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Odonata is a midsized insect order (~6420 species) containing 3 suborders: Anisoptera (dragonflies, 3,120 spe-
cies), Zygoptera (damselflies, ~3,297 species), and the intermediate Anisozygoptera (~3 species). In this review
of the suborder Zygoptera, we provide a brief overview of their biology, ecology, and natural history. We also
review the current state of their systematics and phylogenetics, highlighting remaining higher-level classifica-
tion (eg family, superfamily) issues to address. Lastly, we will emphasize areas that are still in need of explor-
ation which would greatly improve our understanding of the group.
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Scope of Review

Odonata is a midsized insect order (~6,420 species) comprised of 3
suborders: Anisoptera (dragonflies), Zygoptera (damselflies), and the
monogeneric Anisozygoptera (Epiophlebia Calvert, 1903), which
have the features of both Anisoptera and Zygoptera. Zygoptera
currently consists of 4 superfamilies: Calopterygoidea (26 families,
112 genera, 892 species), Coenagrionoidea (3 families, 176 genera,
1921 species), Lestoidea (4 families, 21 genera, 201 species) and
Platystictoidea (1 family, 10 genera, 283 species) (Paulson et al.
2024). Each of these superfamilies is characterized by a unique set
of morphological characters and behaviors (Fig. 1). When compared
to dragonflies, damselflies are relatively slender, often small, have a
transversely elongate head, large compound eyes on the side of their
head which do not touch (ie separated by more than the width of an
eye), a pterothorax with wings shifted back and legs positioned for-
ward, and fore- and hind wings often similar in appearance that are
most often held over their thorax when at rest (Biisse 2023, Figure
4.1; Garrison et al. 2010).

Early classification schemes of Zygoptera based solely on morph-
ology recovered varying relationships (eg Tillyard 1917; Fraser and
Tillyard 1957; Carle 1982; Bechly 1996). More recent phylogen-
etic efforts based on morphological data (Rehn 2003), Sanger mo-
lecular data (Dijkstra et al. 2014a), molecular data plus morphology
(Bybee et al. 2008), and high throughput molecular efforts (Bybee et
al. 2021; Kohli et al. 2021; Suvorov et al. 2021) recover Zygoptera
and its superfamilies as monophyletic, except for Calopterygoidea.
Odonates have one of the most extensive fossil records within in-
sects, mainly due to wing preservation and their accompanying
diagnostic features. The combination of advanced phylogenetic tech-
niques and data availability has resulted in several damselfly fam-
ilies being either erected or reestablished, resulting in some stability
within higher-level relationships (Bybee et al. 2021), though there is
still work to do to clarify these relationships. There is also little reso-
lution in relationships below family level.

Damselflies are a charismatic group found worldwide, inhabit a
variety of habitats (eg lentic, lotic, terrestrial), and are often known
for their bright coloration. Damselflies have become a model system
for many ecological and evolutionary topics such as flight, vision,
sexual selection (including sperm competition) (Waage 1986), poly-
chromatism (e.g. Fincke et al. 2005; Sanchez-Guillén et al. 2011),
and complex life history strategies (Bybee et al. 2016). There is ex-
tensive natural history documentation that has greatly supported
such studies (for a review see Corbet 1999).

In this review of the suborder Zygoptera, we will provide an
overview of the history of systematics in this group, provide a brief
synopsis of their biology, assess the current state of their systematics
and phylogenetics, and discuss some current barriers to global ef-
forts to the study of Odonata.

Concise Review of Biology and Natural History
Life Cycle

Odonates are hemimetabolous and amphibiotic predators with 3 life
stages: egg, nymph (sometimes referred to as naiad or larva), and
adult (Bybee et al. 2015; Corbet 1999, 2002; Rédei and Stys 2016;
Tennessen 2003). The nymphs of Zygoptera are differentiated from

the Anisoptera by a slender body, elongated and flattened caudal
lamellae, and reduced cerci (Biisse 2023, Figure 4.2; Suhling et al.
2015). In contrast to Anisoptera that use an internal rectal chamber
for respiration (anal breathers), the gills in Zygoptera nymphs are
external and serve multiple functions (eg gas exchanges, swimming)
(Eriksen 1986; MacNeill 1965; Mill and Pickard 1972; Suhling et al.
2015; Tillyard 1917). For locomotion, Zygoptera nymphs generally
swim or walk on the substrate but show no escape behavior using
jet propulsion, which is demonstrated in most of Anisoptera (Corbet
1999; Mill and Pickard 1975). Females lay their eggs in water, mud,
or on specific substrates (plants, rocks, dead wood) for exophytic
species or in plant tissues for endophytic species (Fig. 2) (Bota-
Sierra and Sandoval 2017; McPeek 2008). For the latter, the female
uses her sharp ovipositor to insert the egg by puncturing the plant
tissue (Matushkina and Gorb 2007; Suhling et al. 2015). The eggs
of some species, especially those in temperate or dry climates, may
go into diapause to survive adverse weather conditions (eg winter
or drought) and continue their development when environmental
conditions improve (Corbet 1999). The egg stages are highly vari-
able, lasting anywhere from a week to several months depending on
the species and if embryonic development is continuous or delayed,
mainly due to temperature. The hatchling, known as the pronymph
or prolarva, is the first instar. In appearance, it does not resemble
subsequent instars in that the labium and legs are held tight to the
body. It is a very brief stage, usually lasting less than a minute or 2
before it molts. After the pronymph molts, its exuvia usually remains
attached to the egg chorion. However, exceptions occur in the family
Lestidae, especially in species that oviposit in woody tissue above the
ground. In some instances, the pronymph drops onto ground where
water is not present, and it can flip until it reaches water. Duration
of the pronymph can last for up to several hours depending on en-
vironmental conditions. The emerging nymph is the second instar;
the labium covers the other mouthparts and the legs are extended
and functional, and the nymph generally resembles later instars in
appearance.

Nymphal development ranges from 8 to 17 instars depending on
the species, and the duration of the nymph stage can be as little as a
few weeks (eg Palpoleura lucia (Drury, 1773)) (Suhling et al. 2004)
but usually is over a year (ie Lestes, Pyrrhosoma nymphula (Sulzer,
1776)) (Davis 1963; Bennett and Mill 1993; Hilsenhoff 2001;
McPeek 2008). The duration is influenced by the availability of food
resources and fluctuations in ambient temperature (Krishnaraj and
Pritchard 1995). At the termination of the last instar, the nymph
leaves the water and climbs onto a stable support (eg plants, rocks,
roots, or riverbanks) to reach the open air, where emergence occurs
(Grand and Boudot 2006).

