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ABSTRACT 
 
Lam, N.S.N.; Wang, K., and Mihunov, V., 2024. The Resilience Inference Measurement (RIM) approach to 
measuring and predicting community resilience to coastal hazards. In: Phillips, M.R.; Al-Naemi, S., and Duarte, 
C.M. (eds.), Coastlines under Global Change: Proceedings from the International Coastal Symposium (ICS) 2024 
(Doha, Qatar). Journal of Coastal Research, Special Issue No. 113, pp. 33-37. Charlotte (North Carolina), ISSN 
0749-0208. 
 
Improving community resilience to coastal hazards has been a key societal issue and studied widely by 
multiple disciplines. However, despite the huge literature on community resilience to coastal hazards, there is 
no consensus on the best approach to measuring it. We first provide an overview of the challenges in 
measuring community resilience to natural hazards. We then describe our effort in developing the Resilience 
Inference Measurement (RIM) model, which is designed to overcome two major challenges in resilience 
measurement: (i) the lack of empirical validation to support the derived indices and their associated indicators 
influencing the resilience level, and (ii) the lack of statistical inferential power. We highlight how RIM can be 
applied to different types of hazards and its extension to dynamic resilience analysis via methods such as 
Bayesian Networks. We conclude that through more experiments with the RIM approach, it is possible to 
develop a set of common resilience predictors that would address multiple hazards simultaneously.  
 
ADDITIONAL INDEX WORDS: Resilience Inference Measurement (RIM), community resilience, dynamic 
resilience, coastal hazards, drought hazards. 
 

 
   INTRODUCTION 

Devastating coastal hazards, including hurricanes, storm 
surges, subsidence, erosion, and flooding, have affected the 
coastal communities enormously throughout the world. The 
effects of these natural coastal hazards are often worsened by 
human activities, such as dense population living in low-lying 
flood-prone areas, inadequate infrastructure planning, and 
unwise resource utilization and land-use decisions, making 
communities near the coasts even more vulnerable (Lam et al., 
2015). At the same time, climate change impacts are showing 
obvious signs all over the world. For instance, Earth’s average 
surface temperature in 2023 was the warmest on record since 
recordkeeping began in 1880. Earth was about 2.45 degrees 
Fahrenheit (or about 1.36 degrees Celsius) warmer in 2023 than 
in the late 19th-century (1850-1900) preindustrial average 
(NASA, 2024). Another NASA study estimated that sea-level 
rise for the contiguous U.S. coastlines will reach the 1-foot (30 
cm) mark by 2050. The Gulf Coast and southeastern USA will 
see the most change, which is about 14 to 18 inches (35.6 to 
45.7 cm) in sea-level rise (NASA, 2022). Most recently (May 
2024), the U.S. National Oceanic and Atmospheric 
Administration forecast that the 2024 hurricane season will be 

the most active, with four to seven storms likely strengthening 
into major hurricanes (NOAA, 2024). Climate change threats are 
imminent. It is imperative for society to find ways to confront 
these hazards by reducing their impact and increasing the 
resilient capacity of communities so that sustainable livelihoods 
can be reached.    

Depending on the vulnerability and resilience capacity of the 
communities, the impact from the same strength of hazard could 
differ greatly on different communities (Lam et al., 2015, 2016; 
NRC, 2012). This type of uneven impact from natural hazards is 
the main reason why we need to look at the factors that could 
make a region less vulnerable and more resilient to natural 
hazards. However, before we can establish which resilience 
factors (e.g., social and environmental variables) should be 
included and how they can be improved, we are faced with the 
most crucial task, which is how to measure community 
resilience to natural hazards. Community resilience 
measurement has become a topic that has received extensive 
research from diverse disciplines worldwide, aiming to find an 
approach that can be used as an effective decision tool to 
promote resilience (Koliou et al., 2018; Mehryar et al., 2022; 
NASEM, 2019). Despite that the literature on community 
resilience to natural hazards has been expanded with many 
contributions, these studies often vary in their approach to 
resilience measuring. Without a consensus, it would be difficult 
to move the resilience measurement field forward.  

In this paper, we first provide an overview of the challenges 
in measuring community resilience to hazards. We then describe 
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our effort in developing the Resilience Inference Measurement 
(RIM) model, which is designed to address two major issues in 
resilience measurement, which are: (i) the lack of empirical 
validation to support the developed indices and the selection of 
predictors influencing the resilience level, and (ii) the lack of 
statistical inferential power. We demonstrate how RIM can be 
applied to different types of hazards, and its extension to 
predictions and scenario simulations through dynamic resilience 
analysis. We conclude by emphasizing the need to develop a set 
of high-level resilience predictors to inform resilience policy 
making. 
 

