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Modeling the impacts of governmental and human responses on 
COVID-19 spread using statistical machine learning
Binbin Lina, Yimin Daib, Lei Zoua* and Ning Ningb*
aDepartment of Geography, Texas A&M University, College Station, TX, United States; bDepartment of Statistics, 
Texas A&M University, College Station, TX, United States

ABSTRACT  
Understanding the impacts of governmental and human responses on the 
pandemic control is imperative for forecasting pandemic spread under 
various responsive scenarios and guiding localized interventions before 
pharmaceutical interventions are available. This study analyzed multiple 
data sets, including social media, mobility, policy evaluations, and 
COVID-19 infection reports, to delineate the interactions between 
governmental and human responses and COVID-19 spread in the 
United States in 2020 when vaccinations were unavailable. The 
contributions are (1) uncovering the spatiotemporal variations in 
governmental and human responses during COVID-19; (2) developing a 
statistical machine learning algorithm that incorporates spatiotemporal 
dependencies and temporal lag effects to model the relationships 
between governmental and human responses and the pandemic 
spread; (3) dissecting the impacts of human responses on the pandemic 
across space and time. Results reveal that the determinants of COVID-19 
health impacts transitioned from human mobility during the initial 
outbreak phase to both human mobility and stay-at-home policies 
during the rapid spread phase, and ultimately to the compound of 
human mobility, stay-at-home policies and the public awareness in the 
full-blown phase. These findings furnish guidance for policymakers in 
implementing adaptive and phased strategies.
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1. Introduction

The COVID-19 pandemic, which emerged in 2020 and persisted for over three years, has profoundly 
impacted human society, posing significant threats to human health, disrupting social relationships, 
and devastating the economy (Li et al. 2020; Subramanian, He, and Pascual 2021). During the pan
demic, governments worldwide implemented diverse policies to control the spread of the corona
virus. Meanwhile, individuals within different regions exhibited varying perceptions of the risks 
associated with COVID-19 and displayed divergent behaviors in response to the virus and adherence 
to relevant policies. These non-pharmaceutical governmental and human responses have played 
a crucial role in containing the pandemic during the absence of pharmaceutical interventions such 
as vaccinations, as evident in prior studies (Agusto et al. 2023; Hadjidemetriou et al. 2020; 
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Liu et al. 2021; Manzira, Charly, and Caulfield 2022a; Kraemer et al. 2020; Wellenius et al. 2021). 
However, existing research has primarily focused on detecting the impacts of one or a limited 
scope of governmental and human responses to the COVID-19 spread, which overlooks the com
plexity in practical scenarios and may lead to the misinterpretation of the effectiveness of these 
responses. It is necessary to consider the compounding impacts of governmental and human 
responses simultaneously when modeling the pandemic’s spread.

Modeling the compounding and evolving effects of governmental and human responses on 
COVID-19’s health impacts has two main challenges: data availability and model complexity. Tra
ditionally, data describing the dynamics of governmental and human responses to real-world events 
can be obtained through surveys. However, conducting large-scale surveys over an extended period 
is both time-consuming and financially burdensome, making it difficult to track human responses 
in near real-time. Recent technological advances have provided new opportunities for monitoring 
human responses to the pandemic. Geospatial big data, e.g. web application data (Rovetta and 
Bhagavathula 2020; Tsao et al. 2021) and sensor-based mobility data (Gao et al. 2020; Vinceti 
et al. 2020), offer rich information that can be used to delineate various dimensions of human beha
viors, such as the strictness of COVID-19 related policies, public perceptions, and human mobility 
during the pandemic.

The second challenge is the model complexity. The impacts of diverse governmental and human 
responses to COVID-19 are intricately intertwined (Chen, Feng, and Gu 2022; Galea, Riddle, and 
Kaplan 2010), evolving over time, unevenly dispersed across space, and spatiotemporal dependent 
(Li et al. 2022). These intricacies necessitate an advanced model capable of comprehending the high 
dimensional spatiotemporal data, incorporating the spatial dependence and time lag effects in the 
human responses’ impacts, and effectively capturing the spatiotemporal varied effects of govern
mental and human responses on COVID-19 spread. Despite the pressing need for such models, 
there remains a substantial gap in the development and application of advanced spatiotemporal 
models to fully address the intricacies of the human-COVID-19 system (Lin et al. 2024a). Conven
tional statistical models face challenges in handling high-dimensional data and uncovering inter
connected relationships due to their limited capacity to capture complex patterns in such data. 
Deep learning models require large datasets to train vast model parameters and explain relation
ships among variables. Analyses at the administrative unit level are based on aggregated data, 
which have limited data points and are insufficient for training robust deep learning models. 
The emergence of statistical machine learning models (Sugiyama 2015) facilitates the ability to 
interpret relationships based on small-size datasets, providing opportunities to model the complex 
impacts of governmental and human responses on COVID-19 spread accurately at the administra
tive unit level.

This study analyzed the governmental and human responses, i.e. stay-at-home policies, public 
awareness and sentiment toward COVID-19, and human mobility, as well as their effects on 
COVID-19 health impacts in the U.S. at the state level. Considering that the first COVID-19 vac
cination was released on December 14, 2020, this study chose the year 2020 as the focus period, 
which was before the widespread availability of vaccines, to assess the effects of non-pharmaceutical 
governmental and human responses on the pandemic control. The objectives of this study are 
threefold: (1) to reveal the spatiotemporally varied governmental and human responses during 
the COVID-19 pandemic in the U.S. using data from social media, web applications, and smart
phone sensors; (2) to develop a statistical machine learning model that incorporates spatiotemporal 
dependence and time lag effects for relationship detection; (3) to unravel the impacts of governmen
tal and human responses on the pandemic’s health outcomes across time and space. The overarch
ing hypothesis posits that stay-at-home policies and human mobility have a greater contribution to 
controlling the spread of COVID-19 compared to public awareness and sentiment. To test the 
hypothesis, we develop a novel Bayesian approach for modeling multiple correlated time series 
data that incorporates linear trend, seasonal, cyclical, and regression components. This method 
effectively captures spatial dependence between response and covariates while simultaneously 
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detecting time lag effects. It can automatically handle variable selection in high-dimensional data
sets with complex patterns while preventing overfitting. Additionally, it provides a clear interpret
ation of the effects of different components.

The contributions include that (1) the developed framework and indices can be applied to 
observe governmental and human responses to other events like natural disasters and decipher 
their effects on human health; (2) we develop a novel statistical machine learning algorithm capable 
of modeling the spatially and temporally evolved interactions among various variables; (3) the 
knowledge gained from this study could provide an insightful understanding of governmental 
and human responses’ impacts on COVID-19 spread and inform decision-making and policymak
ing for pandemic control.

2. Background

2.1. Spatiotemporal COVID-19 modeling

The COVID-19 pandemic had an unequal impact on different regions and populations throughout 
its progression partially due to the diverse, localized intervention strategies and responding beha
viors. It is crucial to understand how COVID-19 has spread across different locations and over time 
to inform intervention strategies mitigating the uneven effects of future pandemics. Spatiotemporal 
modeling has emerged as a critical tool for achieving a detailed and accurate understanding of dis
ease transmission patterns.

Epidemiological models are widely applied in modeling and predicting the spread of COVID-19, 
such as the Susceptible-Infected-Recovered (SIR) compartment model (Chen et al. 2020; Ma et al. 
2024; Wangping et al. 2020). The SIR model divides a population into susceptible, infected, and 
recovered compartments. Through an ordinary differential equation (ODE) system to describe 
the dynamics and flows between the compartments, the SIR model can portray the pandemic spread 
by estimating important metrics such as the basic reproduction number (R0) (Altmann 1995). 
However, this model assumes homogeneous dynamics across geographic areas, which does not 
reflect the spatial heterogeneity of the pandemic’s spread and impacts. To address this limitation, 
researchers have developed spatial SIR-type models that consider spatial interactions between 
locations. For example, Hatami et al. (2022) developed a spatial Susceptible-Exposed-Infectious- 
Recovered (SEIR) model, incorporating a distance model describing pairwise relationships between 
studied locations with a traditional SEIR model. Another study by Hou et al. (2021) developed a 
human mobility flow-augmented stochastic SEIR model, applying an unsupervised machine learn
ing algorithm to partition a county into multiple distinct subregions based on observed human 
mobility flow data. Ionides, Ning, and Wheeler (2022) and Ning and Ionides (2023) considered 
metapopulation systems characterized by strong dependence through time within a single unit 
and relatively weak interactions between units.