After emergence, the cuticle of the adult exoskeleton is soft, often
referred to as teneral. The newly emerged teneral adult is capable
of flight but does not have strong wing strokes or flight control.
The cuticle gradually hardens, occurring first in the legs, wings, and
mouthparts (Preuss et al. 2024). Adults that are no longer teneral but
have a hardened cuticle often lack adult coloration. These sexually
immature adults will often spend time away from the water hunting
for food, where they undergo sexual maturation and acquire ma-
ture colors (Grand and Boudot 2006; Testard 1981). This is followed
by the reproductive period, during which mating and egg-laying
take place (Gillott 2005). While nearly all species of odonates are
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Fig. 1. Habitus diversity: A) Hemiphlebia mirabilis Selys, 1868 (Hemiphlebiidae, Australia), B) Phylolestes ethelae Christiansen, 1947 (Synlestidae, Dominican
Republic), C) Heteragrion bickorum Daigle, 2005 (Heteragrionidae, Ecuador), D) Philogenia gaiae Vilela and Cordero-Rivera, 2019 (Philogeniidae, Ecuador), E)
Dicterias atrosanguinea Selys, 1853 (Dicteriadidae, Brazil), F) Drepanosticta zhouiWilson and Reels, 2001 (Platystictidae, China), G) Cora xanthostoma Ris 1918
(Polythoridae, Colombia), H) Philoganga vetusta Ris, 1912 (Philogangidae, China), |) Pseudolestes mirabilis Kirby, 1900 (Pseudolestidae, China), J) Heliocypha
perforata (Percheron in Guérin-Méneville and Percheron, 1835) (Chlorocyphidae, China), K) Mesagrion leucorrhinum Selys, 1885 (Mesagrionidae, Colombia), L)
Euphaea ornata (Campion, 1924) (Euphaeidae, China), M) Archineura incarnata (Karsch, 1891) (Calopterygidae, China), N) Thaumatoneura inopinata McLachlan,
1897 (Thaumatoneuridae, Costa Rica), O) Teinopodagrion epidrium De Marmels, 2001 (Megapodagrionidae, Colombia), P) Mecistogaster ornata Rambur,
1842 (Coenagrionidae, Pseudostigmatinae, Ecuador), Q) Austroargiolestes icteromelas (Selys, 1862) (Argiolestidae, Australia), R) Argia dives Forster, 1914
(Coenagrionidae, Colombia). Pictures by Adolfo Cordero-Rivera.
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Fig. 2. Behavior diversity: A) Stage | of copulation (sperm removal) in Calicnemia eximia (Selys, 1863) (Platycnemididae, China), B) Stage Il of copulation
(insemination) in Perissolestes (Perilestidae, Ecuador), C) oviposition by unmated parthenogenetic Ischnura hastata (Say, 1840) (Coenagrionidae, Azores,
Portugal), D) oviposition alone in tree roots by Drepanosticta zhoui Wilson and Reels, 2001 (Platystictidae, China), E) oviposition with noncontact guarding in
Calopteryx splendens (Harris, 1780) (Calopterygidae, Italy), F) oviposition alone underwater by Calopteryx virgo (Linnaeus, 1758) (Calopterygidae, Spain), G)
oviposition in tandem by Platycnemis pennipes (Pallas, 1771) (Platycnemididae, Italy), H) oviposition in tandem far from the water by Lestes sponsa (Hansemann,

1823) (Lestidae, Spain). Pictures by Adolfo Cordero-Rivera.

obligatory sexual organisms, parthenogenesis is known in one spe-
cies of Zygoptera, Ischnura hastata (Say, 1840) from the Azores
Islands (Cordero Rivera et al. 2005; Lorenzo-Carballa et al. 2009).
Adults can survive for several days to months, particularly in spe-
cies that endure the dry season in tropical climates (McPeek 2008).
Daily survival is about 0.90, with no difference between the sexes,

but immature individuals have slightly lower survival compared to
mature adults (Sanmartin-Villar and Cordero-Rivera 2023).
Damselflies are particularly adapted to their role as generalist
visual predators. Like dragonflies, the combination of their visual
and flight systems are highly attuned to detect and efficiently cap-
ture prey (Olberg et al. 2000). Damselflies commonly capture and
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consume prey while in flight (Ingley et al. 2012; Suhling et al. 2015).
While most damselflies consume any available prey, some are more
specialized. For example, the giant Pseudostigmatinae target spiders
and insects caught in spider webs (Fincke 1984; Ingley et al. 2012;
Toussaint et al. 2019). Nympbhs also have remarkable vision, at least
in the final instars, but generally ambush prey using a highly sophis-
ticated modified labium that rests just underneath the head and/or
thorax to be thrust forward in a high-speed movement (Biisse et al.
2021). The shape and size of this modified labium varies between
groups. Damselfly species with large nymphs may feed on verte-
brates, such as fish and tadpoles. Damselfly adults and nymphs, in
turn, serve as prey for fish, birds, reptiles, amphibians, invertebrates
(including spiders), and even Anisoptera, and are able to export
significant freshwater secondary production to terrestrial systems
(Rivas-Torres and Cordero-Rivera 2024).

Courtship, Mating, and Sexual Conflict

Zygoptera have a unique mating system that can be broken into 6
stages (male competition, courtship display, tandem linkage, copu-
lation, oviposition, and mate guarding), although not all stages are
present in every species (Battin 1993). Male reproductive behavior
is related to aggression and site attachment (Galicia-Mendoza et al.
2021). When males are territorial, they may actively attempt to corral
females while also defending an area where preferred oviposition
substrates are present (eg water, mud, rocks, dead wood). They try to
prevent other males from encroaching on their space through threat
displays or flight chases. Males may also gather in close proximity
and perform confrontational flights. Male territoriality and other
male-male competition (eg lekking) often consists of noncontact
threats where males will fly frons to frons in order to determine who
is the fitter male (Grether 2019). Females will observe these male dis-
plays from perches around the lek, with the most impressive displays
to our eyes performed by species with pigmented wings, such as
Pseudolestes mirabilis Kirby, 1900, from Hainan (China) (Cordero-
Rivera and Zhang 2018). Alternatively, nonterritorial males actively
search for females, and upon discovery of a female, will attempt to
signal the female directly (eg wing spot, courtship arc, wing clap-
ping). The female will respond with a refusal (eg all 4 wings spread,
downward flex of the abdomen) or acceptance to create a tandem
(Battin 1993; Guillermo-Ferreira 2021). To form a tandem, males
clasp the female by the pronotum with their anal appendages, which
is different from Anisoptera where the female is held by the head
(Suhling et al. 2015). Although, in Polythoridae, this link is made
by grasping the mesothorax, a fact that might explain the reduction
of paraprocts in that family (Sanmartin-Villar and Cordero-Rivera
2016).

This tandem link is necessary as the male’s reproductive or-
gans are separated into 2 locations. The primary genitalia where
sperm production occurs is internally located in the ninth abdom-
inal segment near the anal appendages. Before copulation occurs,
the male must transfer sperm to the secondary genitalia, which is
located on the ventral portion of the second and third abdominal
segments (Rivas-Torres et al. 2019). The female will then complete
the “mating wheel” or “copulatory wheel” by raising the end of her
abdomen to the male secondary genitalia, which signals the start of
copulation. The tandem lasts from a few minutes to several hours
depending on species [eg Heteragrion consors Hagen in Selys, 1862:
5.2+5.45 min (Loiola and De Marco 2011), Ischnura fluviatilis
Selys, 1876: 65.2+6.9 min (Almeida et al. 2018), Phylolestes ethelae
Christiansen, 1947: 166.2+62 min (Cordero-Rivera et al. 2024),
Ischnura senegalensis (Rambur, 1842): 395.3+11.6 min (Sawada
1995)]. Intra-specific variation of tandem duration can be driven by

mating history of the female, time of day, male density, and male age
(Cordero 1990; Cordero et al. 1995; Andrés and Cordero Rivera
2000; Uhia and Cordero Rivera 2005; Rivas-Torres et al. 2023;
Brozzi et al. 2024).

