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ABSTRACT
Hierarchical time-series forecasting (HTSF) is an important prob-
lem for many real-world business applications where the goal is
to simultaneously forecast multiple time-series that are related to
each other via a hierarchical relation. Recent works, however, do
not address two important challenges that are typically observed
in many demand forecasting applications at large companies. First,
many time-series at lower levels of the hierarchy have high sparsity
i.e., they have a signi!cant number of zeros. Most HTSF methods
do not address this varying sparsity across the hierarchy. Further,
they do not scale well to the large size of the real-world hierarchy
typically unseen in benchmarks used in literature. We resolve both
these challenges by proposing HAILS, a novel probabilistic hier-
archical model that enables accurate and calibrated probabilistic
forecasts across the hierarchy by adaptively modeling sparse and
dense time-series with di"erent distributional assumptions and
reconciling them to adhere to hierarchical constraints. We show
the scalability and e"ectiveness of our methods by evaluating them
against real-world demand forecasting datasets. We deploy HAILS
at a large chemical manufacturing company for a product demand
forecasting application with over ten thousand products and ob-
serve a signi!cant 8.5% improvement in forecast accuracy and 23%
better improvement for sparse time-series. The enhanced accuracy
and scalability make HAILS a valuable tool for improved business
planning and customer experience.
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1 INTRODUCTION
Hierarchical time-series forecasting is a problem that profoundly in-
#uences decision-making across various domains. These time-series
data possess inherent hierarchical relationships and structures [1, 9].
Instances of such situations include predicting employment trends
[23] across diverse geographical scales, forecasting the spread of
epidemics [20], etc. When dealing with time-series datasets that
exhibit underlying hierarchical dependencies, the objective of hier-
archical time-series forecasting is to generate precise forecasts for
all individual time-series while capitalizing on the hierarchical inter-
connections among them [8]. For instance, at a large manufacturing
company, forecasting demand at various levels of aggregation is im-
portant [3]. Forecasts at a middle level of the business hierarchy are
important for procuring raw materials and determining the amount
of intermediate materials (or product families) to produce in the
medium-term. Near-term forecasts at lower levels of the hierarchy
relate more to speci!c products and even package sizes that are
needed. Additionally, companies do not forecast based solely using
historical data but include external variables (such as macroeco-
nomic forecasts which incorporate reasonable assumptions about
the future) to improve demand forecasts.

Previous forecasting methods have not typically placed an em-
phasis on providing well-calibrated probabilistic forecasts that
model uncertainty. Instead, traditional methods have primarily
concentrated on providing single-point predictions. In contrast,
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recent post-processing techniques [2, 23, 26] re!ne forecast distri-
butions generated by independent base models as a preprocessing
step. These post-processing methods o"er the advantage of being
readily applicable to forecasts generated by various models and
are usually simple to implement and tractable even for large-scale
datasets with thousands of time-series in the hierarchy. However,
they fall short in enabling the base forecasting models to grasp the
intricate hierarchical relationships among time-series data within
the hierarchy.

In contrast, end-to-end learning neural methods have taken a
more direct approach by incorporating hierarchical relationships
as an integral part of either the model architecture [19] or learning
algorithm [6]. These comprehensive end-to-end approaches tend
to surpass post-processing methods by imposing hierarchical con-
straints on forecast distribution parameters, such as the mean or
!xed quantiles. Most end-to-end methods do not consistently en-
force hierarchical coherence across the entirety of the distribution.
Some recent methods [6] do impose some distributional constraints
such as across speci!c quantiles. P!"#H$T [13] is capable of gener-
ating well-calibrated forecasts by imposing hierarchical constraints
on the forecast distributions. Further, large scale industrial demand
time-series exhibit a range of distributional behavior across the
hierarchy [24]. Importantly, many time-series corresponding to
individual products for speci!c customers at lower levels have high
sparsity due to infrequent demand [10, 18]. This can be attributed
to various factors, such as the seasonality, novelty, or niche appeal
of products at these levels. However, time-series at higher levels
show much less sparsity being an aggregation of multiple time-
series at lower levels. Post-processingmethods, due to their inability
to transfer information across base forecasts cannot capture this
wide range of behavior and overcome this just by reconciliation at
post-processing. These methods are not designed to model time-
series of di"erent sparsity simultaneously and also provide subpar
performance.

Motivated by a real-world use-case at a large scale chemical
company, we propose HAILS (Hierarchical forecasting with Adap-
tation for Industrial and Large Sparse time-series), a novel hier-
archical forecasting framework that is both scalable and capable
of generating well-calibrated forecasts with precise uncertainty
measurements. We overcome this challenge by proposing to model
the lower-level forecasts and higher-level forecasts using appropri-
ate distributions. At levels of the hierarchy that have a mixture of
both distributions, we use distributional approximations to have
uniform distributions across subtree when reconciling the forecasts.
To accomplish this, we propose a novel loss function that enables
the model to adapt to sparse time-series data at lower levels of the
hierarchy while being able to reconcile with denser time-series at
higher levels. We summarize our contributions as follows:

• E!cient Large Scale Probabilistic Hierarchical Fore-
casting: We propose a novel hierarchical forecasting frame-
work that is both scalable and capable of generating well-
calibrated forecasts with reliable uncertainty measurements
for large industrial time-series.

