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Abstract Maintaining accurate real‐time hindcast and forecast specification of the radiation environment is

essential for operators to monitor and mitigate the effects of hazardous radiation on satellite components. The

Radiation Belt Forecasting Model and Framework (RBFMF) provides real‐time forecasts and hindcasts of the

electron radiation belt environment, which are used as inputs for the Satellite Charging Assessment Tool. We

evaluated the long‐term statistical error and bias of the RBFMF by comparing the 10‐hr hindcast of electron

phase space densities (PSD) to a multi‐mission data set of PSD observations. We found that, between the years

2016–2018, the RBFMF reproduced the radiation belt environment to within a factor of 1.5. While the error and

bias of assimilated observations were found to influence the error and bias of the hindcast, data assimilation

resulted in more accurate specification of the radiation belt state than real‐time Van Allen Probe observations

alone. Furthermore, when real‐time Van Allen Probe observations were no longer available, the hindcast errors

increased by an order of magnitude. This highlights two needs; (a) the development of physics‐based modeling

incorporated into this framework, and (b) the need for real‐time observations which span the entire outer

radiation belt.

Plain Language Summary It is important to accurately predict and monitor the radiation levels in

space to safeguard satellites from potential damage. This paper introduces a model called the Radiation Belt

Forecasting Model and Framework, which provides real‐time forecasts and historical data (hindcasts) of

radiation levels. To test the model's accuracy, we compared its predictions to actual observations from satellites

between 2016 and 2018. We found that generally, the model's predictions of the outer radiation belt were within

1.5 times of the actual measurements. Additionally, we discovered that incorporating both real‐time satellite

observations and physics‐based simulation improved prediction accuracy compared to relying solely on either

method. However, we noticed a significant increase in prediction errors when real‐time observations through the

heart of the Van Allen radiation belt were unavailable. This underscores the importance of enhancing the model

with physics‐based modeling and ensuring continuous real‐time observations of radiation levels in space.

1. Introduction

The variability of the near‐Earth radiation environment poses a serious hazard to telecommunications, naviga-

tional, and defense satellites which orbit through these regions. A key effect of spacecraft exposure to radiation is

internal charging, where high energy electrons penetrate the surface shielding of a satellite and deposit charge into

dielectric materials such as circuit boards or cable insulators, and on ungrounded material such as spot shields or

connector contacts (e.g., Fennell et al., 2001; Lohmeyer et al., 2015). The accumulated charging eventually results

in electrostatic discharges, which is one of the known causes of “satellite anomalies.” Anomalies range in effect

from more frequent temporary errors in non‐critical systems to rare but catastrophic hardware damage and

complete mission failure (Galvan et al., 2014) and can be instigated by a number of issues, such as command

errors, manufacture flaws, and environmental exposures. Of all space environment effects on satellites, elec-

trostatic discharges from internal charging have been reported to cause the most anomalies (Green et al., 2017;

Koons et al., 1999).

Improved on‐orbit anomaly detection tools have been cited by satellite operators as an industrial need for op-

erators to easily and quickly attribute anomalies to space weather effects (Green et al., 2017). To attribute satellite

anomalies to internal charging of equipment requires forensic reconstruction of the radiation environment and

modeling of charge accumulation on component hardware, such as satellite shielding materials, for defined orbits

(LEO, MEO, GEO). The Satellite Charging Assessment Tool (SatCAT: Green et al., 2017, 2020) is one such tool
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which allows users to monitor the real‐time and long‐term effects of internal charging due to fluence of radiation

belt electrons. This paper evaluates the Radiation Belt Forecasting Model and Framework (RBFMF) which

SatCAT uses to specify the radiation environment both retrospectively and in real‐time.

Several models have been developed to simulate the near‐Earth radiation environment based upon the Van Allen

radiation belt response to solar wind parameters and/or geomagnetic indices. These models usually fall within

three categories; empirically based analytical descriptions (e.g., X. Li, 2004; Nagai, 1988; Roeder et al., 2005;

Turner & Li, 2011), physics‐based models (e.g., Horne et al., 2013; Subbotin & Shprits, 2009), and machine

learning models (e.g., Boyd et al., 2023; Chen et al., 2019; Wei et al., 2018). Statistical approaches to modeling

the radiation belt have shown success at identifying the key variables which influence radiation belt flux on

different timescales. However, statistical approaches do not capture some extreme events, and could be flawed if

they cannot reflect the non‐linear relationship between input variables are output electron fluxes. While physics‐

based modeling allows the study of relative contributions of complex acceleration and loss mechanisms in the

outer radiation belt, the computational power required to accurately model the interconnected magnetospheric

system on an hourly basis provides a significant challenge. Machine learning models have predicted ultra‐

relativistic electron fluxes with high efficacy but show less accuracy at predicting lower energy fluxes (Cam-

poreale, 2019; Shin et al., 2016), similarly to statistical modeling, could have limited capabilities for extreme

events which are out of sample to training data.