Spatial statistical regression models offer another approach to modeling the dynamics of epi
demic spread. The Geographically and Temporally Weighted Regression (GTWR) model (Fother
ingham, Crespo, and Yao 2015) is an extension of the Geographically Weighted Regression (GWR) 
model that incorporates temporal weighting. By allowing for the identification of local variations in 
the relationship between predictive variables and the response variable over time and space, the 
GTWR model has been successfully applied to estimate and forecast the spatial and temporal 
dynamics of COVID-19 spread in various regions (Chen et al. 2021; Fu and Zhai 2021). Similarly, 
the spatial error model (Wong and Li 2020), spatial lag model (Hafner 2020), and spatial vector 
autoregression model have been used to model the spread of COVID-19 while accounting for 
the effects of spatially structured errors and spatial dependence. Researchers have also developed 
novel methods to incorporate spatial and temporal features into COVID-19 prediction. Dlamini, 
Simelane, and Nhlabatsi (2022) conducted Bayesian network-based spatial predictive modeling 
to delineate the dynamics of COVID-19 spread. This model considers proximity referral health 
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facilities, churches, and shopping facilities as spatial variables. Incorporating spatial variables with 
daily traffic data and the proportion of youth, this model effectively identified COVID-19’s potential 
geographic spread and the underlying influencing factors in Eswatini. Ak et al. (2022) constructed a 
structured Gaussian process model integrating spatial (geographical coordinates and location- 
specific demographic information) and temporal features (the day, month, and year information 
of the reported case counts) to forecast the outbreak of COVID-19.

2.2. Governmental and human responses to COVID-19

The COVID-19 pandemic has been acknowledged as a global crisis by the World Health Organiz
ation. Given the swift worldwide transmission of COVID-19 and the absence of an effective vaccine 
or treatment for this newly emerged infectious disease during its first outbreak, governmental and 
human responses have emerged as one of the primary strategies to mitigate the spread of COVID- 
19 in 2020.

Public health policies were one commonly adopted strategy to mitigate the transmission of 
COVID-19. In China, for example, the government implemented the zero-COVID-19 policy, 
employing large-scale testing, contact tracing technology, nationwide mask-wearing, and manda
tory isolation of infected individuals to control the pandemic (Burki 2020). In the U.S., California 
became the first state to enforce a stay-at-home or shelter-in-place order. In March 2020, the 
New York City public school system, the largest in the U.S. with 1.1 million students, shut 
down, while Ohio mandated the closure of restaurants and bars. The effectiveness of COVID-19 
control policy measures has been assessed. Liu et al. (2021b) conducted a study using panel 
regression to estimate the impact of 13 categories of COVID-19-related policies on reducing trans
mission across 130 countries from January to June 2020. Their findings revealed a strong positive 
correlation between strict policies such as school closures and internal movement restrictions and a 
decreased COVID-19 reproduction number. Another study conducted by Dainton and Hay (2021) 
examined the effects of COVID-19 lockdown policies on changes in human mobility utilizing Goo
gle Mobility data from five contiguous public health units in the Greater Toronto Area in Ontario, 
Canada, between March 1, 2020, and March 19, 2021. The study also assessed the subsequent 
impact of human mobility changes on the effective reproduction number of COVID-19, R0, 
using Pearson correlation. The results indicated that, with enhanced lockdown measures, human 
mobility in York decreased significantly, particularly in retail, transit stations, and workplaces, lead
ing to a reduced R0 after 14 days.

The public perception of COVID-19 is another factor shaping residents’ adherence to rec
ommended policies and personal protective behaviors, such as wearing masks and practicing 
proper hand hygiene, ultimately leading to distinct spatiotemporal patterns of COVID-19 trans
mission. Cinarka et al. (2021) conducted a study using Google search volumes for COVID-19 symp
toms as indicators of public awareness in Turkey, Italy, Spain, France, and the United Kingdom. 
The dynamic conditional correlation analysis method was employed to explore the relationships 
between Google search volumes and the COVID-19 spread. The findings revealed that the Google 
search volumes for symptoms such as fever, cough, and dyspnea were closely correlated with new 
COVID-19 cases during the initial outbreak of the pandemic. Jun, Yoo, and Lee (2021) utilized 
Google’s relative search volume (RSV) as an indicator of public awareness regarding COVID-19 
and employed a vector autoregression model to investigate its association with new COVID-19 
cases in 37 countries in the Organization for Economic Cooperation and Development (OECD). 
The results demonstrated an association between increased public awareness and a heightened 
interest in COVID-19 testing. Agusto et al. (2023) employed ordinary differential equations to esti
mate the impact of public sentiment on the spread of COVID-19 in Australia, Brazil, Italy, South 
Africa, the United Kingdom, and the U.S. between January and June 2020. Public sentiments (both 
positive and negative) were evaluated using COVID-19-related tweets from Twitter (rebranded as X 

4 B. LIN ET AL.



in July 2023). The findings indicated that positive public sentiments were associated with a 
reduction in disease burden within the community.

Practically, the transmission of COVID-19 is influenced by numerous types of 
governmental and human responses simultaneously. Detecting the impacts of a portion of govern
mental and human responses on COVID-19 spread oversimplifies the interactions and may lead to 
the misinterpretation of the effectiveness of these responses. Therefore, accurate pandemic spread 
modeling necessitates considering the compounding impacts of government policies and various 
public reactions.

2.3. High-dimensional spatiotemporal statistical modeling

High-dimensional spatiotemporal challenges arise when dealing with data that involve both space 
and time, and where there are a large number of variables, locations, and time points. In recent 
years, there have been several statistical advances in addressing these challenges.

One direction is to use regularization methods such as Lasso (Tibshirani 1996) or Elastic Net 
(H. Zou and Hastie 2005), which can reduce the number of variables by assigning small coeffi
cients to irrelevant variables. These methods can also identify important variables and their inter
actions. Another solution is dimension reduction which aims to reduce the number of variables 
in the data, while still capturing the relevant information. Principal component analysis (Zou, 
Hastie, and Tibshirani 2006; Ning and Ning 2024), factor analysis (Bhattacharya and Dunson 
2011; Pati et al. 2014), and wavelet-based methods (Clyde, Parmigiani, and Vidakovic 1998) 
are examples of dimension reduction techniques that have been applied to spatiotemporal 
data. These methodological advancements have substantially contributed to addressing the 
difficulties associated with analyzing high-dimensional and spatiotemporal data. As a result, 
there have been improvements in model development and predictions to resolve questions across 
various disciplines, such as environmental science, epidemiology, and climate modeling. None
theless, methodologies capable of simultaneously managing high-dimensional issues and spatio
temporal data remain scarce, primarily due to the intricate nature of feature selection tasks within 
complex structures.

The advances in the Bayesian structural time series (BSTS) model bring opportunities to 
address the challenges in high dimensional spatiotemporal statistical modeling. BSTS (Scott 
and Varian 2014) is a statistical technique to select features, forecast temporal trends, and infer 
causal impacts (Brodersen et al. 2015). The model is designed to work with time series data by 
incorporating various components, such as seasonality, trends, or auto-regression. It can also 
accommodate external regressors, which makes it possible to quantify the impacts of regressors 
on the response. Recent literature (Sung 2023; Zhang and Fricker 2021) has utilized the BSTS 
model to analyze COVID-19 data. Based on BSTS, the Multivariate BSTS (MBSTS) (Qiu, Jamma
lamadaka, and Ning 2018; Ning and Qiu 2023) was proposed as a novel tool for inferring and 
predicting multiple correlated time series. Qiu, Jammalamadaka, and Ning (2018) demonstrates 
that the MBSTS model provides better prediction accuracy compared to the univariate BSTS 
model, the autoregressive integrated moving average with regression (ARIMAX) model, and 
the multivariate ARIMAX (MARIMAX) model. Also, MBSTS can select features from a pool of 
contemporary predictors while simultaneously training models for each time series, which reduces 
over-fitting and eliminates unessential or misleading predictors. In other words, MBSTS can 
choose distinct predictor sets for each target time series for each Markov chain Monte Carlo iter
ation from high-dimensional data.