Within Zygoptera, copulation is broken into 2 distinct processes:
sperm removal and insemination, since females tend to store and
keep the sperm of multiple males, which is common within polyan-
drous species (Cordoba-Aguilar et al. 2003). The ability to remove
the sperm from other males sets the stage for sperm competition (eg
plugs, structural adaptations, toxic fluids) seen throughout sexual
individuals in the animal kingdom. The 2 most documented methods
of sperm competition among Zygoptera males are using highly
evolved penile structures to assist with removal or to reposition the
sperm packages within the spermatheca itself pushing them farther
into the cavity (Cordoba-Aguilar et al. 2003; Cordero-Rivera and
Cordoba-Aguilar 2010). Repositioning the sperm is highly effective
as the sperm closest to the egg during oviposition will fertilize the
egg. Oviposition occurs relatively quickly after copulation, often
with the male guarding the female. The male will either remain in
tandem with the female by clasping the prothorax, perch, or hover
close to the female until oviposition is complete, ensuring the repro-
ductive success of his sperm (Fig. 2).

Zygoptera courtship and mating behavior is an ideal system to
study sexual conflict. As demonstrated above, common male strat-
egies stem from harassment, physical harm, and mating duration
(Andrés and Cordero Rivera 2000; Gosden and Svensson 2009).
Females have evolved strategies and adaptations in an attempt to
avoid or minimize these negative effects. For example, the females of
some genera (eg Enallagma Charpentier, 1840) possess a specialized
genital spine which allows them to reduce sexual conflict over
mating duration, by causing pain and discomfort on the male’s ab-
domen thereby significantly reducing the mating duration (Rivas-
Torres et al. 2023; Brozzi et al. 2024). A commonly hypothesized
phenomenon to avoid male harassment is female polychromatism
(multiple color patterns within a population), including one that
mimics male coloration. Females that mimic male coloration also
tend to mimic their behavior (ie aggression) (Sirot et al. 2003). While
it is often suggested that sexual conflict is the main driving force for
polychromatism, there is evidence that ecological drivers (eg tem-
perature, parasitism, UV protection) can also influence polychro-
matism (Cooper et al. 2016; Cook et al. 2018). Polychromatism is
observed in 4 families (Calopterygidae, Lestidae, Coenagrionidae,
and Platycnemididae) but unevenly distributed among the genera
(Cordero and Andrés 1996; Fincke et al. 2005).

Recent evidence suggests that nonadaptive mechanisms have
played a predominant role in the radiation of damselflies, driving
species divergence through sexual selection linked to male—female
mating interactions. Studies on 3 genera (Calopteryx Leach in
Brewster, 1815, Enallagma, and Ischnura Charpentier, 1840) high-
light the extent of adaptive ecological divergence in niche use and
nonadaptive differentiation in reproductive traits, such as sexual
morphology and behavior (Wellenreuther and Sdnchez-Guillén
2015). In Calopteryx, species diversification is largely attributed
to nonadaptive divergence in coloration and behavior, which in-
fluences premating isolation, as well as structural differentiation in
reproductive morphology, affecting postmating isolation (Lorenzo-
Carballa et al. 2014). Similarly, in the sister genera Enallagma and
Ischnura, most diversification events are driven by differences in
genital structures that play a key role in species recognition during
copulation (Wellenreuther and Sanchez-Guillén 2015). These find-
ings suggest that closely related species can exhibit minimal eco-
logical differences while remaining reproductively isolated. This
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uncoupling of reproductive isolation from niche-based divergent
natural selection challenges traditional niche models of species co-
existence, emphasizing the significant role of sexual selection and
nonadaptive processes in damselfly speciation.

Habitat Requirements

Damselflies are highly effective generalist predators in both aquatic and
terrestrial habitats surrounding freshwater ecosystems (Wesner 2012).
The diversity of freshwater habitats worldwide has facilitated the
adaptation of damselflies to a variety of lentic and lotic environments,
including rivers, waterfalls, ponds, lakes, ephemeral pools, bogs, seeps,
damp leaf litter, phytotelmata, and brackish water. Nymphs are espe-
cially dependent on specific microhabitats and are generally associated
with their preferred substrate (eg gravel, stone, mud, detritus, vege-
tation) (Corbet 1999; Suhling et al. 2015). Consequently, the spatial
and temporal distribution of damselflies is generally influenced by the
availability of suitable breeding habitats (Pulliam 1988). Damselflies
are diurnal heliophiles (sun lovers), whose activity is mainly influenced
by the fluctuations of ambient temperature and sunlight throughout
the day (Corbet 1962), though at least one species (Phylolestes ethelae
Christiansen, 1947) shows nocturnal copulation (Cordero-Rivera et
al. 2024). Usually, Zygoptera are active earlier than Anisoptera as
their smaller body size does not require high ambient temperatures
to warm muscles to fly (Corbet and May 2008). Damselflies are also
thermoconformers (May 1976; Castillo-Pérez et al. 2022) and usually
have narrower thermal tolerances than dragonflies, leading to smaller
distributions and a higher rate of endemism compared to dragonflies
(Bota-Sierra et al. 2022).

For damselflies, survival and maintenance depend on local abiotic
(eg temperature, physicochemical parameters of the water) and bi-
otic (eg food availability, parasites, inter-, and intraspecific competi-
tion) requirements (McPeek 2008; Wellenreuther et al. 2011; 2012).
Due to these requirements, most species have a narrow tolerance to
anthropic disturbance, more so than Anisoptera (Silva et al. 2022).
Therefore, damselflies are good indicators of the health of fresh-
water ecosystems and can provide unique and valuable insights on
the drivers of global insect decline (habitat degradation, pollution,
climate change) (Arce-Valdés and Sanchez-Guillén 2022 ; Oliveira-
Junior et al. 2015; Samways and Simaika 2016; Oliveira-Junior
and Juen 2019), especially in the context of freshwater ecosystems,
which are the most threatened ecosystems in the world (Dudgeon et
al. 2006; Dijkstra et al. 2014b; Piczak et al. 2024).

For example, in the Owabi wetland sanctuary in Ghana, Manu
et al. (2022) found that the damselfly species Africallagma vaginale
(Sjostedt, 1917) is a good indicator of habitats with moderate an-
thropogenic disturbance while they found and Chlorocypha curta
(Hagen in Selys, 1853), Chlorocypha luminosa (Karsch, 1893),
Chlorocypha radix Longfield, 1959 and Agriocnemis zerafica Le Roi,
1915 to be indicators of low anthropogenic disturbance. In Badu et
al. (2024), A. zerafica and Ceriagrion glabrum (Burmeister, 1839)
were recorded only in highly disturbed habitats, while Allocnemis
elongata (Hagen in Selys, 1863) was only recorded in the least dis-
turbed habitats. Damselfly species uniquely adapted for inhabiting
moderately disturbed habitats included A. elongata and C. curta.
Phaon camerunensis Sjostedt, 1900 was present in both the least dis-
turbed and moderately disturbed habitats, though higher abundance
was recorded in the least disturbed habitats.