Hindcast models that rely on existing data, such as RB‐Daily‐E (Gabrielse et al., 2022), have performed well at

capturing past events and relating them to spacecraft anomalies. For example, RB‐Daily‐E ingested Van Allen

Probe data to build a hindcast of the radiation belts, demonstrating solar cell voltage degradation was due to the

radiation environment whereas the current degradation was largely due to other factors. However, these models

are unable to forecast the radiation belt environment. By dynamically integrating observational data with

lightweight statistical or physics‐based model predictions of the radiation belt, data assimilative frameworks

could improve the accuracy and responsiveness to real‐time changes, thereby providing more reliable and timely

forecasts then statistic or physics‐based modeling methodologies used alone.

Several such frameworks have recently been designed to address specific forecasting or hindcasting goals. For

example, SPACESTORM (Glauert et al., 2018) captures the long term climatology of the radiation belt by

assimilating GOES electron observations to determine the outer boundary condition of the BAS‐RBM diffusion

model (Glauert et al., 2014). The PAGER framework (du Montcel et al., 2023) integrated VERB‐3D diffusive

modeling of the radiation belt (Subbotin & Shprits, 2009) with GOES‐16 observations to calculate internal

charging risk due to electrons on a daily basis. The SafeSpace model (Brunet et al., 2023) was developed to

provide daily activity indices of radiation belt risk from electrons and protons using complex prototype of Sun‐to‐

Earth modeling pipeline driving diffusive radiation belt simulations using the Salammbô ‐ EnKF code (Bourdarie

& Maget, 2012).

RBFMF was developed to provide a lightweight and robust tool for real‐time radiation belt specification which

operates on an hourly basis. This framework uses 1D Kalman filtering technique which has previously been

shown through event‐based studies to be a successful tool for reproducing the radiation belts (e.g., Coleman

et al., 2018; Daae et al., 2011; Kellerman et al., 2014). This work investigates the hindcast performance of

RBFMF by completing a detailed statistical evaluation of archived multi‐year data set. Special focus is given to

the hindcast rather than the forecast because the hindcast includes assimilated data and is therefore a more ac-

curate representation of the environment and useful for post‐anomaly attribution by satellite operators. We aim to

assess how data assimilation affects the error and bias of radiation belt hindcasts, and the influence of variable

geomagnetic conditions. In this way, we identify how the RBFMF may be adapted in the future for improved

hindcast reliability.

2. Radiation Belt Forecasting Model and Framework

The radiation belt forecast framework (RBFMF) is designed to combine physics‐based modeling with data

assimilative techniques to provide forecasts, nowcasts, and hindcasts of the radiation environment in real‐time on

an hourly basis. In this framework, real‐time space weather data from GOES and the Van Allen Probes is

assimilated into a diffusive simulation of the radiation belt (Subbotin & Shprits, 2009) using an existing data

assimilative model (Shprits et al., 2013). The framework has been further developed (Kellerman, 2018;
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Kellerman et al., 2014) to provide a robust infrastructure with data products which are integrated into the SatCAT

tool. The implementation of this framework is summarized in Figure 1.

2.1. Diffusive Modeling

Radiation belt diffusion is modeled through implementation of the 3‐D Fokker‐Plank diffusion equation for

radiation, Equation 1 (Roederer, 1970; Schulz & Lanzerotti, 1974; Walt, 1994). The Versatile Electron Radiation

Belt code (Subbotin & Shprits, 2009) is used to implement a solution to this equation using precomputed diffusion

coefficients.

∂f

∂t
= 3

i,j

∂

∂Ji
(DJi Jj ∂f∂Jj) − Losses (1)

Figure 1. Flow chart summarizing the steps completed each hour in the Radiation Belt Forecasting Model and Framework.
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Where f is the phase averaged electron phase space density (PSD), Ji, Jj, represent the first, second, and third

adiabatic invariants of adiabatic motion (μ, J, Φ respectively), and diffusion coefficients

DJi Jj = 8∆Ji∆Jj9/ (2∆ t) which denote the scattering rates (Dμμ,DJJ ,DΦΦ). In this paper we use K (K ∝ J

assuming μ is conserved) as the second adiabatic invariant and L* (L ∗ ∝ 1/Φ) as the third adiabatic invariant

(noting that L* = L in a dipolar magnetic field).

