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Abstract 
Variation of form–function relationships within populations is the substrate for adaptation at higher levels. Therefore, assessing similarity in 
form–function relationships within and between species may help reveal the processes shaping functional diversity. Here, we test such similar-
ity across three levels of anuran phenotypic divergence: within a population, among species in a single family (Hylidae; ~60 myr), and across a 
much broader sample of all anuran species using a single microhabitat (arboreal; ~120 myr). We expected less interspecific divergence to show 
higher similarity of form–function relationships with the intraspecific level. We analyzed the relationships between locomotor performance (in 
both swimming and jumping) and several hindlimb traits across these three evolutionary levels. While we found a positive correlation between 
swimming and jumping velocity at both intra- and interspecific levels, relationships between performance and body form did not match across 
levels. We suggest that different strengths of functional constraints or trade-offs may have produced more variation in form–function relation-
ships across species, decoupling them from within-species patterns. We conclude that performance landscapes are likely qualitatively different 
across the different evolutionary scales, potentially reflecting changes in the relative importance of different behaviors across all arboreal species.
Keywords: Anura, intraspecific variation, functional diversity, locomotor performance, performance correlations, phylogenetic comparative methods

Introduction
Form–function relationships reflect the influence of mechan-
ical properties on the functioning of organisms in their envi-
ronments. Such relationships are therefore expected to be 
shaped by adaptation (Arnold, 1983, 2003). However, due to 
the complex and hierarchical nature of biological systems, the 
link between variation in form (the size and shape of organ-
isms) and variation in functional properties and performance 
(e.g., muscle power output and sprinting velocity) may not 
be straightforward (Anderson, 2022; Simon & Moen, 2023; 
Taylor & Thomas, 2014; Wainwright, 2007). Biological 
systems are composed of multiple parts that interact with 
each other to influence more than one function (Arnold, 
1983; Collar et al., 2014; Garland & Losos, 1994; Lauder, 
1996). On one hand, this complexity raises the possibility 
of many morphological configurations producing similar 
levels of functional performance, often called many-to-one 
mapping (Wainwright et al., 2005). On the other hand, the 
same traits affecting performance in many functions may 
prevent the optimization of those functions simultaneously, 
revealing trade-offs (Anderson et al., 2014; Corn et al., 2021; 
Garland et al., 2022; Ghalambor et al., 2003; Wainwright, 
2007). Moreover, the relationships between long-term evolu-
tion and diversity in form and function may be obscured by 

phylogenetic and other constraints (Simon & Moen, 2023a; 
Simon et al., 2025).

Faced with these challenges to study form–function diver-
sity, an understanding of how and why morphology and 
functional performance vary within species may help reveal 
the processes shaping diversity across species (Grant, 1981; 
Emerson & Arnold, 1989; Grant & Grant, 2007). Differences 
among individuals may arise due to developmental plasticity 
or to microgeographic variation in resources and biotic inter-
actions that may resemble larger-scale differences (Calsbeek, 
2009; Calsbeek et al., 2006, 2007; Losos, 2000; Martin & 
Wainwright, 2013). For instance, in anole lizards, selection on 
limb length and locomotor performance associated with com-
petition and habitat use within species is also implicated in 
divergence across species (e.g., Calsbeek, 2009; Calsbeek & 
Irschick, 2007; Losos, 2011; Losos & Sinervo, 1989). The key 
point is that variation among individuals within populations 
is the raw material for selection to act upon and eventually 
scale up those differences between populations and species 
(Calsbeek et al., 2006, 2007; Martin, 2016; Simpson, 1944; 
Taverne et al., 2021). Hence, finding similar form–function 
relationships within and between species would suggest sim-
ilar processes shaping morphological and functional perfor-
mance variation at different evolutionary scales.
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Here, we explore the similarity of relationships between 
hindlimb traits and jumping and swimming performance 
within and across species of arboreal frogs. We focus on a 
single type of organism and ecology, as we expect the relative 
importance of different functions (e.g., different types of loco-
motion) in shaping fitness to be similar within populations 
and across species belonging to the same microhabitat (Losos, 
1990; Moen, 2019; Moen et al., 2016). Thus, we expect this 
approach to more likely show a clear link between intra- and 
interspecific variation than an analysis across many ecolog-
ical types. Moreover, the relationship between morphology 
and performance in multiple locomotor modes in frogs has 
been mostly studied across species encompassing different 
microhabitats (e.g., Moen, 2019; Moen et al., 2013, 2016). 
Therefore, we do not know if form–function relationships at 
a finer ecological scale mirror the patterns found at a broader 
scale of frog diversity.

The kinematics of swimming in anurans has been described 
as “jumping in water,” and generation of thrust may be similar 
in both behaviors (Kamel et al., 1996; Nauwelaerts et al., 2007; 
Peters et al., 1996), at least in nonaquatic species (Richards, 
2010). Accordingly, across species of frogs, both jumping and 
swimming velocities show a correlation of ~2/3 (Moen, 2019). 
However, within species of frogs, no consistent relationship 
has been found (Nauwelaerts et al., 2007). Moreover, we 
may expect some differences in form–function relationships 
for swimming and jumping, given that the musculoskeletal 
system of hindlimbs has to act against very different media: 
fluid water versus solid ground, respectively (Nauwelaerts & 
Aerts, 2003; Richards & Sawicki, 2012). Frogs need to exert 
lower forces in water than on the ground, indicating that the 
optimal functional parameters for swimming may be different 
than for jumping (Richards & Sawicki, 2012). Yet, when sev-
eral traits interact to perform different functions, as is the case 
with hindlimb traits in frogs, empirical evidence for clear-cut 
functional trade-offs can be elusive (Garland et al., 2022).

As the hindlimbs of frogs are a multitrait system, we might 
expect many-to-one mapping. For example, multiple com-
binations of foot size and muscle size can maximize mus-
cle power in frog swimming (Richards & Clemente, 2013). 
Furthermore, even when multiple traits affect a function, they 
may show differential mechanical sensitivity: some traits will 
affect a specific function more than others (Anderson & Patek, 
2015; Holzman et al., 2011; Muñoz et al., 2018). Within spe-
cies, some muscles may contribute more to swimming or to 
jumping (Nauwelaerts et al., 2007), and mechanical behavior 
(e.g., timing of muscle shortening) and muscle activity pat-
terns (e.g., duration of electromyographic activity) can differ 
for the same muscles depending on whether they are used for 
jumping or swimming (Gillis & Biewener, 2000). Across spe-
cies, muscles that show stronger effects on locomotor perfor-
mance may evolve faster, as shown in other systems (Holzman 
et al., 2012; Muñoz et al., 2018). Additionally, many-to-one 
mapping can alleviate functional trade-offs across multi-
ple taxa (Dumont et al., 2014; Holzman et al., 2011; Pigot 
et al., 2020; Wainwright et al., 2005). Particularly in frogs, 
both longer and more muscular legs can enhance jumping 
and swimming performance, but species in different micro-
habitats differ in how they maximize performance (e.g., high 
muscle mass in swimming types; Moen et al., 2013, Moen, 
2019). Nonetheless, a complicating factor when studying per-
formance across species is that different kinematic strategies 

may be used in species with different ecologies (Corn et al., 
2021), as has been shown for frog swimming (Richards, 2010; 
Robovska-Havelkova et al., 2014). Therefore, it is hard to 
predict whether intraspecific patterns of form–function rela-
tionships for swimming and jumping will match those across 
species.