CHALLENGES IN RESILIENCE MEASUREMENT  
Community resilience measurement is considered the first and 

critical step in building resilience (NRC 2012). Increasingly, it 
has been recognized as a powerful tool for providing substantive 
support for decision-making in fields such as hazard mitigation, 
risk assessment, and other environmental, social, economic, or 
technological improvements. There have been numerous efforts 
from organizations and researchers in developing their own tools 
and metrics for measuring resilience. However, there is little 
agreement nor standard guidelines on the methods and the 
metrics used. Lam et al. (2016) described two levels of 
challenge in resilience measurement. First, on the conceptual 
level, researchers cannot come to a consensus on what the term 
resilience really encompasses. Some defined resilience as 
engineering resilience, which refers to how fast a system can 
return to the original state after a disturbance, while others 
referred resilience as ecological resilience, which is how far the 
system could be perturbed without shifting to a different state 
(Holling, 1996). Adger et al. (2005) considered resilience as the 
capacity of a linked social-ecological system to absorb recurrent 
disturbances, whereas Norris et al. (2008) advocated that 
resilience is a process linking communities. These various 
definitions suggest that resilience can be regarded as a capacity, 
a process, an outcome, or a combination of the three (Lam et al., 
2016). The concept of resilience is further complicated by 
related concepts of vulnerability, adaptability, and sustainability. 
In this paper, we simplify the definition used in the 2012 NRC 
report and define resilience as the ability to bounce back after a 
disastrous event, thus resilience includes both aspects of 
vulnerability and adaptability. Moreover, we conceptualize that 
long-term resilience is sustainability (Lam et al., 2016).  

The second level of challenge refers to the resilience 
measurement method itself, though the method used is closely 
related to how resilience is defined. A popular approach to 
measuring community resilience is to develop a composite index 
by aggregating a set of variables selected from multiple 
dimensions (e.g., natural, human, social, economic, 
infrastructure). Four issues are associated with this popular 
approach. First, there is ambiguity and subjectivity involved in 
choosing an appropriate set of predictor variables and their 
weights for aggregation. Second, most studies utilizing this 
approach do not validate their indices with empirical evidence to 
verify if the derived index can adequately reflect the severity of 
the disaster impact and the recovery status of the affected 
communities. Without validation, it is difficult to justify the use 
of the derived index as an objective decision-making tool to 
monitor progress in resilience across space, time, and hazard 

type (Lam et al., 2016; Rufat et al., 2019, 2021). Third, the 
resilience measurement method should have an inferential 
property such that it can be applied to estimate the resilience 
levels of communities through time and across space. Fourth, 
the measurement method should be amenable and adaptable to 
dynamic resilience analysis to allow simulation of scenarios to 
inform policy making (Cai et al. 2018; Mihunov and Lam, 
2020). These last two issues have seldom been considered in the 
resilience measurement literature, but they are vital steps to lift 
the practice of resilience measurement into acceptable objective 
decision-making tools to combat climate change.  

We conducted a synthesis study on the state of resilience 
measurement based on 174 scholarly articles published from 
2005 to 2017 (Cai et al., 2018). The findings echo the challenges 
mentioned above. Some of the findings in this synthesis study 
are: (i) there are wide discrepancies in the definition of 
resilience (and associated concepts of risk and vulnerability) 
across disciplines, which have resulted in very different 
measurement frameworks. (ii) Less than half of the articles 
reviewed have attempted to create quantitative resilience 
indices, and only a few of them have validated their indices 
either qualitatively or quantitatively. (iii) Few existing resilience 
measurement methods have the statistical inferential power to 
enable comparison and monitoring across space and through 
time. (iv) Studies on dynamic resilience analysis are rare but are 
needed to yield a better understanding of the underlying 
resilience process. (v) There is a big gap between resilience 
science and practice. Given that resilience measurement is 
intended to help decision making in risk reduction and 
mitigation, there is a pressing need to develop science-based, 
empirically validated measurement models, as well as 
translating and disseminating the findings to inform decision 
making. 

 
RESILIENCE INFERENCE MEASUREMENT (RIM)   
We developed the Resilience Inference Measurement 

(RIM) model to measure community resilience, aiming to 
overcome the issues of lacking empirical validation and 
inferential ability in most existing measurement methods 
(Lam et al., 2016). The RIM model uses three elements 
(hazard threat, damage, and recovery) to denote two 
relationships (vulnerability and adaptability) (Fig. 1). If a 
community (e.g., county) has high hazard threat but sustains 
low damage, then the community is considered to have low 
vulnerability. Similarly, if the community has high damage 
but recovers quickly, then the community has high 
adaptability. Resilience is measured according to the two 
relationships. 