2.1.1. Diffusion Coefficients

By precomputing diffusion matrices, the diffusion equation can be solved quickly at each time step by selecting

diffusion coefficients for the prevailing Kp level. Mixed local diffusion terms are excluded, which enables larger

grid steps. Three types of waves were used to derive the diffusion coefficient matrices; ULF waves (Brautigam &

Albert, 2000), lower‐band chorus (W. Li et al., 2007; Shprits et al., 2007) and plasmaspheric hiss (Spasojevic

et al., 2015). The plasma density was obtained from (Sheeley et al., 2001) for diffusion coefficient computation.

The diffusion coefficients were computed using the Full Diffusion Code at UCLA.

2.1.2. Initial and Boundary Conditions

Diffusion is solved for a dipolar magnetic field with a grid covering L‐shells 1 to 7, energies 10 keV to 10 MeV,

and pitch angles 0.3o–89.7o. The upper boundary condition in energy is a Dirichlet boundary with constant f = 0,

the lower‐boundary condition is also Dirichlet for each time step, although updated by assimilation. The lower

boundary condition in pitch angle is a Neumann boundary ∂f /∂α = 0, to allow for both weak and strong diffusion

effects to be simulated. The outer boundary condition at Lmax = 7 is a Neumann boundary (df /dL = 0) when the

last closed drift shell is outside the model domain >7 (LCDS; derived from Tsyganenko (1989) with a centered

dipole, see Kellerman (2018) for more details). When the LCDS < 7 the outer boundary is set to a Dirichlet

boundary (f = 0) to allow fast diffusion under compressed magnetospheric conditions. The lower boundary in L

is also a Dirichlet boundary, with f = 0 at Lmin, representing loss to the atmosphere.

The model was initialized through the average PSD observed by spacecraft from the previous month. For each

additional forecast going forward through several years, the initial condition of each time step is set to the nowcast

simulated for the previous hour.

2.2. Data Assimilation

Data assimilation uses filtering algorithms to estimate the state of a system using joint probability distributions

from a simulated system and sparsely observed data. The Kalman Filter (Kalman, 1960) is a widely used data

assimilation algorithm which estimates the system state by minimizing the mean square errors of the simulated

state variables and observed state variables. Readers are referred to past works for descriptions of different

Kalman filter methodologies used in radiation belt analysis (e.g., Castillo Tibocha et al., 2021; Kondrashov

et al., 2007; Naehr & Toffoletto, 2005; Ni et al., 2009; Shprits et al., 2007).

Real‐time satellite data was assimilated into RBFMF through a one‐dimensional split‐operator Kalman filtering

algorithm, described in detail in Supporting Information S1, which was developed by Shprits et al. (2013). This

methodology is computationally lightweight, making it practical for real‐time applications, and has been vali-

dated in a synthetic‐forecast analysis over multiple years (Kellerman et al., 2014; Shprits et al., 2013). In RBFMF

the data assimilation model is “tuned” to consider observations with a greater weighting than the diffusive

simulation by adjusting their respective errors. Errors are computed as (Wx f )2 where W = 10 for the diffusive

simulation, and W = 1 for observations, and x f describes the respective state vectors.

The RBFMF assimilates operational space weather data from the GOES and Van Allen Probe missions in real‐

time. The Van Allen Probe real‐time data, or “beacon” data, was broadcast continuously at low data resolution to

any receiver capable of receiving during periods where primary science data was not being downlinked, see

Kessel et al. (2014) for full details of this data product. There are considerable differences between the Van Allen

probe beacon data and final science data; there were large data gaps due to downlinking procedures, lower

resolution in time and energy, and the beacon data did not undergo the same correction algorithms as the final

science data (Baker et al., 2014; Blake et al., 2014; Claudepierre et al., 2015, 2021). Additionally, there are

differences to the adiabatic coordinate calculation for both beacon data and real‐time GOES data because the real‐
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time Kp index was used as input for the T89 field model, whereas the definitive Kp index was used to process final

science PSD data.

3. Validation Methodology

3.1. Multi‐Mission PSD Observations

In this analysis, the RBFMF is validated against a multi‐mission data set of radiation belt observations which

serves as the “true” state of the radiation belt. We use a combined mission approach so that one mission does not

overwhelmingly introduce a bias to the evaluation. PSD observations are taken from 32 individual satellites which

are part of 5 different scientific missions and hosted payloads (see Staples et al., 2022, 2023 for further description

of calibration and usage of this data set):

• Van Allen Probe Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron‐Proton Telescope

instruments (Baker et al., 2014; Blake et al., 2014; Claudepierre et al., 2021).