In the human-pandemic interactions, high-dimensional governmental and human responses 
exhibit intricate inter-dependencies and have compounded impacts on epidemics. In this scenario, 
the MBSTS model, due to its inherent capability for feature selection and over-fitting prevention, is 
suitable for detecting the compounded effects of governmental and human responses on pandemic 
transmission.
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3. Data

Figure 1 illustrates the conceptual framework describing the hypothesized effects of governmental 
and human responses on COVID-19 health impacts with a time lag effect. The stay-at-home pol
icies, public awareness and sentiment toward COVID-19, and human mobility were selected as gov
ernmental and human responses in this study (Table 1). Section 3 outlines the data collection and 
processing methods employed to measure governmental and human responses and COVID-19 
health impacts.

3.1. COVID-19 risk perceptions

We designed several indices based on Twitter data to capture COVID-19 risk perceptions and their 
changes at the state-level. Twitter, one of the most popular social media, provides users with a plat
form to share their experiences, feelings, and opinions about events through short messages 
(tweets) (Zou et al. 2019). In 2023, Twitter was renamed and branded as X, and the remainder 
of this article uses Twitter to avoid confusion. Compared with the survey, Twitter data are an 
invaluable resource for researchers due to two advantages. Firstly, with 450 million monthly active 
users as of 2023, Twitter data are more representative of a larger population than survey data. Sec
ondly, Twitter data can be used to quantitatively monitor human perceptions and behaviors during 
COVID-19 in the near-real time (Bogdanowicz and Guan 2022), whereas conducting surveys is 
time-consuming which makes it difficult to track public perceptions promptly. However, it is 
worth mentioning that Twitter data, like many other social media platforms, are inherently biased 
towards younger, well-educated, and wealthier urban populations (Blank 2017). Analyzing Twitter 
data without considering demographic biases might overlook the behavior of certain social groups 
and lead to unfair estimations.

To track demographically unbiased public awareness and sentiment toward COVID-19, we con
ducted the Twitter data mining framework, as depicted in Figure 2. First, we collected all geotagged 
tweets from the U.S. in 2020 using the Twitter Academic Application Programming Interface (API). 
Non-human generated tweets and tweets from organizational accounts, which were irrelevant to 

Figure 1. The conceptual framework describing the hypothesized effects of governmental and human responses on COVID-19 
health impacts with a time lag effect.
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public perceptions, were removed by methods delineated in (Lin et al. 2022). A total of 255,291,871 
geotagged tweets were retrieved. Second, we set a list of COVID-19-related keywords based on 
existing literature (Alqurashi, Alhindi, and Alanazi 2020; Banda et al. 2021), i.e. covid, virus, 
2019-ncov, sars-cov-2, coronavirus, ncov, n95, social distancing, lockdown, quarantine, pandemic, 
epidemic, pneumonia, and confirmed cases, to identify tweets relevant to the pandemic. A total 
of 3,954,468 tweets (1.55%) were identified as COVID-19-related. Third, we calculated three 
matrics to indicate risk perceptions. The percentage of COVID-19-related tweets overall geo
tagged tweets is defined as the Ratio index to represent public awareness toward COVID-19 
(Lin et al. 2022). In terms of public sentiment toward COVID-19, we estimated users’ sentiment 
toward COVID-19 (negative, neutral, or positive) based on the sentiment of all COVID-19- 
related tweets they posted (Lin et al. 2024b). The M3 (multimodal, multilingual, and multi-attri
bute) model proposed by Wang et al. (2019) was employed to detect the demographics of users 
including age and gender based on users’ screen names, usernames, profile images, and biogra
phies. The M3 model achieves an accuracy of 0.81 for gender recognition and 0.42 for age rec
ognition on the English tweet data set, exceeding other available models (Morgan-Lopez et al. 
2017; Vashisth and Meehan 2020). Finally, the positive and negative Sentiments Adjusted by 
Demographics (P-SAD and N-SAD) index and Ratio Adjusted by Demographics (RAD) index 
were computed using the post-stratification method based on the difference between the demo
graphic structure of Twitter users and the general population, as suggested in (Lin et al. 2024b). 
The N-SAD and P-SAD indexes represent the demographically unbiased percentages of Twitter 
users expressing overall negative and positive emotions toward COVID-19, respectively. The 
RAD index quantifies the proportion of tweets concerning COVID-19 among all tweets after cor
recting Twitter users’ demographic biases. All risk perception indexes can be computed at differ
ent spatial and temporal scales.

Table 1. Overview of variables used for governmental and human responses.

Category Index name Index meaning Data source

COVID Risk 
Perception- 
Public 
awareness

Ratio Adjusted by Demographics 
(RAD)

The demographically unbiased 
percentages of COVID-19 related 
Tweets

Twitter/X

COVID Risk 
Perception- 
Public 
sentiment

Negative-Sentiment Adjusted by 
Demographics (N-SAD) and Positive- 
Negative-Sentiment Adjusted by 
Demographics (P-SAD)

The demographically unbiased 
percentages of Twitter/X users 
expressing overall negative (N-SAD) 
and positive (P-SAD) emotions toward 
COVID-19

Twitter/X

Mobility Human mobility in Driving, Transit, 
and Walking

Relative mobility volume based on 
baseline volume in different 
transportation types

Apple Human Mobility 
Reports

COVID-19 Policies Stringency Index (SI) The strictness of stay-at-home COVID-19 
policies

Oxford COVID-19 
Government 
Response Tracker 
(OxCGRT)

Figure 2. Framework of Twitter data mining for demographically-unbiased assessments of public awareness and sentiment 
toward COVID-19.
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3.2. Mobility

This study collected daily Apple mobility data in the U.S. at the state level in 2020 to assess human 
mobility in different modes, namely driving, walking, and public transit. The Apple human mobility 
data track the mobility volume change in driving, walking, and taking public transit at multiple 
administrative levels, e.g. global, country, state, and county (https://covid19.apple.com/mobility). 
The data were derived from Apple Maps users and reported as the relative volume based on the 
baseline volume, which was the direction requests received per country/region, sub-region, or 
city on January 13th, 2020. Although the dataset only includes Apple Maps users, Apple has a sig
nificant market share in the US, with millions of active users. This large sample size provides a 
robust dataset to monitor spatiotemporal changes in human mobility during significant events 
like COVID-19 (Kurita et al. 2021; Nagy et al. 2023), although it is not perfectly representative 
of the entire population. It is worth noting that Apple is no longer offering mobility trends reports 
as of April 2022.

3.3. COVID-19 policies

The Oxford COVID-19 Government Response Tracker (OxCGRT) using the scorecard 
method, offers a systematic estimation of the stringency of COVID-19 policies implemented 
by various countries since January 1st, 2020. Hale et al. (2021) compiled a comprehensive 
set of policies and assigned scores to each policy, with higher scores indicating more stringent 
measures. These policies were categorized into 23 indicators based on their thematic focus. The 
Stringency Index (SI) selected in this investigation quantifies the strictness of stay-at-home 
COVID-19 policies by incorporating nine indicators, namely school closures, workplace clo
sures, restrictions on public events, limitations on gathering size, public transport closures, 
stay-at-home requirements, restrictions on internal movement, restrictions on international tra
vel, and public information campaigns. The SI scale ranges from 0 to 100, with higher values 
indicating more stringent measures. For this study, we collected daily SI data at the state level 
in the U.S. throughout 2020. Although policy evaluations are included in this study, we recog
nize that policies like lockdown orders were not uniformly followed during COVID-19. Incor
porating both policies and public responses provides a realistic understanding of how humans 
perceive policies differently, how disparities in their perception affect behaviors, and the resul
tant health consequences.

3.4. COVID-19 cases

To assess the health implications of COVID-19, we utilized the case rate as a quantitative measure, 
which represents the proportion of confirmed cases per 100,000 individuals within the population. 
The cumulative confirmed cases in the U.S. in 2020 were collected from the publicly accessible 
database maintained by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 
University (Dong, Du, and Gardner 2020). Population data were sourced from the United States 
Census, and estimates were based on data as of April 1st, 2020. The resulting case rate values ranged 
from 0 to 105, with higher values indicating a more pronounced impact on public health attributed 
to COVID-19.