• Adaptation to Time-series of di"erent levels of spar-
sity: We propose modelling the lower level forecasts and
higher level forecasts using di"erent distributions based on

historical sparsity and propose a novel framework to recon-
cile them.

• State-of-art performance on large datasets: We demon-
strate the e"ectiveness of our proposed method on large-
scale demand datasets with thousands of time-series in the
hierarchy. We evaluate on a public dataset as well as a propri-
etary dataset from a large chemical manufacturing company.
We show that our method outperforms the state-of-art meth-
ods across most levels of the hierarchy both in terms of
accuracy of point forecasts and probabilistic forecasts. We
perform a detailed case study to demonstrate the impact of
our proposed method on a real-world application at a large
chemical company.

2 RELATEDWORKS
Classical methods in hierarchical time-series forecasting tradition-
ally employed a two-phase method, concentrating on point pre-
dictions [8, 9]. These methods predicted time-series at a singular
hierarchy level, then extrapolated forecasts to other levels using
hierarchical relationships. Recent techniques, such as M$%T and
ERM, act as post-processing procedures, re!ning forecasts across all
hierarchy levels.M$%T [25, 26] operates under the assumption that
baseline forecasts are independent and unbiased, aiming to mini-
mize forecast error variance from historical data. ERM [2] modi!es
this by not assuming unbiased forecasts.

Recent neural network approaches o"er more end-to-end learn-
ing of patterns of individual time-series as well as hierarchical
relations across time-series. Rangapuram et al. [19] adopt a strategy
of projecting the forecasts into a subspace of reconciled forecasts
via a di"erentiable operation and optimize the loss on the projected
forecasts. SHARQ [6] represents another novel deep-learning prob-
abilistic method that employs quantile regression and regularizes
consistency across various forecast distribution quantiles. P!"#H$T
[13] imposes hierarchical constraints on the forecast distributions
by minimizing distributional distance between the parent forecast
and the sum of the child forecasts. However, none of the methods
are designed to adapt to sparse time-series and therefore perform
sub-optimally on real-world industrial demand time-series.

3 PROBLEM STATEMENT
We denote the dataset D of 𝐿 time-series over the time horizon
1, 2, . . . ,𝑀 . Let y𝐿 ↑ R𝑀 be time-series 𝑁 and 𝑂 (𝑁 )𝐿 its value at time
𝑃 . The hierarchical relations across time-series is denote as T =
(𝑄T ,𝑅T) where 𝑄T is a tree of 𝐿 nodes rooted at time-series 1
(time-series 1 is the aggregate of all leaf time-series). Consider a non-
leaf node (time-series) 𝑁 with children C𝐿 . The hierarchical relations
are of the form 𝑅T = {y𝐿 =

∑
𝑂↑C𝐿 𝑆𝐿 𝑂y𝑂 : ↓𝑁 ↑ {1, 2, . . . ,𝐿 }, |C𝐿 | >

0} where values of 𝑆𝐿 𝑂 are constant and known.
Our problem can be formulated as follows: Given a dataset D

with underlying hierarchical relations𝑅T , we learn a model𝑇 that
provides accurate probabilistic forecast distributions
{𝑈𝑃 (𝑂 (𝑁+1)1 |D𝑁 ), . . . 𝑈𝑃 (𝑂 (𝑁+𝑄 )𝑅 |D𝑁 )} across all levels of the hierar-
chy where 𝑉 is the forecast horizon.
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Figure 1: Overview of pipeline of HAILS. (a) The lower levels of the hierarchy tend to have sparse (red) time-series while the
higher levels have denser (blue) time-series. (b) HAILS #rst generates forecasts for each of the time-series of hierarchy with
their parametric form depending on the sparsity of the time-series. The denser time-series forecasts are modeled as Gaussians
and sparser ones as Poisson. (c) The distributions are reconciled via a distribution consistency loss for each subtree. If the
subtree has all distribution same the appropriate loss is applied. In case of mixed subtrees, Poisson distribution of children are
#rst approximated as Gaussian.

4 METHODOLOGY
Most hierarchical forecasting models struggle to adapt to large
hierarchies found in real-world industrial applications both in terms
of e"ectiveness and e$ciency in learning from tens of thousands
of time-series as well as adapting to sparse time-series at the lower
levels of the hierarchy. HAILS overcomes these challenges in two
ways. First, we make architectural design choices to enable more
e$cient in learning from larger hierarchies as well as support sparse
time-series. Second, we develop optimization methods to allow for
learning accurate and consistent forecasts both for sparse and dense
forecasts at di"erent levels of the hierarchy. We !rst provide a brief
overview of P!"#H$T, state-of-art hierarchical forecasting model
and then discuss in detail our innovations to enable dealing with
these challenges.

