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ABSTRACT ARTICLE HISTORY
Understanding the impacts of governmental and human responses on the Received 16 August 2024
pandemic control is imperative for forecasting pandemic spread under  Accepted 19 November 2024
various responsive scenarios and guiding localized interventions before
pharmaceutical interventions are available. This study analyzed multiple
data sets, 'inclu<.:ling social media, mobility, po!icy evz?luations, and human responses;
COVID-19 infection reports, to delineate the interactions between spatiotemporal; geospatial
governmental and human responses and COVID-19 spread in the data

United States in 2020 when vaccinations were unavailable. The

contributions are (1) uncovering the spatiotemporal variations in

governmental and human responses during COVID-19; (2) developing a

statistical machine learning algorithm that incorporates spatiotemporal

dependencies and temporal lag effects to model the relationships

between governmental and human responses and the pandemic

spread; (3) dissecting the impacts of human responses on the pandemic

across space and time. Results reveal that the determinants of COVID-19

health impacts transitioned from human mobility during the initial

outbreak phase to both human mobility and stay-at-home policies

during the rapid spread phase, and ultimately to the compound of

human mobility, stay-at-home policies and the public awareness in the

full-blown phase. These findings furnish guidance for policymakers in

implementing adaptive and phased strategies.

KEYWORDS
Bayesian model; COVID-19;

1. Introduction

The COVID-19 pandemic, which emerged in 2020 and persisted for over three years, has profoundly
impacted human society, posing significant threats to human health, disrupting social relationships,
and devastating the economy (Li et al. 2020; Subramanian, He, and Pascual 2021). During the pan-
demic, governments worldwide implemented diverse policies to control the spread of the corona-
virus. Meanwhile, individuals within different regions exhibited varying perceptions of the risks
associated with COVID-19 and displayed divergent behaviors in response to the virus and adherence
to relevant policies. These non-pharmaceutical governmental and human responses have played
a crucial role in containing the pandemic during the absence of pharmaceutical interventions such
as vaccinations, as evident in prior studies (Agusto et al. 2023; Hadjidemetriou et al. 2020;
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Liu et al. 2021; Manzira, Charly, and Caulfield 2022a; Kraemer et al. 2020; Wellenius et al. 2021).
However, existing research has primarily focused on detecting the impacts of one or a limited
scope of governmental and human responses to the COVID-19 spread, which overlooks the com-
plexity in practical scenarios and may lead to the misinterpretation of the effectiveness of these
responses. It is necessary to consider the compounding impacts of governmental and human
responses simultaneously when modeling the pandemic’s spread.

Modeling the compounding and evolving effects of governmental and human responses on
COVID-19’s health impacts has two main challenges: data availability and model complexity. Tra-
ditionally, data describing the dynamics of governmental and human responses to real-world events
can be obtained through surveys. However, conducting large-scale surveys over an extended period
is both time-consuming and financially burdensome, making it difficult to track human responses
in near real-time. Recent technological advances have provided new opportunities for monitoring
human responses to the pandemic. Geospatial big data, e.g. web application data (Rovetta and
Bhagavathula 2020; Tsao et al. 2021) and sensor-based mobility data (Gao et al. 2020; Vinceti
et al. 2020), offer rich information that can be used to delineate various dimensions of human beha-
viors, such as the strictness of COVID-19 related policies, public perceptions, and human mobility
during the pandemic.

The second challenge is the model complexity. The impacts of diverse governmental and human
responses to COVID-19 are intricately intertwined (Chen, Feng, and Gu 2022; Galea, Riddle, and
Kaplan 2010), evolving over time, unevenly dispersed across space, and spatiotemporal dependent
(Li et al. 2022). These intricacies necessitate an advanced model capable of comprehending the high
dimensional spatiotemporal data, incorporating the spatial dependence and time lag effects in the
human responses’ impacts, and effectively capturing the spatiotemporal varied effects of govern-
mental and human responses on COVID-19 spread. Despite the pressing need for such models,
there remains a substantial gap in the development and application of advanced spatiotemporal
models to fully address the intricacies of the human-COVID-19 system (Lin et al. 2024a). Conven-
tional statistical models face challenges in handling high-dimensional data and uncovering inter-
connected relationships due to their limited capacity to capture complex patterns in such data.
Deep learning models require large datasets to train vast model parameters and explain relation-
ships among variables. Analyses at the administrative unit level are based on aggregated data,
which have limited data points and are insufficient for training robust deep learning models.
The emergence of statistical machine learning models (Sugiyama 2015) facilitates the ability to
interpret relationships based on small-size datasets, providing opportunities to model the complex
impacts of governmental and human responses on COVID-19 spread accurately at the administra-
tive unit level.

This study analyzed the governmental and human responses, i.e. stay-at-home policies, public
awareness and sentiment toward COVID-19, and human mobility, as well as their effects on
COVID-19 health impacts in the U.S. at the state level. Considering that the first COVID-19 vac-
cination was released on December 14, 2020, this study chose the year 2020 as the focus period,
which was before the widespread availability of vaccines, to assess the effects of non-pharmaceutical
governmental and human responses on the pandemic control. The objectives of this study are
threefold: (1) to reveal the spatiotemporally varied governmental and human responses during
the COVID-19 pandemic in the U.S. using data from social media, web applications, and smart-
phone sensors; (2) to develop a statistical machine learning model that incorporates spatiotemporal
dependence and time lag effects for relationship detection; (3) to unravel the impacts of governmen-
tal and human responses on the pandemic’s health outcomes across time and space. The overarch-
ing hypothesis posits that stay-at-home policies and human mobility have a greater contribution to
controlling the spread of COVID-19 compared to public awareness and sentiment. To test the
hypothesis, we develop a novel Bayesian approach for modeling multiple correlated time series
data that incorporates linear trend, seasonal, cyclical, and regression components. This method
effectively captures spatial dependence between response and covariates while simultaneously
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detecting time lag effects. It can automatically handle variable selection in high-dimensional data-
sets with complex patterns while preventing overfitting. Additionally, it provides a clear interpret-
ation of the effects of different components.

The contributions include that (1) the developed framework and indices can be applied to
observe governmental and human responses to other events like natural disasters and decipher
their effects on human health; (2) we develop a novel statistical machine learning algorithm capable
of modeling the spatially and temporally evolved interactions among various variables; (3) the
knowledge gained from this study could provide an insightful understanding of governmental
and human responses’ impacts on COVID-19 spread and inform decision-making and policymak-
ing for pandemic control.

2. Background
2.1. Spatiotemporal COVID-19 modeling

The COVID-19 pandemic had an unequal impact on different regions and populations throughout
its progression partially due to the diverse, localized intervention strategies and responding beha-
viors. It is crucial to understand how COVID-19 has spread across different locations and over time
to inform intervention strategies mitigating the uneven effects of future pandemics. Spatiotemporal
modeling has emerged as a critical tool for achieving a detailed and accurate understanding of dis-
ease transmission patterns.

Epidemiological models are widely applied in modeling and predicting the spread of COVID-19,
such as the Susceptible-Infected-Recovered (SIR) compartment model (Chen et al. 2020; Ma et al.
2024; Wangping et al. 2020). The SIR model divides a population into susceptible, infected, and
recovered compartments. Through an ordinary differential equation (ODE) system to describe
the dynamics and flows between the compartments, the SIR model can portray the pandemic spread
by estimating important metrics such as the basic reproduction number (Ry) (Altmann 1995).
However, this model assumes homogeneous dynamics across geographic areas, which does not
reflect the spatial heterogeneity of the pandemic’s spread and impacts. To address this limitation,
researchers have developed spatial SIR-type models that consider spatial interactions between
locations. For example, Hatami et al. (2022) developed a spatial Susceptible-Exposed-Infectious-
Recovered (SEIR) model, incorporating a distance model describing pairwise relationships between
studied locations with a traditional SEIR model. Another study by Hou et al. (2021) developed a
human mobility flow-augmented stochastic SEIR model, applying an unsupervised machine learn-
ing algorithm to partition a county into multiple distinct subregions based on observed human
mobility flow data. Ionides, Ning, and Wheeler (2022) and Ning and Ionides (2023) considered
metapopulation systems characterized by strong dependence through time within a single unit
and relatively weak interactions between units.