We addressed these issues by studying the relationships 
between hindlimb traits and both jumping and swimming 
performance within a species of arboreal frog, Hyla cinerea, 
and among an additional 42 arboreal species from 20 gen-
era across five families. Using this sampling design, we were 
able to test whether the relationships between morphology 
and locomotor performance matched at three different lev-
els: within species, within the family Hylidae, and across all 
arboreal species (Figure 1). If the amount of divergence influ-
ences similarity between intra- and interspecific relationships, 
more recent phenotypic divergence (within Hylidae; ~60 myr 
of divergence) should show more similar form–function rela-
tionships between these levels than divergence accumulated 
over longer periods of time (across all five frog families; ~120 
myr of divergence). Support for this prediction would suggest 
that evolutionary processes that have acted within popula-
tions also drove functional evolution across species. If this 
prediction is not supported, then form–function relationships 
may be shaped by distinct processes across these scales. Such 
processes might be related to functional trade-offs across spe-
cies, given that the hindlimbs perform more than one loco-
motor task.

Material and methods
Specimens, species, and phylogeny
We collected 40 individuals of H. cinerea (eight females and 32 
males) at Red Slough Wildlife Management Area (Oklahoma, 
USA) on June 24, 2023. Hyla cinerea is a hylid frog gener-
ally found during the breeding season on emergent vegetation 
in large, still water bodies (Dodd, 2023). Individuals jumped 
into the water to escape capture in the field, suggesting that 
this species uses swimming to evade predators when they are 
most exposed: calling for females in the water. Males were 
identified by the presence of nuptial pads and a distended 
throat sac, whereas females lacked these features; sex was ver-
ified by internal inspection of the gonads after we completed 
all work with live animals. This research was conducted 
under Oklahoma State University Institutional Animal Care 
and Use Committee (IACUC) protocol 20-09 and Oklahoma 
Department of Wildlife Conservation scientific collecting per-
mit W2302.

The additional interspecific data from 38 arboreal and 
four semiarboreal species (n = 177; 1–8 individuals/species) 
were obtained from previously published data (Moen et al., 
2013, 2021a, b). These species have a common ancestor esti-
mated at 114.9 million years old (Portik et al. 2023), and they 
belong to five different families: Mantellidae (n = 19 species), 
Hylidae (n = 14), Microhylidae (n = 5), Hyperoliidae (n = 2), 
and Rhacophoridae (n = 2). For analyzing these interspecific 
data, we used the recent anuran phylogeny of Portik et al. 
(2023), who estimated the phylogeny with over 300 markers, 
calibrated branch lengths to units of time, and had the most 
comprehensive species sampling of anuran phylogenies to 
date. We thus pruned their maximum-likelihood tree to con-
tain only the 43 species in this study (Figure 1).
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Jumping and swimming trials
All specimens were measured for jumping and swimming per-
formance by using a high-speed camera. We focused on peak 
performance in jumping and swimming, as most frogs use burst 
performance to catch prey and to avoid predation (Bulbert et 
al., 2015; Duellman & Trueb, 1994; Heinen & Hammond, 
1997; Wells, 2019). Moreover, peak performance is expected 
to be highly relevant for anurans to effectively escape preda-
tors, both on land and in water, and should reflect past selection 
in the wild (Losos & Miles, 2002; Moen, 2019; Moen et al., 
2021a). Because H. cinerea, our focus for intraspecific analyses, 
is arboreal (Dodd, 2023), we focused on arboreal species for 
interspecific analyses in order to study divergence and form–
function relationships in taxa likely under similar selective 
pressures. We recognize that studying swimming in arboreal 
frogs—rather than another microhabitat type, such as semi-
aquatic (e.g., Peters et al., 1996; Nauwelaerts et al., 2007)—may 
seem unconventional. However, although arboreal frogs are pri-
marily climbers and jumpers, several species regularly swim in 
water to call (males) or lay eggs (females; Moen, 2019; Moen 
et al., 2013). Thus, their ability to swim may affect competition 
for mates and exposure to predators in aquatic environments, at 
least when breeding. Moreover, no studies have directly focused 
on the traits that affect swimming in arboreal frogs. 

All details of performance trials, video capture, and video 
processing followed Moen et al. (2013, 2021a) and can be 
found in those papers. In brief, individuals performed both 
behaviors in several trials on different days, such that we 
could maximize our chance to collect the peak performance 
in both behaviors for each individual. Jumping take-off and 
burst swimming were recorded using high-speed cameras at 
250 frames/second. In previous work (Moen et al., 2021a), 
we have found that this frame rate is the best compromise 
between reducing the digitizing error-to-signal ratio (favored 
by lower frame rates) and accurately capturing the full shape 
of the velocity and acceleration profiles (favored by the 
increased data density of higher frame rates). Nonetheless, we 
acknowledge that acceleration profiles, as the second deriva-
tive of our raw distance-by-time data (see below), will show 
more error than velocity profiles.

We then digitized the tip of each frog’s snout during the 
take-off (jumping) or power stroke (swimming), converted 
the 2D coordinates into 1D displacement-by-time curves, 
smoothed those curves to reduce digitization error, and 
extracted velocity and acceleration profiles (i.e., the first and 
second derivatives of distance-by-time curves, respectively). 
For intraspecific analyses, we used jumping and swimming 
velocity and acceleration values of more than one trial (see 
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Sphaenorhynchus lacteus
Scinax ruber
Osteocephalus planiceps
Hyla annectans
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Dendropsophus rhodopeplus
Dendropsophus sarayacuensis
Dendropsophus triangulum
Anodonthyla pollicaris
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Guibemantis tornieri

Heterixalus betsileo
Rhacophorus rhodopus
Chiromantis doriae
Boophis tephraeomystax
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Boophis idae
Boophis guibei
Boophis madagascariensis
Boophis boehmei
Boophis luteus
Boophis bottae
Boophis pyrrhus
Blommersia blommersae

Boana lanciformis
Boana punctata

Litoria rothii

Litoria caerulea
Litoria bicolor
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Figure 1. Phylogenetic relationships across all 43 arboreal frogs sampled for this study. The shaded clade is Hylidae, which includes Hyla cinerea (in 
bold). The remaining species are mostly from Mantellidae from Madagascar, as well as three other families that include arboreal taxa. Pruned from 
Portik et al. (2023).
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below). For interspecific analyses, we extracted the individual 
peak values of performance in each behavior and then aver-
aged values per species. After completion of trials, specimens 
were euthanized with benzocaine, fixed with 10% formalin, 
and preserved in 70% ethanol.