4.1 Probabilistic Hierarchical Forecasting
P!"#H$T [13] is a state of the art probabilistic forecasting model
that. It optimizes the full distribution of forecasts of the hierarchy to
be both accurate and consistent with the hierarchical constraints. It
!rst produces base forecasts for each node of the hierarchy indepen-
dently via a di"erentiable neural model. The authors of P!"#H$T
chose to use CaMuL [12], a state of the art neural probabilistic
forecasting model to produce the base forecasts parameterized by
normal distribution {(𝑊𝐿 ,𝑋𝐿 )}𝑅𝐿=1. The base forecast parameters are
used as prior distribution parameters to generate re!ned distribu-
tion that leverage inter-series relations and hierarchical constraints
to produce the re!ned parameters {(𝑊𝐿 ,𝑋𝐿 )}𝑅𝐿=1. This is achieved
by the Hierarchy-aware Re!nement Module and the whole model is

trained on both the Log-likelihood loss for accuracy and Soft Dis-
tributional Consistency Regularization (SDCR) for Distributional
Consistency by minimizing the Distributional Consistency Error
de!ned as follows:

D&#$%$’$"% 1. (Distributional Consistency Error) [13] Given the
forecasts at time 𝑃 + 𝑉 as {𝑈𝑃 (𝑂 (𝑁+𝑄 )1 |D𝑁 ), . . . 𝑈𝑃 (𝑂 (𝑁+𝑄 )𝑅 |D𝑁 )} dis-
tributional consistency error (DCE) is de!ned as

∑
𝐿↑{1,...,𝑅 },C𝐿ω↔

𝑌𝑁𝑍𝑃
#$
%
𝑈𝑃 (𝑂 (𝑁+𝑄 )𝐿 |D𝑁 ), 𝑈𝑃 (

∑
𝑂↑C𝐿

𝑆𝐿, 𝑂𝑂
(𝑁+𝑄 )
𝑂 |D𝑁 )&'

(
(1)

where 𝑌𝑁𝑍𝑃 is a distributional distance metric.

The !nal forecasts {𝑎 (𝑂 (𝑁+𝑄 )𝐿 |D𝑁 )}𝑅𝐿=1 are thus optimized to be
accurate and distributionally consistent across the hierarchy.

4.2 HAILS: Forecasting for large hierarchies
with sparse time-series

HAILS models sparse and dense time-series using appropriate dis-
tributions when forecasting. A key challenge which we overcome in
the process is to enable learning consistent forecasts in cases where
parts of the hierarchy have both sparse and dense time-series. To en-
able this feature, HAILS proposes important architectural changes
to P!"#H$T and a novel loss: Distributional consistency regulariza-
tion with Sparse adaptation. We describe the various modules of
HAILS as follows.
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4.2.1 Testing for Poisson Distribution. We !rst determine whether
we should model a given node of the hierarchy as a sparse time-
series. We use the Poisson distribution to model the time-series
if it is deemed sparse since we can model the high probability of
observing zeros. Therefore, to systematically classify the data from
a given node of the hierarchy as sparse, we use the Poisson dispersion
test on samples from training data of the time-series. Intuitively, the
dispersion test tests if the mean and variance of the data samples are
similar. We observe that using a 𝑈 value threshold of 0.1 is a good
measure to classify nodes as sparse or dense. We also make sure that
the parents of a node classi!ed as dense are automatically dense.
We observe this to be always true for our benchmark datasets. But,
in case it does not hold, we explicitly classify the parents as dense.
Notationally, we denote all nodes in {1, . . . ,𝐿 } that are classi!ed
as sparse as S.

4.2.2 Base forecasting model. The requirements for choosing a
base forecasting model are based on the application’s speci!c needs.
P!"#H$T uses CaMuL [11, 12] due to its superior performance in
terms of accuracy and uncertainty quanti!cation. However, it makes
deploying to large industrial hierarchies infeasible. First, CaMuL is a
stochastic model [16] that leverages multiple sampling components
that makes stable training a hard technical challenge when scaling it
to train tens of thousands of time-series independently. Secondly, it
requires signi!cant amount of historical data that it uses as reference
points to map similar patterns from historical data to current input
time-series for uncertainty quanti!cation. Along with the challenge
of the high compute requirement of storing and embedding these
historical time-series, in many real-world applications we do not
have su$cient historical data to learn reliably. Finally, CaMuL is not
designed to model sparse predictions and instead parameterized
the output as a Gaussian. Instead, we chose a simpler model: a
Gated Recurrent Unit (GRU) neural network, a widely adopted
recurrent deep learning model. Depending on the nature of the
node, the base forecasts output the forecast parameter. For a node
𝑁 ε S classi!ed as dense, it outputs two parameters of the normal
distribution: (𝑊𝐿 , exp(𝑋𝐿 )). For any node 𝑏 ↑ S classi!ed as sparse,
it simply outputs only the Poisson mean parameter: 𝑐 𝑂 = 𝑊 𝑂 .

4.2.3 Hierarchy-aware Refinement Module. This module uses the
base forecasts from RNNs and re!ned them to 1) leverage infor-
mation of the time-series across the hierarchy 2) enables them
to be distributionally consistent by training on the SDCR. Let
𝑊 = [𝑊1 . . . , 𝑊𝑅 ] be a vector of means of base distributions for all
nodes. 𝑊𝐿 is the weighted sum of 𝑊𝐿 and base mean of all time-series:

𝑑𝐿 = sigmoid(𝑒̂𝐿 ), 𝑊𝐿 = 𝑑𝐿𝑊𝐿 + (1 ↗ 𝑑𝐿 )w𝑀
𝐿 𝑊 (2)

where {𝑒̂𝐿 }𝑅𝐿=1 and {w𝐿 }𝐿=1:𝑅 are parameters of the model and
sigmoid(·) denotes the sigmoid function. 𝑑 intuitively denotes the
tradeo" between relying on the base mean and information from
rest of the distribution. Let 𝑋 = {𝑋𝐿 |𝑁 ε S} be a vector of variances
for dense nodes’ base forecasts. The variance parameter 𝑋̂𝐿 of the
re!ned distribution is derived from the base distribution parameters

𝑋̂𝐿 = 𝑓𝑋𝐿sigmoid(v𝑀1𝐿𝑊 + v𝑀2𝐿𝑋 + 𝑔𝐿 ) (3)

where {v1𝐿 }𝑅𝐿=1, {v2𝐿 }𝑅𝐿=1 and {𝑔𝐿 }𝑅𝐿=1 are parameters and 𝑓 is a
positive constant hyperparameter.