Spatial statistical regression models offer another approach to modeling the dynamics of epi-
demic spread. The Geographically and Temporally Weighted Regression (GTWR) model (Fother-
ingham, Crespo, and Yao 2015) is an extension of the Geographically Weighted Regression (GWR)
model that incorporates temporal weighting. By allowing for the identification of local variations in
the relationship between predictive variables and the response variable over time and space, the
GTWR model has been successfully applied to estimate and forecast the spatial and temporal
dynamics of COVID-19 spread in various regions (Chen et al. 2021; Fu and Zhai 2021). Similarly,
the spatial error model (Wong and Li 2020), spatial lag model (Hafner 2020), and spatial vector
autoregression model have been used to model the spread of COVID-19 while accounting for
the effects of spatially structured errors and spatial dependence. Researchers have also developed
novel methods to incorporate spatial and temporal features into COVID-19 prediction. Dlamini,
Simelane, and Nhlabatsi (2022) conducted Bayesian network-based spatial predictive modeling
to delineate the dynamics of COVID-19 spread. This model considers proximity referral health
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facilities, churches, and shopping facilities as spatial variables. Incorporating spatial variables with
daily traffic data and the proportion of youth, this model effectively identified COVID-19’s potential
geographic spread and the underlying influencing factors in Eswatini. Ak et al. (2022) constructed a
structured Gaussian process model integrating spatial (geographical coordinates and location-
specific demographic information) and temporal features (the day, month, and year information
of the reported case counts) to forecast the outbreak of COVID-19.

2.2. Governmental and human responses to COVID-19

The COVID-19 pandemic has been acknowledged as a global crisis by the World Health Organiz-
ation. Given the swift worldwide transmission of COVID-19 and the absence of an effective vaccine
or treatment for this newly emerged infectious disease during its first outbreak, governmental and
human responses have emerged as one of the primary strategies to mitigate the spread of COVID-
19 in 2020.

Public health policies were one commonly adopted strategy to mitigate the transmission of
COVID-19. In China, for example, the government implemented the zero-COVID-19 policy,
employing large-scale testing, contact tracing technology, nationwide mask-wearing, and manda-
tory isolation of infected individuals to control the pandemic (Burki 2020). In the U.S., California
became the first state to enforce a stay-at-home or shelter-in-place order. In March 2020, the
New York City public school system, the largest in the U.S. with 1.1 million students, shut
down, while Ohio mandated the closure of restaurants and bars. The effectiveness of COVID-19
control policy measures has been assessed. Liu et al. (2021b) conducted a study using panel
regression to estimate the impact of 13 categories of COVID-19-related policies on reducing trans-
mission across 130 countries from January to June 2020. Their findings revealed a strong positive
correlation between strict policies such as school closures and internal movement restrictions and a
decreased COVID-19 reproduction number. Another study conducted by Dainton and Hay (2021)
examined the effects of COVID-19 lockdown policies on changes in human mobility utilizing Goo-
gle Mobility data from five contiguous public health units in the Greater Toronto Area in Ontario,
Canada, between March 1, 2020, and March 19, 2021. The study also assessed the subsequent
impact of human mobility changes on the effective reproduction number of COVID-19, R,
using Pearson correlation. The results indicated that, with enhanced lockdown measures, human
mobility in York decreased significantly, particularly in retail, transit stations, and workplaces, lead-
ing to a reduced Ry after 14 days.

The public perception of COVID-19 is another factor shaping residents’ adherence to rec-
ommended policies and personal protective behaviors, such as wearing masks and practicing
proper hand hygiene, ultimately leading to distinct spatiotemporal patterns of COVID-19 trans-
mission. Cinarka et al. (2021) conducted a study using Google search volumes for COVID-19 symp-
toms as indicators of public awareness in Turkey, Italy, Spain, France, and the United Kingdom.
The dynamic conditional correlation analysis method was employed to explore the relationships
between Google search volumes and the COVID-19 spread. The findings revealed that the Google
search volumes for symptoms such as fever, cough, and dyspnea were closely correlated with new
COVID-19 cases during the initial outbreak of the pandemic. Jun, Yoo, and Lee (2021) utilized
Google’s relative search volume (RSV) as an indicator of public awareness regarding COVID-19
and employed a vector autoregression model to investigate its association with new COVID-19
cases in 37 countries in the Organization for Economic Cooperation and Development (OECD).
The results demonstrated an association between increased public awareness and a heightened
interest in COVID-19 testing. Agusto et al. (2023) employed ordinary differential equations to esti-
mate the impact of public sentiment on the spread of COVID-19 in Australia, Brazil, Italy, South
Africa, the United Kingdom, and the U.S. between January and June 2020. Public sentiments (both
positive and negative) were evaluated using COVID-19-related tweets from Twitter (rebranded as X
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in July 2023). The findings indicated that positive public sentiments were associated with a
reduction in disease burden within the community.

Practically, the transmission of COVID-19 is influenced by numerous types of
governmental and human responses simultaneously. Detecting the impacts of a portion of govern-
mental and human responses on COVID-19 spread oversimplifies the interactions and may lead to
the misinterpretation of the effectiveness of these responses. Therefore, accurate pandemic spread
modeling necessitates considering the compounding impacts of government policies and various
public reactions.

2.3. High-dimensional spatiotemporal statistical modeling

High-dimensional spatiotemporal challenges arise when dealing with data that involve both space
and time, and where there are a large number of variables, locations, and time points. In recent
years, there have been several statistical advances in addressing these challenges.

One direction is to use regularization methods such as Lasso (Tibshirani 1996) or Elastic Net
(H. Zou and Hastie 2005), which can reduce the number of variables by assigning small coeffi-
cients to irrelevant variables. These methods can also identify important variables and their inter-
actions. Another solution is dimension reduction which aims to reduce the number of variables
in the data, while still capturing the relevant information. Principal component analysis (Zou,
Hastie, and Tibshirani 2006; Ning and Ning 2024), factor analysis (Bhattacharya and Dunson
2011; Pati et al. 2014), and wavelet-based methods (Clyde, Parmigiani, and Vidakovic 1998)
are examples of dimension reduction techniques that have been applied to spatiotemporal
data. These methodological advancements have substantially contributed to addressing the
difficulties associated with analyzing high-dimensional and spatiotemporal data. As a result,
there have been improvements in model development and predictions to resolve questions across
various disciplines, such as environmental science, epidemiology, and climate modeling. None-
theless, methodologies capable of simultaneously managing high-dimensional issues and spatio-
temporal data remain scarce, primarily due to the intricate nature of feature selection tasks within
complex structures.

The advances in the Bayesian structural time series (BSTS) model bring opportunities to
address the challenges in high dimensional spatiotemporal statistical modeling. BSTS (Scott
and Varian 2014) is a statistical technique to select features, forecast temporal trends, and infer
causal impacts (Brodersen et al. 2015). The model is designed to work with time series data by
incorporating various components, such as seasonality, trends, or auto-regression. It can also
accommodate external regressors, which makes it possible to quantify the impacts of regressors
on the response. Recent literature (Sung 2023; Zhang and Fricker 2021) has utilized the BSTS
model to analyze COVID-19 data. Based on BSTS, the Multivariate BSTS (MBSTS) (Qiu, Jamma-
lamadaka, and Ning 2018; Ning and Qiu 2023) was proposed as a novel tool for inferring and
predicting multiple correlated time series. Qiu, Jammalamadaka, and Ning (2018) demonstrates
that the MBSTS model provides better prediction accuracy compared to the univariate BSTS
model, the autoregressive integrated moving average with regression (ARIMAX) model, and
the multivariate ARIMAX (MARIMAX) model. Also, MBSTS can select features from a pool of
contemporary predictors while simultaneously training models for each time series, which reduces
over-fitting and eliminates unessential or misleading predictors. In other words, MBSTS can
choose distinct predictor sets for each target time series for each Markov chain Monte Carlo iter-
ation from high-dimensional data.