Flight
Although still among the best flyers in the animal kingdom, Zygoptera
have lesser flight ability compared to Anisoptera, in part due to their

smaller average body size, less developed flight muscles, and pro-
portionally smaller homonomous fore- and hind wings (Biisse et al.
2013; Dijkstra et al. 2013; Bomphrey et al. 2016). Damselfly wings
are driven by direct flight muscles (Biumler et al. 2018), allowing
them to control each wing pair independently. For example, males of
P. mirabilis and Chalcopteryx scintillans McLachlan, 1870 only use
their forewings for elaborate flight maneuvers during threat displays
(Cordero-Rivera and Zhang 2018; Guillermo-Ferreira et al. 2019).
Damselflies ability to hover is unmatched, and some species are even
able to fly backward (Grimaldi and Engel 2005; Rippell and Hilfert-
Riippell 2013; Bomphrey et al. 2016).

Damselflies are generally found closer to the water surface than
Anisoptera and referred to as “perchers” because they spend most
of their time resting instead of flying (Corbet 1962). However,
there is nuance within Zygoptera where some groups spend more
time perched (eg Lestoidea) than other more active groups (eg
Calopterygoidea). There can also be intraspecific variation in these
behaviors (Vilela et al. 2017). Their comparably limited flight abil-
ities may translate to limited dispersal abilities, which may con-
tribute to their small ranges and high levels of endemism (Dijkstra
and Clausnitzer 2004). However, some Zygoptera, like the genus
Ischnura and Agriocnemis exsudans Selys, 1877, are among the best
colonizers of oceanic Pacific islands, likely thanks to the help of wind
currents.

Vision

Odonates are highly visual insects and appear to have reduced the
other senses or lack them altogether (Futahashi et al. 2015; Suvorov
et al. 2016; but see Rebora et al. 2022). This highly evolved visual
system is critical to both communication (eg inter- and intraspecies
recognition) and predation. Odonates have both ocelli and com-
pound eyes which are some of the largest in relation to body and
head size among insects (Corbet 1999; Bybee et al. 2012; Sudrez-
Tovar et al. 2022). The compound eyes of nymphs possess dark
banding, which is lost over time and might be an adaptation to the
dark aquatic environment (Corbet 1999; Bybee et al. 2008). Both
adults and nymphs can detect color ranging from ultraviolet (UV)
to long wavelength (LW) (~300 nm to ~700 nm) (Yang and Osorio
1996; Bybee et al. 2012; Futahashi et al. 2015). In the transition
from nymph to adult, the number of ommatidia (individual facets
of the compound eye) greatly expands from ~340 to ~7,000 (Lew
1934; Sherk 1977). With this expanded eye size, adults are able
to see in greater detail, and sections of the eye are specialized for
acuity and light detection (Sudrez-Tovar et al. 2022). For example,
the dorsal ommatidia are usually quite small and sensitive to UV
wavelengths, which allows them to detect movement against high
contrast and bright backgrounds (eg sky). In comparison, the ven-
tral ommatidia are larger, resulting in less acuity but an ability to
sense the full light spectrum, allowing them to distinguish movement
against a constantly changing background environment (Bybee et al.
2012; Futahashi et al. 2015). The size of the ommatidia also varies
by section. For example, species that hunt at dusk have patches of
larger ommatidia, which allows more light to enter the ommatidia
for them to see better in darker environments while still maintaining
good vision throughout the day (Bybee et al. 2012).

Most vision research has centered on opsins, which are the genes
located in photoreceptor cells that control color vision. When com-
bined with a chromophore, they form a photopigment specifically
attuned to UV, short wavelength (SW), or LW light. Odonata docu-
mented thus far have as many as 33 opsin genes with varying levels
of duplication, gains, and losses. The majority of these gains and
losses are found within the LW opsins, with the SW being mildly
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duplicated (Futahashi et al. 2015; Suvorov et al. 2016). All Odonata
examined thus far have only a single UV opsin copy expressed in
the eye. Zygoptera opsin numbers range from 9 to 22, again with
the greatest expansion occurring within the LW. Currently, the es-
timated opsin composition of ancestral Zygoptera was 1 UV, 2 SW,
and 7 (Futahashi et al. 2015) or 10 (Suvorov et al. 2016) LW copies.
Understanding opsin evolution allows greater insight into some of
the most highly evolved visual systems among arthropods.

Other Sensory Systems

In light of their incredibly developed vision system, the other senses
of odonates have received relatively little attention. Odonata, along
with their sister Order Ephemeroptera, lack structures common to
arthropod olfaction such as mushroom body calices (Farris 2005),
which is likely a derived trait (Strausfeld et al. 2020). Nevertheless,
there is a growing body of research to support the chemical percep-
tive abilities (olfaction) of Odonata. Ultrastructural investigations
of odonate antennae have revealed features similar to other insect
chemoreceptors (Rebora et al. 2008), and some chemical classes
have been shown to elicit an electrophysical response in odonate
antennae (Rebora et al. 2012). Behavioral studies have further con-
firmed the biological role of odonate olfaction. For example, while
vision likely provides the first cue in mate recognition, smell may
also be utilized by polychromic coenagrionids with males preferring
the scent of females (both gyno- and andromorphs) when compared
to males or a control (Frati et al. 2015). Olfaction doesn’t appear to
be very specialized between the odonate suborders: when presented
with a panel of 48 chemical compounds, the olfactory neurons of
both Anisoptera and Zygoptera species responded to the same 22
compounds, with only one compound provoking a unique response
in each species (Piersanti et al. 2014).

Odonate flight is aided by mechanoreceptors in the pedicel of the
antenna. The stiff flagellum, which is connected to the pedicel via
a ball-and-socket joint, moves in all directions during flight. These
movements are perceived by Johnston’s organ in the pedicel, which
provides feedback about flight direction and relative wind speed
(Gewecke and Odendahl 2005). Zygoptera also use olfaction cues
to detect flight conditions (eg humidity, temperature, air currents)
(Piersanti et al. 2014). Mechanical and chemical receptors have been
found on mouthparts (Rebora et al. 2014) and the ovipositor (Frati
et al. 2016), which may help damselflies evaluate the suitability of
food and prevent egg damage during oviposition.

As they mature, damselfly nymphs transition from their aquatic
habitat to the terrestrial habitat of adults. Because they are ecto-
therms, adults regulate body temperature by modulating the amount
of sunlight hitting their bodies, such as changing perching posture
and location (Corbet 1962). These strategies would require struc-
tures to sense temperature and humidity. Structures similar to other
insect thermo/hygroreceptors have been described on the odonate
antenna (see Rebora et al. 2008). These receptors have been shown
to be sensitive to dry, moist, and cold stimuli (Piersanti et al. 2011).

Taxonomists: Past and Present

The basis of systematics relies on taxonomy, and there have been nu-
merous experts that have expanded our understanding of the diver-
sity within Zygoptera. In terms of the number of species described,
the top 50 authors have described 3,163 of the 3,709 taxa (Table
1). Below are a few of the taxonomists that have significantly con-
tributed to this group and where the majority of their type material
is stored.