4. Methods

The MBSTS model is a generalized version of various structural time series models, leveraging 
Bayesian selection techniques through Markov Chain Monte Carlo (MCMC) methods to select 
among a set of contemporary predictors. This model offers flexibility in choosing different 
components, allowing users to construct complex structures. To address delayed effects, 
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we incorporated the time lag effect into the MBSTS model. This section first provides an over
view of the MBSTS model, followed by a detailed description of the modified MBSTS with the 
time lag effect algorithm.

4.1. The MBSTS model

The MBSTS model is a general time series model constructed as the sum of trend m(t), season t(t), 
cycle v(t), and regression j(t) components with t [ {1, . . . , T} being the time index, as follows:

Y(t) = m(t) + t(t) + v(t) + j(t) + e(t), e(t) i.i.d. ≏ NM 0,
􏽘

e
􏼐 􏼑

(1) 

where Y(t) = {Ym(t)}M
m=1 is the M-dimension outcome vectors. All components are assembled 

independently, with each component yielding an additive contribution. The MBSTS model allows 
each Ym(t) for m [ {1, . . . , M} to have its specific formula. For instance, for predicting two-dimen
sion outcome vectors, the first time series may encompass the trend, season, and regression com
ponents, while the second time series may only have the trend component. The model training is 
conducted over all M time series incorporating the correlations through M × M-dimensional 
covariance associated with the error term e(t).

The specification of the trend component (m(t)) in a time series model depends on both the 
characteristics displayed by the analyzed series and any available prior knowledge. If the series con
sistently demonstrates either an upward or downward movement, incorporating a slope or drift 
into the trend model could be suitable. This results in a more comprehensive model compared 
to the local linear trend model. In this generalized version, the slope remains stationary rather 
than random, and the model can be expressed in the following form:

m(t + 1) = m(t) + d̃(t) + m̃(t), m̃(t) i.i.d. ≏ NM 0,
􏽘

m
􏼐 􏼑

(2) 

d̃(t + 1) = D̃ + r̃(d̃(t) − D̃) + ñ(t), ñ(t) i.i.d. ≏ NM 0,
􏽘

d
􏼐 􏼑

(3) 

Here, d̃(t) and D̃ represent m-dimensional vectors. Specifically, d̃(t) signifies the expected increase 
in m(t) between time t and t + 1 to resemble a short-term slope at time t. In contrast, D̃ pertains to 
the long-term slope. This structural setup harmonizes short-term insights with long-term trends, 
resulting in a model that appropriately blends both types of information.

The second component of the model (t(t)) is responsible for capturing seasonality and is com
monly expressed as follows:

tm(t + 1) = −
􏽘Sm−2

k=0
tm(t − k) + vm(t), ṽ(t) = [v1(t), . . . , vM(t)]Ti.i.d. ≏ NM 0,

􏽘
t

􏼐 􏼑
(4) 

Here, Sm represents the number of seasons for the time-series Ym(t) for m [ {1, . . . , M}, and the 
M-dimensional vector t(t) = ( t1(t), . . . , tM(t)) signifies their collective influence on the 
observed target time series Y(t) = ( Y1(t), . . . , YM(t)). The MBSTS model accommodates 
diverse seasonal components with distinct periods for each target series Ym(t). For instance, it’s 
possible to incorporate a seasonal component with Sm = 7 to capture the day-of-the-week effect 
for one target series, and Sm′ = 30 to account for the day-of-the-month effect in another target 
series.

The third component of the series (v(t)) aims to capture cyclical effects. In economics, the term 
‘business cycle’ refers to recurrent deviations around the long-term trajectory of the series that are 
not strictly periodic. A model encompassing a cyclical component can effectively replicate crucial 
features of the business cycle, such as robust autocorrelation, alternating phases, damping fluctu
ations, and null long-term persistence. A stochastic trend model, when applied to a seasonally 
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adjusted economic time series, may not adequately capture the series’ short-term fluctuations on its 
own. However, by integrating a serially correlated stationary component, the model becomes 
equipped to account for these short-term movements, thereby encompassing the cyclical influence. 
The cycle component is defined as follows:

v(t + 1) = @ 􏽤cos(l)v(t) + @ 􏽤sin(l)v ∗ (t) + k̃(t), k̃(t) i.i.d. ≏ NM 0,
􏽘

v
􏼐 􏼑

(5) 

v ∗ (t + 1) = −@ 􏽤sin(l)v(t) + @ 􏽤cos(l)v∗(t) + k̃ ∗ (t), k̃ ∗ (t) i.i.d. ≏ NM 0,
􏽘

v
􏼐 􏼑

(6) 

where @, 􏽤sin(l), and 􏽤cos(l) are M × M diagonal matrices with diagonal entries equal to @ii (a damp
ing factor for target series Yi such that 0 , @ii , 1), sin(lii) where lii = 2p/qi is the frequency 
with qi being a period such that 0 , lii , p, and cos(lii) respectively.

The regression component j(t) = (j1(t), . . . , jM(t)) with static coefficients is written as 
Equation (7).

jm(t) = bT
mXm(t) (7) 

Here, j(t) = [jm,1(t), . . . , jm,d(t)]T is the collection of all elements in the regression component. 
For target series Ym, Xm(t) = [Xm,1(t), . . . , Xm,d(t)]T is the pool of predictors at time t, and 
[bm, 1, . . . , bm, d]T represents corresponding static regression coefficients. Regression analysis is a 
statistical methodology used to estimate relationships between dependent variables and indepen
dent variables, which are alternatively referred to as predictors, covariates, or features. That is, 
each time series has its specific d predictors that are different from those of other time series. 
The total number of different predictors for the M-dimensional time series is thus Md.

The MBSTS model can select important features while taking into account the 
spatial correlations among target time series by the spike and slab technique developed by George 
and McCulloch (1997) and Madigan and Raftery (Madigan and Raftery 1994) that has been widely 
used for dimension reduction (Jammalamadaka, Qiu, and Ning 2019; Ning and Ning 2024; Qiu, 
Jammalamadaka, and Ning 2020). Additionally, the model is equipped to infer the trend com
ponent m(t), the seasonal component t(t), and the cyclical component v(t) via a posterior simu
lation algorithm as outlined by Durbin and Koopman (Durbin and Koopman 2002). Moreover, 
it enables the inference of covariance matrices associated with these components, namely, 
􏽐

m,
􏽐

d,
􏽐

t,
􏽐

v
 􏼁

through an inverse Wishart distribution.

4.2. The MBSTS-TL algorithm

Although the MBSTS model is suitable for detecting the compounding effects of governmental and 
human responses on pandemic transmission, it is imperative to recognize that the influence of 
human responses on the epidemic may exhibit delayed effects. There is a need to modify the 
MBSTS model, which currently assumes that factors affect the target time series instantaneously, 
by incorporating time lag effects associated with governmental and human responses. This aug
mentation is critical for improving the model’s capacity to faithfully capture real-world dynamics. 
Therefore, we propose a new Algorithm 1 named MBSTS-Time Lagged (MBSTS-TL) model. 
MBSTS-TL is designed to work with the MBSTS model for the spatiotemporal setting with a 
time lag of lt . This model introduces a proper error metric for evaluation and hyper-parameter tun
ing. Effective hyper-parameter selection is crucial in spatiotemporal analysis. The hyper-parameter 
r denotes the trend effect as defined in Equation (3), while S represents the seasonal effect as defined 
in Equation (4). Additionally, @ and l denote the damping factor and cyclic effect, respectively, as 
defined in Equation (6). The MBSTS model is a time series model that includes trend, seasonal, 
cycle, and regression j(t) components. Each hyper-parameter controls its respective component. 
The trend effect r denotes that the local linear component at time t + 1, d̃(t + 1), is equal to the 
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local linear component at time t, d̃(t)D̃, multiplied by r and added to D̃ with noise. The seasonal 
effect S indicates that the seasonal component t(t + 1) at time (t + 1) is equal to the sum of the 
seasonal components from time t − S + 2 to time t. The damping factor and cyclic effect controls 
the iteration of cycle component from time t + 1 to t. The novel error metric, denoted as AEr,S,@,l 
facilitates the tuning of hyper-parameters (r, S, @, and l) associated with the MBSTS model. It 
takes into account both temporal variations and spatial disparities. This methodology identified 
a diverse set of candidate parameters and selected the optimal one to enhance our model. This 
work represents the first attempt to provide an explicit hyper-parameter tuning method within 
the MBSTS framework.

