RAn´1

, so that
1

Pmin

“ 2RAn´1. In this case the bounds simplify:

Corollary 1: If P is the uniform distribution over S
n´1 ˆ

r´R,Rs, then the coefficients depending on Pmin satisfy:

|ci| ď 16π2

m
ρAn´1

κ0 ď 800n1{2π5{2RρAn´1p1 ` 2πRq
κ1 ď ρAn´1

`
528pπRq2 ` 256pπRq ` 4

˘
.

Remark 1: The coefficient bounds depend on ρAn´1.

More work is needed to quantify ρAn´1 in practice.

Theorem 1 implies that randomly generated weights and

biases suffice to approximate smooth functions by appropri-

ate choice of output coefficients a, b, and ci.

Samples over S
n´1 can be generated by normalizing

samples over R
n. In particular, uniform samples can be

generated by normalizing standard Gaussians.

C. Integral Representation via the ReLU Activation

Here we derive an integral representation for smooth real-

valued functions. Related representations were derived in

[15], [16]. The main advantage of our representation is the

explicit bound on the integrand.

Lemma 1: Let f be a real-valued function satisfying As-

sumption 1. There is a function g : Sn´1ˆr´R,Rs Ñ R such

that }g}8 ď 8π2ρ, a vector a P R
n with }a} ď 4πρAn´1,

and a scalar b P R with |b| ď p2 ` 4πRqρAn´1 such that

for all }x} ď R

fpxq “
ż

Sn´1

ż R

´R
gpα, tqσpαJx´ tqdtµn´1pdαq `aJx` b.

(4)

Proof: First, note that for all n ě 1, we can express

ω “ rα for r ě 0 and α P S
n´1. Then, the volume element

satisfies dω “ rn´1drµn´1pdαq. For n ě 2, this follows

from the n-dimensional spherical coordinate representation

from [29], while for n “ 1, it is direct calculation since µ0

is the counting measure.

Assumption 1 implies that for i “ 0, 1, 2:

ż

Rn

|f̂pωq|}2πω}idω ď p2πqiρ
ż

Rn

}ω}i
1 ` }ω}k dω

“ p2πqiρ
ż

Sn´1

ż 8

0

rn`i´1

1 ` rk
drµn´1pdαq

ď 2p2πqiρAn´1, (5)
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where An´1 is the area of Sn´1, from (1). Thus,

}f̂}1 ď 2ρAn´1 (6a)ż

Rn

|f̂pωq|}2πω}dω ď 2p2πqρAn´1 (6b)

Z :“
ż

Rn

|f̂pωq|}2πω}2dω ď 2p2πq2ρAn´1. (6c)

Set ppωq :“ 1
Z

|f̂pωq|}2πω}2, which is a probability

density over Rn with pp0q “ 0.

Let f̂pωq “ ej2πθpωq|f̂pωq| be the magnitude and phase

representation of the Fourier transform. Then

fpxq “
ż

Rn

ej2πpωJx`θpωqq|f̂pωq|dω

“
ż

Rn

Z

}2πω}2 cosp2πpωJx` θpωqqppωqdω. (7)

The second equality uses that f is real-valued.

Define ψ : R ˆ pRnzt0uq Ñ R by

ψpt, ωq “ Z

}2πω}2 cosp2πp}ω}t` θpωqqq. (8)

Direct calculation shows that for all y P r´R,Rs

ψpy, ωq “
ż R

´R

B2ψpt, ωq
Bt2 σpy ´ tqdt

` Bψp´R,ωq
Bt py `Rq ` ψp´R,ωq. (9)

A related identity was used in [30], but not written explicitly.

Combining (7), (8), and (9) with y “
´
ω

}ω}

¯J
x gives:

fpxq “
ˆż

Rn

Bψp´R,ωq
Bt

ω

}ω}ppωqdω
˙J

x

`
ż

Rn

ˆBψp´R,ωq
Bt R ` ψp´R,ωq

˙
ppωqdω

`
ż

Rn

ż R

´R

B2ψpt, ωq
Bt2 σ

˜ˆ
ω

}ω}

˙J
x´ t

¸
ppωqdtdω (10)

for }x} ď R. The first two lines define a and b.

The required derivatives of ψ are given by:

Bψpt, ωq
Bt “ ´ Z

}2πω} sinp2πp}ω}t` θpωqqq

B2ψpt, ωq
Bt2 “ ´Z cosp2πp}ω}t` θpωqqq.

The bounds on }a} and |b| now follow from (6).

The double integral in (10) converges absolutely becauseˇ̌
ˇ B2ψpt,ωq

Bt2
ˇ̌
ˇ ď Z. Thus, Fubini’s theorem implies the order of

integration can be switched.