4.2.4 So!Distributional Consistency Regularization. P!"#H$T learns
to generate forecasts that are distributionally consistent by intro-
ducing SDCR. It forces the model to minimize the Distributional
Consistency Error across the forecasts of the hierarchy leading to
the aggregated forecasts of the children being similar to the parent
forecast. However, SDCR only deals with dense time-series since it
models them as Gaussians. Moreover. it cannot deal with di"erent
types of distributions across the hierarchy. Therefore, SDCR can-
not be directly applied to hierarchies that have sparse time-series
(S ω ω). HAILS introduces Distributional Consistency Regulariza-
tion with Sparse adaptation (DCRS) that allows for hierarchies with
varying time-series sparsities to provide distributional consistency.
DCRS applies di"erent consistency losses across the subtrees of
the hierarchies based on the the sparsity of the parents and chil-
dren. We speci!cally look at three cases that are observed in the
hierarchies:
Dense Parent-Dense Children: If the parent node as well as children
nodes are dense, we use the same distributional consistency loss as
P!"#H$T: we model the parent and children forecast distributions
as gaussians and compute the Jenson-Shannon divergence:

L(𝐿 )
𝑆𝑇𝑈𝑉 = 𝑕𝑖𝑌 (N (𝑊𝐿 , 𝑋̂𝐿 ) |N #$

%
∑
𝑂↑𝑇𝐿

𝑆𝐿 𝑂 𝑊 𝑂 ,
√∑

𝑂↑𝑇𝐿

𝑆2𝐿 𝑂 𝑋̂
2
𝑂
&'
(
) =

𝑅∑
𝐿=1

𝑋̂2𝐿 +
(
𝑊𝐿 ↗

∑
𝑂↑𝑇𝐿

𝑆𝐿 𝑂 𝑊 𝑂
)2

4
∑

𝑂↑𝑇𝐿
𝑆2𝐿 𝑂 𝑋̂

2
𝑂

+
𝑅∑
𝐿=1

∑
𝑂↑𝑇𝐿

𝑆2𝐿 𝑂 𝑋̂
2
𝑂 +

(
𝑊𝐿 ↗

∑
𝑂↑𝑇𝐿

𝑆𝐿 𝑂 𝑊 𝑂
)2

4𝑋̂2𝐿
(4)

Sparse Parent- Sparse Children: To calculate the distributional con-
sistency error of sparse time-series at lower levels of the hierarchy
we note that we assume the forecasts are Poisson distributions. The
JSD between two Poissons has a closed form solution:

L(𝐿 )
𝑆𝑇𝑈𝑉 = 𝑕𝑖𝑌

#$
%
𝑐𝐿 |

∑
𝑂↑𝑇𝐿

𝑐 𝑂
&'
(
= 𝑐𝐿 log

(
𝑐1∑

𝑂↑𝑇𝐿
𝑐 𝑂

)

+
∑
𝑂↑𝑇𝐿

𝑐 𝑂 log
(∑

𝑂↑𝑇𝐿
𝑐 𝑂

𝑐𝐿

)
.

(5)

Mixed Subtrees: Now we examine the case where the parent is a
dense node but some or all of her children are sparse. We note that
as we go further up the hierarchy, sparsity of time-series decreases.
Therefore, the sparsity assumption on these nodes gets weaker.
We therefore propose to approximate the sparse forecasts of these
time-series as Gaussian distributions and apply Eq. 4 to optimize
for distributional consistency. We perform the approximation lever-
aging the central limit theorem as follows:

T(&"!&) 1. Let 𝑗1,𝑗2, . . . ,𝑗𝑅 be 𝐿 independent Poisson ran-
dom variables with parameters 𝑐1, 𝑐2, . . . , 𝑐𝑅 . Then denote 𝑘 as 𝑘 =∑𝑅
𝐿=1 𝑗𝐿 . Then 𝑘 is a Poisson variable with parameter 𝑐𝑊 =

∑
𝐿=1 𝑐𝐿 .

Then for su"ciently large 𝑐𝑊 , 𝑘 can be approximated by a Gaussian
distribution 𝑘̃ = N(𝑐,

↘
𝑐) [15].

Therefore, all the children time-series forecasts of sparse node 𝑏
of form 𝑐 𝑂 are converted to normal distribution N(𝑐 𝑂 ,

↘
𝑐). Then,

once all the forecast distributions are modeled as Normal distribu-
tions, we apply Eq. 4.
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Figure 2: For homogeneous subtrees of Normal and Poisson distribution (a,c), JSD divergence loss is applied directly. In case of
heterogeneous subtrees (b), Poisson distributions are #rst approximated as gaussians and then JSD is applied across resultant
gaussians.