In the human-pandemic interactions, high-dimensional governmental and human responses
exhibit intricate inter-dependencies and have compounded impacts on epidemics. In this scenario,
the MBSTS model, due to its inherent capability for feature selection and over-fitting prevention, is
suitable for detecting the compounded effects of governmental and human responses on pandemic
transmission.
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3. Data

Figure 1 illustrates the conceptual framework describing the hypothesized effects of governmental
and human responses on COVID-19 health impacts with a time lag effect. The stay-at-home pol-
icies, public awareness and sentiment toward COVID-19, and human mobility were selected as gov-
ernmental and human responses in this study (Table 1). Section 3 outlines the data collection and
processing methods employed to measure governmental and human responses and COVID-19
health impacts.

3.1. COVID-19 risk perceptions

We designed several indices based on Twitter data to capture COVID-19 risk perceptions and their
changes at the state-level. Twitter, one of the most popular social media, provides users with a plat-
form to share their experiences, feelings, and opinions about events through short messages
(tweets) (Zou et al. 2019). In 2023, Twitter was renamed and branded as X, and the remainder
of this article uses Twitter to avoid confusion. Compared with the survey, Twitter data are an
invaluable resource for researchers due to two advantages. Firstly, with 450 million monthly active
users as of 2023, Twitter data are more representative of a larger population than survey data. Sec-
ondly, Twitter data can be used to quantitatively monitor human perceptions and behaviors during
COVID-19 in the near-real time (Bogdanowicz and Guan 2022), whereas conducting surveys is
time-consuming which makes it difficult to track public perceptions promptly. However, it is
worth mentioning that Twitter data, like many other social media platforms, are inherently biased
towards younger, well-educated, and wealthier urban populations (Blank 2017). Analyzing Twitter
data without considering demographic biases might overlook the behavior of certain social groups
and lead to unfair estimations.

To track demographically unbiased public awareness and sentiment toward COVID-19, we con-
ducted the Twitter data mining framework, as depicted in Figure 2. First, we collected all geotagged
tweets from the U.S. in 2020 using the Twitter Academic Application Programming Interface (API).
Non-human generated tweets and tweets from organizational accounts, which were irrelevant to

Policies ;25 —
v ®
Awareness v —
lag Fe=o
[ e
: Effect )
Sentiment COVID-19
Health
Impacts
\

Mobility -

‘.

Figure 1. The conceptual framework describing the hypothesized effects of governmental and human responses on COVID-19
health impacts with a time lag effect.
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Table 1. Overview of variables used for governmental and human responses.

Category Index name Index meaning Data source
COVID Risk Ratio Adjusted by Demographics The demographically unbiased Twitter/X
Perception- (RAD) percentages of COVID-19 related
Public Tweets
awareness
COVID Risk Negative-Sentiment Adjusted by The demographically unbiased Twitter/X
Perception- Demographics (N-SAD) and Positive- percentages of Twitter/X users
Public Negative-Sentiment Adjusted by expressing overall negative (N-SAD)
sentiment Demographics (P-SAD) and positive (P-SAD) emotions toward
COVID-19
Mobility Human mobility in Driving, Transit, Relative mobility volume based on Apple Human Mobility
and Walking baseline volume in different Reports
transportation types
COVID-19 Policies ~ Stringency Index (SI) The strictness of stay-at-home COVID-19  Oxford COVID-19
policies Government
Response Tracker
(OxCGRT)

public perceptions, were removed by methods delineated in (Lin et al. 2022). A total of 255,291,871
geotagged tweets were retrieved. Second, we set a list of COVID-19-related keywords based on
existing literature (Alqurashi, Alhindi, and Alanazi 2020; Banda et al. 2021), i.e. covid, virus,
2019-ncov, sars-cov-2, coronavirus, ncov, n95, social distancing, lockdown, quarantine, pandemic,
epidemic, pneumonia, and confirmed cases, to identify tweets relevant to the pandemic. A total
of 3,954,468 tweets (1.55%) were identified as COVID-19-related. Third, we calculated three
matrics to indicate risk perceptions. The percentage of COVID-19-related tweets overall geo-
tagged tweets is defined as the Ratio index to represent public awareness toward COVID-19
(Lin et al. 2022). In terms of public sentiment toward COVID-19, we estimated users’ sentiment
toward COVID-19 (negative, neutral, or positive) based on the sentiment of all COVID-19-
related tweets they posted (Lin et al. 2024b). The M3 (multimodal, multilingual, and multi-attri-
bute) model proposed by Wang et al. (2019) was employed to detect the demographics of users
including age and gender based on users’ screen names, usernames, profile images, and biogra-
phies. The M3 model achieves an accuracy of 0.81 for gender recognition and 0.42 for age rec-
ognition on the English tweet data set, exceeding other available models (Morgan-Lopez et al.
2017; Vashisth and Meehan 2020). Finally, the positive and negative Sentiments Adjusted by
Demographics (P-SAD and N-SAD) index and Ratio Adjusted by Demographics (RAD) index
were computed using the post-stratification method based on the difference between the demo-
graphic structure of Twitter users and the general population, as suggested in (Lin et al. 2024b).
The N-SAD and P-SAD indexes represent the demographically unbiased percentages of Twitter
users expressing overall negative and positive emotions toward COVID-19, respectively. The
RAD index quantifies the proportion of tweets concerning COVID-19 among all tweets after cor-
recting Twitter users’ demographic biases. All risk perception indexes can be computed at differ-
ent spatial and temporal scales.

Sentiment Sentiment |
. COVID-19 Twitter —» Analaysis Index

Yes

Classifier

- Awareness Demographic

Background Twitter—s 7 e :
—» Geo-locating Analaysis I Adjustment

oy ”J—' Demographic Awareness
bt 2 Detection ,C‘)\ Index

Twitter Users

Population

Figure 2. Framework of Twitter data mining for demographically-unbiased assessments of public awareness and sentiment
toward COVID-19.
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3.2. Mobility

This study collected daily Apple mobility data in the U.S. at the state level in 2020 to assess human
mobility in different modes, namely driving, walking, and public transit. The Apple human mobility
data track the mobility volume change in driving, walking, and taking public transit at multiple
administrative levels, e.g. global, country, state, and county (https://covid19.apple.com/mobility).
The data were derived from Apple Maps users and reported as the relative volume based on the
baseline volume, which was the direction requests received per country/region, sub-region, or
city on January 13th, 2020. Although the dataset only includes Apple Maps users, Apple has a sig-
nificant market share in the US, with millions of active users. This large sample size provides a
robust dataset to monitor spatiotemporal changes in human mobility during significant events
like COVID-19 (Kurita et al. 2021; Nagy et al. 2023), although it is not perfectly representative
of the entire population. It is worth noting that Apple is no longer offering mobility trends reports
as of April 2022.

3.3. COVID-19 policies

The Oxford COVID-19 Government Response Tracker (OxCGRT) using the scorecard
method, offers a systematic estimation of the stringency of COVID-19 policies implemented
by various countries since January Ist, 2020. Hale et al. (2021) compiled a comprehensive
set of policies and assigned scores to each policy, with higher scores indicating more stringent
measures. These policies were categorized into 23 indicators based on their thematic focus. The
Stringency Index (SI) selected in this investigation quantifies the strictness of stay-at-home
COVID-19 policies by incorporating nine indicators, namely school closures, workplace clo-
sures, restrictions on public events, limitations on gathering size, public transport closures,
stay-at-home requirements, restrictions on internal movement, restrictions on international tra-
vel, and public information campaigns. The SI scale ranges from 0 to 100, with higher values
indicating more stringent measures. For this study, we collected daily SI data at the state level
in the U.S. throughout 2020. Although policy evaluations are included in this study, we recog-
nize that policies like lockdown orders were not uniformly followed during COVID-19. Incor-
porating both policies and public responses provides a realistic understanding of how humans
perceive policies differently, how disparities in their perception affect behaviors, and the resul-
tant health consequences.