Morphological measurements
We collected five linear measurements on all preserved speci-
mens using a digital caliper: femur length, tibiofibula length, 
tarsus length, and foot length on the left hindlimb, plus 
snout-to-vent length (SVL). We summed the hindlimb bone 
lengths to calculate the total leg length, which is relevant to 
both jumping and swimming performance (Moen, 2019). 
We also photographed the left foot pressed against a glass 
slide, then measured foot webbing areas between all digits 
and foot area (without webbing) in ImageJ (version 1.53e, 
Schneider et al., 2012). We summed these area measurements 
to calculate the total foot area, which should be relevant to 
swimming performance (Gal & Blake, 1988; Nauwelaerts et 
al., 2001; Richards, 2008, 2010). Finally, we dissected out all 
upper- and lower-leg muscles of the left hindlimb, removed 
excess surface ethanol by patting them dry, and weighed 
them on a scale with 0.0001 g precision. We then added all 
the muscle weights to calculate total leg muscle mass. These 
hindlimb muscles contain the major extensors relevant for 
jumping and swimming (Gillis & Biewener, 2000; James & 
Wilson, 2008; Nauwelaerts et al., 2007; Olson & Marsh, 
1998; Prikryl et al., 2009), and their summed mass has been 
shown to strongly correlate with performance in both behav-
iors across frog species (Moen 2019; Moen et al. 2013). We 
logged performance and morphological variables for analyses 
to control for scaling effects. We also scaled and centered the 
morphological variables to test for form–function relation-
ships (in regressions, see below), given that the traits have 
different units (leg length in mm, foot area in mm2, and leg 
mass in g) that are incommensurate and complicate multivar-
iate analyses (Adams & Collyer, 2019). This standardization 
assured that we could compare regression coefficients among 
the different morphological traits.

Intraspecific analyses
The motivation of individuals to perform in artificial condi-
tions (i.e., in the laboratory) can vary, with some individu-
als much easier to motivate than others (Losos et al., 2002; 
Adolph & Pickering, 2008; Moen et al., 2013, 2021a). 
Moreover, individuals may perform better on some days than 
others. Thus, we first performed a repeatability analysis to 
examine whether variation between individuals was a sub-
stantial proportion of total variation (the sum of between- and 
within-individual variation). To estimate these components of 
variation, we analyzed repeated measurements of jumping 
and swimming performance variables (velocity and accelera-
tion) of the same individuals across different trials in univar-
iate mixed models (Dingemanse & Dochtermann, 2013). The 
repeated measures were peak performances for each individ-
ual per day extracted from digitized trials that showed quali-
tatively high performance relative to undigitized trials. While 
this criterion (to digitize a video or not) is undoubtedly sub-
jective, it guarantees the removal of poor performance. This 
procedure generally resulted in two peak values for swimming 
performance and three peak values for jumping performance 
for each individual.

We ran the univariate mixed models in the R program-
ming environment (version 4.3.2, R Core Team, 2023) using 
the package lme4 (version 1.1-35.1, Bates et al. 2015), with 
individual [ID] as a random factor. We then calculated the 
repeatability of performance as the variation associated with 
the ID (between-individual) divided by total variation (sum of 
between- and within-individual variation).

Because repeatability analysis indicated substantial within- 
individual variation in performance variables (see Results), 
we opted to use multivariate mixed models to estimate the 
correlations between jumping and swimming performance 
within H. cinerea. These multivariate mixed models allow 
for the estimation of covariances between response vari-
ables while accounting for random-effects structure (Houslay 
& Wilson, (2017)). Particularly, these models can reveal 
between-individual correlations of performance variables 
that may be masked by within-individual variation (Careau 
& Wilson, 2017; Lailvaux et al., 2019). We ran a multivariate 
mixed model with all four performance variables (repeated 
measures of peak velocity and acceleration for both jumping 
and swimming) as response variables, scaled by their stan-
dard deviation (to account for unequal variances after log-
ging), and ID as a random factor nested within performance 
type (swimming vs. jumping). We also included a two-way 
interaction between performance type and performance trait 
(acceleration vs. velocity) as a fixed factor. However, because 
in our experimental design, we tested jumping and swimming 
on different days for the same individuals, we could not esti-
mate covariances between performance types within individ-
uals (only within-individual covariances in acceleration and 
velocity within the same performance type; Dingemanse & 
Dochtermann, 2013). Yet, we could still estimate between- 
individual covariances between swimming and jumping while 
taking within-individual variation into account, by employ-
ing multivariate mixed models in a Bayesian framework using 
the package MCMCglmm (version 2.35, Hadfield, 2010). 
We ran the Markov chain Monte Carlo (MCMC) chains for 
2,000,000 iterations with a 200,000 burn-in period, and we 
also sampled once every 1,000 iterations to estimate the pos-
terior. We checked for autocorrelation and convergence using 
the R package coda (version 0.19-4.1, Plummer et al., 2006). 
Further details on these analyses are given in Supplementary 
Methods.

Finally, to estimate the form–function relationships within 
species (i.e., the partial regression slopes of performance on 
morphology), we added the fixed factors SVL, leg length, leg 
muscle mass, and foot area to the multivariate mixed model 
described above. All four predictor variables were mean cen-
tered and scaled by their standard deviations. One of the 
advantages of using repeated-measures Bayesian regression 
models is that all aspects of uncertainty of parameter esti-
mates (e.g., variation within individuals across trials) are 
propagated in the model and displayed via their resulting pos-
terior distributions (Hadfield, 2010). On the other hand, using 
just peak performance for each individual to estimate perfor-
mance correlations has the advantage of eliminating what can 
be alternatively considered as experimental error, reflected in 
variation (across trials) to successfully motivate individuals to 
perform as they would in nature (see Discussion). Therefore, 
we also estimated the partial regression coefficients using 
just a single value of peak performance (i.e., velocity and 
acceleration) across all trials for each individual as response 
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variables in an ordinary least squares (OLS) multivariate lin-
ear regression.