We summarize the three cases of performing distributional con-
sistency in Figure 2. The total DCRS loss is denoted as:

L𝑆𝑇𝑈𝑉 =
∑

𝐿: |𝑇𝐿 |>0
L(𝐿 )
𝑆𝑇𝑈𝑉 (6)

4.2.5 Other Training details. Likelihood loss. Similar to P!"#H$T,
we use a Log-likelihood loss along with the Distributional co-
herency loss over all the nodes of the hierarchy. The log-likelihood
loss L𝑋𝑋 is trained on the re!ned parameters of the forecast dis-
tribution and summed across all nodes. The total loss is L =
L𝑋𝑋 + 𝑑L𝑆𝑇𝑈𝑉 where the hyperparameter 𝑑 dictates the relative
importance of the importance of DCRS loss.
Pre-train base RNN models: Pre-training the weights of some of
the layers of a neural model to improve the overall e$ciency and
convergence of a model is a well-known e"ective technique [7].
We therefore, !rst train the only RNN modules for each node inde-
pendently for point forecasting for small (about 50) epochs before
we train all the modules of HAILS for hierarchical probabilistic
forecasting.
Hyperparameters We use a bidirectional GRU with 60 hidden units
for all nodes of the time-series. For each node we use a 80-20 train
validation split to tune the hyperparameters. For training we use
batch size of 32 and learning rate of 0.001. We use early stopping
to determine number of epochs to train. We observed that HAILS
usually converges within 200 epochs for both datasets.
Data Preprocessing We !rst normalize the data as follows: For each
non-leaf time-series we divide the time-series value by number
of children. Then we use the weights 𝑆𝐿 𝑂 = 1

|𝑇𝐿 | for hierarchical
relations. This is so that the higher levels of the hierarchy do not
hoave very large values as inputs ot the model to enable stable
training.

5 EXPERIMENTS
5.1 Setup
We evaluate HAILS against top hierarchical forecasting baselines
on two large hierarchical demand forecasting benchmarks. We

evaluated all models on a system with Intel 64-core Xeon Pro-
cessor with 128 GB memory and Nvidia Tesla V100 GPU with 32
GB VRAM. We provide our implementation of HAILS at https://
github.com/AdityaLab/HAILS. We used PyTorch for training neural
networks and Numpy for other data processing steps.

5.1.1 Datasets. While most hierarchical forecasting benchmarks
consist of small hierarchies with all time-series being dense, we
choose to evaluate on two benchmarks for our speci!c application:
large hierarchies for demand forecasting. We choose one public
dataset and also evaluate on a proprietary real-world use-case of
product demand forecasting at a large chemical company.
M5 dataset: M5 forecasting competition featured a monthly retail
sales forecasting dataset with hierarchically structured sales data
with intermittent and erratic characteristics [18, 22]. The dataset
had 12 levels of hierarchy and consisted of 3914 time-series in total.
The forecast horizon was up to 28 months ahead.
Dow Demand forecasting: The dataset contains monthly histori-
cal sales (in volume) from January 2018 to June 2023 made by Dow
in 10+ major industries across 160+ countries. The dataset has a hi-
erarchical structure where the top levels represents the aggregated
sales at the country and industry levels, and the lower levels con-
tain the sales data in more granular product classes. The historical
sales from January 2018 to June 2022 along with external business
indicators were used to train the model. Product demand forecasts
were generated for July 2022 to June 2023, and the actual sales
during this period are used as ground truth. The forecast horizon
was 12 months ahead with the following hierarchical structure:

5.1.2 Baselines. We compare HAILS’s performance against state-
of-the-art hierarchical forecasting methods as well as generic time-
series forecasting methods. We !rst compare against a standard
heuristic of averaging past 6months’ values (6-Average). ARIMA [17]
is a commonly used statistical time-series models. We also use
GRU [4] without any reconciliation as a common neural RNN-based
forecasting baseline. For GRU, we used Monte-Carlo dropout [5]
to generate multiple forecast samples for probabilistic forecasts.
Finally we also considered D&&*AR [21], popular deep probabilistic
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Table 1: Weighted RMSSE for M5 dataset. HAILS achieves the best (bold) or second-best (underline) performance across most
levels of hierarchy.

Model Total L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Sparsity 0.1 0.1 0.1 0.1 0.2 0.5 3.1 7.4 11.5 21.7 28.3 37.3
6-Average 0.851 0.472 0.534 0.554 0.614 0.693 0.711 0.775 0.913 0.871 0.985 0.986 0.984
ARIMA 0.681 0.271 0.392 0.455 0.491 0.577 0.631 0.695 0.744 0.871 0.989 0.994 0.993
RNN 0.653 0.231 0.337 0.274 0.375 0.413 0.533 0.581 0.572 0.766 0.968 0.984 0.997

DeepAR 0.612 0.216 0.342 0.316 0.322 0.384 0.481 0.529 0.618 0.669 0.873 0.996 0.965
DeepAR-MinT 0.592 0.201 0.317 0.301 0.328 0.356 0.432 0.504 0.628 0.674 0.819 0.959 0.997
DeepAR-ERM 0.585 0.221 0.283 0.275 0.316 0.384 0.442 0.481 0.611 0.629 0.779 0.986 0.969

HierE2E 0.614 0.215 0.291 0.318 0.337 0.397 0.405 0.477 0.656 0.748 0.886 0.924 0.966
SHARQ 0.565 0.24 0.391 0.352 0.425 0.491 0.552 0.591 0.582 0.6864 0.991 0.994 0.981

