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Improving community resilience to coastal hazards has been a key societal issue and studied widely by
multiple disciplines. However, despite the huge literature on community resilience to coastal hazards, there is
no consensus on the best approach to measuring it. We first provide an overview of the challenges in
measuring community resilience to natural hazards. We then describe our effort in developing the Resilience
Inference Measurement (RIM) model, which is designed to overcome two major challenges in resilience
measurement: (i) the lack of empirical validation to support the derived indices and their associated indicators
influencing the resilience level, and (ii) the lack of statistical inferential power. We highlight how RIM can be
applied to different types of hazards and its extension to dynamic resilience analysis via methods such as
Bayesian Networks. We conclude that through more experiments with the RIM approach, it is possible to
develop a set of common resilience predictors that would address multiple hazards simultaneously.

ADDITIONAL INDEX WORDS: Resilience Inference Measurement (RIM), community resilience, dynamic
resilience, coastal hazards, drought hazards.

INTRODUCTION

Devastating coastal hazards, including hurricanes, storm
surges, subsidence, erosion, and flooding, have affected the
coastal communities enormously throughout the world. The
effects of these natural coastal hazards are often worsened by
human activities, such as dense population living in low-lying
flood-prone areas, inadequate infrastructure planning, and
unwise resource utilization and land-use decisions, making
communities near the coasts even more vulnerable (Lam et al.,
2015). At the same time, climate change impacts are showing
obvious signs all over the world. For instance, Earth’s average
surface temperature in 2023 was the warmest on record since
recordkeeping began in 1880. Earth was about 2.45 degrees
Fahrenheit (or about 1.36 degrees Celsius) warmer in 2023 than
in the late 19th-century (1850-1900) preindustrial average
(NASA, 2024). Another NASA study estimated that sea-level
rise for the contiguous U.S. coastlines will reach the 1-foot (30
cm) mark by 2050. The Gulf Coast and southeastern USA will
see the most change, which is about 14 to 18 inches (35.6 to
45.7 cm) in sea-level rise (NASA, 2022). Most recently (May
2024), the U.S. National Oceanic and Atmospheric
Administration forecast that the 2024 hurricane season will be

DOI: 10.2112/JCR-SI1113-007.1 received 23 June 2024, accepted in
revision 18 July 2024.

*Corresponding author: nlam@]su.edu

“Coastal Education and Research Foundation, Inc. 2024

33

the most active, with four to seven storms likely strengthening
into major hurricanes (NOAA, 2024). Climate change threats are
imminent. It is imperative for society to find ways to confront
these hazards by reducing their impact and increasing the
resilient capacity of communities so that sustainable livelihoods
can be reached.

Depending on the vulnerability and resilience capacity of the
communities, the impact from the same strength of hazard could
differ greatly on different communities (Lam ef al., 2015, 2016;
NRC, 2012). This type of uneven impact from natural hazards is
the main reason why we need to look at the factors that could
make a region less vulnerable and more resilient to natural
hazards. However, before we can establish which resilience
factors (e.g., social and environmental variables) should be
included and how they can be improved, we are faced with the
most crucial task, which is how to measure community
resilience to natural hazards. Community resilience
measurement has become a topic that has received extensive
research from diverse disciplines worldwide, aiming to find an
approach that can be used as an effective decision tool to
promote resilience (Koliou et al., 2018; Mehryar et al., 2022;
NASEM, 2019). Despite that the literature on community
resilience to natural hazards has been expanded with many
contributions, these studies often vary in their approach to
resilience measuring. Without a consensus, it would be difficult
to move the resilience measurement field forward.

In this paper, we first provide an overview of the challenges
in measuring community resilience to hazards. We then describe
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our effort in developing the Resilience Inference Measurement
(RIM) model, which is designed to address two major issues in
resilience measurement, which are: (i) the lack of empirical
validation to support the developed indices and the selection of
predictors influencing the resilience level, and (ii) the lack of
statistical inferential power. We demonstrate how RIM can be
applied to different types of hazards, and its extension to
predictions and scenario simulations through dynamic resilience
analysis. We conclude by emphasizing the need to develop a set
of high-level resilience predictors to inform resilience policy
making.