• GOES 13 and 15 (Geostationary Operational Environmental Satellite) Magnetospheric Electron Detector

Energetic Proton, Electron, and Alpha Detector (Rodriguez, 2014a, 2014b; Sillanpää et al., 2017).

• Global Positioning System (GPS) Navstar Combined X‐ray dosimeter (CXD) (Morley et al., 2016, 2017;

Tuszewski et al., 2004).

• THEMIS (Time History of Events and Macroscale Interactions during Substorms) Electrostatic Analyzer

(ESA) and Solid‐State Telescope (SST) (Angelopoulos, 2008; Angelopoulos et al., 2008; McFadden

et al., 2008).

• MMS (Magnetospheric Multiscale) Fly's Eye Electron Proton Spectrometer (FEEPS) (Blake et al., 2016;

Burch et al., 2016).

All spacecraft data is calibrated to Van Allen Probe B MagEIS data. In addition, the calibrated GOES 15 data are

used together with Van Allen Probe B as a baseline “gold standard” for all other the calibrations. Conjunctions

between pairs of spacecraft are found within 10 min and 0.1 L*, then a statistical correction is found for each

instrument energy channel and PSD magnitude by numerically finding the best function to describe PSD offsets

observed during conjunctions. The GPS pitch angle distributions are assumed using the Zhao et al. (2018) model.

For each spacecraft instrument, the adiabatic invariants μ, K, and L* are computed using a model magnetospheric

field, represented by the International Geomagnetic Reference Field model (IGRF; Thébault et al., 2015) and

Tsyganenko (1989) external magnetic field model (T89). The final PSD data set is interpolated across dimensions

of μ and K to match the simulation coordinates, then PSD is averaged into L* bins on an hourly basis to match the

resolution of the RBFMF hindcast.

It is important to note that the test data set of Van Allen probe observations used to intercalibrate multi‐mission

data was considerably different to the real‐time beacon data assimilated into RBFMF, as described in Section 2.2.

However, we acknowledge that (uncalibrated) real‐time GOES data was similar to final calibrated test data, so

may not provide a reliable representation of model performance. Hence, the following analysis at geostationary

orbits is supplemented by MMS and THEMIS observations.

3.2. Observations

Figure 2 shows how the modeled radiation belt PSD compares to the multi‐mission PSD observations. The

nowcast time is indicated in Figure 2 by the white line, with the preceding 8 days showing hindcast PSD, and the

following 2 days show the PSD forecast. By comparing the modeled PSD in Figure 2a to the measured PSD in

Figure 2b, we can see that the RBFMF is highly successful at reproducing the structure and dynamical evolution

of the radiation belt in this example. The magnitude of the radiation belt flux is well captured overall, although

when the observed PSD became enhanced up to >15 × 10−5 (c/cm/MeV)3 at 5 < L* < 6 between 6–9th August,

the hindcast PSD appeared to be slightly underestimated. Figure 2c shows that the percentage error was <100%

for most of the interval (i.e., PSD was estimated within a factor of 1 during the interval), but became largest

(>200%) near the outer boundary (L* > 6) as electrons were lost on 3rd August, and along the inner edge of the

radiation belt (4 < L* < 5) during the enhancement between 4th to 7th August.

While the interval in Figure 2 appears to show that the RBFMF is a good representation of the outer radiation belt,

we must quantitively evaluate the performance of the model to determine if it is accurate over long time periods,

and identify when the simulation is inaccurate so that it can be improved. We tested the RBFMF against the
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observed state of the electron radiation belt for two time periods between 2016 and 2018 and between 2019 and

2020. The key difference between these years is that between 2016 and 2018 both GOES and Van Allen Probe

beacon data were assimilated into the hindcast in real‐time, whereas from 2019 onwards, only GOES data was

assimilated in real‐time.

3.3. Statistical Evaluation

The statistical error and bias of the 10‐hr hindcast (dashed line, Figure 2a) is calculated between January 2016–

October 2019 and between March 2019 and December 2020. For every PSD observation from the multi‐mission

data set, the quotient (Qi = fsim/ fobs) is calculated. Error and bias are quantified using symmetric metrics

described by Morley et al. (2018), which account for variable electron PSD magnitudes. The median symmetric

accuracy (MSA) is described in Equation 2 and the symmetric signed percentage bias (SSPB) is described in

Equation 3, where M() symbolizes the median calculation. In this scheme, the MSA is small if simulation errors

are low, SSPB < 0 if the hindcast is biased toward underprediction of PSD, and SSPB > 0 if the hindcast is biased

toward overprediction of PSD.