To elaborate, we divide the time interval [tstart, tend] into non-overlapping K segments, creating a 
partition as follows: tstart

1 , tend
1

􏼂 􏼃
, tstart

2 , tend
2

􏼂 􏼃
, . . . , tstart

K , tend
K

􏼂 􏼃
. This partition allows us to evaluate 

model performance in distinct time stages, considering the error metric defined in Equation (8). 
Importantly, this time-based partitioning does not increase the computational complexity in the 
MBSTS model. Given that Markov chain Monte Carlo, an offline method, is employed, training 
the MBSTS model with all time-dependent data might lead to lengthy convergence times and 
require substantial computational resources. Our approach addresses this issue by allowing users 
to define time partitions that align with the evolving dynamics of events, such as the varying stages 
of the COVID-19 spread. For each MBSTS model corresponding to a partition segment, a smaller- 
scale Markov chain Monte Carlo is performed. This not only makes the process computationally 
feasible on personal computers but also adapts the model to the evolving nature of spatiotemporal 
phenomena.

Algorithm 1 The MBSTS-TL algorithm

INPUT: Covariate X(tstart
k ), . . . , X(tend

k − lt ) and outcome Y(tstart
k + lt ), . . . , Y(tend

k ) for k [ {1, . . . , K}.
Evaluation: 
1. Training the k-th MBSTS model for k = 1, . . . , K, with hyper-parameter r, S, @, and l using  

X(tstart
k ), . . . , X(tend

k − lt ) and Y(tstart
k + lt ), . . . , Y(tend

k ).

2. One step prediction of Y(tend
k ) with X(tend

k − lt ) using the trained k-th MBSTS model with hyper-parameter r, S, @, and l. 
Denote the prediction as Ŷ(tend

k ), for k [ {1, . . . , K}.
3. Compute the normalized absolute values of the differences between the true values Y(tend

k ) = {Ym(tend
k )}M

m=1 and its 
corresponding predicted values Ŷ(tend

K ) = {Ŷm(tend
K )}M

m=1, i.e.  

AEr,S,@,l(lt ) =

􏽐M
m=1 |Ŷm(tend

1 ) − Ym(tend
1 )|

M maxm[{1,...,M}Ym(tend
1 )

, . . . ,

􏽐M
m=1 |Ŷm(tend

K ) − Ym(tend
K )|

M maxm[{1,...,M}Ym(tend
K )

􏼠 􏼡

(8) 

Training: 
1. Grid search for the optimal hyper-parameters r∗ , S∗ , @∗ , and l∗ in their user-defined spaces that yield the minimum 
AEr,S,@,l(lt ) for different lt . 
2. Generate regression coefficients bk = [bk,1, . . . , bk,d]T and its confidence interval (CI) for k [ {1, . . . , K}.  

OUTPUT: parameters bk , its CI, and predictions Ŷ∗(tend
k ) for k [ {1, . . . , K}, and error AEr∗ ,S∗ ,@∗ ,l∗ (lt ).

The impacts of governmental and human responses to COVID-19 spread evolved across differ
ent stages of the pandemic. To capture the time-varying primary human responses for COVID-19 
containment, the time interval of 53 weeks during the year 2020 was divided into three segments, as 
suggested in previous investigations (Kim, Zanobetti, and Bell 2021; Wu and Sha 2021): 
tstart
1 , tend

1
􏼂 􏼃

= [9, 22], tstart
2 , tend

2
􏼂 􏼃

= 23, 37[ ], and [tstart
3 , tend

3 ] = [38, 53], representing February 
24th to May 31st, June 1st to September 13th, and September 14th to December 31st, 2020. 
These periods, corresponding to the onset of the outbreak, the phase of rapid spread, and the 
full-blown phase of the pandemic, were named as the initial outbreak, rapid spread, and full- 
blown periods, respectively. The hyper-parameters of r, S, @, and l in the Algorithm 1 are selected 
in the training process.
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5. Results

5.1. Temporal trends of COVID-19 health impacts and governmental and human 
responses in the U.S.

Figure 3 illustrates the U.S. temporal trends of COVID-19 health impacts and governmental and 
human responses from week 3 to week 53 (mid-January to the end of December) in 2020. The 
case rate fluctuated from 0 to 69.62, characterized by three distinct stepwise increments. There 
were two minor ascensions of approximately 10 each, occurring between weeks 13 to 22 (late 
March to the end of May 2020) and weeks 23 to 37 (June to mid-September), as well as a 
rapid ascent to approximately 60 between weeks 38 to 47 (mid-September to late November). 
Subsequently, the case rate dynamically sustained itself around 60 between weeks 48 and 53 
(late November to the end of December 2020). The risk awareness RAD index ranged from 
0.01 to 5.21. It remained proximate to 0 before week 8 (mid-February 2020), after which it 
underwent a rapid ascent commencing in week 11 (mid-March), reaching its zenith in week 
12, followed by a descent to 0.99 by week 23 (early June). Thereafter, it maintained values 
around 1.5. The policy evaluation SI index ranged from 0.31 to 79.45. Prior to week 9 (the 
end of February 2020), values remained below 5, but subsequent to week 10 (early March), a 
rapid ascent was observed, reaching its pinnacle at week 16 (mid-April), followed by a gradual 
descent. Values around 60 were sustained from week 25 (mid-June 2020) to week 53 (the end of 
December).

Figure 3. National temporal trends of COVID-19 health impacts and human responses.
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Regarding the variations in human mobility, the walking Index ranged from 57.74 to 191.47, the 
driving Index ranged from 58.88 to 174.19, and the transit Index ranged from 40.75 to 80.04. These 
three indices exhibited similar trends, with each maintaining relatively stable values from weeks 3 to 
10 (mid-January to early March 2020), at 110, 110, and 100, respectively. A decline was observed 
from week 11 (mid-March 2020), reaching respective minima in weeks 13 (the end of March), 
14, and 15 (early April), followed by an ascent to their peaks from weeks 28 to 38 (early July to 
mid-September). Finally, they gradually decreased to approximately 125, 110, and 57 by weeks 
48 to 53 (late November to the end of December 2020). In general, the trends for walking and driv
ing exhibited a high degree of overlap, characterized by an early rapid decline, recovery, and sur
passing of the normal baseline values. The usage of public transits exhibited a more pronounced 
initial decline compared to walking and driving, with subsequent recovery, and it did not return 
to the values observed in the normal status, maintaining an overall lower value.

For the characterization of sentiment, the N-SAD index ranged from 0.24 to 0.43. Prior to week 9 
(late March 2020), it exhibited an upward trajectory, increasing from a minimum of 0.24 to a maxi
mum of 0.43. Thereafter, a rapid decline ensued, reaching 0.29 by week 12 (mid-March 2020). From 
weeks 12 to 21 (mid-March to late May 2020), the index remained at around 0.3, subsequently 
stabilizing at approximately 0.35 from week 22 to week 53 (late May to the end of December). 
The P-SAD index ranged from 0.24 to 0.49. It underwent a rapid ascent from week 3 to week 12 
(mid-January to mid-March 2020), increasing from 0.24 to 0.47, and subsequently maintained 
values around 0.47 from week 13 to week 21 (late March to late May), followed by values around 
0.45 from week 22 to week 53 (late May to the end of December). Notably, during the initial 3 to 10 
weeks (mid-January to early March 2020), corresponding to the period prior to the COVID-19 
outbreak in the U.S., the proportion of Twitter users expressing negative sentiment towards the 
pandemic was higher than those with a positive sentiment. Conversely, after the initial outbreak, 
the proportion of users expressing negative sentiment rapidly declined, while those with positive 
sentiment exhibited a substantial increase. After week 11 (mid-March), the proportion of Twitter 
users with a positive sentiment consistently exceeded those with a negative sentiment.

5.2. Spatiotemporal disparities of COVID-19 health impacts and governmental and 
human responses

Figure 4 depicts the spatial disparities of COVID-19 case rates, SI index, and RAD index at the state 
level across three phases in 2020: the initial outbreak period, the rapid spread period, and the full- 
blown period.

