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Abstract— Neural networks are regularly employed in adap-
tive control of nonlinear systems and related methods of
reinforcement learning. A common architecture uses a neural
network with a single hidden layer (i.e. a shallow network), in
which the weights and biases are fixed in advance and only
the output layer is trained. While classical results show that
there exist neural networks of this type that can approximate
arbitrary continuous functions, they are non-constructive, and
the networks used in practice have no approximation guaran-
tees. Thus, the approximation properties required for control
with neural networks are assumed, rather than proved. In this
paper, we aim to fill this gap by showing that for sufficiently
smooth functions, ReLU networks with randomly generated
weights and biases achieve L., error of O(m~'/?) with high
probability, where m is the number of neurons. We show how
the result can be used to construct approximators of required
accuracy in a model reference adaptive control application.

I. INTRODUCTION

Neural networks have wide applications in control sys-
tems, particularly for nonlinear systems with unknown dy-
namics. In adaptive control they are commonly used to model
unknown nonlinearities [1]. In reinforcement learning and
dynamic programming, they are used to approximate value
functions and to parameterize control strategies [2]-[4].

A theoretical gap arises in the current use of neural
networks in adaptive control and reinforcement learning,
since the approximation properties are assumed rather than
proved [2], [5]-[11]. See [12], [13] for discussion. The
underlying problem is to use a neural network of the form
OP(Wz + b), where W are weights, b are biases, ® is a
vector of nonlinear functions, and © is a matrix of output
parameters, to approximate an unknown function f(z). The
specific assumption in the cited work is that (W,b) have
been chosen such that infg sup,.p | f(2) — OP(Wzx + b)|
is small. While suitable (W, b) are known to exist (see [14]),
there has been no practical means to compute them or verify
that the deployed (W, b) satisfy the requirements.

The main result of this paper shows that if W
and b are chosen randomly, then for any smooth f,
infg sup,ep ||f(2) —O®(Wz+b)| = O(m~1/2) holds with
high probability, where m is the number of neurons. Here
® is constructed from ReLU activation functions and affine
terms. This gives a simple algorithm to generate (W, b) which
satisfy the required approximation properties by construction.
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To prove our approximation theorem, we derive a new
integral representation theorem for ReLU activations over
bounded domains. Similar integral representations are com-
monly employed in constructive approximation theory for
neural networks [15]-[18]. The advantage of our new integral
representation is that the integrand can be precisely bounded.

We apply our approximation method to get guaranteed
performance for a neural-network-based controller. In par-
ticular, quantify the number of neurons sufficient to achieve
the required accuracy for a control algorithm from [1].

Over the last several years, the theoretical properties of
neural networks with random initializations have been stud-
ied extensively. Well-known results show that as the width of
a randomly initialized neural network increases, the behavior
approaches a Gaussian process [19]-[21]. Related work
shows that with sufficient width, [22], [23], gradient descent
reaches near global minima from random initializations.

The closest work on approximation is [24]. In comparison
with [24], our error bound is substantially simpler and more
explicit. (The error from [24] is a complex expression with
unquantified constants.) Additionally, we bound the L,
error, which is commonly required in control, while [24]
bounds the Ly error. The work in [24] has the advantage of
applying to a broader class of functions, and also includes
lower bounds that match the achievable approximation error.

Other closely related research includes [25], [26]. In
[25], it is shown that learning a non-smooth function with
a randomized ReLU network requires a large number of
neurons. (We approximate smooth functions in this paper.)
Lower bounds on achievable errors for a different class of
randomized single-hidden-layer networks are given in [26].

Related work by the authors includes [27], which gives
sufficient conditions for persistency of excitation of neural
network approximators, and [28], which shows that shallow
neural networks with randomly generated weights and biases
define linearly independent basis functions. Persistency of
excitation and linear independence are commonly assumed
without proof in the adaptive control literature.

The paper is organized as follows. Section II presents
preliminary notation. Section III gives the main result on
approximation. Section IV presents an application to Model
Reference Adaptive Control. Section V gives conclusions.

II. NOTATION

We use R,C to denote the real and complex numbers.
Random variables are denoted as bold symbols, e.g. z. E[x]
denotes the expected value of x and P(A) denotes the
probability of event A. B(R) < R™ denotes the radius R
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Euclidean ball centered at 0. The Euclidean norm is denoted
|wll, while if M is a matrix, then | M| denotes the induced
2-norm. If f is a complex-valued function, and p € [1, ],
| |, denotes the corresponding L,, norm.