Now we derive the expression for g from (4). Let ω “ rα

with r ě 0 and α P S
n´1. Since ppωq is a probability

density over R
n, ppωqdω “ pprαqrn´1drµn´1pdαq defines

a probability measure over r0,8q ˆ S
n´1. Bayes rule then

implies that we can factorize pprαqrn´1 “ qpr|αqqpαq,

where qp¨|αq is a conditional density, and

qpαq “
ż 8

0

pprαqrn´1dr. (11)

We can now express the third term on the right of (10) as:
ż R

´R

ż

Sn´1

gpα, tqσpαJx´ tqµn´1pdαqdr

where

gpα, tq “ qpαq
ż 8

0

B2ψpt, rαq
Bt2 qpr|αqdr.

The bound

››› B2ψ
Bt2

›››
8

ď Z and the fact that qp¨|αq is a

probability density over r0,8q shows that }g}8 ď Z}q}8.

The proof is completed by bounding }q}8:

0 ď qpαq “
ż 8

0

1

Z
|f̂prαq|p2πq2rn`1dr

ď 4π2ρ

Z

ż 8

0

rn`1

1 ` rk
dr ď 8π2ρ

Z
.

D. Importance Sampling

Let P be a probability density function over Snˆr´R,Rs
with infSnˆr´R,Rs P pα, tq “ Pmin ą 0. When pα, tq are

distributed according to P :

fpxq ´ aJx´ b

“
ż

Sn´1

ż R

´R

gpα, tq
P pα, tqσpαJx´ tqP pα, tqdtµn´1pdαq

“ E

„
gpα, tq
P pα, tqσpαJx´ tq


, (12)

where E denotes the expected value over pα, tq.

Let pα1, t1q, . . . , pαm, tmq be independent, identically

distributed samples from P . The importance sampling es-

timate of f is defined by:

fIpxq “ aJx` b` 1

m

mÿ

i“1

gpαi, tiq
P pαi, tiq

σpαJ
i x´ tiq.

Lemma 2: If Assumption 1 holds, then for all ν P p0, 1q,

the following bound holds with probability at least 1 ´ ν:

sup
xPBpRq

|fIpxq ´ fpxq| ď

1?
m

´
100

?
nπLR ` pγ ` 32LRq

a
logp4{νq

¯
,

where γ “ 8π2ρR
Pmin

` 4ρAn´1p1 ` Rπq and L “ 8π2ρ
Pmin

`
8πAn´1ρ.

Proof: Define the random functions ξi and θ by

ξipxq “ gpαi, tiq
P pαi, tiq

σpαJ
i x´ tiq ` aJx` b´ fpxq

θpxq “ 1

m

mÿ

i“1

ξipxq “ fIpxq ´ fqpxq

Lemma 1 implies that ξipxq have zero mean for all }x} ď R.

In order to bound supxPBpRq |θpxq|, we utilize:

sup
xPBpRq

|θpxq| “ sup
xPBpRq

|θpxq ´ θp0q ` θp0q|

ď |θp0q| ` sup
x,yPBpRq

|θpxq ´ θpyq|. (13)

7842

Authorized licensed use limited to: University of Minnesota. Downloaded on July 30,2025 at 23:11:13 UTC from IEEE Xplore.  Restrictions apply. 



We will bound each term on the right with high probability.

To bound |θp0q|, we first bound |ξip0q|: The triangle

inequality, followed by the bounds from Lemma 1 and

|fp0q| ď }f̂}1 ď 2ρAn´1 gives

|ξip0q| ď
ˇ̌
ˇ̌ gpαi, tiq
P pαi, tiq

ti

ˇ̌
ˇ̌ ` |b| ` |fp0q| ď γ.

A random variable, v, is called σ-sub-Gaussian if

Ereλvs ď e
λ
2
σ
2

2 for all λ P R. Hoeffding’s lemma implies

that that ξip0q is γ-sub-Gaussian. Then, the Hoeffding bound

applied to θp0q and ´θp0q gives for all t ě 0: Pp|θp0q| ě
tq ď 2 exp

´
´mt2

2γ

¯
. Setting 2 exp

´
´mt2

2γ2

¯
“ ν

2
gives

P

˜
|θp0q| ě γ

c
2 logp4{νq

m

¸
ď ν

2
. (14)

Now we will bound supx,yPBpRq |θpxq ´ θpyq| via the

Dudley entropy integral.

We show that ξi are L-Lipschitz, where L was defined

above. By (6b), f is 4πAn´1ρ-Lipschitz. The bound on L

now follows via the triangle inequality, using that σ is 1-

Lipschitz and the bounds on }a}2 and }g}8.

Let ψ2ptq “ et
2 ´ 1. The corresponding Orlicz norm for

a zero-mean random scalar variable, v, is defined by

}v}ψ2
“ inftλ ą 0|Erψ2pv{λqs ď 1u.