Interspecific analyses
We used species means of peak performance for all interspe-
cific analyses; at this scale, within-individual variation should 
not obscure between-species performance correlations, given 
the typically high divergence among species (Mendoza et 
al., 2020; Moen et al., 2013, 2021a). Nevertheless, within- 
species variation (often in the form of measurement error) 
can strongly affect phylogenetic comparative analyses 
(Grabowski et al., 2023; Hansen & Bartoszek, 2012; Ives 
et al., 2007; Silvestro et al., 2015). Thus, we chose to use 
Brownian Motion (BM) as the underlying evolutionary model 
in all our analyses, as intraspecific variance can be estimated 
as a nuisance parameter directly from species’ data in the fit-
ting process, then added as a scaling factor to the diagonal 
of the phylogenetic variance-covariance matrix (Clavel et al., 
2019; Housworth et al., 2004; Ives et al., 2007). In contrast, 
intraspecific variance cannot be incorporated in a lambda 
(λ) model (Freckleton et al., 2002; Revell, 2010) because the 
parameter λ and the intraspecific variance are not separately 
identifiable parameters (Ho & Ané, 2014).

We first estimated the maximum likelihood estimate 
(MLE) of the evolutionary correlation matrix (Revell & 
Collar, 2009) between performance variables while using 
the BM model (function “phyl.vcv()” from phytools; version 
2.1-1, Revell, 2024) for all arboreal species and for species 
within Hylidae. To calculate the uncertainty for these cor-
relations, we conducted parametric bootstrapping. We first 
simulated BM 1,000 times on the phylogeny with all arbo-
real species or with just hylid species. We used the function 
“sim.corrs()” from phytools to simulate performance vari-
ables under the MLE of the phylogenetic correlation matrix. 
We then estimated the evolutionary correlation matrices for 
the simulated data sets and calculated 95% CI for each of its 
elements.

To test whether divergence was indeed higher when lin-
eages evolved for a longer time period (all arboreal species: 
114.9 mya, vs. Hylidae: 59.1 mya), we measured the magni-
tude of divergence as the sum of the variances of phylogenetic 
independent contrasts (PIC) of the four performance vari-
ables, unstandardized by branch lengths, for species within 
Hylidae and across all arboreal species. Given that PICs are 
differences between sister lineages, the variance of unstan-
dardized PICs can be interpreted as a measure of divergence 
along the phylogeny (whereas PICs standardized by diver-
gence time represent rate estimates; Garland, 1992; Harmon 
et al., 2021). We used the 1,000 simulated datasets under a 
BM model, as described above, to recalculate the variance of 
PIC on each sample, and then estimate 95% CI for the magni-
tude of divergence in performance. We then checked whether 
it overlapped between Hylidae and all arboreal species.

After verifying that performance variables were correlated 
at the interspecific level (see Results), we used a multivari-
ate phylogenetic generalized least-squares (PGLS) regression 
to estimate the form–function relationships between species 
(Clavel & Morlon, 2020). We used all four performance vari-
ables as response variables and SVL, leg length, leg muscle 
mass, and foot area as the predictors in these regressions. 
We variance standardized the response variables. We also 
mean-centered and scaled the predictors to their standard 

deviations, in order to calculate standardized partial regres-
sion coefficients. These coefficients allowed us to compare the 
relative influence of each morphological variable on perfor-
mance (Sokal & Rohlf, 1995). We ran the PGLS regressions 
with the package mvMORPH (version 1.1.9, Clavel et al., 
2015) using the BM model, again choosing this model so as to 
estimate and account for intraspecific variance. We performed 
these analyses at two levels: within the family Hylidae (15 
species) and across all species (43 species). These two levels 
allowed us to test whether form–function relationships within 
Hylidae were more similar to the ones found in H. cinerea, 
compared with relationships across all arboreal species. For 
all PGLS models, we estimated parameters using the penal-
ized likelihood method, as it performs better when the num-
ber of traits approaches the number of taxa, as in Hylidae, 
but also performs well when the number of taxa is higher 
than number of traits (Clavel et al., 2019).

To quantify uncertainty in our estimates of the par-
tial regression coefficients in the PGLS, we simulated the 
response variables 1,000 times using the MLEs of the fitted 
model’s parameters (BM with error model; function “simu-
late()” in mvMORPH). We then reestimated the regression 
parameters with the standardized predictors in all 1,000 
simulated datasets and calculated 95% confidence intervals 
for the regression coefficients in the same way as described 
above. Finally, to estimate how much variance was explained 
by the predictors in the multivariate PGLS, we regressed the 
observed response values on the predicted values (based 
on the fitted model) and extracted the R2 values, following 
Chira et al. (2018).

We recognize that the estimation of intraspecific variance as 
a parameter in the mvMORPH “mvgls()” function, as we did 
here, may not be ideal for comparative analysis. That is, when 
intraspecific data are available, they can be used to directly 
estimate intraspecific error (Ives et al., 2007). For example, 
individual data could in principle be used in the “mvlgs()” 
function by adding individuals from the same species as 
zero-branch-length polytomies in the species tree. However, 
instead of exploring that option, we incorporated intraspe-
cific data by performing form–function multivariate regres-
sions using a recently developed method, the extended-PGLS 
(E-PGLS; Adams & Collyer, 2024). A strength of E-PGLS is 
to compare within-species patterns (e.g., allometry) across 
species while taking phylogenetic independence into account 
(Adams & Collyer, 2024). That said, we could not harness 
the full power of E-PGLS with our dataset, because—with 
the exception of H. cinerea—our within-species sampling was 
low for most species (one to seven individuals). Therefore, 
given the high sample size needed to accurately estimate vari-
ances (Wolter, 2007), the estimation of intraspecific variance 
for performance variables using E-PGLS may be unreliable in 
our case. Thus, we compare mvMORPH and E-PGLS results 
with caution. Details are given in Supplementary Material.

As a specific form–function hypothesis, we predicted 
that leg length would contribute more to both swimming 
and jumping compared to leg muscle mass (Moen, 2019; 
Nauwelaerts et al., 2005), given the importance of climbing 
for arboreal species in general and the negative effect that 
heavy muscle tissue can have on performance of this behavior. 
We also expected foot area to contribute to swimming but not 
necessarily jumping (Richards, 2010; Richards & Clemente, 
2013).
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Results
Repeatability of and correlations between 
performance variables in H. cinerea
Repeatability was higher for jumping performance (velocity: 
0.49, acceleration: 0.36) than for swimming performance 
(velocity: 0.28, acceleration: 0.27), indicating substan-
tial within-individual variation across high-performance  
trials for both behaviors (consistent with repeatabilities 
in other lab-measured behaviors; Bell et al., 2009). When 
accounting for within-individual variation to estimate 
performance correlations, we found positive correlations 
between jumping and swimming for velocity and accelera-
tion, although only the correlation for velocity had a 95% 
CI that was mostly positive (Table 1, Figures S1–S3). The 
very wide 95% CI for the correlation for acceleration was 
related to the high variation of between-individual vari-
ance estimates for both swimming and jumping. We found 
similar results when analyzing only peak performance, 
in which only the correlation for velocity was significant 
(Table S1).