PEMBU-MINT 0.534 0.23 0.327 0.41 0.342 0.411 0.445 0.481 0.492 0.582 0.991 0.951 0.899
M5+L&,-&! 0.512 0.199 0.31 0.422 0.277 0.366 0.39 0.474 0.48 0.573 0.966 0.929 0.884
P!"#H$T 0.551 0.245 0.216 0.316 0.337 0.417 0.432 0.474 0.439 0.557 0.849 0.941 0.932
HAILS 0.502 0.211 0.233 0.262 0.311 0.382 0.416 0.462 0.443 0.539 0.693 0.882 0.814

Table 2: Normalized CRPS for M5 dataset. HAILS achieves the best performance across all levels of hierarchy. HAILS achieves
the best (bold) or second-best (underline) performance across most levels of hierarchy.

Model Total L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Sparsity 0.1 0.1 0.1 0.1 0.2 0.5 3.1 7.4 11.5 21.7 28.3 37.3
ARIMA 5.233 2.563 2.742 3.643 4.145 5.672 7.264 7.984 9.335 10.445 13.244 16.264 17.894
RNN 0.442 0.285 0.277 0.293 0.322 0.527 0.766 0.912 0.935 0.982 0.993 0.994 1.144

DeepAR 0.423 0.271 0.269 0.274 0.361 0.481 0.718 0.897 0.917 0.995 0.994 0.986 1.211
DeepAR-MinT 0.492 0.224 0.253 0.248 0.339 0.441 0.683 0.863 0.884 0.956 0.948 0.981 0.974
DeepAR-ERM 0.229 0.214 0.231 0.283 0.318 0.429 0.668 0.822 0.826 0.926 0.956 0.977 0.993

HierE2E 0.126 0.113 0.111 0.117 0.309 0.392 0.592 0.731 0.718 0.885 0.933 0.942 0.942
SHARQ 0.139 0.082 0.283 0.294 0.323 0.388 0.732 0.782 0.811 0.895 0.926 0.993 0.942

PEMBU-MINT 0.126 0.064 0.067 0.074 0.298 0.493 0.693 0.750 0.841 0.943 0.972 0.991 0.973
M5+L&,-&! 0.119 0.029 0.087 0.188 0.173 0.283 0.429 0.572 0.715 0.774 0.881 0.893 0.942
P!"#H$T 0.132 0.032 0.088 0.163 0.294 0.481 0.622 0.637 0.824 0.872 0.937 0.924 0.982
HAILS 0.081 0.030 0.060 0.152 0.246 0.257 0.380 0.521 0.763 0.717 0.570 0.826 0.728

Level Time-series Sparsity
L1 (Area) 4 0%
L2 (Country) 25 0%
L3 (Industry) 418 3.69%
L4 (Business Group) 1111 15.61%
L5 1956 21.05%
L6 3462 32.76%
L7 5459 36.49%
L8 7587 40.93%

Table 3: Number of time-series and sparsity (% of zeros) by
Level for Dow time-series.

forecasting models which do not exploit hierarchy relations. Note
that 6-Average cannot produce probabilistic forecasts due to its
deterministic mechanics.

In the case of hierarchical forecasting, we considered PEMBU [23],
the state-of-art post-processing method applied on D&&*AR fore-
casts reconciled byM$%T. With respect to the state-of-art neural
hierarchical forecasting methods, we compare against SHARQ [6]

a deep learning-based approach that reconciles forecast distribu-
tions by using quantile regressions and making the quantile values
consistent. We also compare against H$&!E2E [19], a deep learning-
based approach that projects the base predictions onto a space of
consistent forecasts and trains the model in an end-to-end manner.
For the M5 benchmark, we also include the scores from the top
submission of the M5 competition, denoted as M5+L&,-&!.

5.1.3 Evaluation Metrics. We evaluate our models and baselines
using carefully chosen metrics to measure both point accuracy and
probabilistic distribution calibration of the forecasts. For a ground
truth 𝑂 (𝑁 ) , let the predicted probability distribution be 𝑈𝑌 (𝑀 ) with
mean 𝑂 (𝑁 ) . Also let 𝑙𝑌 (𝑀 ) be the CDF.
•Weighted Root Mean Squared Scaled Error (WRMSSE) is
a scale-invariant metric for point-predictions that can be used to
compare across di"erent time-series of varying scales. RMSSE for a
time-series is de!ned as:

𝑚𝑇𝑖𝑖𝑛 =

√√
1/𝐿 ∑𝑍+𝑅

𝑁=𝑍 (𝑂 (𝑁 ) ↗ ˆ𝑂 (𝑁 ) )2
1/(𝑜 ↗ 1)∑𝑍

𝑁=2 (𝑂 (𝑁 ) ↗ 𝑂 (𝑁↗1) )2
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where 𝐿 is the forecast horizon and 𝑜 is the length of the training
data. We then weight each of the time-series’s RMSSE with the
average value of ground truth in training dataset to get the weighted
RMSSE. This metric was used in the M5 competition to evaluate
the accuracy of point predictions [18].
•Cumulative Ranked Probability Score (CRPS) is a widely used
standard metric for the evaluation of probabilistic forecasts that
measures both accuracy and calibration. Given ground truth 𝑂 and
the predicted probability distribution 𝑈𝑌 , let 𝑙𝑌 be the CDF. Then,
CRPS is de!ned as:

𝑝𝑚𝑎𝑖 (𝑙𝑌,𝑂) =
 ≃

↗≃
(𝑙𝑌 (𝑂) ↗ 1{𝑂 > 𝑂})2𝑞𝑂 .