During the initial outbreak period, the case rate ranged from 0 to 19, with New York state exhi
biting the highest case rate. In the rapid spread period, case rates ranged from 1.06 in Vermont to 
27.54 in Louisiana. States in the southern region of the United States, such as Florida (26.88), Ari
zona (25.11), and Mississippi (24.87), demonstrated notably higher case rates. In the full-blown 
period, case rates spanned from 8.68 in Vermont to 89.45 in North Dakota, with northern states 
like South Dakota (86.98), Wisconsin (68.90), and Wyoming (65.23) displaying higher case rates.

The policy SI index during the initial outbreak period ranged from 45.41 in North Dakota to 
71.92 in Maine. States with relatively higher SI indices included Maryland (71.71), Kentucky 
(68.85), Delaware (68.81), New Mexico (68.66), and New York (68.27). Conversely, states with 
lower SI indices encompassed South Dakota (49.79), Arizona (51.75), and Utah (52.04). In the 
rapid spread period, the SI index varied from 43.98 in Oklahoma to 82.05 in New Mexico, with 
states like Maine (81.95), Hawaii (76.85), New York (74.03), and Kentucky (69.42) displaying higher 
SI indices. Lower SI indices were observed in states like North Dakota (46.04), South Dakota 
(47.62), and Missouri (48.14). In the full-blown period, the SI index ranged from 40.02 in Oklahoma 
to 76.61 in Hawaii. States with higher SI indices included New Mexico (74.85), New York (72.66), 
and Connecticut (66.27), while states with lower SI indices were South Dakota (41.31), Florida 
(43.03), and Alabama (43.52). Overall, New Mexico and New York maintained higher SI indices 
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throughout the three phases, suggesting stricter stay-at-home policies in these states. North Dakota 
and South Dakota consistently exhibited lower SI indices across the three phases, indicating more 
relaxed stay-at-home policies.

The risk awareness RAD index during the initial period ranged from 1.39 in Louisiana to 5.71 in 
Vermont, with other states such as New Hampshire (3.78) and Massachusetts (3.46) exhibiting 
higher RAD indices. Lower RAD indices were observed in states like Louisiana (1.39) and Missis
sippi (1.53). In the rapid spread period, the RAD index ranged from 0.69 in Louisiana to 2.10 in 
Vermont, with higher RAD indices in Hawaii (1.91) and Maine (1.91). Lower RAD indices were 
observed in Georgia (0.87) and Mississippi (0.88). In the full-blown period, the RAD index ranged 
from 0.66 in Louisiana to 2.31 in Vermont, with higher RAD indices in New Hampshire (2.13) and 
Montana (2.04). Lower RAD indices were observed in Georgia (0.76) and Mississippi (0.76). It is 
evident that Louisiana consistently exhibited lower RAD indices across all three phases, indicating 
lower levels of public awareness of the pandemic among Twitter users in that state.

Figure 5 illustrates the spatial disparities in human mobility categorized into three modes: 
Transit, Walking, and Driving at the state level during three distinct periods of the pandemic. 
Areas depicted in gray signify the unavailability of data. During the initial outbreak period, Transit 
usage ranged from 30.57 (Hawaii) to 107.85 (Mississippi). In addition to Hawaii, New York and 
Washington displayed lower Transit usage values of 32.43 and 34.51, respectively. In contrast, 
Alabama and Arkansas displayed higher Transit usage values of 97.18 and 95.93, respectively, 
along with Mississippi. Notably, Mississippi was the sole state with a Transit value exceeding 
100, signifying a general reduction in Transit mobility across states due to the pandemic’s impact. 
In the rapid spread period, Hawaii continued to exhibit the lowest Transit value (21.55), while 
Mississippi maintained the highest value (135.68). New York and Washington maintained lower 
Transit values of 39.19 and 42.87, respectively. This indicates that the impact of the pandemic 
on Transit mobility persisted longer in Hawaii, New York, and Washington. During the full- 
blown period, Transit ranged from 26.63 (Hawaii) to 109.97 (Mississippi). Alabama (101.86) and 
Arkansas (100.62) reported Transit values exceeding 100, and New Hampshire and South Carolina 

Figure 4. Spatiotemporal disparities of COVID-19 health impacts, SI and RAD.
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also recorded values surpassing 90. This suggests that only five states had Transit mobility nearly 
returned to pre-pandemic normalcy.

Walking and Driving mobility exhibited a similar spatiotemporal pattern. During the initial 
outbreak period, Driving ranged from 55.70 (Hawaii) to 121.68 (South Dakota), while Walking 
ranged from 30.79 (Louisiana) to 116.60 (South Dakota). In the rapid spread period, Driving 
ranged from 60.67 (Hawaii) to 324.86 (Wyoming). Walking ranged from 43.25 (Louisiana) to 
328.53 (Wyoming). In addition to Louisiana, only Hawaii and New York reported values 
below 100, at 43.65 and 71.77, respectively. The remaining states exhibited values exceeding 
100, with Wyoming, Montana, South Dakota, and Maine displaying notably high values. In 
the full-blown period, Walking ranged from 53.00 (Hawaii) to 212.64 (Wyoming), while Driving 
ranged from 64.63 (Hawaii) to 175.21 (Wyoming). Wyoming, Montana, South Dakota, and 
Maine continued to exhibit high Walking and Driving values.

Hawaii is the only state where Transit, Walking, and Driving values remained consistently below 
100 in all three phases. This signifies that residents of Hawaii experienced the most significant 
impact on their human mobility due to the pandemic, and recovery over a year has proven 
challenging.

Figure 6 depicts the spatiotemporal disparities in public sentiment towards COVID-19 
across three periods. The negative sentiment  index (N-SAD) reached its lowest values in Ver
mont, with values of 0.25, 0.26, and 0.29 during the three periods, respectively. The N-SAD 
index was highest in Wyoming, with values of 0.37, 0.41, and 0.41 during these periods, 
respectively. With respect to the positive sentiment index (P-SAD), during the initial outbreak 
period, it displayed a range from 0.42 (Montana) to 0.50 (Vermont). In the rapid spread 
period, the P-SAD index exhibited variations ranging from 0.39 (Wyoming) to 0.48 
(Nebraska), while during the full-blown period, it spanned from 0.39 (Montana) to 0.49 
(Hawaii). The Twitter user sentiment within Vermont consistently reflected a more optimistic 
outlook toward the pandemic, while users in Wyoming generally expressed a more pessimistic 
sentiment.

Figure 5. Spatiotemporal disparities of human mobility.
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5.3. Model performance and time lag effects

In this study, we set the feature Xm to be SI, driving, transit, walking, RAD, negative, and positive and 
set the outcome Ym to be the COVID-19 case rate, for each state m [ {1, . . . , 50} in the United 
States. Note that the outcome Ym has been standardized based on the population size. For hyper-par
ameter tuning, we used grid search with the following parameter grids: Sr = (0.2, 0.4, 0.6, 0.8), 

SS = (3, 4, 5, 6, 8, 10, 12), S@ = (0.1, 0.2, 0.4, 0.6, 0.8, 0.9), Sl = 0,
p

2
, p

􏼐 􏼑
. The optimal 

choices of tuning parameters were obtained by applying Algorithm 1.
Meanwhile, we introduced temporal lag effects into the BSTS model, denoting this enhanced 

version as the BSTS-TL model. BSTS-TL model serves as the baseline model to assess the efficacy 
of the newly designed MBSTS-TL model. Please note that the MBSTS model is a special case of 
the MBSTS-TL model, so we do not use the MBSTS model as a baseline. We subsequently pre
sent a comparative evaluation of the modeling performance of both the BSTS-TL and MBSTS-TL 
models for three periods (the initial outbreak period, the rapid spread period, and the full-blown 
period), considering no time lag, 1-week lag, and 2-weeks lag effects through the year, i.e. 
lt = (0, 1, 2).

Table 2 reports the normalized absolute error (Equation 8) generated by the BSTS-TL model 
across different time lag selections and different pandemic phases. During the initial outbreak 
period, the normalized absolute errors range from 0.188 to 0.194, while in the rapid spread period, 
they range from 0.067 to 0.074. In the full-blown period, the normalized absolute errors range from 
0.084 to 0.103. The average normalized absolute errors for time lags of 0, 1, and 2 weeks are 0.116, 
0.115, and 0.117, respectively. As indicated in Table 3, the MBSTS-TL model demonstrates much 
smaller average normalized absolute errors across all three-time lag selections. Specifically, the aver
age normalized absolute errors for time lags of 0, 1, and 2 weeks are 0.044, 0.047, and 0.051, respect
ively. During the initial outbreak period, the normalized absolute errors range from 0.016 to 0.023. 
In the rapid spread period, they range from 0.017 to 0.019, and in the full-blown period, they range 
from 0.097 to 0.111.