 
   

 
 
 
 
 
 
 

Figure 1. The Resilience Inference Measurement (RIM) model (Lam et 
al., 2016). 
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 Previous ecological literature suggests that the recovery 
pattern of an ecological system generally falls into four 
categories (Bellingham et al., 1995; Batista and Platt, 2003). 
We modified the four categories into four resilience rankings 
in the RIM framework, and from low to high resilience, they 
are susceptible, recovering, resistant, and usurper states (Fig. 
2 & Fig. 3). Figure 3 (top left diagram) shows that if a 
community suffers below-average hazard threat but sustains 
above-average damage and below-average recovery, then the 
community is susceptible, i.e., having the lowest resilience 
level. On the contrary, if a community has above-average 
hazard threat, but sustains average or below-average damage 
and above-average recovery, then the community is a usurper 
community, having the highest resilience level. 

 

 

Figure 2. Four states of ecological resilience (Lam et al., 2016).

 

 
 

Figure 3. The four states of resilience depicted in the RIM framework.  
The y-axis shows the standardized scores of the three elements from 
their means (the zero-value line). See explanations in text (Lam et al., 
2016).

 
To run the RIM model, we first collect empirical data 

representing the three elements (Fig. 4). For instance, hazard 
threat can be represented as the number and intensity of 
hurricane strikes in a community over a period, damage is the 
corresponding property damage per capita in the community, 
and recovery is population change before and after the events. 
In addition, a series of resilience predictors (typically over 25 
attributes) representing the social and environmental capacity 
of the community are collected.  

The RIM model utilizes two commonly used statistical 
procedures (Fig. 4). First, K-means clustering is applied to 
classify communities into four groups (a priori groups) based 
on the empirical data collected for the three elements. Then, 
discriminant analysis is used to verify the group membership 
of each community based on the set of natural-human 
predictors. The stepwise option can be used to eliminate 
variables that are highly correlated to help simplify the 
interpretation. The output of discriminant analysis includes 
three items: (i) a set of discriminant functions which indicate 
the importance (discriminant coefficients or weights) of the 
variables in separating the four groups; (ii) classification 
accuracy which shows how good the set of variables is in 
predicting the four a priori group memberships; and (iii) re-
classification of each community with the probabilities of 
each community belonging to each of the four posterior 
groups.  

 

Figure 4. Flowchart of the RIM procedure (Cai et al., 2016; Lam et 
al., 2018). 

 

Figure 5. Community resilience rankings derived by RIM of the 52 
counties along the northern Gulf of Mexico, USA (Lam et al., 2016).  

 
RIM scores from the original discriminant analysis have a 

discrete range from 1-4, with one being the lowest 
(susceptible) and four the highest resilience (usurper). We can 
convert the discrete resilience categories into continuous 
resilience scores using the following equation: 

            𝑅𝐼𝑀𝑠𝑐𝑜𝑟𝑒 ൌ  ∑ 𝑖 ൈ 𝑃𝑟𝑜𝑏ሺ𝑖ሻ௠
௜ୀଵ  

where m is the number of resilience groups (m=4), i is the 
resilience group number, and 𝑃𝑟𝑜𝑏ሺ𝑖ሻ  is the posterior 
probability of a community belonging to resilience group i. 
For example, if a community’s probabilities of belonging to 
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group 1-4 are 0.6, 0.3, 0.1, and 0.0, respectively, then its 
𝑅𝐼𝑀𝑠𝑐𝑜𝑟𝑒  is: (1×0.6)+(2×0.3)+(3×0.1)+(4×0.0)=1.5 (Cai et 
al., 2016; Mihunov et al., 2018). 

Figure 5 shows the first application of RIM to assess the 
resilience level of 52 counties bordering the northern Gulf of 
Mexico, USA. The period of assessment was 2000-2010. A 
total of 28 predictor variables selected from multiple sectors 
(demographic, social, economic, government, environmental, 
and health) were used. Discriminant analysis based on the 28 
variables correctly classified 94.2% of the counties, which is 
considered a high degree of accuracy. Coastal counties in 
Florida and Alabama were found to have higher resilience 
than most of the coastal counties in Mississippi, Louisiana, 
and Texas. The lowest resilience counties (called parishes in 
Louisiana) were those on the Mississippi River Delta near 
New Orleans. Hurricane Katrina devastated New Orleans and 
nearby Mississippi counties in 2005. This disastrous event 
occurred in the middle of the assessment period. Since it takes 
time for a region to recover (i.e., population return) after a 
catastrophic event, resilience assessment of the region may be 
affected. In general, this first application shows that high 
percentage of employment and high elevation were associated 
with high resilience, whereas high percent of population 
living in poverty, high percentage of the population without 
high-school diploma, and high percentage of female-headed 
households were associated with low resilience. 