We approximate 𝑙𝑌 as a Gaussian distribution formed from samples
of the model to derive CRPS. We normalize the value of CRPS for
each time-series by the average value of ground-truth in training
data to get normalized CRPS.
•Root Mean Squared Error (RMSE) is used to calculate the fore-
cast performance at speci!c time-step since the opther metrics are
usually used to calculate over the full forecast horizon.

𝑚𝑇𝑖𝑛 =

√√
1
𝐿

𝑅∑
𝐿=1

(𝑂𝐿 ↗ 𝑂𝐿 )2

where N is the number of observations.

5.2 Results
We evaluate the performance of HAILS on the M5 dataset and then
perform a detailed case study showcasing the impact of HAILS on
demand forecasting at Dow.

5.2.1 Forecasting performance on M5. We evaluate the forecasting
performance at each of the individual levels and across the entire
hierarchy in Table 1. We observe that the average performance of
HAILS is signi!cantly better than all the other baselines as well as
P!"#H$T andM5+L&,-&! across the hierarchy as well as in most
of the hierarchy levels. Speci!cally, we observe signi!cant increase
of about 12% in performance at lower levels (L10- L12) with sparse
time-series over P!"#H$T, showcasing the importance of leveraging
poisson distributions at the lower level and using the novel DCRS
loss. Overall HAILS achieves best or close to best performance at
all levels of the hierarchy.

In terms of the performance of probabilistic forecasts (Table
2), we also observe over 40% better CRPS scores of HAILS over
P!"#H$T and 32% over best baselines with consistently better per-
formance across all levels of the hierarchy. Similarly, we observe
a signi!cant 20% better performance at the lower levels of the
hierarchy.

5.2.2 Case Study: Demand Forecasting at Dow. Background: At
Dow, hierarchical time series models are developed to forecast
product demand and raw material price to facilitate business plan-
ning. These models o"er substantial value to the businesses by
minimizing the cost to serve through improved planning and fore-
casting, thereby enhancing customer experience and relationships.
Currently, forecasts are performed by applying Microsoft Azure
Auto Machine Learning (AutoML), a cloud-based service that auto-
mates the selection and tuning of machine learning models. One

of the main drawbacks of this approach is the restriction on the
number of predictor variables that can be included in the model,
resulting from poor model scalability. In addition, the relationships
among di"erent layers in the hierarchy are expected to provide
useful insights on the product demand but are not accounted for in
the model training (i.e., aggregated data at a higher level of gran-
ularity were provided for model training and inference and are
disaggregated to lower levels based on proportions derived from
historical data). Last but not the least, the lack of transparency, and
uncertainty-driven risk assessment associated with the model per-
formance and forecasts impose signi!cant challenges to business
decision-making processes.

Figure 3: HAILS has signi#cantly lower WRMSSE than Dow
baseline across all levels of the hierarchy.

Impact:We developed HAILS to overcome these challenges that are
commonly existed in large-scale business planning. HAILS allevi-
ates these crucial challenges: First, it e$ciently scales to predict the
time-series across all levels of the hierarchy. It additionally lever-
ages DCRS to optimize for distributional consistency according to
underlying hierarchical relationships. Finally, being a state-of-art
probabilistic model it provides reliable forecast distributions that
are both accurate and have dependable uncertainty measures. These
bene!ts allow HAILS to have a vastly lower RMSE across the entire
forecast horizon.

Historical demand is used as the criterion to identify the top coun-
tries and industries. This is based on the assumption that higher
demand corresponds to higher value, and thus more potential for
pro!t. By improving forecast accuracy for these segments, we can
optimize our business planning and reduce costs. We summarize
the forecasting performance of HAILS, Dow’s AutoML baseline
and other baselines in Tables 4, 5. HAILS outperforms the previous
baseline used by Dow by over 8.5% overall in RMSSE with an aver-
age improvement of 26% for the last three layers which have over
10% of the values zeroes (Fig. 3). Similarly, HAILS’s CRPS score is
30% better than the best baseline models with over 23% better in the
last 3 sparser levels of the hierarchy. The improvement in forecast
performance is seen consistently during testing across the year
(Fig. 4). We also observe that HAILS is 70% faster to train than the
next best model. We also observe 44.14% average improvement in
performance for forecasts in the top seven countries and industries
identi!ed by magnitude of past demand (Fig. 5). We also visualize
few examples forecasts. We also observe that the con!dence inter-
vals of the forecasts closely follow the ground truth compared the
the Dow baseline (Fig. 6).
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Table 4: Weighted RMSSE for Dow dataset. HAILS achieves the best (bold) or second-best (underline) performance across all
levels of hierarchy.