3.4. COVID-19 cases

To assess the health implications of COVID-19, we utilized the case rate as a quantitative measure,
which represents the proportion of confirmed cases per 100,000 individuals within the population.
The cumulative confirmed cases in the U.S. in 2020 were collected from the publicly accessible
database maintained by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University (Dong, Du, and Gardner 2020). Population data were sourced from the United States
Census, and estimates were based on data as of April 1st, 2020. The resulting case rate values ranged
from 0 to 105, with higher values indicating a more pronounced impact on public health attributed
to COVID-19.

4. Methods

The MBSTS model is a generalized version of various structural time series models, leveraging
Bayesian selection techniques through Markov Chain Monte Carlo (MCMC) methods to select
among a set of contemporary predictors. This model offers flexibility in choosing different
components, allowing users to construct complex structures. To address delayed effects,
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we incorporated the time lag effect into the MBSTS model. This section first provides an over-
view of the MBSTS model, followed by a detailed description of the modified MBSTS with the
time lag effect algorithm.

4.1. The MBSTS model

The MBSTS model is a general time series model constructed as the sum of trend u(t), season 7(t),
cycle w(t), and regression &(t) components with t € {1, ..., T} being the time index, as follows:

Y(t) = ult) + 7(0) + o(t) + &t) + €t),  et) iid. ~ NM<O, 3 e) 1)

where Y(t) = {Y,,,(t)}ﬁ\f=1 is the M-dimension outcome vectors. All components are assembled
independently, with each component yielding an additive contribution. The MBSTS model allows
each Y,,(t) form € {1, ..., M} to have its specific formula. For instance, for predicting two-dimen-
sion outcome vectors, the first time series may encompass the trend, season, and regression com-
ponents, while the second time series may only have the trend component. The model training is
conducted over all M time series incorporating the correlations through M x M-dimensional
covariance associated with the error term e(t).

The specification of the trend component (u(f)) in a time series model depends on both the
characteristics displayed by the analyzed series and any available prior knowledge. If the series con-
sistently demonstrates either an upward or downward movement, incorporating a slope or drift
into the trend model could be suitable. This results in a more comprehensive model compared
to the local linear trend model. In this generalized version, the slope remains stationary rather
than random, and the model can be expressed in the following form:

wt+1) = wlt) + 3 + ), ple) iid. ~NM(0, Z“) @)

St+1) =D + pd(1) — D)+ v, ) iid. ~NM<0, Za) 3)

Here, 8(t) and D represent m-dimensional vectors. Specifically, 3(t) signifies the expected increase
in u(t) between time t and t + 1 to resemble a short-term slope at time t. In contrast, D pertains to
the long-term slope. This structural setup harmonizes short-term insights with long-term trends,
resulting in a model that appropriately blends both types of information.

The second component of the model (7(¢)) is responsible for capturing seasonality and is com-
monly expressed as follows:

Sn—2

Tt D= = D Tult =0+ 0n(0), 30 = [ (©), ..., (@) iid. ~ Nu(0, Y1) @)

k=0

Here, S,, represents the number of seasons for the time-series Y, (t) for m € {1, ..., M}, and the
M-dimensional vector 7(t) = (7i(¢), ..., Tm(t)) signifies their collective influence on the
observed target time series Y(t) = (Yi(¢), ..., Yu(¢)). The MBSTS model accommodates
diverse seasonal components with distinct periods for each target series Y, (). For instance, it’s
possible to incorporate a seasonal component with S,, = 7 to capture the day-of-the-week effect
for one target series, and S,y = 30 to account for the day-of-the-month effect in another target
series.

The third component of the series (w(t)) aims to capture cyclical effects. In economics, the term
‘business cycle’ refers to recurrent deviations around the long-term trajectory of the series that are
not strictly periodic. A model encompassing a cyclical component can effectively replicate crucial
features of the business cycle, such as robust autocorrelation, alternating phases, damping fluctu-
ations, and null long-term persistence. A stochastic trend model, when applied to a seasonally
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adjusted economic time series, may not adequately capture the series’ short-term fluctuations on its
own. However, by integrating a serially correlated stationary component, the model becomes
equipped to account for these short-term movements, thereby encompassing the cyclical influence.
The cycle component is defined as follows:

ot +1) = ecosNalt) + esin(No+ () + KO, ko iid ~Nu(o, Y o) )

wx(t4+1) = —gsin(No(t) + ocosNwx(t) + kx (B), & (f)iid. ~NM(0, Zw) (6)

where o, sin(), and cos(A) are M x M diagonal matrices with diagonal entries equal to g; (a damp-
ing factor for target series Y; such that 0 < g; < 1), sin(A;) where A; = 2a/q; is the frequency
with ¢g; being a period such that 0 < A; < 7, and cos(A;) respectively.

The regression component &(t) = (&(1), ..., &y(t)) with static coefficients is written as
Equation (7).

£, = BLXu(D) )

Here, &t) = [£,1(0)s ..., §m’d(t)]T is the collection of all elements in the regression component.
For target series Y,,, X;u(t) = [Xn1(8), ...,Xm,d(t)]T is the pool of predictors at time ¢, and
(B 1> > B, 417 represents corresponding static regression coefficients. Regression analysis is a
statistical methodology used to estimate relationships between dependent variables and indepen-
dent variables, which are alternatively referred to as predictors, covariates, or features. That is,
each time series has its specific d predictors that are different from those of other time series.
The total number of different predictors for the M-dimensional time series is thus Md.

The MBSTS model can select important features while taking into account the
spatial correlations among target time series by the spike and slab technique developed by George
and McCulloch (1997) and Madigan and Raftery (Madigan and Raftery 1994) that has been widely
used for dimension reduction (Jammalamadaka, Qiu, and Ning 2019; Ning and Ning 2024; Qiu,
Jammalamadaka, and Ning 2020). Additionally, the model is equipped to infer the trend com-
ponent u(t), the seasonal component 7(t), and the cyclical component w(t) via a posterior simu-
lation algorithm as outlined by Durbin and Koopman (Durbin and Koopman 2002). Moreover,
it enables the inference of covariance matrices associated with these components, namely,
(X X8, Y7 Y w) through an inverse Wishart distribution.

4.2. The MBSTS-TL algorithm

Although the MBSTS model is suitable for detecting the compounding effects of governmental and
human responses on pandemic transmission, it is imperative to recognize that the influence of
human responses on the epidemic may exhibit delayed effects. There is a need to modify the
MBSTS model, which currently assumes that factors affect the target time series instantaneously,
by incorporating time lag effects associated with governmental and human responses. This aug-
mentation is critical for improving the model’s capacity to faithfully capture real-world dynamics.
Therefore, we propose a new Algorithm 1 named MBSTS-Time Lagged (MBSTS-TL) model.
MBSTS-TL is designed to work with the MBSTS model for the spatiotemporal setting with a
time lag of ;. This model introduces a proper error metric for evaluation and hyper-parameter tun-
ing. Effective hyper-parameter selection is crucial in spatiotemporal analysis. The hyper-parameter
p denotes the trend effect as defined in Equation (3), while S represents the seasonal effect as defined
in Equation (4). Additionally, ¢ and N\ denote the damping factor and cyclic effect, respectively, as
defined in Equation (6). The MBSTS model is a time series model that includes trend, seasonal,
cycle, and regression &(t) components. Each hyper-parameter controls its respective component.
The trend effect p denotes that the local linear component at time ¢ + 1, 8(t + 1), is equal to the
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local linear component at time ¢, 8(¢)D, multiplied by p and added to D with noise. The seasonal
effect S indicates that the seasonal component 7(¢t + 1) at time (¢ 4+ 1) is equal to the sum of the
seasonal components from time t — S + 2 to time t. The damping factor and cyclic effect controls
the iteration of cycle component from time t 4 1 to t. The novel error metric, denoted as AE, g 5\
facilitates the tuning of hyper-parameters (p, S, ¢, and A) associated with the MBSTS model. It
takes into account both temporal variations and spatial disparities. This methodology identified
a diverse set of candidate parameters and selected the optimal one to enhance our model. This
work represents the first attempt to provide an explicit hyper-parameter tuning method within
the MBSTS framework.