III. APPROXIMATION BY RANDOMIZED RELUS

This section gives our main technical result, which shows
that all sufficiently smooth functions can be approximated by
an affine function and a single-hidden-layer neural network
with ReLU activations, where the weights and biases are
generated randomly. The worst-case error over a compact set
decays like O(m~1/2), where m is the number of neurons.
A. Background

If f: R™ — C, its Fourier transform f : R™ — C satisfies
flw) = | e o
f@) = [T ).

Let S ! = {x € R"||z|| = 1} denote the (n — 1)-
dimensional unit sphere. Let u,,_1 be the area measure over
S”~1, with pg the counting measure. The area of S~ ! is

27Tn/2

Anfl = Ln—l /‘nfl(da) = F(n/?)

where I' is the gamma function. The area is maximized at
n = 7, and decreases geometrically with n.
Let o denote the ReLU activation function:

o(t) = max{0,t}. (2)
B. Approximation with Random ReLU Networks

(D

Our approximation result below holds for functions f :
R™ — R which satisfy the following smoothness assumption:

Assumption I: There exists k > n + 3 and p > 0 such
that sup,,cg. | F(@)|(1 + [w]*) < p

This assumption implies, in particular, that f and all of its
derivatives up to order k — 2 are bounded.

Our main technical result is stated below. It is proved in
Subsections III-C, III-D, and III-E.

Theorem 1: Let R > 0 and let m and n be positive
integer. Let P be a probability density function over S*~1 x
[7R, R] with inf(a’t)egn—lx[,R,R] P(Oz,t) = Puin > 0.
Let (a1,t1),...,(Qm,tmn) be independent, identically dis-
tributed samples from P. If f satisfies Assumption (1), then
there is a vector a € R", a number b € R, and coefficients
Ci,...,Cp With

al
d
lei] <

such that for all v € (0, 1), with probability at least 1 — v,
the neural network approximation

n—1p
(27R))An_1p
872p

M Prin

<4rA
<@+

fy(@)=a'z+b+ Z cio(a)z —t;) 3)
i=1

satisfies
1
sup (@) = f(@)l < o (v + mlog(dn))
Here

Ko = 800n1/27r5/2Rp (Pﬂ + Anl)
264712 pR

Iz + pA,—1(4+ 256Rm).
The uniform distribution has P(a,t) = gp3—
P, =2RA,,_1. In this case the bounds s1mp11fy

Corollary 1: If P is the uniform distribution over S" ™1 x
[—R, R], then the coefficients depending on Py satisfy:

K1 =

, so that

1672

|ci‘ S n—1

Ko < 800n1/2 2RpA,_1(1 + 27R)
< pA,_1 (528(7R)? + 256(nR) + 4) .

Remark 1: The coefficient bounds depend on pA,_;.
More work is needed to quantify pA,_; in practice.

Theorem 1 implies that randomly generated weights and
biases suffice to approximate smooth functions by appropri-
ate choice of output coefficients a, b, and c;.

Samples over S"~! can be generated by normalizing
samples over R". In particular, uniform samples can be
generated by normalizing standard Gaussians.

C. Integral Representation via the ReLU Activation

Here we derive an integral representation for smooth real-
valued functions. Related representations were derived in
[15], [16]. The main advantage of our representation is the
explicit bound on the integrand.

Lemma 1: Let f be a real-valued function satisfying As-
sumption 1. There is a function g : S" "' x[—R, R] — R such
that |gllse < 872p, a vector a € R™ with ||a| < 4mpA,_1,
and a scalar b € R with |b| < (2 + 47R)pA,,—1 such that
Sorall |z|| <R

R
=J f gla,t)o(a"z—t)dtp, 1 (do) +a'z +b.
sn-1J-R
“)

Proof: First, note that for all n > 1, we can express
w = ra for r =0 and o € S*~ 1. Then, the volume element
satisfies dw = " tdrp,_1(da). For n > 2, this follows
from the n-dimensional spherical coordinate representation
from [29], while for n = 1, it is direct calculation since
is the counting measure.
Assumption 1 implies that for ¢ = 0, 1, 2:

, » el
Follzrafo < @ny'p [ o

’ 4 O nti—1
= (2m)'p Lnil L mdrun,l(da)
2(27r)ipAn_1, 5
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where A,,_; is the area of S”~!, from (1). Thus,

1l < 2pAn (6a)
| flizrldo < 22mpdi (o)
Rn
7= f F(w)||27w|2dw < 227)2pAn 1. (60)
Rn

Set p(w) %\f(w)\“%rw\\z, which is a probability
density over R™ with p(0) = 0.