Rambur, Jules Pierre (1801-1870)

Most type material deposited at: Royal Belgian Institute of Natural
Sciences (RBINS), Muséum national d’histoire naturelle (MNHN),
and zoological collection of the University of Sevillia.

Rambur studied medicine, but retained passion for the natural
world, especially Lepidoptera and Coleoptera. Regarding Odonata,
he is most recognized for his chapter on worldwide Neuroptera
within Nouvelles suites a Buffon (1842), in which he cataloged 233
odonate species. His descriptions are notable for their novel atten-
tion to genitalia and other sexual characters (Endersby and Fliedner
2015).

de Selys-Longchamps, Edmond (1813-1900)
Most type material deposited at: RBINS.

Widely regarded as the “father of odonatology,” Selys-
Longchamps (usually “Selys” in literature) remains the most prolific
taxonomist of the order Odonata. Born into aristocracy, his pro-
fessional career culminated in the appointment as president of the
Belgian senate. Though a politician by trade, Selys was fervently
interested in the natural world. In 18835, his expansive personal col-
lection of odonates contained 1,530 of the about 1,800 then de-
scribed species. His 2 monographs with Hagen and 26 synoptic
publications cover the majority of odonate diversity (Wasscher and
Dumont 2013). Approximately 400 species were originally described
by Selys, as well as assisting in the description of 500 currently ac-
cepted species. Selys also described approximately 370 nymphs.

Hagen, Hermann August (1817-1893)
Most type material deposited at: Museum of Comparative Zoology
(MCZ).

For his thesis as a medical student at the University of Konigsberg,
Hagen studied European dragonflies and synonymized many prob-
lematic taxa. Together with Selys, Hagen produced reviews and
monographs of European odonates, such as Revue des Odonates
de Europe (1850), for which he provided many of the illustrations
(Endersby and Fliedner 2015). He also described approximately 147
nymphs. He was the first odonate researcher settled in America.

Martin, René (1846-1925)
Most type material deposited at: Muséum national d’histoire
naturelle (MNHN).

The French lawyer Martin was asked to catalog the Cordulinae
(1906) and Aeschininae (1908) of Selys’ collection, for which he
published a monograph for each. He and his daughter moved to
Chile later in life, where he formed the entomological society in
Santiago (Endersby and Fliedner 2015).

Forster, Johann Friedrich Nepomuk (1865-1918)
Most type material deposited at: University of Michigan’s Museum
of Zoology (UMMZ).

Forster was a frequent collaborator in Selys’ later years, mostly
regarding the Indo-Australian odonates. His first species descrip-
tion honored Selys (Caconeura selysi Forster, 1896), and he was in-
vited to catalog the Agrionines of the Selys collection (Endersby and
Fliedner 2015).

Ris, Friedrich (1867-1931)
Most type material deposited at: Senckenberg Museum.

Before his matriculation as a medical student at the University
of Zurich, Ris published the first comprehensive work on Swiss
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Table 1. The top 50 most active taxonomists for Zygoptera, limited to first-author descriptions

Surname Given names No. of species Nationality Description years
Selys Baron Edmond de 383 Belgium 1831-1898
Burmeister Hermann 24 Germany 1839-1839
Rambur Jules Pierre 43 France 1842-1842
Hagen Hermann August 142 Germany 1853-1889
Brauer Friedrich Moritz 24 Austria 1865-1877
McLachlan Robert John 40 England 1869-1903
Karsch Ferdinand 19 Germany 1891-1899
Calvert Philip Powell 133 USA 1891-1961
Forster Johann Friedrich Nepomuk 42 Germany 1896-1916
Martin René 31 France 1896-1921
Williamson Edward Bruce 39 USA 1898-1930
Ris Friedrich 99 Switzerland 1898-1936
Sjostedt Yngve 24 Sweden 1900-1933
Laidlaw Frank Fortescue 69 Scotland 1902-1950
Needham James George 35 USA 1903-1941
Tillyard Robert John 47 England 1906-1926
Navas Longinos 20 Spain 1907-1936
Kennedy Clarence Hamilton 30 USA 1916-1946
Fraser Frederic Charles 175 England 1919-1960
Kimmins Douglas Eric 26 England 1929-1958
Lieftinck Maurits Anne 324 Netherlands 1929-1987
Longfield Cynthia Evelyn 17 Ireland 1931-1959
Schmidt Erich 49 Germany 1931-1964
Asahina Syoziro 45 Japan 1949-1997
Pinhey Elliot Charles Gordon 49 England 1950-1981
Racenis Jorge 19 Venezuela 1955-1968
Machado Angelo Barbosa Monteiro 70 Brazil 1956-2019
Santos Newton Dias dos Santos. 27 Brazil 1956-1979
Aguesse Pierre 20 France 1958-1968
Donnelly Thomas W. 34 USA 1961-2013
Watson John Anthony Linthorne 20 Australian 1967-1991
Legrand Jean 16 France 1980-1992
De Marmels Jurg 57 Venezuela 1982-2008
Garrison Rosser William 63 USA 1982-2023
Theischinger Gtunther 74 Austria 1983-2024
Bick Gordon and Joan 17 USA 1985-1996
Héamaildinen Matti 57 Finland 1985-2020
Daigle Jerrell J. 14 USA 1990-2014
van Tol Jan 59 Netherlands 1995-2018
Wilson Keith 25 England 1997-2007
Tennessen Kenneth J. 15 USA 1997-2024
Gassmann Dieter 15 Germany 1999-2019
Lencioni Frederico A.A. Lencioni. 19 Brazil 1999-2023
Orr Albert 21 Australian 1999-2024
Villanueva Reagan Joseph T. 29 Philippines 2005-2020
von Ellenrieder Natalia 86 Argentina 2006-2022
Dijkstra Klaas-Douwe B. 27 Netherlands 2007-2015
Kalkman Vincent 21 Netherlands 2007-2023
Dow Rory A. 52 England 2008-2020
Phan Quoc Toan 26 Vietnam 2011-2023
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odonates, Die Schweizerischen Libellen (1885). During his post as
a ship surgeon, his travels (eg the Americas and Southeast Asia) al-
lowed him to study the worldwide biodiversity of Odonata. After
Selys” death in 1900, Ris studied his extensive collection, eventu-
ally using it to produce the first monographs on Libellulinae (1909)
(Endersby and Fliedner 2015) and some accurate regional inven-
tories filled with illustrations and descriptions of new species (eg Ris
1918).

Calvert, Philip Powell (1871-1961)

Most type material deposited at: Academy of Natural Sciences
(ANSP), Carnegie Museum of Natural History (CM), British
Museum Natural History (BMNH), MCZ.

Calvert was associated with the American Entomological
Society for 74 years, 60 of which he served in a leadership or
administrative position. As a youth, he served as curator for the
Agassiz Association, a society intending to promote the study
of natural science among young people. His first publication of
Odonata, Catalogue of the Odonata (dragonflies) of the Vicinity
of Philadelphia (1893), inventoried the species of his local
Pennsylvania. Throughout his career, he published over 300 works
on Odonata (White 1984). Probably his most influential work was
the revision of the odonate fauna from Central America, published
as a chapter in the Biologia Centrali-Americana (1908). His de-
scriptive illustrations and dichotomous keys were central to the sys-
tematic treatment of odonates (Garrison et al. 2010). Additionally,
he described approximately 135 nymphs.