CHALLENGES IN RESILIENCE MEASUREMENT

Community resilience measurement is considered the first and
critical step in building resilience (NRC 2012). Increasingly, it
has been recognized as a powerful tool for providing substantive
support for decision-making in fields such as hazard mitigation,
risk assessment, and other environmental, social, economic, or
technological improvements. There have been numerous efforts
from organizations and researchers in developing their own tools
and metrics for measuring resilience. However, there is little
agreement nor standard guidelines on the methods and the
metrics used. Lam er al. (2016) described two levels of
challenge in resilience measurement. First, on the conceptual
level, researchers cannot come to a consensus on what the term
resilience really encompasses. Some defined resilience as
engineering resilience, which refers to how fast a system can
return to the original state after a disturbance, while others
referred resilience as ecological resilience, which is how far the
system could be perturbed without shifting to a different state
(Holling, 1996). Adger et al. (2005) considered resilience as the
capacity of a linked social-ecological system to absorb recurrent
disturbances, whereas Norris et al. (2008) advocated that
resilience is a process linking communities. These various
definitions suggest that resilience can be regarded as a capacity,
a process, an outcome, or a combination of the three (Lam et al.,
2016). The concept of resilience is further complicated by
related concepts of vulnerability, adaptability, and sustainability.
In this paper, we simplify the definition used in the 2012 NRC
report and define resilience as the ability to bounce back after a
disastrous event, thus resilience includes both aspects of
vulnerability and adaptability. Moreover, we conceptualize that
long-term resilience is sustainability (Lam et al., 2016).

The second level of challenge refers to the resilience
measurement method itself, though the method used is closely
related to how resilience is defined. A popular approach to
measuring community resilience is to develop a composite index
by aggregating a set of variables selected from multiple
dimensions  (e.g., natural, human, social, economic,
infrastructure). Four issues are associated with this popular
approach. First, there is ambiguity and subjectivity involved in
choosing an appropriate set of predictor variables and their
weights for aggregation. Second, most studies utilizing this
approach do not validate their indices with empirical evidence to
verify if the derived index can adequately reflect the severity of
the disaster impact and the recovery status of the affected
communities. Without validation, it is difficult to justify the use
of the derived index as an objective decision-making tool to
monitor progress in resilience across space, time, and hazard

type (Lam et al., 2016; Rufat et al., 2019, 2021). Third, the
resilience measurement method should have an inferential
property such that it can be applied to estimate the resilience
levels of communities through time and across space. Fourth,
the measurement method should be amenable and adaptable to
dynamic resilience analysis to allow simulation of scenarios to
inform policy making (Cai et al. 2018; Mihunov and Lam,
2020). These last two issues have seldom been considered in the
resilience measurement literature, but they are vital steps to lift
the practice of resilience measurement into acceptable objective
decision-making tools to combat climate change.

We conducted a synthesis study on the state of resilience
measurement based on 174 scholarly articles published from
2005 to 2017 (Cai et al., 2018). The findings echo the challenges
mentioned above. Some of the findings in this synthesis study
are: (i) there are wide discrepancies in the definition of
resilience (and associated concepts of risk and vulnerability)
across disciplines, which have resulted in very different
measurement frameworks. (ii) Less than half of the articles
reviewed have attempted to create quantitative resilience
indices, and only a few of them have validated their indices
either qualitatively or quantitatively. (iii) Few existing resilience
measurement methods have the statistical inferential power to
enable comparison and monitoring across space and through
time. (iv) Studies on dynamic resilience analysis are rare but are
needed to yield a better understanding of the underlying
resilience process. (v) There is a big gap between resilience
science and practice. Given that resilience measurement is
intended to help decision making in risk reduction and
mitigation, there is a pressing need to develop science-based,
empirically validated measurement models, as well as
translating and disseminating the findings to inform decision
making.

RESILIENCE INFERENCE MEASUREMENT (RIM)

We developed the Resilience Inference Measurement
(RIM) model to measure community resilience, aiming to
overcome the issues of lacking empirical validation and
inferential ability in most existing measurement methods
(Lam et al., 2016). The RIM model uses three elements
(hazard threat, damage, and recovery) to denote two
relationships (vulnerability and adaptability) (Fig. 1). If a
community (e.g., county) has high hazard threat but sustains
low damage, then the community is considered to have low
vulnerability. Similarly, if the community has high damage
but recovers quickly, then the community has high
adaptability. Resilience is measured according to the two
relationships.