To elaborate, we divide the time interval ["", t"¥] into non-overlapping K segments, creating a
partition as follows: [/, t"], [, "], ..., [, 1¢"9]. This partition allows us to evaluate
model performance in distinct time stages, considering the error metric defined in Equation (8).
Importantly, this time-based partitioning does not increase the computational complexity in the
MBSTS model. Given that Markov chain Monte Carlo, an offline method, is employed, training
the MBSTS model with all time-dependent data might lead to lengthy convergence times and
require substantial computational resources. Our approach addresses this issue by allowing users
to define time partitions that align with the evolving dynamics of events, such as the varying stages
of the COVID-19 spread. For each MBSTS model corresponding to a partition segment, a smaller-
scale Markov chain Monte Carlo is performed. This not only makes the process computationally
feasible on personal computers but also adapts the model to the evolving nature of spatiotemporal
phenomena.

Algorithm 1 The MBSTS-TL algorithm

INPUT: Covariate X(£"), ..., X(tf" — ;) and outcome Y(&" + 1), ..., Y(t¢") fork € {1, ..., Kk
Evaluation:
1. Training the k-th MBSTS model for k = 1, ..., K, with hyper-parameter p, S, ¢, and A using

X, ., X — k) and Y + 1), ..., V().

2. One step prediction of Y(tf;”") with X(t,i"d — Ip) using the trained k-th MBSTS model with hyper-parameter p, S, g, and A.
Denote the prediction as V(tﬁ""), fork € {1, ..., K§L

3. Compute the normalized absolute values of the differences between the true values Y(r,f"d) = {Ym(l‘,f”d)}%:1 and its
corresponding predicted values ¥(£") = {V,,(t2")_,, ie.

AE o (1 = (Zm= [Tl = V(6 et P67 — Y0\ o
1S O -
pRedtt M maxmen, . Ym(€) M maxmeq,.. mYm(t9)

Training:
1. Grid search for the optimal hyper-parameters p*, S*, ¢*, and A* in their user-defined spaces that yield the minimum
AE, 5.0 (l;) for different /;.

2. Generate regression coefficients 8, = [By;, ..., ,Bkyd]r and its confidence interval (Cl) fork € {1, ..., K}

OUTPUT: parameters f3,, its Cl, and predictions f(*(t,i”") fork € {1, ..., K}, and error AE 5+ -+ ().

The impacts of governmental and human responses to COVID-19 spread evolved across differ-
ent stages of the pandemic. To capture the time-varying primary human responses for COVID-19
containment, the time interval of 53 weeks during the year 2020 was divided into three segments, as
suggested in previous investigations (Kim, Zanobetti, and Bell 2021; Wu and Sha 2021):
[g5fe, end] = [9, 22], [/, 15"] = [23,37], and [1§", £5"] = [38, 53], representing February
24th to May 31st, June 1st to September 13th, and September 14th to December 31st, 2020.
These periods, corresponding to the onset of the outbreak, the phase of rapid spread, and the
full-blown phase of the pandemic, were named as the initial outbreak, rapid spread, and full-
blown periods, respectively. The hyper-parameters of p, S, ¢, and A in the Algorithm 1 are selected
in the training process.
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5. Results

5.1. Temporal trends of COVID-19 health impacts and governmental and human
responses in the U.S.

Figure 3 illustrates the U.S. temporal trends of COVID-19 health impacts and governmental and
human responses from week 3 to week 53 (mid-January to the end of December) in 2020. The
case rate fluctuated from 0 to 69.62, characterized by three distinct stepwise increments. There
were two minor ascensions of approximately 10 each, occurring between weeks 13 to 22 (late
March to the end of May 2020) and weeks 23 to 37 (June to mid-September), as well as a
rapid ascent to approximately 60 between weeks 38 to 47 (mid-September to late November).
Subsequently, the case rate dynamically sustained itself around 60 between weeks 48 and 53
(late November to the end of December 2020). The risk awareness RAD index ranged from
0.01 to 5.21. It remained proximate to 0 before week 8 (mid-February 2020), after which it
underwent a rapid ascent commencing in week 11 (mid-March), reaching its zenith in week
12, followed by a descent to 0.99 by week 23 (early June). Thereafter, it maintained values
around 1.5. The policy evaluation SI index ranged from 0.31 to 79.45. Prior to week 9 (the
end of February 2020), values remained below 5, but subsequent to week 10 (early March), a
rapid ascent was observed, reaching its pinnacle at week 16 (mid-April), followed by a gradual
descent. Values around 60 were sustained from week 25 (mid-June 2020) to week 53 (the end of
December).
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Figure 3. National temporal trends of COVID-19 health impacts and human responses.
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Regarding the variations in human mobility, the walking Index ranged from 57.74 to 191.47, the
driving Index ranged from 58.88 to 174.19, and the transit Index ranged from 40.75 to 80.04. These
three indices exhibited similar trends, with each maintaining relatively stable values from weeks 3 to
10 (mid-January to early March 2020), at 110, 110, and 100, respectively. A decline was observed
from week 11 (mid-March 2020), reaching respective minima in weeks 13 (the end of March),
14, and 15 (early April), followed by an ascent to their peaks from weeks 28 to 38 (early July to
mid-September). Finally, they gradually decreased to approximately 125, 110, and 57 by weeks
48 to 53 (late November to the end of December 2020). In general, the trends for walking and driv-
ing exhibited a high degree of overlap, characterized by an early rapid decline, recovery, and sur-
passing of the normal baseline values. The usage of public transits exhibited a more pronounced
initial decline compared to walking and driving, with subsequent recovery, and it did not return
to the values observed in the normal status, maintaining an overall lower value.

For the characterization of sentiment, the N-SAD index ranged from 0.24 to 0.43. Prior to week 9
(late March 2020), it exhibited an upward trajectory, increasing from a minimum of 0.24 to a maxi-
mum of 0.43. Thereafter, a rapid decline ensued, reaching 0.29 by week 12 (mid-March 2020). From
weeks 12 to 21 (mid-March to late May 2020), the index remained at around 0.3, subsequently
stabilizing at approximately 0.35 from week 22 to week 53 (late May to the end of December).
The P-SAD index ranged from 0.24 to 0.49. It underwent a rapid ascent from week 3 to week 12
(mid-January to mid-March 2020), increasing from 0.24 to 0.47, and subsequently maintained
values around 0.47 from week 13 to week 21 (late March to late May), followed by values around
0.45 from week 22 to week 53 (late May to the end of December). Notably, during the initial 3 to 10
weeks (mid-January to early March 2020), corresponding to the period prior to the COVID-19
outbreak in the U.S,, the proportion of Twitter users expressing negative sentiment towards the
pandemic was higher than those with a positive sentiment. Conversely, after the initial outbreak,
the proportion of users expressing negative sentiment rapidly declined, while those with positive
sentiment exhibited a substantial increase. After week 11 (mid-March), the proportion of Twitter
users with a positive sentiment consistently exceeded those with a negative sentiment.

5.2. Spatiotemporal disparities of COVID-19 health impacts and governmental and
human responses

Figure 4 depicts the spatial disparities of COVID-19 case rates, SI index, and RAD index at the state
level across three phases in 2020: the initial outbreak period, the rapid spread period, and the full-
blown period.

During the initial outbreak period, the case rate ranged from 0 to 19, with New York state exhi-
biting the highest case rate. In the rapid spread period, case rates ranged from 1.06 in Vermont to
27.54 in Louisiana. States in the southern region of the United States, such as Florida (26.88), Ari-
zona (25.11), and Mississippi (24.87), demonstrated notably higher case rates. In the full-blown
period, case rates spanned from 8.68 in Vermont to 89.45 in North Dakota, with northern states
like South Dakota (86.98), Wisconsin (68.90), and Wyoming (65.23) displaying higher case rates.