Laidlaw, Frank Fortescue (1876-1963)
Most type material deposited at: BMNH.

The Scottish Dr. Laidlaw studied zoology and medicine. His work
on Odonata stems from participation in the Cambridge University
Expedition to Malaya from 1899 to 1900. He maintained an interest

in Odonata from the region the rest of his life, describing 106 species
in total (Dance 1964).

Fraser, Frederic Charles (1880-1963)

Most type material deposited at: British Museum of Natural History
(BMNH), Australian National Insect Collection (ANIC), Zoological
Survey of India.

Fraser, a British surgeon who served in the Indian Medical
Service, published over 300 documents on Odonata, most con-
cerning the species of India and Africa. He also described approxi-
mately 176 nymphs. He completed R. J. Tillyard’s reclassification
of Odonata (1957), which was informed by wing venation of fossil
taxa (Endersby and Fliedner 2015).

Lieftinck, Maurits Anne (1904-1985)
Most type material deposited at: Naturalis Biodiversity Center
Leiden (RMNH).

Lieftinck was a Dutch entomologist. As a university student,
he collected and published on Odonata in his native country, The
Netherlands. He then moved to Dutch Java in 1929 to accept a zo-
ologist position at the Buitenzorg Museum. He was a productive
describer of South Asian and Pacific odonates: 60% of New Guinean
species are attributed to Lieftinck (Kalkman and Orr 2013). He add-
itionally described approximately 320 nymphs. Even as a prisoner of
war in the Japanese-occupied Dutch East Indies, Lieftinck observed
helodid beetle larvae in phytotelmata and reared libellulid eggs to
maturity (Geijskes 1984).

Pinhey, Elliot Charles Gordon (1910-1999)
Most type material deposited at: Natural History Museum of
Zimbabwe.

After employment as a science educator in England, Pinhey ac-
cepted a teaching position in Rhodesia, which fostered his interest in
African odonates. His major work A Descriptive Catalogue of the
Odonata of the African Continent (1962) represents a comprehen-
sive treatment of the African species. Also notable is his almost 100
descriptions of African odonate nymphs (Vick et al. 2001).

Newton Dias, dos Santos (1916-1989)

Most type material deposited at: Nacional do Rio de Janeiro
(MNR]); however, most were lost when the museum burned down
in 2018.

Santos, regarded as the father of Brazilian Odonatology (Garrison
et al. 2010), obtained his medical degree in 1940. In 1944, he was
admitted to the Museu Nacional as a Naturalist, where he con-
ducted his studies on Odonata, founding the collection of dragonflies
(which were lost in a devastating 2018 fire) (Loaiza and Anjos-
Santos 2019). During his first 15 years as an odonatologist, he con-
centrated on libellulids, but later shifted his focus to coenagrionids,
describing many new species, females and nymphs. He visited the
most important collections in Europe and the United States, with a
special emphasis on studying the types of Brazilian species, which
enabled him to clarify many taxonomic controversies (Machado and
Costa 1990).

Martins Costa, Janira (1941-2018)

Costa, the first female specialist in Odonata in Central and South
America, began her academic career in 1964 as an intern at the
National Museum da Universidade Nacional de Rio de Janeiro,
Brazil, under the mentorship of Dr. Newton Dias dos Santos. She was
a Professor of Zoology and director of the Museu Nacional do Rio
de Janeiro, where she curated the institution’s extensive Odonata col-
lection. Costa hosted many Brazilian and international researchers,
fostering collaborative research networks that advanced the study of
Neotropical dragonflies (Anjos-Santos and Almeida 2018). Over her
career, she published over 90 taxonomic papers on Odonata.

Machado, Angelo Barbosa Monteiro (1934-2020)
Most type material deposited at: Departamento de Zoologia,
Universidade Federal de Minas Gerais, Belo Horizonte, Brasil (UFMG)
Although Machado’s main accomplishments were in neur-
ology, he established himself as a leading odonatologist in Brazil.
Machado started his passion for dragonflies in his early years, guided
by Santos Newton Dias (Anjos-Santos 2020). He accumulated over
35,250 odonate specimens from 1,050 species, including 105 holo-
types, which were donated to the Universidade Federal de Minas
Gerais in 2014. Besides Selys, Machado has described more species
of Odonata in Brazil than any other taxonomist (Pinto 2016).

Theischinger, Glinther (Current)
Most type material deposited at: Collection of the Australian
Museum (AM), ANIC, South Australian Museum (SAMA).
Theischinger was born in Austria, where he curated inverte-
brates at Oberdsterreisches Land museum in Linz before moving to
Australia. He worked in environmental consulting and biological
assessments for 2 decades, after which he served as curator of
aquatic insects for the CSIRO Division of Entomology and identified
aquatic macroinvertebrates for the New South Wales Environmental
Protection Authority. He has contributed significantly to our
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understanding of the taxonomy, morphology, and nymphal biology
of Australian Odonata and their potential as biological indicators.
Much of this knowledge is published in the second edition of The
Complete Field Guide to Australian Odonata (2021). Theischinger
is currently a Research Associate for the Australian Museum and a
Visiting Fellow of the Smithsonian Institution, Washington DC.

Garrison, Rosser W. (Current)

Most type material deposited at: Florida State Collection of
Arthropods (FSCA), US National Museum (USNM), University of
Michigan, Museum of Zoology (UMMZ).

Garrison’s contributions to the study of the Neotropical odon-
ates allow the accurate identification of most species in this re-
gion. Some of his most significant contributions are the illustrated
and annotated keys to New World Anisoptera (Garrison et al.
2006) and Zygoptera (Garrison et al. 2010). In 2017, he retired
from his position as senior insect biosystematist for the California
Department of Food and Agriculture and remains active in odonate
taxonomy.

von Ellenrieder, Natalia (Current)
Most type material deposited at: FSCA, University of Michigan,
Museum of Zoology (UMMZ), US National Museum (USNM).
von Ellenrieder earned her Ph.D. from La Plata University,
Argentina, under the supervision of Dr. J. Muz6n. She dedicated
her career to the study of Neotropical Odonata, making signifi-
cant contributions through comprehensive revisions of genera
within Aeshnidae, Coenagrionidae, and the former “Protoneuridae.”
Throughout her still-active career, she has described five new genera
and 85 new species.

vanTol, Jan (Current)
Most type material deposited at: Naturalis Biodiversity Center
Leiden (RMNH)

van Tol is currently affiliated with the Naturalis Biodiversity
Center. He specializes in the Odonata of Southeast Asia, particu-
larly Indonesia (van Tol 2007; van Tol and Giinther 2018) and the
Philippines (van Tol and Miiller 2003).

de Marmels, Jiirg (Current)
Most type material deposited at: Museo del Instituto de Zoologia
Agricola (MIZA)

de Marmels is currently affiliated with the Museo del Instituto
de Zoologia Agricola Francisco Fernindez Yépez. He is a pro-
lific describer of Odonata species from Venezuela and other South
American countries, including larval descriptions (eg de Marmels
2001, de Marmels 2012; de Marmels 2024).