Model Total L1 L2 L3 L4 L5 L6 L7 L8
Sparsity 0 0 3.69 15.61 21.05 32.72 36.49 40.93
6-Average 0.814 0.477 0.492 0.612 0.731 0.855 0.923 0.987 0.985
ARIMA 0.582 0.215 0.225 0.304 0.381 0.592 0.778 0.924 0.973
RNN 0.527 0.187 0.176 0.244 0.287 0.698 0.729 0.988 0.997

DeepAR 0.496 0.143 0.168 0.236 0.305 0.494 0.891 0.973 0.996
DeepAR-MinT 0.483 0.137 0.166 0.226 0.284 0.428 0.842 0.946 0.975
DeepAR-ERM 0.487 0.133 0.144 0.229 0.286 0.441 0.885 0.941 0.936

HierE2E 0.438 0.119 0.142 0.205 0.244 0.428 0.914 0.952 0.983
SHARQ 0.427 0.106 0.153 0.196 0.249 0.448 0.934 0.944 0.955

PEMBU-MINT 0.431 0.126 0.173 0.217 0.257 0.427 0.847 0.933 0.981
Dow Current 0.443 0.117 0.194 0.227 0.294 0.491 0.921 0.932 0.995

ProfHiT 0.421 0.101 0.143 0.194 0.218 0.399 0.834 0.873 0.926
HAILS 0.405 0.105 0.115 0.175 0.196 0.284 0.623 0.529 0.737

Table 5: Normalized CRPS for Dow dataset. HAILS achieves the best (bold) or second-best (underline) performance across all
levels of hierarchy.

Model Total L1 L2 L3 L4 L5 L6 L7 L8
Sparsity 0 0 3.69 15.61 21.05 32.72 36.49 40.93
ARIMA 5.265 3.027 3.335 4.326 4.502 6.120 8.927 9.044 11.952
RNN 0.783 0.308 0.313 0.358 0.393 0.683 0.858 1.116 0.957

DeepAR 0.715 0.302 0.299 0.286 0.393 0.525 0.768 0.968 1.008
DeepAR-MinT 0.218 0.285 0.276 0.264 0.342 0.473 0.705 0.899 0.912
DeepAR-ERM 0.117 0.240 0.254 0.320 0.377 0.431 0.816 0.870 0.830

HierE2E 0.161 0.088 0.284 0.298 0.416 0.513 0.871 0.865 0.881
SHARQ 0.154 0.066 0.073 0.074 0.326 0.494 0.873 0.939 0.849

PEMBU-MinT 0.132 0.032 0.096 0.228 0.193 0.329 0.473 0.686 0.937
ProfHiT 0.146 0.033 0.099 0.203 0.342 0.548 0.663 0.754 0.837
HAILS 0.090 0.032 0.065 0.154 0.297 0.480 0.453 0.658 0.746

Figure 4: RMSE of HAILS is consistently lower than Dow
baseline across the forecast horizon.

5.2.3 E"iciency. HAILS leverages DCSR and Poisson selection to
model sparse time-series as Poisson distribution. Moreover, we
also leverage pre-training to improve the convergence and training
e$ciency of the model since HAILS typically takes lesser epochs
to achieve state-of-the-art performance.

Figure 5: HAILS provides an average of 44.14% improvement
over Dow Model over top 7 industries and countries.

We measure the total training time in hours for the model and
baselines in Table 7. We run the code on workstation with Intel
Xeon CPU with 64 cores, 128 GB RAM and a Nvidia V100 GPU
with 32GB VRAM. HAILS is more e$cient than end-to-end neural
models like SHARQ, HierE2E and P!"#H$T, !nishing training in
less than 42% of the total time of the second best baseline for most
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Figure 6: Examples of forecasts of HAILS and Dow baseline
for (a) dense and (b) sparse time-series. HAILS’s forecasts
are much more accurate with uncertainty bands close to the
ground truth.

Figure 7: HAILS takes signi#cantly less training time than
state-of-art neural baselines like P!"#H$T and SHARQ.

of the datasets. This is due to e"ective modeling of sparse time
series as well as asynchronous updates of model weights.

6 CONCLUSION
HAILS is designed to solve challenges motivated by our experience
dealing with real-world large scale demand forecasting problem:
scalability and modeling sparse time-series across the hierarchy.
HAILS improves on P!"#H$T to support sparse time-series at lower
levels of the hierarchy, an important property of real-world demand
forecasting scenario that enables it to perform 8-30% better than
previous best baselines with consistent performance across all lev-
els of the hierarchy. HAILS also outperformed the baselines by over
20% in the sparse layers of the hierarchy. Our model design and
training enables HAILS to train up to three times more e$ciently
than similarly sized state-of-art models enabling e"ective and accu-
rate real-time forecasting. Our model was successfully applied to a
real-world application of demand forecasting in one of the world’s
largest chemical companies and yielded signi!cantly superior per-
formance across the hierarchy. This enables signi!cant reductions
in cost due to manufacturing planning, inventory management and
ful!llment scheduling.

There are other deployment challenges for HAILS that include
data collection, data cleaning, choosing the right hierarchy, ex-
plainability and deployment. Collecting reliable data across the
hierarchy in a large corporation is complicated by the number of

systems, businesses and geographical areas and various product
units of measure that need to be standardized. Therefore, building
systems that can understand and leverage data quality information
to improve the robustness of the forecasts is an important prob-
lem [14]. Another important challenge is providing interpretability
as block-box neural models are not readily accepted in the business
process. Developing reliable interpretability methods for hierarchi-
cal forecasting is essential for successful deployment. Additionally,
the hierarchy structures may change due to reasons such as re-
classi!cations from one business grouping to another, addition or
deletion of products, etc. While we can recalculate the time-series
values of the past for new hierarchy, deriving information from a
dynamic hierarchy structure is a novel research direction.
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