Relationships of hindlimb traits with jumping and 
swimming performance in H. cinerea
We found significant form–function relationships for only 
swimming performance across individuals of H. cinerea 
(Table 2). These results matched our expectation of a higher 
contribution of leg length to performance, but only for swim-
ming and in the opposite direction. The partial regression 
coefficient for leg length was significantly negative for swim-
ming velocity and of a higher absolute value than leg mus-
cle mass for swimming acceleration (Table 2). Yet, foot area 
was not important for swimming performance, in contrast to 
our predictions. Results were very similar when using only 
peak individual performance and OLS multivariate regres-
sion (Table S2). The morphological predictors collectively 
explained 10% of the variance in peak swimming velocity 
and 17% of the variance in peak swimming acceleration. 

Overall, whereas most H. cinerea individuals performed 
similarly for jumping (Figure 2A and C), they differed more 
distinctly in swimming performance (Figure 2B and D). The 
fastest swimmers tended to have more leg muscle mass and 
shorter leg lengths for their body size compared to slower 
swimmers (Figure 2B).

Interspecific performance correlations between 
jumping and swimming performance
We found positive significant correlations between jumping 
and swimming performance for both peak velocity and peak 
acceleration, at both levels of interspecific analyses—within 
the family Hylidae and across all arboreal species (includ-
ing Hylidae; Table 3). Some correlations were also positive 
and significant between maximum velocity and acceleration 
within each behavior, especially when analyzing all arboreal 
species. Yet in these cases, values were lower than correlations 
within performance type (e.g., velocity) across behaviors.

Relationships of hindlimb traits with jumping and 
swimming performance across species
Contrasting with the intraspecific analysis, we found several 
significant relationships between hindlimb morphology and 
both jumping and swimming performance across all arbo-
real species (Table 4). More variation in peak velocity was 
explained by the hindlimb traits (58% for both jumping and 
swimming) than variation in peak acceleration (45% for 
jumping and 29% for swimming; Figure S4).

Table 1. Variances and covariances for the four performance variables 
were obtained with the multivariate Bayesian regression model.

Variances Between-ind Within-ind

Swimming velocity 0.33 (0.14, 0.58) 0.66 (0.51, 0.83)

Jumping velocity 0.73 (0.33, 1.16) 0.48 (0.39, 0.59)

Swimming acceleration 0.21 (0.05, 0.40) 0.80 (0.63, 1.00)

Jumping acceleration 0.55 (0.34, 1.10) 0.56 (0.44, 0.70)

Jumping-swimming 
relationships

Covariance Correlation

Velocity 0.14 (−0.02, 0.38) 0.60 (−0.04, 0.97)

Acceleration 0.05 (−0.08, 0.23) 0.29 (−0.66, 0.97)

Note. We used repeated measurements of peak swimming and jumping 
velocity and acceleration for individuals of Hyla cinerea across trials as 
the response variables. ID was modeled as a random factor nested within 
performance type (i.e., jumping or swimming), and thus covariances and 
correlations between jumping and swimming performance are only between 
individuals. The table shows the partition of variance in between-individual 
and within-individual variation, and their associated 95% credible intervals 
(95% CI). The between-individual covariances and correlations between 
jumping and swimming variables are shown at the end of the table. In italics 
are estimates of covariance or correlation whose 95% CI included negative 
values but whose negative bounds were close to zero.

Table 2. Partial regression coefficients of the four performance variables 
regressed on SVL and hindlimb traits using the multivariate Bayesian 
model.

Swimming velocity Mean (95% CI) Eff. sample

SVL 0.66 (0.11, 1.33) 1,835

Leg length −0.99 (−1,72, −0.30) 1,800

Leg muscle mass 0.23 (−0.13, 0.57) 1,800

Foot area −0.02 (−0.44, 0.32) 1,800

Jumping velocity

SVL 0.12 (−0.57, 0.82) 1,800

Leg length −0.24 (−1.12, 0.55) 1,800

Leg muscle mass 0.22 (−0.24, 0.67) 1,800

Foot area −0.04 (−0.57, 0.40) 1,800

Swimming acceleration Mean (95% CI) Eff. sample

SVL 0.31 (−0.28, 0.84) 1,728

Leg length −0.86 (−1.48, −0.15) 1,800

Leg muscle mass 0.45 (0.11, 0.79) 1,800

Foot area −0.08 (−0.45, 0.26) 1,800

Jumping acceleration

SVL −0.01 (−0.66, 0.66) 2,019

Leg length −0.27 (−1.08, 0.49) 1,979

Leg muscle mass 0.04 (−0.40, 0.44) 1,511

Foot area 0.02 (−0.39, 0.49) 1,920

Note. The model is the same as the one we used to estimate components of 
variance shown in Table 1, with the addition of SVL and hindlimb traits as 
fixed predictors for each performance type. The table shows the posterior 
means for the regression slopes and their associated 95% credibility 
intervals (95% CI). We also include the effective sample sizes of the 
posterior distribution for each parameter. Values in bold exclude zero from 
their associated 95% CI. SVL = snout-to-vent length.
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In accordance with both our specific predictions, leg length 
showed larger partial correlation coefficients than leg mus-
cle mass for all four performance variables for all arboreal 
species. Moreover, foot area showed a positive significant 
coefficient only for peak swimming velocity, in analyses of 
all arboreal species (Table 4). Species that jump faster have 
longer legs for their size, and species that swim faster have 

longer legs and bigger foot areas (Figure 3). Likewise, spe-
cies with higher peak jumping and swimming acceleration 
have longer legs, and also higher muscle mass for swimming 
acceleration only (Figure 4). However, when we restricted our 
analyses to the 15 hylid species, we found somewhat different 
results. In these analyses, leg muscle mass contributed more 
(than leg length) to swimming acceleration and to velocity in 

Figure 2. Relationships between locomotor performance and leg traits for Hyla cinerea. The 3D plots show the relationships of individual leg length 
and leg muscle mass with peak velocity (A and B) and peak acceleration (C and D), in jumping (A and C) and swimming (B and D). Note that analyses 
evaluated the effect of these variables while holding others (snout-to-vent length, foot area) constant. Moreover, the leg-length scale increases from 
upper left to lower right, whereas the leg muscle-mass scale increases from lower left to upper right. All axes are logged but presented in original units.
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both jumping and swimming, and foot area was not relevant 
for swimming velocity but had a negative effect on jumping 

acceleration (Table 4). Nonetheless, at both levels of analy-
ses (all arboreal and Hylidae), the directionality of effects—
given by the signs of the partial regression coefficients—were 
mostly the same for the same traits when comparing jumping 
and swimming performance (Table 4).