 
APPLICATIONS AND EXTENSIONS 

The RIM model provides a general methodological 
framework where the three elements can be modified to 
analyze different types of hazards and at different spatial and 
temporal scales. The model has been applied to assess coastal 
community resilience of the Caribbean countries (Lam et al., 
2015), the 534 counties in the northern Gulf of Mexico, the 
2,086 census block groups in the Mississippi River Delta (Cai 
et al., 2016), and the 142 counties impacted by Hurricane 
Sandy in the northeastern USA (Wang et al., 2023). RIM 
model has also been applied to measure county resilience 
after the 2008 Wenchuan earthquake in China (Li et al., 
2016), and the drought resilience in South-Central USA 
(Mihunov et al., 2018; 2019). 
    More assessment studies using RIM for different hazard 
types and at various spatial and temporal resolutions could 
lead to a core set of generalized resilience attributes for 
resilience building. Table 1 compares the lists of predictor 
variables extracted from using RIM for measuring coastal 
resilience in the Mississippi River Delta (Cai et al., 2016) and 
drought resilience in South-Central USA (Mihunov et al., 
2018). Three of the variables are the same from both studies 
(in italic-bold font); The other variables, though not having 
the same name, have similar meaning/property. This finding 
is encouraging; it shows that activities aimed at improving 
resilience capacity for one natural hazard will also benefit the 
resilience to other natural hazards. It also shows that 
developing a generalized set of resilience indicators is 
possible. 

To make the results from discriminant analysis more 
interpretable, an ordinary least squares (OLS) regression 
analysis between the 𝑅𝐼𝑀𝑆𝑐𝑜𝑟𝑒  and the set of extracted 

variables is conducted. If the regression model yields a high 
R2 value, then the importance of the variables can be 
evaluated more directly through their regression coefficients. 
In Cai et al. (2016), regression between the RIMscore and the 
10 predictor variables yielded an R2 of 0.79, which is 
reasonable. The variables and their coefficients in the 
regression can then be used to explore how increasing the 
value of one variable affects the final RIMscore.   
 Although the regression technique is straightforward, it 
does not show how the predictors interact as a system that 
will affect the final resilience. This dynamic resilience 
analysis is crucial to a better understanding of the 
interdependency of predictors and building more accurate 
simulation scenarios for decision making. In the Mississippi 
River Delta study, Cai et al. (2018) developed a Bayesian 
Network (BN) to illustrate how population change was 
affected by the ten resilience predictors. Mihunov and Lam 
(2020) also used the BN method to model the dynamics of 
drought resilience in South-Central USA. 
 
Table 1.  Major predictor variables of community resilience to flood vs. 
drought hazards extracted from the RIM analysis.  
Category Flood resilience (Cai et al., 2016) 

Social  % female-headed households 
 % housing units with telephone service 

available 
Economic  % population employed in construction, 

transportation, material moving 
 % population living in poverty 

Infrastructure  % housing units built after 2000 
 Total housing units per square mile 
 Total length of roads per sq. km 

Community  % population that was native born and also 
lives in the same house or same county 

Environmental  Mean subsidence rate 
 % area in an inundation zone 

 
Category Drought resilience (Mihunov et al., 2016) 

Social  % female-headed households 
 % population over 65 years 

Economic  % employed in agriculture, forestry, fishery 
 % population living in poverty 
 Median value of owner-occupied housing 
 Median rent* 

Infrastructure  Mobile homes per square mile 

Community  Disabled and not working labor force per 
10,000 

Environmental None 

 
CONCLUSIONS 

The RIM model meets several of the challenges in 
resilience measurement. First, the model uses empirical data 
for the three elements to derive the index, thus the resultant 
RIM index has already been validated by empirical 
observable outcomes. Second, the equations derived from the 
discriminant analysis can be used to predict resilience of other 
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similar communities if the assumptions hold, thus the RIM 
method has inferential power. Third, the model can 
incorporate resilience predictors from multiple sectors, and at 
the same time, the stepwise option can be employed to extract 
major variables and avoid collinearity. Fourth, the model 
provides not only the final RIM scores but also the weights 
associated with the major variables. When the model is 
further extended into a dynamic mode using Bayesian 
Network or other system dynamic methods, we can identify 
the interdependency of the variables and their associated 
probabilities for a better understanding of the resilience 
process and more accurate scenario simulations.  

However, as expected in any type of spatial-temporal 
models, the RIM model results are subject to uncertainty, 
depending on the temporal and spatial scales used and other 
factors. More application studies are needed to examine how 
the predictors and their weights change with spatial and 
temporal scales, the hazard type, and the selection of predictor 
variables. Furthermore, incorporating input from local 
communities, experimenting with rural versus urban setting, 
comparing with rapid vs. slow-moving hazards, and testing 
with the AI/machine learning algorithms would help improve 
the science and practice of resilience measurement. We argue 
that through more experimental studies, it is possible to 
develop a set of high-level standards of resilience capacity to 
help advance the science and practice of resilience 
measurement to benefit society.  
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