The policy SI index during the initial outbreak period ranged from 45.41 in North Dakota to
71.92 in Maine. States with relatively higher SI indices included Maryland (71.71), Kentucky
(68.85), Delaware (68.81), New Mexico (68.66), and New York (68.27). Conversely, states with
lower SI indices encompassed South Dakota (49.79), Arizona (51.75), and Utah (52.04). In the
rapid spread period, the SI index varied from 43.98 in Oklahoma to 82.05 in New Mexico, with
states like Maine (81.95), Hawaii (76.85), New York (74.03), and Kentucky (69.42) displaying higher
SI indices. Lower SI indices were observed in states like North Dakota (46.04), South Dakota
(47.62), and Missouri (48.14). In the full-blown period, the SI index ranged from 40.02 in Oklahoma
to 76.61 in Hawaii. States with higher SI indices included New Mexico (74.85), New York (72.66),
and Connecticut (66.27), while states with lower SI indices were South Dakota (41.31), Florida
(43.03), and Alabama (43.52). Overall, New Mexico and New York maintained higher SI indices
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Figure 4. Spatiotemporal disparities of COVID-19 health impacts, SI and RAD.

throughout the three phases, suggesting stricter stay-at-home policies in these states. North Dakota
and South Dakota consistently exhibited lower SI indices across the three phases, indicating more
relaxed stay-at-home policies.

The risk awareness RAD index during the initial period ranged from 1.39 in Louisiana to 5.71 in
Vermont, with other states such as New Hampshire (3.78) and Massachusetts (3.46) exhibiting
higher RAD indices. Lower RAD indices were observed in states like Louisiana (1.39) and Missis-
sippi (1.53). In the rapid spread period, the RAD index ranged from 0.69 in Louisiana to 2.10 in
Vermont, with higher RAD indices in Hawaii (1.91) and Maine (1.91). Lower RAD indices were
observed in Georgia (0.87) and Mississippi (0.88). In the full-blown period, the RAD index ranged
from 0.66 in Louisiana to 2.31 in Vermont, with higher RAD indices in New Hampshire (2.13) and
Montana (2.04). Lower RAD indices were observed in Georgia (0.76) and Mississippi (0.76). It is
evident that Louisiana consistently exhibited lower RAD indices across all three phases, indicating
lower levels of public awareness of the pandemic among Twitter users in that state.

Figure 5 illustrates the spatial disparities in human mobility categorized into three modes:
Transit, Walking, and Driving at the state level during three distinct periods of the pandemic.
Areas depicted in gray signify the unavailability of data. During the initial outbreak period, Transit
usage ranged from 30.57 (Hawaii) to 107.85 (Mississippi). In addition to Hawaii, New York and
Washington displayed lower Transit usage values of 32.43 and 34.51, respectively. In contrast,
Alabama and Arkansas displayed higher Transit usage values of 97.18 and 95.93, respectively,
along with Mississippi. Notably, Mississippi was the sole state with a Transit value exceeding
100, signifying a general reduction in Transit mobility across states due to the pandemic’s impact.
In the rapid spread period, Hawaii continued to exhibit the lowest Transit value (21.55), while
Mississippi maintained the highest value (135.68). New York and Washington maintained lower
Transit values of 39.19 and 42.87, respectively. This indicates that the impact of the pandemic
on Transit mobility persisted longer in Hawaii, New York, and Washington. During the full-
blown period, Transit ranged from 26.63 (Hawaii) to 109.97 (Mississippi). Alabama (101.86) and
Arkansas (100.62) reported Transit values exceeding 100, and New Hampshire and South Carolina
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Figure 5. Spatiotemporal disparities of human mobility.

also recorded values surpassing 90. This suggests that only five states had Transit mobility nearly
returned to pre-pandemic normalcy.

Walking and Driving mobility exhibited a similar spatiotemporal pattern. During the initial
outbreak period, Driving ranged from 55.70 (Hawaii) to 121.68 (South Dakota), while Walking
ranged from 30.79 (Louisiana) to 116.60 (South Dakota). In the rapid spread period, Driving
ranged from 60.67 (Hawaii) to 324.86 (Wyoming). Walking ranged from 43.25 (Louisiana) to
328.53 (Wyoming). In addition to Louisiana, only Hawaii and New York reported values
below 100, at 43.65 and 71.77, respectively. The remaining states exhibited values exceeding
100, with Wyoming, Montana, South Dakota, and Maine displaying notably high values. In
the full-blown period, Walking ranged from 53.00 (Hawaii) to 212.64 (Wyoming), while Driving
ranged from 64.63 (Hawaii) to 175.21 (Wyoming). Wyoming, Montana, South Dakota, and
Maine continued to exhibit high Walking and Driving values.

Hawaii is the only state where Transit, Walking, and Driving values remained consistently below
100 in all three phases. This signifies that residents of Hawaii experienced the most significant
impact on their human mobility due to the pandemic, and recovery over a year has proven
challenging.

Figure 6 depicts the spatiotemporal disparities in public sentiment towards COVID-19
across three periods. The negative sentiment index (N-SAD) reached its lowest values in Ver-
mont, with values of 0.25, 0.26, and 0.29 during the three periods, respectively. The N-SAD
index was highest in Wyoming, with values of 0.37, 0.41, and 0.41 during these periods,
respectively. With respect to the positive sentiment index (P-SAD), during the initial outbreak
period, it displayed a range from 0.42 (Montana) to 0.50 (Vermont). In the rapid spread
period, the P-SAD index exhibited variations ranging from 0.39 (Wyoming) to 0.48
(Nebraska), while during the full-blown period, it spanned from 0.39 (Montana) to 0.49
(Hawaii). The Twitter user sentiment within Vermont consistently reflected a more optimistic
outlook toward the pandemic, while users in Wyoming generally expressed a more pessimistic
sentiment.
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Figure 6. Spatiotemporal disparities of public sentiment toward COVID-19.

5.3. Model performance and time lag effects

In this study, we set the feature X, to be SI, driving, transit, walking, RAD, negative, and positive and
set the outcome Y,, to be the COVID-19 case rate, for each state m € {1, ..., 50} in the United
States. Note that the outcome Y, has been standardized based on the population size. For hyper-par-
ameter tuning, we used grid search with the following parameter grids: S, = (0.2, 0.4, 0.6, 0.8),

Ss=(3,4,56,8,10,12), S,= (0.1, 0.2, 0.4, 0.6, 0.8, 0.9), Sy = (o, 757 w). The optimal

choices of tuning parameters were obtained by applying Algorithm 1.

Meanwhile, we introduced temporal lag effects into the BSTS model, denoting this enhanced
version as the BSTS-TL model. BSTS-TL model serves as the baseline model to assess the efficacy
of the newly designed MBSTS-TL model. Please note that the MBSTS model is a special case of
the MBSTS-TL model, so we do not use the MBSTS model as a baseline. We subsequently pre-
sent a comparative evaluation of the modeling performance of both the BSTS-TL and MBSTS-TL
models for three periods (the initial outbreak period, the rapid spread period, and the full-blown
period), considering no time lag, 1-week lag, and 2-weeks lag effects through the year, i.e.
L =(0, 1, 2).

Table 2 reports the normalized absolute error (Equation 8) generated by the BSTS-TL model
across different time lag selections and different pandemic phases. During the initial outbreak
period, the normalized absolute errors range from 0.188 to 0.194, while in the rapid spread period,
they range from 0.067 to 0.074. In the full-blown period, the normalized absolute errors range from
0.084 to 0.103. The average normalized absolute errors for time lags of 0, 1, and 2 weeks are 0.116,
0.115, and 0.117, respectively. As indicated in Table 3, the MBSTS-TL model demonstrates much
smaller average normalized absolute errors across all three-time lag selections. Specifically, the aver-
age normalized absolute errors for time lags of 0, 1, and 2 weeks are 0.044, 0.047, and 0.051, respect-
ively. During the initial outbreak period, the normalized absolute errors range from 0.016 to 0.023.
In the rapid spread period, they range from 0.017 to 0.019, and in the full-blown period, they range
from 0.097 to 0.111.