Figure 6. Spatiotemporal disparities of public sentiment toward COVID-19.

Table 2. The normalized absolute error (7) in different time lags in the BSTS-TL model.

Time lag (week) The initial outbreak period The rapid spread period The full-blown period Average

lt = 0 0.194 0.074 0.084 0.116
lt = 1 0.188 0.067 0.091 0.115
lt = 2 0.194 0.067 0.091 0.117
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Concurrently, the MBSTS-TL model demonstrates high accuracy during the initial outbreak and 
rapid spread periods, with consistently low normalized absolute errors. However, its performance is 
relatively less accurate during the full-blown period. This observation aligns with the reality that 
because human responses and COVID-19 spread in each region were highly volatile during this 
phase, the correlation becomes less significant comparatively in modeling.

Regarding the time lag selection in the MBSTS-TL Model, the smallest normalized absolute 
errors were observed when no time lag was considered during the initial outbreak and full- 
blown periods, yielding values of 0.016 and 0.097, respectively. In the rapid spread period, the 
inclusion of a one-week lag led to the smallest normalized absolute error of 0.017. These outcomes 
indicate the absence of time lag effects of human responses on the spread of COVID-19 during the 
initial outbreak and full-blown periods. In contrast, during the rapid spread period, changes in 
human responses appeared to impact the pandemic’s spread one week later. Figure 7 portrays 
the spatiotemporal variation of normalized absolute errors in the MBSTS-TL Model at the state 
level during the three pandemic periods, considering 0-, 1-, and 2-week time lags. The recorded 
normalized absolute errors range from 0.00 to 0.31. The highest normalized absolute error emerged 
in Iowa (IA), North Carolina (NC), and New Mexico (NM) during the full-blown period, yielding 
respective values of 0.31, 0.30, and 0.29.

5.4. Modeled relationships and interpretation

Figure 8 depicts the coefficients of governmental and human responses derived from the MBSTS- 
TL model at the state level during three COVID-19 stages. The human response coefficients exhib
ited a range from −130.62 to 109.62, with positive coefficients depicted in red and negative coeffi
cients in blue. These colors signify the positive and negative influences of human responses on 
COVID-19 spread, respectively. The saturation of colors reflects the absolute magnitudes of the 
coefficients, which indicate the degree of significance of human responses’ impacts on the propa
gation of COVID-19.

Regarding the variations in the primary human responses influencing the spread of COVID-19 
across distinct stages of the pandemic, our analysis identified human mobility in walking and driving 
as the two key factors impacting case rates in most states during the initial outbreak period. Notably, 
the coefficients associated with human mobility in walking and driving exhibited the most substantial 
absolute values across 22 and 13 states, respectively. In particular, the coefficients of human mobility 

Table 3. The normalized absolute error (7) in different time lags in the MBSTS-TL model.

Time lag (week) The initial outbreak period The rapid spread period The full-blown period Average

lt = 0 0.016 0.018 0.097 0.044
lt = 1 0.023 0.017 0.103 0.047
lt = 2 0.022 0.019 0.111 0.051

Figure 7. The normalized absolute error of the MBSTS-TL Model at the state level in three pandemic periods.
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Figure 8. The spatial distribution of coefficients in three phases.
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in walking ranged from 74.16 to 33.19 in a decreasing order of the states: Ohio, Florida, Nevada, Ala
bama, North Carolina, Virginia, Wyoming, Colorado, and Utah. This suggests that in these nine 
states, an increase in pedestrian movement intensified the COVID-19 outbreak. Conversely, in 
Arkansas, South Dakota, and Georgia, the coefficients of human mobility in walking ranged from 
−46.46 to −33.30 in increasing order, indicating that increases in pedestrian mobility alleviated 
COVID-19 transmission. Furthermore, in states such as New Hampshire, Maine, and Kansas, the 
coefficients of driving mobility varied from −75.97 to −35.81 in increasing order. These values high
light an association between decreased driving mobility and an uptick in COVID-19 case rates. Over
all, the analysis emphasizes the intricate interplay between specific forms of human mobility and the 
dynamics of COVID-19 spread during different stages of the pandemic.

During the rapid spread period, the coefficients of SI and human mobility by transit displayed 
the highest absolute values across 20 and 15 states, respectively. Coefficients of SI were negative in 
five states – New Mexico, Ohio, Wyoming, Washington, and Colorado – ranging from −130.62 to 
−54.63 in increasing order. Conversely, in Maine, the coefficient of SI was 68.86, unfolding the posi
tive impacts of stay-at-home policy strictness on the case rate change. Regarding human mobility by 
transiting, the coefficients were negative in Arizona (−45.98) and Idaho (−32.99), and positive in 
Hawaii, Connecticut, Massachusetts, New Hampshire, and Nevada, ranging from 109.62 to 
32.28. It is worth mentioning that in California, human mobility in walking and driving were 
two principle human responses with coefficients of 69.52 and −67.78, respectively. These obser
vations reveal that compared to the strictness of stay-at-home policies, the decrease in walking 
mobility and increment in driving mobility were more forceful human responses to the inhibition 
of COVID-19 in California.

Three human responses, i.e. stay-at-home policies, human mobility in walking, and public 
awareness toward COVID-19 served as the key factors of case rate evolving in 18, 10, and 9 states 
in the full-blown period, respectively. The more strictness of stay-at-home policies coincided with 
the dwindles of case rate change in Mississippi, Colorado, Kansas, Ohio, and North Dakota with the 
coefficients of SI ranging from −74.13 to −40.51 in an increasing order. Contrarily, the strictness of 
stay-at-home policies fostered positive impacts on COVID-19 spread in Iowa, South Dakota, 
Nebraska, and Arkansas, with the coefficients of SI ranging from 65.68 to 36.29. With respect to 
walking mobility, the coefficients were 14.61 in Louisiana, and −16.22 in Alaska, exhibiting the 
opposite impacts of walking mobility on COVID-19 control. The coefficients of RAD indexes 
were −22.73 in Virginia and −14.88 in Illinois, conveying that intensified public awareness of 
COVID-19 was the most pivotal human response for curving the COVID-19 spread in Virginia 
and Illinois in the full-blown period.

The results also showed that in Wisconsin, the stay-at-home policies consistently emerged as the 
most significant human responses affecting COVID-19 spread throughout the entire year. The 
coefficients of SI were 26.66, −23.59, and −27.44 in three pandemic periods, respectively. The 
impacts were positive in the initial outbreak period, and switched to negative in the following 
periods, depicting that the effectiveness of stay-at-home policies on COVID-19 control began in 
the rapid spread phase, and enhanced in the full-blown period in Wisconsin. Additionally, in 
Ohio, Colorado, Wyoming, Maine, South Dakota, Indiana, Hawaii, Kansas, Nebraska, and Arkan
sas, the COVID-19 spread was primarily shaped by the human mobility intensity in the initial out
break period, and stay-at-home policies stand out as the most critical factor for COVID-19 control 
in the rapid spread and full-blown periods.

6. Discussion

6.1. Significant implications

This study has several significant implications. First, this study conducted a demographic-adjusted 
evaluation of two types of human responses encompassing public awareness (as measured by the 
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RAD index) and sentiments toward COVID-19 (captured by the N-SAD and P-SAD indexes). The 
human responses data set for COVID-19 in the U.S. at the state level for the year 2020 is readily 
accessible via a GitHub repository (https://github.com/yimindai0521/Replication_MBSTS_TL). 
This comprehensive human response data set serves as a fundamental resource for prospective 
investigations pertaining to societal resilience, ethical considerations within the domain of public 
health interventions, and the development of adaptable strategies for managing global health crises 
before pharmaceutical interventions become available.