Let f(w) = ¢/2™“)|f(w)| be the magnitude and phase
representation of the Fourier transform. Then

f@) = [ meTe 0 )

J]R”

The second equality uses that f is real-valued.
Define ¢ : R x (R™\{0}) —» R by

A
Y(t,w) = 2ra]?

Direct calculation shows that for all y € [—R, R]

e cos(2m(w 'z + O(w))p(w)dw.  (7)

cos(2m(|wl|t + 6(w))). (8)

R 62¢Jt,
v = [ EHE oty oy
+ RS (4 Ry 4y Rw). O

A related identity was used in [30], but not written explicitly.
Combining (7), (8), and (9) with y = (HwH> T gives:

= (], (w(_@iw‘i”p(w)dw>-rm
+J,L (WRM/)(— w)) p(w)dw

Jnf o at2 (<|:)|>Txt>p(w)dtdw (10)

for ||| < R. The first two lines define a and b.
The required derivatives of v are given by:

(71/1(75700) _ 4 1
o ey 0D
% = —Z cos(2m(||lw|t + O(w))).

The bounds on |a| and |b| now follow from (6).
The double integral in (10) converges absolutely because
z w(t w)’ Z. Thus, Fubini’s theorem implies the order of

1ntegrat10n can be switched.

Now we derive the expression for g from (4). Let w = ra
with 7 > 0 and a € S"~!. Since p(w) is a probability
density over R", p(w)dw = p(ra)r™ = dri,_1(da) defines
a probability measure over [0,00) x S"~!. Bayes rule then
implies that we can factorize p(ra)r"~! = q(r|a)q(a),

We can now express the third term on the right of (10) as:

R
f f gla,t)o(a’z — t)pp_1(da)dr
—R JSn—1
where

glant) = gfa) [ LT

The bound H o < Z and the fact that ¢(-|) is a

probability density over [0 o) shows that [|g]le < Z||q]|co-
The proof is completed by bounding |g|«:

a0
1 -
0<ge) = | ZlfCa)lenpiar
0
2 0 n+1 2
< 4m pf r dr < 3 P
Z ) 17

D. Importance Sampling

q(r|a)dr.

Let P be a probability density function over S x [—R, R]
with infgn . _g g P(a,t) = Pnin > 0. When (o, t) are
distributed according to P:

fx)—a'x—b
Ln ! J P oo’z = t)P(a, t)dtpin1 (da)
=" {P(Z,?)”( xt)] (12)

where E denotes the expected value over («, t).

Let (a1,t1),...,(cm,t,) be independent, identically
distributed samples from P. The importance sampling es-
timate of f is defined by:
olajz—t;).

7

1 glay, t;)

T )
- pa — N L&)
frlz)=a'2+b+ 1-251 (ant)

Lemma 2: If Assumption 1 holds, then for all v € (0,1),
the following bound holds with probability at least 1 — v:

sup |fr(x) — f(z)| <
zeB(R)
1
= (100«ﬁmrLR + (y+ 32LR) 10g(4/1/)) ,
where v = 8}’%‘?}{% + 4pA,—1(1 + Rm) and L = % +
8T A, _1p.
Proof: Define the random functions &; and 6 by
) - g(ahti) T, ¢ T .
&) = fooaz —t) +ala +b— f(2)
1 m
= L& = £il0) - Do)

Lemma 1 implies that &;(x) have zero mean for all ||z|| < R
In order to bound sup,cp(g) |0(z)|, we utilize:

0 = 6(x)—0 0
where ¢(-|«) is a conditional density, and IESEFR) 6(=)] xeS;l(pR) 6(=) (0) +6(0)]
“O n— <[0(0) + sup [6(z)—O(y). (13)
0
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We will bound each term on the right with high probability.

To bound |6(0)|, we first bound |&;(0)|: The triangle
inequality, followed by the bounds from Lemma 1 and
IFO)] < [ flh < 2pAn-1 gives

£0)] < \g(a”t 5]+ 1£0)] < 7

P(ai, ti)

A random2 2Variable, v, is called o-sub-Gaussian if

E[e*?] < e™ % for all A € R. Hoeffding’s lemma implies

that that &;(0) is y-sub-Gaussian. Then, the Hoeffding bound

applied to 8(0) and —6(0) gives for all t = 0: P(]6(0)| =
2

t) < 2€Xp( mi )

Setting 2 exp

= 5 gives

P <|9(0)| > ~ 21%;1(4/V)> < % (14)

Now we will bound sup, ,cp(g)|0(z) — 0(y)| via the
Dudley entropy integral.