When analyzing our data using E-PGLS, we found that 
only leg length positively influenced performance, for both 
all arboreal and Hylidae species (Table S4). This result par-
tially agreed with the mvMORPH multivariate PGLS results 
described above. However, we suggest interpreting with cau-
tion the fewer significant effects of morphology on function 
with the E-PGLS. Previously developed but similar approaches 
(Adams, 2014; Adams & Collyer, 2018) exhibit lower statis-
tical power than the penalized likelihood framework adopted 
in the multivariate PGLS in mvMORPH, particularly when 
among trait correlations are high (Clavel & Morlon, 2020). 
This reduced power, however, may depend on which infer-
ential framework you use with E-PGLS (e.g., multivariate 
analysis of variance [MANOVA] statistics that account for 
trait covariances, which are only possible with many obser-
vations and few trait dimensions, may outperform analysis 
of variance [ANOVA] statistics that do not account for trait 
covariances). Moreover, our dataset had very few species with 
large intraspecific sample sizes. Thus, we expect that the intra-
specific variances may be not well estimated with E-PGLS in 
our case and so we emphasize the mvMORPH PGLS results.

Magnitude of divergence in performance and 
similarity of form–function relationships within H. 
cinerea and across species
The magnitude of performance divergence was highly similar in 
hylid species (0.33, 95% CI = 0.16–0.53) and all arboreal species 
(0.30, 95% CI = 0.25–0.47), despite our expectation of higher 
total divergence across all arboreal species given the older age of 
their common ancestor. Regardless of potential differences in the 
amount of divergence, the partial regression coefficients found 
in both all arboreal species and within Hylidae do not match 
the pattern found in H. cinerea. The only trait that we found 
strongly related to swimming performance at all three scales 
was leg length. However, the effects of leg length were opposite 
within H. cinerea (Table 2) and across species (Table 4).

Discussion
Our results indicated a match between performance correla-
tions at intra- and interspecific levels for peak velocity, such 
that individuals of H. cinerea and arboreal species that jumped 
faster also swam faster (Tables 1 and 3). In contrast, we found 
a mismatch of form–function relationships across these two 
levels (Tables 2 and 4). This overall pattern suggests different 
processes may shape locomotor performance across scales, even 
within the same microhabitat (arboreal) for which we expected 
similar selective pressures on form and function. Generally, the 
mapping of form to function is expected to be similar at differ-
ent evolutionary levels (e.g., the same biomechanical principles 
apply at different levels; Emerson & Arnold, 1989). However, 
our finding of a mismatch across levels may indicate changes 
in interactions between traits and performance, resulting in 
changes in the performance and adaptive landscapes over evo-
lutionary time (e.g., Martin, 2016). Below we elaborate on the 
patterns found at each level in more detail, and we finish by 
discussing how performance and fitness landscapes may differ 
within populations and across species.

Table 3. Interspecific correlation matrices of performance variables for all 
arboreal species or just within Hylidae.

Jumping Jumping Swimming

velocity acceleration velocity

All species

Jumping 
acceleration

0.44 (0.07, 0.70)

Swimming 
velocity

0.79 (0.61, 0.90) 0.14 (−0.23, 0.49)

Swimming 
acceleration

0.47 (0.09, 0.71) 0.68 (0.43, 0.85) 0.43 (0.06, 0.70)

Hylidae

Jumping 
acceleration

0.52 (0.00, 0.82)

Swimming 
velocity

0.80 (0.51, 0.94) 0.54 (0.07, 0.83)

Swimming 
acceleration

0.34 (−0.16, 0.72) 0.71 (0.32, 0.90) 0.66 (0.25, 0.87)

Note. Performance correlations were estimated using species’ average 
values of peak performance variables assuming a BM model. Values 
are maximum-likelihood estimates, with 95% confidence intervals (CI) 
in parentheses obtained by parametric bootstrapping. We considered 
estimates statistically significant (in bold) when their 95% CI did not 
include zero. BM = Brownian Motion.

Table 4. Partial regression coefficients of four performance variables on 
SVL and hindlimb traits for all arboreal species and for only hylid species.

Peak swimming velocity All arboreal (n = 43) Hylids (n = 15)

SVL −1.59 (−2.5, −0.68) −2.79 (−4.35, −1.35)

Leg length 1.28 (0.25, 2.36) 2.58 (0.81, 4.38)

Leg muscle mass 0.13 (−0.40, 0.66) 2.21 (1.16, 3.28)

Foot area 0.81 (0.18, 1.42) −1.59 (−3.34, 0.17)

Peak jumping velocity

SVL −1.97 (−2.96, −1.12) −2.34 (−3.94, −0.93)

Leg length 2.20 (1.08, 3.28) 2.86 (0.92, 4.82)

Leg muscle mass 0.51 (−0.04, 1.08) 1.88 (0.74, 2.95)

Foot area −0.15 (−0.82, 0.46) −1.83 (−3.69, 0.01)

Peak swimming acceleration

SVL −2.52 (−3.88, −1.21) −1.80 (−3.70. 0.05)

Leg length 1.42 (0.04, 2,90) 1.50 (−0.76, 3.74)

Leg muscle mass 0.702 (−0.06, 1.45) 2.05 (0.77, 3.30)

Foot area 0.223 (−0.60, 1.12) −2.07 (−4.13, 0.13)

Peak jumping acceleration

SVL −2.47 (−3.53, −1.42) −2.57 (−4.19, −1.07)

Leg length 1.48 (0.30, 2.73) 2.28 (0.34, 4.35)

Leg muscle mass 0.84 (0.22, 1.49) 1.81 (−.67, 2.93)

Foot area −0.31 (−1.10, 0.41) −1.98 (−3.76, −0.03)

Note. We used multivariate PGLS to estimate parameters, assuming BM 
for the model residuals. We also variance-standardized the predictors. 
Table shows partial regression coefficients and their associated 95% 
confidence intervals (CI; lower and upper bounds), based on parametric 
bootstrapping. Estimates in bold were considered significant, as their 
95% CI excluded zero. BM = Brownian Motion; PGLS = phylogenetic 
generalized least-squares; SVL = snout-to-vent length.
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Form–function relationships are weak within 
species and contrast the positive correlation 
between swimming and jumping velocity
Within species, the positive correlation for swimming and jump-
ing velocity does not seem associated with similar effects of the 
same morphological traits on both behaviors (Figure 2). This 

may be partly due to the fact that the correlations themselves 
were not exceptionally high (Table 1), leaving room for different 
variables to drive performance in different behaviors. Moreover, 
the form–function relationships for H. cinerea individuals were 
weak in general, with variation in morphology explaining much 
less variation in performance than across species.