MSA = 100 (exp (M(òò loge (Qi) òò) − 1 ) (2)

SSPB = 100sgn(M(loge (Qi)))(exp (M(òò loge (Qi) òò) − 1 ) (3)

Figure 2. The simulated state of the radiation belt, fsim, at 00 UT on 10 August 2017 is displayed in panel (a) as a function of L* over time, for μ = 700 MeV/G and

K= 0.1 G0.5RE. Panel (b) shows corresponding phase space densities observations, fobs, taken by multiple missions. Panel (c) shows the absolute percentage error of the

simulated PSD:
òò fobs − fsim/ fsim

òò × 100.
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4. Results

4.1. Original Forecast Framework (2016–2018)

Figure 3 shows theMSA, SSPB, and number of samples, N, calculated for the 10‐hr hindcast of radiation belt PSD

as a function of the first and second adiabatic invariants, μ and K at three sampled L*. The L* values shown in

Figure 3 are selected to represent trends in error and bias observed in the slot region (>L* = 2.44), the core of the

outer radiation belt, and the outer radiation belt near medium earth orbit (>L* = 4.12) and at geostationary orbit

(>L* = 6.04).

We observe a large variance in the MSA and SSBP across the different L* regions. At L* = 2.44 the maximum

percentage error was 350%, and the maximum bias was 250%. At L*= 2.44, electrons are generally located inside

the overlapping plasmasphere and slot region, so the large positive bias indicates that the model systematically

overestimated the PSD in the slot region. It is because electron PSD is generally very low at L* < 4, that

comparatively small absolute differences in PSD create large errors and bias relative to the measured PSD.

In the outer radiation belt region (L* > 4) the error and bias were much smaller than the slot region, reaching a

maximum of 150% percentage error and −150% bias. This indicates that statistically the hindcast accurately

Figure 3. Left column shows the statistical error (median symmetric accuracy (MSA)) of the 10‐hr hindcast between 2016 and 2018, shown by color as a function of μ

and K for a sample of simulated L* = 2.44, 4.12, and 6.04. The middle column shows statistical bias (SSPB) in the same format, and right column shows the number of

samples N used in the computation of MSA and SSPB.
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predicted the outer radiation belt PSD to within a factor of 1.5. Moreover, the hindcast error and bias was highly

dependent upon μ and K.

At L* = 4.12 the greatest errors were found to reach 150% corresponding to the highest measured μ values

depending on K (i.e., highest energies, >multi‐MeV) and was correspondingly biased toward underestimation of

PSD by >120%. At lower μ values (which correspond to the bulk of the radiation belt plasma population) the

hindcast showed a statistical overestimation of PSD by 70% or less, showing that the hindcast predicted the core

outer belt PSD to within a factor of 0.7. The hindcast error and bias showed similar trends at L* = 6.04: The

highest errors were observed at the highest measured μ (highest energies) with a negative bias > −100%, and at

lower μ the hindcast overestimated PSD by up to 70%. In addition to these error and bias relationships, at

L* = 6.04 there was a strong error of 150% and bias of −150% observed at μ < 100 MeV/G. This population

corresponds to lower energy <300 keV electron populations. To ensure that error and bias is not dependent upon

hindcast hour, the same analysis was completed for different hindcast hour, and no appreciable differences were

observed.

The following analysis discusses the source of the statistical hindcast error and bias and evaluates the accuracy of

the hindcast under different geomagnetic conditions.

4.1.1. Assimilated Data Bias

One potential source of error in the modeled hindcast is a consistent bias of the assimilated real‐time data used to

drive the model relative to the more accurately post‐processed data used for validation. Between 2016 and 2018

the assimilated data sets were real‐time GOES data, and the Van Allen Probe Beacon data. The Van Allen Probe

beacon data was provided in real‐time over the Van Allen Probe mission without the same corrections and post‐

processing as the long‐term science data archive, and so is possibly more prone to errors. To assess if the error and

bias of assimilated PSD observations influenced the hindcast PSD, we evaluated the error and bias of the Van

Allen Probe real‐time Beacon data relative to the post‐processed Van Allen Probe science data (Figure 4) and

compared those results with the hindcast error and bias (Figure 3). The error and bias of Van Allen Probe beacon

data is quantified by calculating the MSA and SSBP respectively using Equation 2 and Equation 3, where the

quotient is calculated as Q = PSDBeacon/PSDFinal, and PSDFinal is the science data product from the same Van

Allen Probe. This analysis effectively shows the differences between the real‐time data product and the more

highly processed science data as a function of μ, K, and L*.