We show that &; are L-Lipschitz, where L was defined
above. By (6b), f is 4w A,,_1p-Lipschitz. The bound on L
now follows via the triangle inequality, using that o is 1-
Lipschitz and the bounds on |al2 and |gl|eo-

Let 5(t) = et — 1. The corresponding Orlicz norm for
a zero-mean random scalar variable, v, is defined by

|V, = inf{X > O[E[¢2(v/N)] < 1}.
If v is o-sub-Gaussian, then |v|y, < 20. (Lemma 7 of [31].)

The Lipschitz property and Hoeffding’s Lemma imply that
&i(x) — &(y) is L|z — y||-sub-Gaussian. By Exercise 2.13
of [32], O(x) —0O(y) is M—sub—Gaussian Thus, 0(z) —
0|y, < 2 5z =yl Thus, 0 is an Orlicz process with
respect to the metric d(z,y) = ||!E y|. The diameter of

B(R) with respect to d is D := %

Let N (e, B(R),d) denote the e-covering number of B(R)
under the metric d, which is the minimal cardinality of
a covering of B(R) with d-balls of radius ¢ > 0. Using
that N(e, B(1),|| - ) < (1+2)" gives N(e, B(R),d) <
(1+ 2)" after rescaling.

Let J = §. \/log(1 + N(e, B(R), d))de. Theorem 5.36
of [32] implies that for all ¢t > 0:

P ( sup |6(z) —0(y)| = 8(¢t + J)) < 2¢71/P%
z,ye B(R)

(Theorem 5.36 in [32] is more general, and has an unspeci-
fied constant. In this case, the constant is 8.)
Setting 2e~"/P* = 1//2 gives

P ( sup 10(x) — 0(y)| = 8 (7 + DW))
z,ye B(R)

< (15)

[NIIN

Using 1 + N(e, B(R),d , we bound J:

< D+/log(2 +ff 4llog 1+ de

. VIog?
=Y pylog(2) +IDJ Og
VI
< D+2\/ﬁDJ ;g dt
2

w=logt
"¢ D 4+ 2y/nD
log 2

u ey
I(1/2)=+7
< (1 + 24/nm)D

A union bound shows that

2log(4/v) g

P<e<o>| > 218
0(2) — 0(y) >8(J+D¢m)> -,

By De Morgan’s law, with probability at least 1 — v

< 34/nmD.

sup
z,yeB(R)

2log(4
0(0)] < v/ 28 g
m
sup  |0(z) — 0(y)| < 8 (j + D«/log(4/u)) .
z,yeB(R)
both hold. The result now follows from (13). |
E. Proof of Theorem 1

The proof follows by setting ¢; = % and collecting

all of the bounds on the terms. |

IV. APPLICATION

Here, we apply Theorem 1 to an approximate Model
Reference Adaptive Control (MRAC) method from [1].!

A. Setup and Existing Results

Chapter 12 of [1] describes an approximate MRAC
scheme for plants of the form

T = Az + B(ut + f(z)), (16)
where f : R™ — R’ is an unknown nonlinearity. (The setup
in [1] is more general. The discussion here is for illustration.)

We sketch the methodology, and describe how Theorem 1
can be used to give bounds on controller performance, while
deferring the details of the controller and its analysis to [1].

In (16), A is unknown, while B is a known.

It is assumed that there is a nonlinear vector function ¥ :
R”™ — R and an unknown ¢ x N parameter matrix, © such
that ©U(x) gives a good approximation to f on a bounded
region. The details are described in Theorem 2, below.

It is assumed that there exist feedback and feedforward

gain matrices, K, and K., satisfying the matching conditions

A+ BK,=A, BK,=0B,

IFor simulations, see
CDC2024.

https://github.com/tylerlekang/
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to a controllable, linear reference model

z; = Az} + By, a7

where A, is an n x n Hurwitz matrix, A, and B, are both
known, and 7, € R? is a bounded reference input.
The adaptive law takes the form

A~ ~ A

Uy = nytxt — @t\:[/(xt) + (]. — ,L,L(‘Tt)) Kr,t{rt + u(xt)ﬂ(xt),
. (18)
where the dynamics of K+, O, and K,.; are designed via
Lyapunov methods, @ is a control law that keeps the state
bounded, and u is a weighting function.
Let P and () be positive definite matrices such that:

AP+ PA, = Q.