Figure 3. Relationships of locomotor velocity with snout-to-vent length (SVL) and leg traits for all arboreal species. The 3D plots show the relationships 
of species’ mean morphological traits with peak jumping (A and C) and swimming (B and D) velocity. Leg length showed a higher contribution to explain 
variation in performance variables than leg muscle mass, and foot area was only relevant for swimming velocity (Table 4). Note that plots A and B show 
that bigger species had higher velocity, which contrasts with the negative coefficients shown in Table 4. Yet, this visual discrepancy only reflects the 
positive correlation between SVL and leg length, whereas partial regression coefficients estimate the effects of single variables while holding others 
constant.
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In jumping performance, especially, most individuals per-
formed similarly independent of morphological variation 
(Figure 2), indicating that many body forms within species 
attain a similar level of performance. We see two key reasons 
that may explain the invariance of jumping performance to 
morphology. First, this pattern suggests that the hindlimb traits 
may be on a performance ridge (Arnold, 2003; also see Whibley 

et al., 2006, for an example of a fitness ridge), in which varia-
tion in morphology can exist without consequences for jump-
ing performance (Moen, 2019). Second, in contrast to a high 
role in fitness, jumping ability may not strongly contribute to 
individual fitness, at least in this population of H. cinerea.

On the other hand, individual differences in swimming 
ability may be under some selective pressure, given that we 

Figure 4. Relationships of locomotor acceleration with snout-to-vent length (SVL) and leg traits for all arboreal species. The 3D plots show the 
relationships of species’ mean morphological traits with peak jumping (A and C) and swimming acceleration (B and D). Again, leg length explained more 
variation in performance variables than did leg muscle mass. Foot area was not relevant for any behavior. As in Figure 3, note that each panel here only 
shows the relationship between two morphological variables and performance, whereas the phylogenetic generalized least-squares model considered 
all four variables at once (Table 4).
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found a significant relationship between leg length and swim-
ming performance. If we interpret performance gradients as 
part of the total selection on morphology (Arnold, 1983, 
2003), this result suggests that swimming ability may explain 
some of the differences in individual fitness in H. cinerea. For 
instance, selection may be acting to increase swimming veloc-
ity by reducing frictional drag produced by longer legs, hence 
favoring shorter legs (Peters et al., 1996; Richards, 2010).

Yet, our analysis does not exclude the possibility that simi-
lar kinematics of both behaviors across individuals drives the 
positive correlation between swimming and jumping veloc-
ity, independent of differences in morphology (e.g., Peters et 
al., 1996; Kamel et al., 1996). For instance, step-cycle pat-
terns in hopping and swimming are very similar, in that the 
limbs move in an asymmetrical gait pattern (i.e., forelimbs 
act together and hindlimbs also act together, but fore- and 
hindlimb movements are decoupled). Moreover, both behav-
iors include extended suspension (i.e., an extended period of 
time in the air for jumping and in the gliding phase for swim-
ming; Peters et al., 1996). Overall, the way that morphology 
maps onto performance across different functions within spe-
cies, and the ability of such form–function relationships (as 
opposed to kinematics) to produce performance correlations, 
has seldom been explored. However, such studies may pro-
vide insights into processes that shape intraspecific patterns 
(e.g., Holzman et al., 2022; Tan et al., 2024).

Form–function relationships are strong across 
species and congruent with the positive correlation 
between swimming and jumping performance
Contrasting with our intraspecific results, the effects of 
SVL and hindlimb traits were indeed similar on both jump-
ing and swimming performance for all arboreal species and 
within Hylidae (Table 4). Moreover, variation in morphol-
ogy explained a substantial amount of variation in perfor-
mance (29%–58% across analyses and response variables). 
Combined, these results suggest a mechanical basis for the 
concerted evolution of both behaviors over evolutionary 
time. This mechanical basis may have its origin in shared 
biomechanical principles for different species underlying 
performance in jumping and swimming. It may have also 
resulted from similar selective pressures on both behaviors 
across a broader range of species, leading to stronger form–
function relationships and similar effects of traits on perfor-
mance in different behaviors (Arnold, 2023; Arnold et al., 
2001; Felsenstein, 1988; Ghalambor et al., 2003). However, 
another important factor in the evolution of form–function 
relationships is the genetic correlations between traits, which 
may reflect functional and/or developmental constraints 
(Cheverud, 1984, 1996; Simon et al., 2025a; Simon & Moen, 
2023; Walker, 2007). Constraints may be shaped by shared 
development, such as conserved growth patterns shaping the 
evolution of hindlimbs in frogs (e.g., Simon et al., 2025a). 
Selection may also constrain evolutionary trajectories to 
enhance functional performance if functional interactions 
between traits are relevant to mean fitness (Cheverud, 1984; 
Jones et al., 2004, 2007, 2014; Pavlicev et al., 2011). Hence, 
form–function relationships may play a stronger role in pro-
ducing performance correlations at wider evolutionary scales 
than within species.

A positive evolutionary correlation between peak jump-
ing and swimming velocity has been previously shown for a 
broader range of frog species that differ in microhabitat, with 

the simultaneous optimization of these behaviors achieved by 
enhancing either relative leg length or leg muscle mass (Moen, 
2019; Moen et al., 2021a). The form–function relation-
ships that we found indeed indicate that bigger muscle mass 
increases both swimming and jumping performance (espe-
cially acceleration), yet leg length showed a stronger influence 
on performance in these behaviors, especially when analyzing 
all arboreal species (Table 4). Given that more (heavy) muscle 
tissue would increase body mass, likely a disadvantage for 
species that climb, Moen (2019) suggested that increasing leg 
length (rather than muscle mass) could enhance jumping per-
formance without disrupting climbing performance in arbo-
real species. By expanding the number of arboreal species in 
our analysis to 43 species, we showed here that this predic-
tion holds across a broad diversity of arboreal species.

However, while generally consistent, the effects of mor-
phology on performance differed somewhat for species in 
Hylidae. In particular, hylids showed stronger effects of leg 
muscle mass on swimming and jumping (Table 4). This result 
indicates that mechanical sensitivity can vary across different 
levels of evolutionary divergence, at least in terms of time, if 
not phenotypic diversity. Indeed, we expected more perfor-
mance divergence to have accumulated for all arboreal species, 
which evolved for a longer time than hylids, but we found the 
same magnitude of performance divergence in both groups. 
This could be due to differences in evolutionary dynamics. If 
the main process producing divergence across nonhylid arbo-
real species has been an Ornstein–Uhlenbeck (OU) process, a 
strong pull toward the optimum can lead to less divergence 
across those species than across hylids if the divergence in 
the latter group was mostly driven by BM (Hansen, 1997). 
To test this possibility, we compared models of performance 
evolution, including a model that shifts from OU to BM 
with the emergence of Hylidae. However, we found strong 
support for a multivariate BM model driving performance 
evolution across all taxa (see Table S5). Regardless, diver-
gence in mechanical sensitivity can be an important factor in 
determining functional diversity, given that traits with stron-
ger effects on performance tend to evolve faster (Anderson 
& Patek, 2015; Holzman et al., 2012; Muñoz et al., 2017, 
2018). However, differences across clades in mechanical sen-
sitivity do not necessarily result in divergence in performance 
or in correlations among types of performance, as we have 
shown here.