Figure 4 shows that the Van Allen Probe beacon data error and bias was greater than the 10‐hr hindcast error and

bias (Figure 3). For example, at L* = 2.44, the error and bias of beacon data reached >800%, whereas the

maximum hindcast error and bias were >350% and >250% respectively. What is more, the error and bias

observed for beacon data (Figure 4) was nearly identically distributed across μ, K, and L* compared to the

hindcast error and bias. For example, at L* = 4.12, the maximum errors were at the highest μ values across all K,

and were negatively biased, transitioning to a positive bias at low μ values.

Because the error and bias of the hindcast shared the same relationship as the error and bias of beacon data, we

conclude that hindcast error and bias between 2016 and 2019 was strongly influenced by error and bias in the

assimilated Van Allen probe beacon data. The RBFMF simulation still provided a significantly improved estimate

of radiation belt PSD compared to if Van Allen Probe beacon data were used alone since. As shown, the error and

bias of the hindcast was much less than the assimilated data error and bias. Because the real‐time GOES data is

similar to the final science data product, it is not informative to conduct a similar evaluation of assimilated data

errors.

4.1.2. Storm‐Time Error Analysis

Knowing how well the model captures the radiation belt evolution during different geomagnetic conditions is of

particular interest because most impacts to satellites are observed during geomagnetically active periods. To

analyze how the statistical error and bias varies with geomagnetic conditions, we extract geomagnetic storm

intervals between 2016 and 2018 based upon Sym‐H index evolution. A storm is identified when Sym‐H

decreased to a minimum below −40 nT (to ensure that SIR driven storms were included; Grandin et al., 2019;

Kilpua et al., 2015). The main storm phase is defined from Sym‐H = 15 to the minimum Sym‐H value, the

recovery phase is defined from the minimum Sym‐H to Sym‐H = −15 nT. We further select times during
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geomagnetic storms when the AE index was in the upper 80% percentile of data. High AE index periods are

known to be associated with substorm injections of lower energy source electrons from the magnetotail into the

inner magnetosphere, and AE index values exceeding 150 nT have previously been used as a proxy for substorm

injections (e.g., Meredith et al., 2000). As before, we calculate the statistical error and bias of each storm phase

using Equations 2 and 3. Figures 5 and 6 show how the computed error and bias varied under different

geomagnetic conditions at L* = 4.12 and L* = 6.04, respectively. To easily compare between geomagnetic

conditions, the color bars have been saturated to±200%.We do not show the equivalent figure for L*= 2.44 as no

substantial differences between storm phases were observed.

Figure 5 shows that the statistical error and bias under geomagnetically quiet conditions were effectively the same

as for all data between 2016 and 2019 shown in Figure 3. This indicates that the overall statistical error and bias

for the hindcast at L* = 4.12 was not influenced by increased error or bias during geomagnetic variations.

Figures 5g and 5h show that high μ values (highest energies ≥MeV) appear least accurate and most biased during

the recovery storm phase (and during substorm injections) as MSA increased to 200% at the highest μ values

(panel g), and SSPB decreases to −200% (panel h). This indicates that, during the recovery phase, the hindcast

underestimated the PSD of MeV electrons, which is understood to become enhanced during this phase (e.g.,

Jaynes et al., 2015; Murphy et al., 2018; Sorathia et al., 2018). Conversely, PSD of low μ electrons (≲700 keV)

Figure 4. Left column shows the statistical error (median symmetric accuracy (MSA)) and middle column shows the statistical bias (SSPB) of the Van Allen Probe B

beacon data between 2016 and 2018, compared to the final Van Allen Probe science data. Right column shows the number of data samples N used in the computation of

MSA and SSPB. Error, bias, and sample size are all shown by color as a function of μ and K at sampled bins of L* = 2.44; 4.12; 6.04 which were chosen to match the

hindcast model grid.
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was less accurate during the main storm phase (panel d), and during substorm related injections (panel j–k). In

both cases the error reached 200% and the hindcast was biased toward underestimation of PSD down to −200%.

Figure 5 shows that the hindcast consistently underestimated PSD across all storm conditions at L*= 4.12, for all

μ and K.