Vulnerability Adaptability
(e

A, A..... Adaptati
_ Mitigaion "=

——— Current Resilience Cycle -3 Next Resilience Cycle
Figure 1. The Resilience Inference Measurement (RIM) model (Lam e?

al., 2016).
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Previous ecological literature suggests that the recovery
pattern of an ecological system generally falls into four
categories (Bellingham et al., 1995; Batista and Platt, 2003).
We modified the four categories into four resilience rankings
in the RIM framework, and from low to high resilience, they
are susceptible, recovering, resistant, and usurper states (Fig.
2 & Fig. 3). Figure 3 (top left diagram) shows that if a
community suffers below-average hazard threat but sustains
above-average damage and below-average recovery, then the
community is susceptible, i.e., having the lowest resilience
level. On the contrary, if a community has above-average
hazard threat, but sustains average or below-average damage
and above-average recovery, then the community is a usurper
community, having the highest resilience level.
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Figure 2. Four states of ecological resilience (Lam et al., 2016).
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Figure 3. The four states of resilience depicted in the RIM framework.
The y-axis shows the standardized scores of the three elements from
their means (the zero-value line). See explanations in text (Lam et al.,
2016).

The RIM model utilizes two commonly used statistical
procedures (Fig. 4). First, K-means clustering is applied to
classify communities into four groups (a priori groups) based
on the empirical data collected for the three elements. Then,
discriminant analysis is used to verify the group membership
of each community based on the set of natural-human
predictors. The stepwise option can be used to eliminate
variables that are highly correlated to help simplify the
interpretation. The output of discriminant analysis includes
three items: (i) a set of discriminant functions which indicate
the importance (discriminant coefficients or weights) of the
variables in separating the four groups; (ii) classification
accuracy which shows how good the set of variables is in
predicting the four a priori group memberships; and (iii) re-
classification of each community with the probabilities of
each community belonging to each of the four posterior
groups.
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Figure 4. Flowchart of the RIM procedure (Cai et al., 2016; Lam et
al.,2018).
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Figure 5. Community resilience rankings derived by RIM of the 52
counties along the northern Gulf of Mexico, USA (Lam ef al., 2016).

To run the RIM model, we first collect empirical data
representing the three elements (Fig. 4). For instance, hazard
threat can be represented as the number and intensity of
hurricane strikes in a community over a period, damage is the
corresponding property damage per capita in the community,
and recovery is population change before and after the events.
In addition, a series of resilience predictors (typically over 25
attributes) representing the social and environmental capacity
of the community are collected.

RIM scores from the original discriminant analysis have a
discrete range from 1-4, with one being the lowest
(susceptible) and four the highest resilience (usurper). We can
convert the discrete resilience categories into continuous
resilience scores using the following equation:

RIMscore = Y i X Prob(i)
where m is the number of resilience groups (m=4), i is the
resilience group number, and Prob(i) is the posterior
probability of a community belonging to resilience group i.
For example, if a community’s probabilities of belonging to
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group 1-4 are 0.6, 0.3, 0.1, and 0.0, respectively, then its
RIMscore is: (1x0.6)+(2x0.3)+(3x0.1)+(4x0.0)=1.5 (Cai et
al., 2016; Mihunov et al., 2018).

Figure 5 shows the first application of RIM to assess the
resilience level of 52 counties bordering the northern Gulf of
Mexico, USA. The period of assessment was 2000-2010. A
total of 28 predictor variables selected from multiple sectors
(demographic, social, economic, government, environmental,
and health) were used. Discriminant analysis based on the 28
variables correctly classified 94.2% of the counties, which is
considered a high degree of accuracy. Coastal counties in
Florida and Alabama were found to have higher resilience
than most of the coastal counties in Mississippi, Louisiana,
and Texas. The lowest resilience counties (called parishes in
Louisiana) were those on the Mississippi River Delta near
New Orleans. Hurricane Katrina devastated New Orleans and
nearby Mississippi counties in 2005. This disastrous event
occurred in the middle of the assessment period. Since it takes
time for a region to recover (i.e., population return) after a
catastrophic event, resilience assessment of the region may be
affected. In general, this first application shows that high
percentage of employment and high elevation were associated
with high resilience, whereas high percent of population
living in poverty, high percentage of the population without
high-school diploma, and high percentage of female-headed
households were associated with low resilience.