Why do form–function relationships within species 
not match those across species?
A key finding of this study is that form–function relationships 
do not match between H. cinerea and across species within 
Hylidae or across all arboreal species. This suggests that the 
evolutionary processes acting on the mapping of morphology 
to performance within species differ from those acting across 
species. For instance, intraspecific competition for resources 
or mates, which depends on the frequencies of different 
individual phenotypes, is likely very important for shaping 
form–function relationships within populations. In contrast, 
functional constraints and trade-offs associated with different 
ecological niches may be more relevant to shaping differences 
across species in form–function relationships (Martin, 2016). 
Accordingly, the interspecific form–function relationships 
may have differed from intraspecific relationships because 
interspecific ecological variation is much higher than within 
populations of a single species. While we focused on arboreal 
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species to reduce ecological variation, these species still vary 
in the substrates they inhabit, varying from tall grasses to 
shrubs to tree canopies (see Table S3). In other words, the 
coarseness of a single microhabitat term like “arboreal” may 
hide variation in selective pressures across species.

Therefore, such ecological variation may underlie variation 
in the relevance of some behaviors for fitness, such as swim-
ming and/or jumping, relative to others, like climbing. Some 
arboreal species may not perform well in swimming but may 
show high performance in climbing (e.g., canopy specialists 
that breed outside of water; Herrel et al., 2013). In contrast, 
other arboreal species may swim well, especially if they breed 
in water, but do not climb very well. These differences in the 
relative importance of distinct behaviors for fitness across spe-
cies may indicate different strengths of functional constraints 
(i.e., how much traits interact with each other to execute a 
function) and trade-offs (i.e., how much optimizing one func-
tion versus another influences fitness), which may drive vari-
ation in form–function relationships (Bergmann & McElroy, 
2014; Garland et al., 2022; Ghalambor et al., 2003; Holzman 
et al., 2011; Wainwright, 2007; Walker, 2007). However, 
other interspecific factors beyond functional optimization 
may have also contributed to variation in form and function, 
such as phylogenetic constraints or other unmeasured fac-
tors (Hansen & Bartoszek, 2012; Polly et al., 2016; Simon & 
Moen, 2023). In particular, the evolution of trait correlations 
in frog hindlimbs seems driven by developmental constraints 
related to allometric growth that act as evolutionary lines of 
least resistance, channeling most divergence across species to 
size variation while also influencing the evolution of jumping 
performance (Simon et al., 2025a).

One potentially interesting consequence of changes in 
the strength of functional constraints and trade-offs over 
evolutionary time is that the variation in form–function 
relationships across species may result in traits that affect per-
formance in one of the behaviors more strongly than in others 
(i.e., higher mechanical sensitivity). For instance, given that 
foot area only affects swimming velocity and not jumping 
velocity, swimming performance could be optimized by selec-
tion favoring larger foot areas, more so in species that breed 
in water, without having any effect on jumping velocity. While 
the relationship between mechanical sensitivity and rates 
of evolution has been explored to some degree (Anderson 
& Patek, 2015; Holzman et al., 2012; Muñoz et al., 2017, 
2018), understanding why such differential sensitivity arises 
in the first place is less clear. We suggest that differences in the 
relative contributions of different functions to fitness across 
environments, resulting in changes in the relative strengths of 
functional constraints and trade-offs (Simon & Moen, 2023), 
may be an important driver of differential mechanical sensi-
tivity at the macroevolutionary scale.

An important caveat of our study is that our intraspecific 
analyses considered individuals from only a single population. 
Such a sampling design makes interpretation of our results 
across scales more difficult. Ideally, one would study form–
function relationships in multiple populations, given that the 
balance of selective forces on performance may change in 
different environmental conditions (Ghalambor et al., 2003) 
and therefore could reflect differences in environments across 
species. For example, Taverne et al. (2021) found a match of 
form–function relationships across 16 populations of 2 spe-
cies of Podarcis lizards. In this case, the ecological differences 
in diet within species were also mirrored across species. Yet, 

the differences in diet were related to the differential avail-
ability of food on islands on which the lizards occur (Taverne 
et al., 2021). Given that the ecology of H. cinerea seems simi-
lar across its distributional range (Dodd, 2023), this scenario 
may be unlikely for our study system. Future work that ana-
lyzes multiple populations of H. cinerea would be able to 
address this issue.

Despite this caveat, most intraspecific studies on form–
function relationships in frogs do not show strong effects of 
morphology on performance (but see Araspin et al., 2023), 
especially size and jumping (e.g., James et al., 2007; Wilson 
et al., 2000), which is also the case for hindlimb length and 
various jumping variables in anole lizards (Toro et al., 2003). 
An explanation for these weak form–function relationships 
found within populations is that performance may be under 
stabilizing selection, instead of directional selection. The lat-
ter seems more relevant for the evolution of average pheno-
types for form and function at the macroevolutionary scale 
(e.g., Moen, 2019; Simon et al., 2025a). In the case of stabiliz-
ing selection, the relevant measure of such nonlinear selection 
would be performance surfaces and quadratic performance 
gradients using nonlinear regressions of form on function 
(Arnold, 2003). Yet, estimation of empirical performance sur-
faces is rarely done (but see Simon et al., 2019 for an exam-
ple). Moreover, the sample sizes needed to properly estimate 
multiple quadratic gradients may be quite large (Simon et al., 
2022), precluding an analysis of multivariate stabilizing selec-
tion on function across several species.

Conclusion
We conclude that a match of form–function relationships 
across evolutionary levels likely depends on the similarity of 
the contributions of each specific behavior to fitness within 
and between species, even if they belong to the same broad 
microhabitat category (i.e., arboreal). We found that the same 
traits can show different effects on jumping and swimming 
performance at different scales, differences that may have 
evolved because of changes in the strengths of functional 
constraints and trade-offs across a broader diversity of arbo-
real frogs. This change in the balance of selective forces over 
evolutionary time indicates that the dynamics of performance 
landscapes within populations may be quite different from 
the dynamics of a macroevolutionary performance landscape.
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