If v is σ-sub-Gaussian, then }v}ψ2
ď 2σ. (Lemma 7 of [31].)

The Lipschitz property and Hoeffding’s Lemma imply that

ξipxq ´ ξipyq is L}x ´ y}-sub-Gaussian. By Exercise 2.13

of [32], θpxq ´θpyq is
L}x´y}?

m
-sub-Gaussian. Thus, }θpxq ´

θpyq}ψ2
ď 2L?

m
}x ´ y}. Thus, θ is an Orlicz process with

respect to the metric dpx, yq “ 2L?
m

}x´ y}. The diameter of

BpRq with respect to d is D :“ 4LR?
m

.

Let Npǫ, BpRq, dq denote the ǫ-covering number of BpRq
under the metric d, which is the minimal cardinality of

a covering of BpRq with d-balls of radius ǫ ą 0. Using

that Npǫ, Bp1q, } ¨ }q ď
`
1 ` 2

ǫ

˘n
gives Npǫ, BpRq, dq ď`

1 ` D
ǫ

˘n
after rescaling.

Let J “
şD
0

a
logp1 `Npǫ, BpRq, dqqdǫ. Theorem 5.36

of [32] implies that for all t ą 0:

P

˜
sup

x,yPBpRq
|θpxq ´ θpyq| ě 8pt` J q

¸
ď 2e´t2{D2

.

(Theorem 5.36 in [32] is more general, and has an unspeci-

fied constant. In this case, the constant is 8.)

Setting 2e´t2{D2 “ ν{2 gives

P

˜
sup

x,yPBpRq
|θpxq ´ θpyq| ě 8

´
J `D

a
logp4{νq

¯¸

ď ν

2
. (15)

Using 1 `Npǫ, BpRq, dq ď 2
`
1 ` D

ǫ

˘n
, we bound J :

J ď D
a
logp2q `

?
n

ż D

0

d
log

ˆ
1 ` D

ǫ

˙
dǫ

t“1` D

ǫ“ D
a
logp2q `

?
nD

ż 8

2

?
log t

pt´ 1q2 dt

ď D ` 2
?
nD

ż 8

2

?
log t

t2
dt

u“log t“ D ` 2
?
nD

ż 8

log 2

u´1{2e´udu

Γp1{2q“?
π

ď p1 ` 2
?
nπqD ď 3

?
nπD.

A union bound shows that

P

˜
|θp0q| ě γ

c
2 logp4{νq

m
Y

sup
x,yPBpRq

|θpxq ´ θpyq| ě 8
´
J `D

a
logp4{νq

¯¸
ď ν

By De Morgan’s law, with probability at least 1 ´ ν

|θp0q| ă γ

c
2 logp4{νq

m
and

sup
x,yPBpRq

|θpxq ´ θpyq| ă 8
´
J `D

a
logp4{νq

¯
.

both hold. The result now follows from (13).

E. Proof of Theorem 1

The proof follows by setting ci “ gpαi,tiq
mP pαi,tiq and collecting

all of the bounds on the terms.

IV. APPLICATION

Here, we apply Theorem 1 to an approximate Model

Reference Adaptive Control (MRAC) method from [1].1

A. Setup and Existing Results

Chapter 12 of [1] describes an approximate MRAC

scheme for plants of the form

9xt “ Axt `B
`
ut ` fpxtqq, (16)

where f : Rn Ñ R
ℓ is an unknown nonlinearity. (The setup

in [1] is more general. The discussion here is for illustration.)

We sketch the methodology, and describe how Theorem 1

can be used to give bounds on controller performance, while

deferring the details of the controller and its analysis to [1].

In (16), A is unknown, while B is a known.

It is assumed that there is a nonlinear vector function Ψ :

R
n Ñ R

N and an unknown ℓˆN parameter matrix, Θ such

that ΘΨpxq gives a good approximation to f on a bounded

region. The details are described in Theorem 2, below.

It is assumed that there exist feedback and feedforward

gain matrices, Kx and Kr, satisfying the matching conditions

A`BKx “ Ar BKr “ Br

1For simulations, see https://github.com/tylerlekang/

CDC2024.
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to a controllable, linear reference model

9xrt “ Ar x
r
t `Br rt, (17)

where Ar is an n ˆ n Hurwitz matrix, Ar and Br are both

known, and rt P R
ℓ is a bounded reference input.

The adaptive law takes the form

ut “ K̂x,txt ´ pΘtΨpxtq ` p1 ´ µpxtqq K̂r,trt `µpxtqrupxtq,
(18)

where the dynamics of K̂x,t, pΘt, and K̂r,t are designed via

Lyapunov methods, ru is a control law that keeps the state

bounded, and µ is a weighting function.

Let P and Q be positive definite matrices such that:

AJ
r P ` PAr “ ´Q.