APPLICATIONS AND EXTENSIONS

The RIM model provides a general methodological
framework where the three elements can be modified to
analyze different types of hazards and at different spatial and
temporal scales. The model has been applied to assess coastal
community resilience of the Caribbean countries (Lam et al.,
2015), the 534 counties in the northern Gulf of Mexico, the
2,086 census block groups in the Mississippi River Delta (Cai
et al., 2016), and the 142 counties impacted by Hurricane
Sandy in the northeastern USA (Wang et al., 2023). RIM
model has also been applied to measure county resilience
after the 2008 Wenchuan earthquake in China (Li et al.,
2016), and the drought resilience in South-Central USA
(Mihunov et al., 2018; 2019).

More assessment studies using RIM for different hazard
types and at various spatial and temporal resolutions could
lead to a core set of generalized resilience attributes for
resilience building. Table 1 compares the lists of predictor
variables extracted from using RIM for measuring coastal
resilience in the Mississippi River Delta (Cai et al., 2016) and
drought resilience in South-Central USA (Mihunov et al.,
2018). Three of the variables are the same from both studies
(in italic-bold font); The other variables, though not having
the same name, have similar meaning/property. This finding
is encouraging; it shows that activities aimed at improving
resilience capacity for one natural hazard will also benefit the
resilience to other natural hazards. It also shows that
developing a generalized set of resilience indicators is
possible.

To make the results from discriminant analysis more
interpretable, an ordinary least squares (OLS) regression
analysis between the RIMScore and the set of extracted

variables is conducted. If the regression model yields a high
R? value, then the importance of the variables can be
evaluated more directly through their regression coefficients.
In Cai et al. (2016), regression between the RIMscore and the
10 predictor variables yielded an R? of 0.79, which is
reasonable. The variables and their coefficients in the
regression can then be used to explore how increasing the
value of one variable affects the final RIMscore.

Although the regression technique is straightforward, it
does not show how the predictors interact as a system that
will affect the final resilience. This dynamic resilience
analysis is crucial to a better understanding of the
interdependency of predictors and building more accurate
simulation scenarios for decision making. In the Mississippi
River Delta study, Cai et al. (2018) developed a Bayesian
Network (BN) to illustrate how population change was
affected by the ten resilience predictors. Mihunov and Lam
(2020) also used the BN method to model the dynamics of
drought resilience in South-Central USA.

Table 1. Major predictor variables of community resilience to flood vs.
drought hazards extracted from the RIM analysis.

Category Flood resilience (Cai et al., 2016)
Social o % female-headed households
® % housing units with telephone service
available
Economic * % population employed in construction,
transportation, material moving
* % population living in poverty
Infrastructure ® % housing units built after 2000
e Total housing units per square mile
e Total length of roads per sq. km
Community e % population that was native born and also
lives in the same house or same county
Environmental e Mean subsidence rate
e 9% area in an inundation zone
Category Drought resilience (Mihunov et al., 2016)
Social o % female-headed households
e % population over 65 years
Economic * % employed in agriculture, forestry, fishery
* % population living in poverty
e Median value of owner-occupied housing
e Median rent*
Infrastructure e  Mobile homes per square mile
Community e Disabled and not working labor force per
10,000
Environmental None
CONCLUSIONS

The RIM model meets several of the challenges in
resilience measurement. First, the model uses empirical data
for the three elements to derive the index, thus the resultant
RIM index has already been validated by empirical
observable outcomes. Second, the equations derived from the
discriminant analysis can be used to predict resilience of other
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similar communities if the assumptions hold, thus the RIM
method has inferential power. Third, the model can
incorporate resilience predictors from multiple sectors, and at
the same time, the stepwise option can be employed to extract
major variables and avoid collinearity. Fourth, the model
provides not only the final RIM scores but also the weights
associated with the major variables. When the model is
further extended into a dynamic mode using Bayesian
Network or other system dynamic methods, we can identify
the interdependency of the variables and their associated
probabilities for a better understanding of the resilience
process and more accurate scenario simulations.

However, as expected in any type of spatial-temporal
models, the RIM model results are subject to uncertainty,
depending on the temporal and spatial scales used and other
factors. More application studies are needed to examine how
the predictors and their weights change with spatial and
temporal scales, the hazard type, and the selection of predictor
variables. Furthermore, incorporating input from local
communities, experimenting with rural versus urban setting,
comparing with rapid vs. slow-moving hazards, and testing
with the Al/machine learning algorithms would help improve
the science and practice of resilience measurement. We argue
that through more experimental studies, it is possible to
develop a set of high-level standards of resilience capacity to
help advance the science and practice of resilience
measurement to benefit society.
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