The controller has the following guarantees:

Theorem 2 ([1]): Let xi be a fixed reference trajectory
generated by a bounded reference input r;. Assume that
there is an unknown parameter matrix ©, a known bounding
function €.y, and positive numbers R and €y such that:

(i) ||f(z) — O¥(z)| < €max(x) for all x € R™

(i) R = 4|P||Q " |leo + sup,= ||

(iii) sup,epr) [f(z) — O¥(z)| < €0
Then there is an adaptive law of the form in (18) such that
for any initial condition, xq:

o There is a time Ty such that x; € B(R) for all t = Ty.

o There is a time T, such that the tracking error satisfies

(z1 — ) € B (4|P||Q o) for all t = Ts.

In particular, Theorem 2 states that as long as a good
approximation of the form ©W(z) exists over a sufficiently
large bounded region, the controller will drive the state to a
bounded region and make the tracking error arbitrarily small.
We do not actually need to know the parameter matrix, ©.

A gap in current adaptive control analysis with such linear
parametrizations is proving that the © matrix exists.

In [1] it is suggested that the entries of W take the
form U,(z) = ¢(a)z — b;), where ¢ is a neural network
activation function, «; is a weight vector, and b; is a bias.
Classical approximation theorems guarantee that weights and
biases, (v, b;) exist such that infgepexn SUpep(p) | () —
OU(z)|| < €y, but do not describe how to find them.
Lemma 3 below implies that they can be generated randomly.

While we focus on a method from [1] for concreteness,
similar gaps in the analysis are common [1], [2], [S]-[11].
These gaps are specifically articulated in [12], [13].

B. Guaranteed Approximations for the Nonlinearity

The result below gives a randomized construction of a
nonlinear vector function, W, such that for any ¢y > 0 and
any R > 0, W satisfies the conditions of Theorem 2 with
high probability, as long as f is sufficiently smooth.

Lemma 3: Assume that every entry of f : R* — Rf
satisfies Assumption (1). Define ¥ : R® — R™*+7+1 py:

U(r)' = [1 27 o(ofz—1t1) oo,z —tn)]

m

where (a1,t1),...,(Qm,ty) are independent identically
distributed samples from P. For any v € (0, 1), if

¢ 2
m = = (/i() + m«/log(4€/u)) ,
0

then with probability at least 1 — v, there is a matrix ©
such that sup,epp) | f(z) — ©¥(2)| < eo. Furthermore,
the bounding function can be taken as:

emax () = 2VepA,_1 + Vip(1 + |z|v/m + 1)-

872p
1+14 2 A, —_— .
(1+ 4w+ 27R) 1+ \/%Pmin)

Proof: Let 6;(x) be the ith entry of O (z) — f(x),
where the entries of © are constructed from the importance
sampling approximation for each f;(x). For each i, with
probability at most v/¢ the error has

1
sup |0;(z)] = — <K]o + K1\/4£/V) ,
zeB(R) m

So, a union bounding / De Morgan argument shows that with
probability at least 1 — v, all entries satisfy

1
sup |0;(x)| < — (ko + kK1/4L/v ),
Sup 10 < G (o a4

which implies that

\/\/% (Iio + KJI\/M) .

The sufficient condition for |@W(z) — f(z)| < € now
follows by re-arrangement.
The bound on €. () uses the triangle inequality:

[f(z) — ¥ ()| < [f(2)] + [O[¥(x)].

Then we bound | filloo < |fil1 < 204n-1 . [®(2)] < (1 +
|z|lv/m + 1), and use the bounds on the coefficients from
Theorem 1 to bound ||®||. |

|©®(z) — f(a)] <

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we gave a simple bound on the error in
approximation smooth functions with random ReLU net-
works. We showed how the results can be applied to an
adaptive control problem. The key intermediate result was
a novel integral representation theorem for ReLU activation
functions. Remaining theoretical challenges include quanti-
fying the constants precisely and relaxing the smoothness
requirements. Natural extensions include the examination
of other activation functions and applications to different
control problems. Other directions would be extensions to
deep networks and networks with trained hidden layers.
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