Similarly, Figure 6 shows that at L* = 6.04, quiet times exhibited the same statistical error and bias as the overall

time period (Figure 3), and PSD of high μ (energies ≥ MeV) were the least accurate and most biased during the

Figure 5. Left column shows the statistical error (median symmetric accuracy (MSA)) and middle column shows the statistical bias (SSPB) of the 10‐hr hindcast

between 2016 and 2018, compared to the final multi‐mission phase space densities observations. Right column shows the number of data samples N used in the

computation of MSA and SSPB. Error, bias, and sample size are all shown by color as a function of μ and K at sampled bins of L*= 4.12. Each row shows error and bias

under different geomagnetic conditions a–c are quiet times, d–f are the main storm phase, g–I are the recovery storm phase, and j–I show storm intervals where AE index

>150 nT.
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recovery phase of the storm (Figures 6g and 6h). Irrespective of μ However, Figure 6d shows that the largest

overall errors were observed at low K (i.e., equatorial electrons) during the main storm phase. Given Figure 6e

shows a bias toward overestimation of PSD at these K, and that L*= 6.04 is near geostationary orbit, it is possible

that loss to the outer boundary was not well captured by the hindcast. Figure 6j also shows large hindcast errors for

μ < 500MeV/G, and bias toward underestimation of PSD by up to−200%. Since this feature was most prominent

during storms with the highest AE index, we expect these errors were caused by substorm injections of lower‐

energy (<500 keV) electrons.

Figure 6. Statistical error and bias under different geomagnetic conditions, sampled at L* = 6.04 is shown in the same format as Figure 5.
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4.2. Updated Forecast Framework (2019–2020)

Since the end of the Van Allen Probe mission in early 2019, the RBFMF has been operating by assimilating only

GOES observations in real‐time. To assess how this affected the accuracy of the 10‐hr hindcast, we repeat the

analysis presented in the previous section, comparing the 10‐hr hindcast at L*= 4.2 to PSD observations obtained

from the GPS constellation between March 2019–December 2020 (Figure 7). Since the real‐time GOES data

assimilated into the hindcast model is similar to the final science data product, it is not meaningful to complete an

error analysis at geostationary orbit using this data.

Figure 7 shows that the hindcast error and bias at L* = 4.12 were significantly increased compared to the Van

Allen Probe era (Figure 3), reaching maxima of >2,000%, which is a factor of 10 greater than was observed

between 2016 and 2018. The hindcast was strongly biased toward overestimation of PSD at all μ and K values by

similar magnitudes to the error, which suggests that the model could be improved by the inclusion of a corrective

factor. It is important to note that GPS satellites do not resolve electron flux by pitch angle, so an assumed pitch

angle distribution is used to calculate PSD as a function of μ, K, and L*. It is possible that error and bias

determined at L*= 4.12 were affected by the uncertainty of the assumed pitch angle distribution used in GPS data

processing, rather than actual errors in the hindcast.

We emphasize that the diffusive simulation driving the hindcast provided a good first approximation of radiation

belt dynamics, but is somewhat rudimentary as simplified diffusive modeling was employed. However, we chose

not to modify the forecast model until a comprehensive analysis of hindcast performance was conducted. Since

less observational data is now available to constrain the hindcast via data assimilation, the diffusion simulation

should be improved by updating the precomputed diffusion coefficients using more modern methodologies of

representing Chorus (e.g., Wong et al., 2024), Hiss (e.g., Agapitov et al., 2020; Watt et al., 2019), and ULF waves

(e.g., Murphy et al., 2023). The diffusive effects of EMIC waves could also be incorporated (e.g., Ross

et al., 2020) to improve the representation of electron loss in the inner magnetosphere.

5. Summary

We have conducted a comprehensive assessment of the accuracy and bias of the RBFMF, which is used to specify

the real‐time radiation environment in the SatCAT. Historical hindcasts were compared to observations of the

radiation belt by computing the statistical errors and bias between the years January 2016–October 2018 while the

Van Allen Probes remained in operation, and between March 2019–December 2020 following the end of the Van

Allen Probe mission.

The hindcast was found to be accurate to within a factor of 1.5 in the outer radiation belt (4 < L* < 7) during the

years when the Van Allen Probe data was assimilated into the model (Figures 3d and 3g). We identified that the

statistical hindcast bias was predominantly introduced by the assimilated Van Allen Probe beacon data, which

displayed the same dependence of bias upon μ and K (Figure 4). Analysis of geomagnetic storms between 2016

and 2018 also revealed increased hindcast error and bias compared to quiet times at L* > 4. The most energetic

electrons (>MeV) were more likely to be underestimated by the hindcast during storm recovery phase (Figure 5),

Figure 7. Statistical error (median symmetric accuracy, panel (a) and bias (symmetric signed percentage bias, panel (b) are of the 10‐hr hindcast in 2019–2020 are shown

as a function of μ and K at L* = 4.12. The number of data samples, N, is shown in the panel (c).
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error increased for equatorial electrons at L* > 6 during the main storm phase (Figure 6d), and the hindcast

underestimated lower energy electrons (<500 keV) related to substorm injections (Figure 6j).