Hamalainen, Matti (Current)
Most type material deposited at: Naturalis Biodiversity Center
Leiden (RMNH)

Himaldinen is currently affiliated with the Naturalis Biodiversity
Center. Through his vignettes and biographies, he has memorialized
many notable odonate researchers and their influences (Himaldinen
and Orr 2016; Hamaldinen and Orr 2017; Hdamaldinen, Verspui,
and Orr 2020; Hiamaildinen et al. 2022). His monograph with
Orr of Neurobasis and Matronoides is notable for its comprehen-
sive descriptions, illustrations, and histories of the genera (Orr and
Himaildinen 2007). He has described many Odonata species from
China (Hamildinen, Yu, and Zhang 2011; Yu and Hidméldinen

2012; Zhang and Himildinen 2012) and other Southeast Asian
countries (Himaldinen and Orr 2024).

Dow, Rory A (Current)
Most type material deposited at: Naturalis Biodiversity Center
Leiden (RMNH)

Dow has provided many species descriptions (eg Dow and Orr
2012; Kompier, Dow, and Steinhoff 2020) and checklists (Dow et al.
2024) for the Odonata of southeast Asia. He has also contributed
to conservation efforts as a member of the IUCN SSC Dragonfly
Specialist Group. He is currently affiliated with the Naturalis
Biodiversity Center.

Marinov, Milen (Current)
Most type material deposited at: New Zealand Arthropod Collection,
Lincoln University Entomology Research Museum (LUNZ), FSCA.
Marinov attended the Institute of Zoology at the Bulgarian
Academy of Sciences, from which he obtained his PhD in 2003.
Specializing in the Pacific islands, he has published guides to the
Odonata of Viti Levu, Fiji (Marinov and Wagqa-Sakiti 2013) and
New Zealand (Marinov and Ashbee 2013). His species descriptions,
taxonomic reviews, and studies of island biogeography have greatly
expanded the understanding of Pacific Odonata. He is currently em-
ployed as entomologist for the biosecurity and surveillance team of
New Zealand’s Ministry for Primary Industries. He also serves as
editor for the Odonata section of the journal Zootaxa.

Phylogenetic History

Linnaeus (1758) described the first odonate species and placed
them all into a single genus, Libellula, which at the time was within
Neuroptera. This genus was eventually split by Fabricius (1775)
into 3 groups (Libellula, Aeshna, and Agrion) to account for mor-
phological and behavioral differences (Trueman 2007). The ordinal
name Odonata was introduced by Fabricius (1793) and was even-
tually split from Neuroptera by Martynov (1923). Selys (1889),
while the order was still included within Neuroptera, was the first
to attempt a classification system for what is now Odonata and
introduced the 2 suborders, Anisoptera and Zygoptera, as well as
later describing the seemingly intermediate Anisozygoptera species,
Epiophlebia superstes (Selys, 1889) (Trueman 2007).

Morphological Classification
Early odonatologists relied on morphological characters for tax-
onomy and relationships (Fig. 3A), with the most utilized characters
being wing venation (Rehn 2003; Bybee et al. 2008; Kohli and Ware
2023). Over time, several wing venation nomenclatures were pro-
posed (eg Comstock and Needham 1898; Lameere 1923; Tillyard
and Fraser 1938; Hamilton 1972; Carle 1982; Riek and Kukalova-
Peck 1984; Nel and Piney 2023) and provided the basis for the first
ordinal and familial classification attempts (Trueman 2007).
Numerous catalogs and evolutionary classification attempts were
based heavily on wing venation (eg Kirby 1890; Needham 1908; Ris
1918; Tillyard and Fraser 1938; Geijskes 1970; Carle 1982; Davies
and Tobin 19835; Bechly 19965 Rehn 2003). Authors took different
approaches which resulted in classification hypotheses that in some
cases were strongly opposed to one another (ie Lieftinck 1971 vs
Fraser and Tillyard 1957) (Hennig 1966). For example, Tillyard
(1917) and Munz (1919) were able to separate the suborders and
proposed elevating many groups to family status. Fraser and Tillyard
(1957) presented new ordinal and superfamily relationships (eg
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paraphyletic Lestoidea by Calopterygoidea). While this classifica-
tion was widely accepted, it grouped species from a “primitive” to
“advanced” state, which has been proven to be an inaccurate inter-
pretation since the beginning of computational phylogenetics (Rehn
2003; Trueman 2007; Bybee et al. 2008; 2021; Kohli et al. 2021;
Suvorov et al. 2021; Kohli and Ware 2023).

In the late 20th and early 21st century, morphological cladistic
attempts (ie parsimony) were common. Bechly (1996) added nu-
merous new species and families using a Hennigian “hand and
brain” approach. Rehn (2003) greatly increased the number of mor-
phological characters for cladistic analysis, mostly wing venation but
with emphasis on wing articulation, and recovered a well-supported
monophyletic Zygoptera for the first time. Other morphological
characters beyond wing venation have also been used in phylogenetic
research (eg Kennedy 1920; Gloyd 1959; Lieftinck 1971; Pfau 1971;
Lohmann 1996) relating to sexual characters (eg genital ligula), egg
characters, nymph characters, physiological characters (eg flight
muscle, head morphology), colors, and more (Kohli and Ware 2023).
While exclusively morphological phylogenetic studies are becoming
less common, morphological cladistic analyses have yielded im-
portant and relevant findings in both fossil and extant odonate clas-
sifications (eg Rehn 2003; Pessacq 2008). By implementing various
character sources, synapomorphies can become more apparent, but
remain absent for many tropical genera (Garrison et al. 2006, 2010)
and rarely provided in molecular phylogenetic studies.

Early Molecular Classification

In the late 20th and early 21st century, molecular techniques (ie
Sanger sequencing) and analytic methods (eg Bayesian and max-
imum likelihood) were developed and quickly gained traction in
phylogenetics (Fig. 3B). Most studies (eg Artiss et al. 2001; Misof
et al. 2001; Dumont et al. 2005; Carle et al. 2008), focused on 1
or 2 mitochondrial genes (ie COI, 12S) as it was costly and time
consuming to generate these data. Saux et al. (2003) published the
first ordinal level molecular phylogeny, but only suborder relation-
ships could be tested because of the limited taxon sampling. There
were several other molecular phylogenies that quickly followed with
larger sampling schemes (eg Ogden and Whiting 2003; Kjer 2004;
Hasegawa and Kasuya 2006; Kjer et al. 2006), in an attempt to parse
out the higher-level (eg family, superfamily) relationships, but all dis-
agreed on points such as the monophyly of Zygoptera and the family
level relationships. Bybee et al. (2008) took a combined morpho-
logical and molecular approach with a significantly expanded taxon
sampling to try to clarify the higher-level relationships within the
order, finding Zygoptera consistently monophyletic. Dijkstra et al.
(2014a) made several classification changes based on a molecular
reconstruction, which were supported with morphological synapo-
morphies (eg restructuring Coenagrionoidea from five families to
3) (Fig. 3B). Neither were able to recover consistent relationships
within the superfamilies (eg Calopterygoidea as a large polytomy,
and Isostictidae as a member of Coenagrionoidea).