Second, this study designed the MBSTS-TL model and applied it to address the high-dimen
sional challenges in spatiotemporal modelings using the COVID-19 spread as a case study. The 
MBSTS-TL model offers three distinctive advantages. The model incorporates considerations of 
spatial dependency and the impact of time lags when examining the relationships between various 
factors and the target time series. It also leverages the benefits of feature selection to estimate associ
ations within high-dimensional time series. Furthermore, the model effectively addresses concerns 
related to overfitting when dealing with complex relationships. The MBSTS-TL model serves as a 
robust analytical instrument for conducting scenario analyses, enabling the evaluation of diverse 
intervention strategies and their potential consequences on pandemic outcomes. Owing to these 
inherent advantages, it is also well-suited for elucidating the intricate interplay among societal, 
economic, environmental, and other public health factors across a wide spectrum of contexts.

Finally, this study unveiled a dynamic pattern in the human responses influencing the spread of 
COVID-19 over various phases. The initial outbreak phase was predominantly driven by human 
mobility. During the subsequent rapid spread phase, it became evident that the stringency of pol
icies assumed a pivotal role alongside mobility in shaping the pandemic’s trajectory. As the pan
demic entered its full-blown phase, the significance of public awareness regarding COVID-19 in 
influencing its progression emerged. This observed pattern underscores the critical importance 
of adopting a multifaceted strategy that incorporates measures related to mobility constraints, pol
icy stringency, and the implementation of robust public awareness campaigns. The findings of ever- 
changing determinants that underlie pandemic propagation hold valuable implications for future 
pandemic preparedness. This emphasizes the necessity for phased and adaptive intervention strat
egies to achieve sustainable Good Health and Well-being (Goal 3) and Sustainable Cities and Com
munities (Goal 11) of the Sustainable Development Goals (SDGs).

6.2. Limitations

While the proposed framework in this study effectively addresses a majority of challenges in esti
mating the compounding impacts of governmental and human responses on the pandemic’s health 
outcomes, it is important to acknowledge several limitations that warrant further investigation.

Accurate estimates of COVID-19 case counts and governmental and human responses are cru
cial for modeling and understanding their relationship. However, data uncertainty poses significant 
challenges in capturing governmental and human responses and the spread of the virus. In the U.S., 
COVID-19 confirmed case counts were underestimated, primarily due to limited test availability 
and imperfect test sensitivity, especially during early 2020. Wu et al. (2020) pointed out that a sub
stantial number of mild or asymptomatic infections in the U.S. may have gone undetected, as the 
U.S. Centers for Disease Control and Prevention (CDC) prioritized testing hospitalized patients 
who tend to exhibit moderate to severe symptoms. Meanwhile, COVID-19 tests based on nasophar
yngeal and throat swabs may produce false negative results, leading to the underestimation of 
COVID-19 cases. To achieve a more accurate understanding of the relationship between human 
responses and pandemic controls, a more realistic tracking and assessment of COVID-19 and 
future infectious disease cases is necessary. Uncertainty also exists in the Apple human mobility 
data, which only records the movement of people using Apple Maps and does not provide a com
prehensive representation of overall human mobility. Movements of individuals without GPS- 
enabled devices or those using different mapping apps cannot be captured in this data. To enhance 
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mobility tracking, it is imperative to incorporate additional human mobility data sources, such as 
Google human mobility data and SafeGraph data sets.

The concept of ‘scales of analysis’ has long been a geospatial matter that has not yet been system
atically elucidated. This term alludes to the level or perspective at which a problem or issue is exam
ined or addressed, encompassing a spectrum from the global level down to the individual level 
(Watson 1978). The choice of analysis scale is contingent upon the scale of the problems or issues 
under consideration. While the COVID-19 pandemic unfolds at the global level, the transmission of 
the virus is intricately connected to individual interactions. The human responses and the spread of 
COVID-19 highlight spatial disparities across various countries, states, counties, and even commu
nities. Similarly, temporal scales are essential for understanding the pandemic’s progression and its 
responses. In this study, we divided the pandemic into three phases, reflecting key stages of viral 
spread and response patterns across the United States. This temporal classification allowed us to 
identify broad patterns while ensuring sufficient data for model training. However, this three- 
phase framework may oversimplify the pandemic’s complexities, as regions experienced different 
surges and response timings. A more granular temporal analysis could reveal these variations in 
greater detail. Additionally, due to limitations in the availability of quantitative data concerning 
COVID-19-related policies, this study is confined to the state level, treating each state as a single 
entity and thereby overlooking the spatial heterogeneity in the effects of human responses on 
COVID-19 with each state. In future research, conducting finer-scale analyses – both spatially 
(moving from state to city-level or neighborhood-level) and temporally (dividing the pandemic 
into more phases considering local patterns) – could provide a more nuanced understanding of 
the interplay between human responses and the spread of COVID-19.

Moreover, the influence of human responses on the dissemination of COVID-19 is contingent 
upon various localized factors, such as population density, the influx of individuals from initial out
break epicenters, and prevailing mobility patterns. Additionally, human behaviors during health 
crises are shaped by factors such as trust in government, media influence, cultural norms, and 
the use of technological tools like contract tracing or health monitoring apps. Incorporating 
these elements in future research can enhance our understanding of why people across different 
regions, stages, and cultural contexts with various tools respond uniquely to pandemics from a 
behavioral science perspective.

7. Conclusion

This study collected Twitter data, COVID-19 case rates, Apple human mobility data, and the strin
gency of stay-at-home policies in the U.S. during the year 2020. The contributions of this work are 
two-fold. Initially, it elucidates the spatiotemporal disparities in human responses, encompassing 
aspects such as public awareness and sentiment towards COVID-19, human mobility patterns, 
and the rigor of COVID-19 policies, within the U.S. throughout 2020. We introduced the RAD 
index to estimate demographically adjusted public awareness towards COVID-19 using Twitter 
data. We also produced weekly N-SAD and P-SAD indices at the state level, quantitatively captur
ing negative and positive public sentiment regarding COVID-19 based on Twitter data. Second, it 
designs and employs a statistical machine learning model, MBSTS-TL, for the comprehensive mod
eling of the cumulative effects of governmental and human responses on COVID-19 health out
comes, with a specific emphasis on accounting for spatial interdependencies and temporal lag 
effects in the relationships. The MBSTS-TL model uncovered interconnected relationships between 
governmental and human responses and COVID-19 health outcomes while considering spatial 
dependencies and the time lag effects of governmental and human responses on the transmission 
of COVID-19.

The research outcomes have yielded significant insights. First, it has unveiled spatiotemporal dis
crepancies in governmental and human responses pertaining to COVID-19 in the U.S. at the state 
level. Nationally, during the initial outbreak period (from week 9 to week 22, spanning from late 
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February to the end of May), public awareness experienced a rapid increase, reaching a significant 
peak. Sentiment towards COVID-19 reflected on social media were most negative during this 
period compared to the remainder of 2020. The stringency of stay-at-home policies also increased 
rapidly and remained at a relatively stringent level. Human mobility, whether by walking, driving, 
or transit, witnessed varying degrees of decline and recovery. At the state level, human responses 
displayed temporal and geographical variations. For instance, Louisiana consistently exhibited 
lower levels of public awareness about the pandemic among Twitter users throughout 2020, 
while Twitter users in Vermont consistently demonstrated a more optimistic outlook regarding 
the pandemic, and those in Wyoming generally expressed a more pessimistic sentiment. Second, 
the developed MBSTS-TL model demonstrated satisfactory accuracy in modeling the pandemic 
spread during the initial outbreak and rapid spread periods, with consistently low normalized absol
ute errors. The findings of the MBSTS-TL model indicated a shift in the determinants of COVID-19 
health impacts over time, transitioning from an emphasis on human mobility during the initial out
break period to a combination of human mobility and stay-at-home policies during the rapid 
spread period, and eventually involving human mobility, stay-at-home policies, and public aware
ness towards COVID-19 in the full-blown phase.

The human responses data set and the proposed MBSTS-TL model offer valuable insights for 
diverse applications. The human responses data set provides a valuable resource for social scientists 
aiming to comprehend the dynamics of human activities across space and time during the pandemic. 
The MBSTS-TL model can be effectively employed to unveil complex interrelationships within 
human-public health systems and human-environment dynamics. The results identify the evolving 
determinants of human responses to pandemic spread, offering guidance to policymakers for design
ing and implementing phased and adaptive strategies. These evidence-based solutions can help miti
gate the adverse impacts of future pandemics and develop sustainable pandemic-resilient cities.
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