Table 2. The normalized absolute error (7) in different time lags in the BSTS-TL model.

Time lag (week) The initial outbreak period The rapid spread period The full-blown period Average
=0 0.194 0.074 0.084 0.116
=1 0.188 0.067 0.091 0.115

lr=2 0.194 0.067 0.091 0.117
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Table 3. The normalized absolute error (7) in different time lags in the MBSTS-TL model.

Time lag (week) The initial outbreak period The rapid spread period The full-blown period Average
=0 0.016 0.018 0.097 0.044
= 0.023 0.017 0.103 0.047
=2 0.022 0.019 0.111 0.051

Concurrently, the MBSTS-TL model demonstrates high accuracy during the initial outbreak and
rapid spread periods, with consistently low normalized absolute errors. However, its performance is
relatively less accurate during the full-blown period. This observation aligns with the reality that
because human responses and COVID-19 spread in each region were highly volatile during this
phase, the correlation becomes less significant comparatively in modeling.

Regarding the time lag selection in the MBSTS-TL Model, the smallest normalized absolute
errors were observed when no time lag was considered during the initial outbreak and full-
blown periods, yielding values of 0.016 and 0.097, respectively. In the rapid spread period, the
inclusion of a one-week lag led to the smallest normalized absolute error of 0.017. These outcomes
indicate the absence of time lag effects of human responses on the spread of COVID-19 during the
initial outbreak and full-blown periods. In contrast, during the rapid spread period, changes in
human responses appeared to impact the pandemic’s spread one week later. Figure 7 portrays
the spatiotemporal variation of normalized absolute errors in the MBSTS-TL Model at the state
level during the three pandemic periods, considering 0-, 1-, and 2-week time lags. The recorded
normalized absolute errors range from 0.00 to 0.31. The highest normalized absolute error emerged
in Iowa (IA), North Carolina (NC), and New Mexico (NM) during the full-blown period, yielding
respective values of 0.31, 0.30, and 0.29.

5.4. Modeled relationships and interpretation

Figure 8 depicts the coefficients of governmental and human responses derived from the MBSTS-
TL model at the state level during three COVID-19 stages. The human response coeflicients exhib-
ited a range from —130.62 to 109.62, with positive coefficients depicted in red and negative coeffi-
cients in blue. These colors signify the positive and negative influences of human responses on
COVID-19 spread, respectively. The saturation of colors reflects the absolute magnitudes of the
coefficients, which indicate the degree of significance of human responses” impacts on the propa-
gation of COVID-19.

Regarding the variations in the primary human responses influencing the spread of COVID-19
across distinct stages of the pandemic, our analysis identified human mobility in walking and driving
as the two key factors impacting case rates in most states during the initial outbreak period. Notably,
the coefficients associated with human mobility in walking and driving exhibited the most substantial
absolute values across 22 and 13 states, respectively. In particular, the coefficients of human mobility
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Figure 7. The normalized absolute error of the MBSTS-TL Model at the state level in three pandemic periods.
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Figure 8. The spatial distribution of coefficients in three phases.
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in walking ranged from 74.16 to 33.19 in a decreasing order of the states: Ohio, Florida, Nevada, Ala-
bama, North Carolina, Virginia, Wyoming, Colorado, and Utah. This suggests that in these nine
states, an increase in pedestrian movement intensified the COVID-19 outbreak. Conversely, in
Arkansas, South Dakota, and Georgia, the coefficients of human mobility in walking ranged from
—46.46 to —33.30 in increasing order, indicating that increases in pedestrian mobility alleviated
COVID-19 transmission. Furthermore, in states such as New Hampshire, Maine, and Kansas, the
coefficients of driving mobility varied from —75.97 to —35.81 in increasing order. These values high-
light an association between decreased driving mobility and an uptick in COVID-19 case rates. Over-
all, the analysis emphasizes the intricate interplay between specific forms of human mobility and the
dynamics of COVID-19 spread during different stages of the pandemic.

During the rapid spread period, the coefficients of SI and human mobility by transit displayed
the highest absolute values across 20 and 15 states, respectively. Coeflicients of SI were negative in
five states - New Mexico, Ohio, Wyoming, Washington, and Colorado - ranging from —130.62 to
—54.63 in increasing order. Conversely, in Maine, the coefficient of SI was 68.86, unfolding the posi-
tive impacts of stay-at-home policy strictness on the case rate change. Regarding human mobility by
transiting, the coefficients were negative in Arizona (—45.98) and Idaho (—32.99), and positive in
Hawaii, Connecticut, Massachusetts, New Hampshire, and Nevada, ranging from 109.62 to
32.28. It is worth mentioning that in California, human mobility in walking and driving were
two principle human responses with coefficients of 69.52 and —67.78, respectively. These obser-
vations reveal that compared to the strictness of stay-at-home policies, the decrease in walking
mobility and increment in driving mobility were more forceful human responses to the inhibition
of COVID-19 in California.

Three human responses, i.e. stay-at-home policies, human mobility in walking, and public
awareness toward COVID-19 served as the key factors of case rate evolving in 18, 10, and 9 states
in the full-blown period, respectively. The more strictness of stay-at-home policies coincided with
the dwindles of case rate change in Mississippi, Colorado, Kansas, Ohio, and North Dakota with the
coefficients of SI ranging from —74.13 to —40.51 in an increasing order. Contrarily, the strictness of
stay-at-home policies fostered positive impacts on COVID-19 spread in Iowa, South Dakota,
Nebraska, and Arkansas, with the coefficients of SI ranging from 65.68 to 36.29. With respect to
walking mobility, the coefficients were 14.61 in Louisiana, and —16.22 in Alaska, exhibiting the
opposite impacts of walking mobility on COVID-19 control. The coefficients of RAD indexes
were —22.73 in Virginia and —14.88 in Illinois, conveying that intensified public awareness of
COVID-19 was the most pivotal human response for curving the COVID-19 spread in Virginia
and Illinois in the full-blown period.

The results also showed that in Wisconsin, the stay-at-home policies consistently emerged as the
most significant human responses affecting COVID-19 spread throughout the entire year. The
coefficients of SI were 26.66, —23.59, and —27.44 in three pandemic periods, respectively. The
impacts were positive in the initial outbreak period, and switched to negative in the following
periods, depicting that the effectiveness of stay-at-home policies on COVID-19 control began in
the rapid spread phase, and enhanced in the full-blown period in Wisconsin. Additionally, in
Ohio, Colorado, Wyoming, Maine, South Dakota, Indiana, Hawaii, Kansas, Nebraska, and Arkan-
sas, the COVID-19 spread was primarily shaped by the human mobility intensity in the initial out-
break period, and stay-at-home policies stand out as the most critical factor for COVID-19 control
in the rapid spread and full-blown periods.

6. Discussion
6.1. Significant implications

This study has several significant implications. First, this study conducted a demographic-adjusted
evaluation of two types of human responses encompassing public awareness (as measured by the
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RAD index) and sentiments toward COVID-19 (captured by the N-SAD and P-SAD indexes). The
human responses data set for COVID-19 in the U.S. at the state level for the year 2020 is readily
accessible via a GitHub repository (https://github.com/yimindai0521/Replication_ MBSTS_TL).
This comprehensive human response data set serves as a fundamental resource for prospective
investigations pertaining to societal resilience, ethical considerations within the domain of public
health interventions, and the development of adaptable strategies for managing global health crises
before pharmaceutical interventions become available.

Second, this study designed the MBSTS-TL model and applied it to address the high-dimen-
sional challenges in spatiotemporal modelings using the COVID-19 spread as a case study. The
MBSTS-TL model offers three distinctive advantages. The model incorporates considerations of
spatial dependency and the impact of time lags when examining the relationships between various
factors and the target time series. It also leverages the benefits of feature selection to estimate associ-
ations within high-dimensional time series. Furthermore, the model effectively addresses concerns
related to overfitting when dealing with complex relationships. The MBSTS-TL model serves as a
robust analytical instrument for conducting scenario analyses, enabling the evaluation of diverse
intervention strategies and their potential consequences on pandemic outcomes. Owing to these
inherent advantages, it is also well-suited for elucidating the intricate interplay among societal,
economic, environmental, and other public health factors across a wide spectrum of contexts.