We have shown that the hindcast was much more accurate at predicting PSD than if the Van Allen Probe beacon

data was used alone (Figure 4). Moreover, we found that the Van Allen Probe beacon data played a crucial role in

constraining hindcast simulation between 2016 and 2019 as the hindcast error and bias increased tenfold at

L* = 4.1 when the Van Allen Probe data was no longer assimilated (2018–2020). This highlights that combining

pre‐processed data with physics‐based modeling through data assimilation can improve the accuracy of radiation

environment specification than either method used alone.

6. Future Work

Our analysis has emphasized the importance of real‐time observations at multiple locations through the outer

radiation belt. Even though the beacon Van Allen Probe data contained significant error and bias compared to the

final processed data, assimilation of these observations into the RBFMF considerably improved the simulation

compared to times where it was not assimilated. Furthermore, we showed that data assimilative techniques

displayed less error and bias than pre‐processed/low resolution real‐time observations when the two were

compared to final processed science data. Since the end of the Van Allen Probe mission, there are no similar

observations available as the currently operational observatories (e.g., GPS, ARASE) do not provide publicly

available data in real‐time. We emphasize that any provision of real‐time observations from existing or new

missions enhance the operational impact of data, even if it is sub‐optimally processed compared to science quality

data. Furthermore, analysis of real‐time data errors, analogous to our analysis of beacon Van Allen Probe data, can

be used to inform the observational uncertainties used during data assimilation simulations.

In lieu of real‐time observations to constrain this stimulation through the heart of the radiation belt, there is much

scope to develop the physics simulation to improve hindcast performance using only GOES data inputs. For

example, Glauert et al. (2018) demonstrated that the BAS‐RBM model (Glauert et al., 2014) can achieve high

performance levels (SSPB <138%) when >2 MeV GOES observations were used to define the outer boundary of

their simulation.

Our analysis has highlighted key areas in which the physics simulation used in RBFMF could be improved.

Overestimation of PSD in the plasmasphere could be addressed by evaluating more recent diffusion coefficients

computed for Plasmaspheric Hiss (e.g., Agapitov et al., 2020; Watt et al., 2019). Improved representation of

electron loss at geostationary orbit during the storm main phase could be incorporated by using a dynamic outer

boundary of the simulation (Bloch et al., 2021; Staples et al., 2020) and evaluating new radial diffusion co-

efficients (Murphy et al., 2023). Updating the radial diffusion coefficients could also improve hindcast with

sparse real‐time data by accurately propagating the effects of assimilated data across L*. Underestimation of ultra‐

relativistic electrons during the storm recovery phase could be improved by updating energy diffusion through

new parameterizations of Chorus waves (e.g., Wong et al., 2024). Furthermore, substorm injections of lower

energy electrons are necessary, and could be incorporated through updates to the simulation boundaries.

At time of publication, the RBFMF remains in operation using GOES observations as real‐time inputs, producing

radiation belt specifications for the SatCAT tool. Our investigation revealed that significant development is

needed to improve the hindcast in locations where data is no longer assimilated. Continued development of the

physics‐based simulation is ongoing so that new versions of the RBFMF can deliver improved hindcast accuracy.

Our analysis of RBFMF error and bias provides a crucial baseline to measure improvements to radiation belt

hindcast specification.

Data Availability Statement

Spacecraft data from GOES, MMS, THEMIS, and the Van Allen Probes are publicly available via the NASA/

GSFC CDAWeb service (NASA, 2024a). Solar Wind data and Sym‐H index are publicly available through the

NASA/GSFC Space Physics Data Facility OMNIWeb service (NASA, 2024b) and Kp index is available via

Matzka (2021). The LANL‐GPS particle data are publicly available via NOAA (2021). Processed 10‐hr hindcast

data, multi‐mission phase space density data, and Van Allen Probe beacon data used in this manuscript is publicly
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available via Kellerman and Staples (2024). We acknowledge the use of the IRBEM library (version v5.0.0), the

latest version of which is published on GitHub (Boscher et al., 2022).
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