The controller has the following guarantees:

Theorem 2 ([1]): Let xrt be a fixed reference trajectory

generated by a bounded reference input rt. Assume that

there is an unknown parameter matrix Θ, a known bounding

function ǫmax, and positive numbers R and ǫ0 such that:

(i) }fpxq ´ ΘΨpxq} ď ǫmaxpxq for all x P R
n

(ii) R ě 4}P }}Q´1}ǫ0 ` suptě0 }xrt }
(iii) supxPBpRq }fpxq ´ ΘΨpxq} ď ǫ0

Then there is an adaptive law of the form in (18) such that

for any initial condition, x0:

‚ There is a time T1 such that xt P BpRq for all t ě T1.

‚ There is a time T2 such that the tracking error satisfies

pxt ´ xrt q P B
`
4}P }}Q´1}ǫ0

˘
for all t ě T2.

In particular, Theorem 2 states that as long as a good

approximation of the form ΘΨpxq exists over a sufficiently

large bounded region, the controller will drive the state to a

bounded region and make the tracking error arbitrarily small.

We do not actually need to know the parameter matrix, Θ.

A gap in current adaptive control analysis with such linear

parametrizations is proving that the Θ matrix exists.

In [1] it is suggested that the entries of Ψ take the

form Ψipxq “ φpαJ
i x ´ biq, where φ is a neural network

activation function, αi is a weight vector, and bi is a bias.

Classical approximation theorems guarantee that weights and

biases, pαi, biq exist such that infΘPRℓˆN supxPBpRq }fpxq ´
ΘΨpxq} ď ǫ0, but do not describe how to find them.

Lemma 3 below implies that they can be generated randomly.

While we focus on a method from [1] for concreteness,

similar gaps in the analysis are common [1], [2], [5]–[11].

These gaps are specifically articulated in [12], [13].

B. Guaranteed Approximations for the Nonlinearity

The result below gives a randomized construction of a

nonlinear vector function, Ψ, such that for any ǫ0 ą 0 and

any R ą 0, Ψ satisfies the conditions of Theorem 2 with

high probability, as long as f is sufficiently smooth.

Lemma 3: Assume that every entry of f : R
n Ñ R

ℓ

satisfies Assumption (1). Define Ψ : Rn Ñ R
m`n`1 by:

ΨpxqJ “
“
1 xJ σpαJ

1 x´ t1q ¨ ¨ ¨ σpαJ
mx´ tmq

‰

where pα1, t1q, . . . , pαm, tmq are independent identically

distributed samples from P . For any ν P p0, 1q, if

m ě ℓ

ǫ20

´
κ0 ` κ1

a
logp4ℓ{νq

¯2

,

then with probability at least 1 ´ ν, there is a matrix Θ

such that supxPBpRq }fpxq ´ ΘΨpxq} ď ǫ0. Furthermore,

the bounding function can be taken as:

ǫmaxpxq “ 2
?
ℓρAn´1 `

?
ℓρp1 ` }x}

?
m` 1q¨ˆ

p1 ` 4π ` 2πRqAn´1 ` 8π2ρ?
mPmin

˙
.

Proof: Let θipxq be the ith entry of ΘΨpxq ´ fpxq,

where the entries of Θ are constructed from the importance

sampling approximation for each fipxq. For each i, with

probability at most ν{ℓ the error has

sup
xPBpRq

|θipxq| ě 1

m

´
κ0 ` κ1

a
4ℓ{ν

¯
,

So, a union bounding / De Morgan argument shows that with

probability at least 1 ´ ν, all entries satisfy

sup
xPBpRq

|θipxq| ď 1?
m

´
κ0 ` κ1

a
4ℓ{ν

¯
,

which implies that

}ΘΨpxq ´ fpxq} ď
?
ℓ?
m

´
κ0 ` κ1

a
4ℓ{ν

¯
.

The sufficient condition for }ΘΨpxq ´ fpxq} ď ǫ0 now

follows by re-arrangement.

The bound on ǫmaxpxq uses the triangle inequality:

}fpxq ´ ΘΨpxq} ď }fpxq} ` }Θ}}Ψpxq}.
Then we bound }fi}8 ď }f̂i}1 ď 2ρAn´1 , }Ψpxq} ď p1 `
}x}

?
m` 1q, and use the bounds on the coefficients from

Theorem 1 to bound }Θ}.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we gave a simple bound on the error in

approximation smooth functions with random ReLU net-

works. We showed how the results can be applied to an

adaptive control problem. The key intermediate result was

a novel integral representation theorem for ReLU activation

functions. Remaining theoretical challenges include quanti-

fying the constants precisely and relaxing the smoothness

requirements. Natural extensions include the examination

of other activation functions and applications to different

control problems. Other directions would be extensions to

deep networks and networks with trained hidden layers.
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