Finally, this study unveiled a dynamic pattern in the human responses influencing the spread of
COVID-19 over various phases. The initial outbreak phase was predominantly driven by human
mobility. During the subsequent rapid spread phase, it became evident that the stringency of pol-
icies assumed a pivotal role alongside mobility in shaping the pandemic’s trajectory. As the pan-
demic entered its full-blown phase, the significance of public awareness regarding COVID-19 in
influencing its progression emerged. This observed pattern underscores the critical importance
of adopting a multifaceted strategy that incorporates measures related to mobility constraints, pol-
icy stringency, and the implementation of robust public awareness campaigns. The findings of ever-
changing determinants that underlie pandemic propagation hold valuable implications for future
pandemic preparedness. This emphasizes the necessity for phased and adaptive intervention strat-
egies to achieve sustainable Good Health and Well-being (Goal 3) and Sustainable Cities and Com-
munities (Goal 11) of the Sustainable Development Goals (SDGs).

6.2. Limitations

While the proposed framework in this study effectively addresses a majority of challenges in esti-
mating the compounding impacts of governmental and human responses on the pandemic’s health
outcomes, it is important to acknowledge several limitations that warrant further investigation.
Accurate estimates of COVID-19 case counts and governmental and human responses are cru-
cial for modeling and understanding their relationship. However, data uncertainty poses significant
challenges in capturing governmental and human responses and the spread of the virus. In the U.S.,
COVID-19 confirmed case counts were underestimated, primarily due to limited test availability
and imperfect test sensitivity, especially during early 2020. Wu et al. (2020) pointed out that a sub-
stantial number of mild or asymptomatic infections in the U.S. may have gone undetected, as the
U.S. Centers for Disease Control and Prevention (CDC) prioritized testing hospitalized patients
who tend to exhibit moderate to severe symptoms. Meanwhile, COVID-19 tests based on nasophar-
yngeal and throat swabs may produce false negative results, leading to the underestimation of
COVID-19 cases. To achieve a more accurate understanding of the relationship between human
responses and pandemic controls, a more realistic tracking and assessment of COVID-19 and
future infectious disease cases is necessary. Uncertainty also exists in the Apple human mobility
data, which only records the movement of people using Apple Maps and does not provide a com-
prehensive representation of overall human mobility. Movements of individuals without GPS-
enabled devices or those using different mapping apps cannot be captured in this data. To enhance
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mobility tracking, it is imperative to incorporate additional human mobility data sources, such as
Google human mobility data and SafeGraph data sets.

The concept of ‘scales of analysis’ has long been a geospatial matter that has not yet been system-
atically elucidated. This term alludes to the level or perspective at which a problem or issue is exam-
ined or addressed, encompassing a spectrum from the global level down to the individual level
(Watson 1978). The choice of analysis scale is contingent upon the scale of the problems or issues
under consideration. While the COVID-19 pandemic unfolds at the global level, the transmission of
the virus is intricately connected to individual interactions. The human responses and the spread of
COVID-19 highlight spatial disparities across various countries, states, counties, and even commu-
nities. Similarly, temporal scales are essential for understanding the pandemic’s progression and its
responses. In this study, we divided the pandemic into three phases, reflecting key stages of viral
spread and response patterns across the United States. This temporal classification allowed us to
identify broad patterns while ensuring sufficient data for model training. However, this three-
phase framework may oversimplify the pandemic’s complexities, as regions experienced different
surges and response timings. A more granular temporal analysis could reveal these variations in
greater detail. Additionally, due to limitations in the availability of quantitative data concerning
COVID-19-related policies, this study is confined to the state level, treating each state as a single
entity and thereby overlooking the spatial heterogeneity in the effects of human responses on
COVID-19 with each state. In future research, conducting finer-scale analyses - both spatially
(moving from state to city-level or neighborhood-level) and temporally (dividing the pandemic
into more phases considering local patterns) — could provide a more nuanced understanding of
the interplay between human responses and the spread of COVID-19.

Moreover, the influence of human responses on the dissemination of COVID-19 is contingent
upon various localized factors, such as population density, the influx of individuals from initial out-
break epicenters, and prevailing mobility patterns. Additionally, human behaviors during health
crises are shaped by factors such as trust in government, media influence, cultural norms, and
the use of technological tools like contract tracing or health monitoring apps. Incorporating
these elements in future research can enhance our understanding of why people across different
regions, stages, and cultural contexts with various tools respond uniquely to pandemics from a
behavioral science perspective.

7. Conclusion

This study collected Twitter data, COVID-19 case rates, Apple human mobility data, and the strin-
gency of stay-at-home policies in the U.S. during the year 2020. The contributions of this work are
two-fold. Initially, it elucidates the spatiotemporal disparities in human responses, encompassing
aspects such as public awareness and sentiment towards COVID-19, human mobility patterns,
and the rigor of COVID-19 policies, within the U.S. throughout 2020. We introduced the RAD
index to estimate demographically adjusted public awareness towards COVID-19 using Twitter
data. We also produced weekly N-SAD and P-SAD indices at the state level, quantitatively captur-
ing negative and positive public sentiment regarding COVID-19 based on Twitter data. Second, it
designs and employs a statistical machine learning model, MBSTS-TL, for the comprehensive mod-
eling of the cumulative effects of governmental and human responses on COVID-19 health out-
comes, with a specific emphasis on accounting for spatial interdependencies and temporal lag
effects in the relationships. The MBSTS-TL model uncovered interconnected relationships between
governmental and human responses and COVID-19 health outcomes while considering spatial
dependencies and the time lag effects of governmental and human responses on the transmission
of COVID-19.

The research outcomes have yielded significant insights. First, it has unveiled spatiotemporal dis-
crepancies in governmental and human responses pertaining to COVID-19 in the U.S. at the state
level. Nationally, during the initial outbreak period (from week 9 to week 22, spanning from late
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February to the end of May), public awareness experienced a rapid increase, reaching a significant
peak. Sentiment towards COVID-19 reflected on social media were most negative during this
period compared to the remainder of 2020. The stringency of stay-at-home policies also increased
rapidly and remained at a relatively stringent level. Human mobility, whether by walking, driving,
or transit, witnessed varying degrees of decline and recovery. At the state level, human responses
displayed temporal and geographical variations. For instance, Louisiana consistently exhibited
lower levels of public awareness about the pandemic among Twitter users throughout 2020,
while Twitter users in Vermont consistently demonstrated a more optimistic outlook regarding
the pandemic, and those in Wyoming generally expressed a more pessimistic sentiment. Second,
the developed MBSTS-TL model demonstrated satisfactory accuracy in modeling the pandemic
spread during the initial outbreak and rapid spread periods, with consistently low normalized absol-
ute errors. The findings of the MBSTS-TL model indicated a shift in the determinants of COVID-19
health impacts over time, transitioning from an emphasis on human mobility during the initial out-
break period to a combination of human mobility and stay-at-home policies during the rapid
spread period, and eventually involving human mobility, stay-at-home policies, and public aware-
ness towards COVID-19 in the full-blown phase.

The human responses data set and the proposed MBSTS-TL model offer valuable insights for
diverse applications. The human responses data set provides a valuable resource for social scientists
aiming to comprehend the dynamics of human activities across space and time during the pandemic.
The MBSTS-TL model can be effectively employed to unveil complex interrelationships within
human-public health systems and human-environment dynamics. The results identify the evolving
determinants of human responses to pandemic spread, offering guidance to policymakers for design-
ing and implementing phased and adaptive strategies. These evidence-based solutions can help miti-
gate the adverse impacts of future pandemics and develop sustainable pandemic-resilient cities.
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