Next Generation Sequencing and Genomics

The development of new “-omic” tools has revolutionized our ability
to explore the “natural history” of life within Arthropoda, exempli-
fied by initiatives like i5K, which aims to sequence 5,000 arthropod
genomes (i5k Consortium 2013). As whole genome comparative
functional tools expand, they offer fresh insights into the origins and
maintenance of key traits, driving radiations, and significant evolu-
tionary transitions. However, despite concerted efforts to develop
“-omic” resources across the Tree of Life, substantial gaps persist,

particularly concerning aquatic insects (Hotaling et al. 2020) and
particularly damselflies. With the increasing availability of both gen-
omic resources and analysis of genomic data, research on damselfly
population processes, local adaptation, and speciation is poised to
significantly advance our understanding of evolutionary dynamics
(eg Swaegers et al. 2021, 2022). Opportunities exist to investigate
parallel evolutionary processes within and across species, explore
spatially varying selection across multiple loci, and corroborate find-
ings from gene expression and whole genome sequencing with ex-
perimental data across different life stages (eg Swaegers et al. 2023).
This approach can yield a deeper understanding of how damselflies
and other odonates adapt to changing environments, shedding light
on broader evolutionary patterns and processes.

With the cost of sequencing continuing to decrease, a shift to
more genome studies is a possibility in the future (eg Lancaster et
al. 2016). Such studies will provide deep insight into all aspects of
odonate ecology and evolution (Bybee et al. 2016). Nine genome as-
semblies are currently available on GenBank from 7 genera (Ischnura,
Platycnemis Burmeister, 1839, Pyrrhosoma Charpentier, 1840,
Ceriagrion Selys, 1876, Hetaerina Hagen in Selys, 1853, Calopteryx,
Rhinocypha Rambur, 1842) all varying in completeness and quality
(Clark et al. 2015; Newton et al. 2023). There are international col-
laborations and long-term plans afoot to significantly increase the
amount of publicly available genomes, particularly at the family
level, within the next few years. Odonata genomics, particularly
within Zygoptera, is a growing field with exceptional opportunities
in comparative and conservation biology, as well as population gen-
omics. As more genomic resources, such as multispecies genotyping
platforms, become available, researchers will gain the tools needed
to explore the genetic foundations of species boundaries, identify
cryptic species, and understand the evolutionary processes driving
speciation (eg coloration). This will lead to a deeper and more pre-
cise understanding of damselfly biodiversity and evolution. Large-
scale ordinal level transcriptomic phylogenies (Fig. 3C) focusing on
the evolution of certain traits (eg introgression, color vision, color,
etc.) provided evidence and support for our phylogenetic under-
standing of the group (Kohli and Ware 2023).

Current Classification Status

Limited data sets (eg taxon, genetic, and morphological data) left
many odonate phylogenetic efforts with low support, particularly
along the backbone and discordant results between studies. The ad-
vent of high throughput sequencing and targeted enrichment tech-
niques have enabled more efficient ways to generate large amounts
of molecular data. For example, Bybee et al. (2021) is the most re-
cent ordinal level phylogeny for Odonata that specifically focuses on
large diversity of Zygoptera and classification (Fig. 4; Supplementary
Table 1) (but see Kohli et al. 2021 and Suvorov et al. 2021). In com-
parison to the single-digit gene sampling of earlier Sanger-based
phylogenies, this study utilized up to 478 genes with an anchored
hybrid enrichment approach. This comprehensive sampling allowed
Bybee et al. (2021) to erect five new families (Amanipodagrionidae,
Mesagrionidae, Mesopodagrionidae, Priscagrionidae, Protolestidae)
and reinstate 2 (Rhipidolestidae, Tatocnemididae). This cur-
rent hypothesis proposes a monophyletic Zygoptera containing
4 superfamilies: 3 monophyletic (Lestoidea, Platystictoidea, and
Coenagrionoidea) and 1 paraphyletic (Calopterygoidea).

Lestoidea
Lestoidea contains 4 families (Hemiphlebiidae, Perilestidae,
Synlestidae, and Lestidae). The monophyly of this superfamily was
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heavily debated prior to 2008. It was often authoritatively placed
or recovered by Sanger phylogenetics as sister to Anisoptera. Since
2008, it has been consistently recovered as sister to all Zygoptera
with high support. This relationship has been tested by phylogenetic

studies based on high throughput sequencing and continues to be
recovered with high support (Bybee et al. 2021; Kohli et al. 2021;
Suvorov et al. 2021). There is, however, uncertainty in the monophyly
of Perilestidae and Synlestidae, but better taxa coverage is needed
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to clarify the relationship between these 2 families (Dijkstra et al.
2014a, Bybee et al. 2021).

Platystictoidea

Platystictoidea contains only Platystictidae. It is currently hypothe-
sized, with substantial data across several independent phylogenetic
studies, to be sister to all remaining Zygoptera, except Lestoidea
(Bybee et al. 2008; Bybee et al. 2021). This family has both strong
molecular and morphological support (Dijkstra et al. 2014a, Bybee
et al. 2021).

Calopterygoidea

Calopterygoidea is a diverse group that contains 25 of the 38 fam-
ilies within Zygoptera, but inter-familial relationships are not well
supported. The nonmonophyly of the superfamily is a well-known
issue due to several families and previously hypothesized super-
families now being placed within the current superfamily. Based
on Bybee et al. (2021), Calopterygoidea is paraphyletic and is com-
posed of 4 clades. Clade 4 is sister to Coenagrionoidea with Clade
1 (composed entirely of the family Priscagrionidae and likely to be-
come its own superfamily) as sister to remaining Calopterygoidea +
Coenagrionoidea. While Bybee et al. (2008), Suvorov et al. (2021),
and Kohli et al. (2021) recovered Calopterygoidea as monophyletic,
all used a more limited taxon or data sampling (Fig. 3B and C). The
differences in the taxon sampling and reconstruction methods be-
tween the 3 studies could potentially explain the differences in the
results (Newton et al. 2023).

Coenagrionoidea

Coenagrionoidea has 3 families (Coenagrionidae, Platycnemididae,
and Isostictidae) and contains the most species diversity (~1,900
species). The behavioral and morphological uniqueness of the
former Protoneuridae and Pseudostigmatidae must be analyzed in
detail with more taxon sampling to test whether these should be
included in the family Coenagrionidae or re-stated. The position of
Isostictidae has been consistently debated due to low nodal support.
It is currently sister to Platycnemididae + Coenagrionidae (Dijkstra
et al. 2014a, Bybee et al. 2021). Coenagrionoidea is also known to
have numerous generic classification issues. Willink et al. (2024) pro-
duced the most recent and extensive phylogeny highlighting 20 para-
phyletic genera. However, Isostictidae was not included, indicating
that this is most likely an underestimate.

Nymph History and Status
The nymphs of Zygoptera are less known taxonomically than their
adult counterparts, and the discovery and description of damselfly
nymphs also lags behind adults. In the 18th century, several ento-
mologists in western Europe were the first to become interested
in the microscopic examination of insects while also discovering
nymphs (ie Charles DeGeer (1720-1778, Sweden) and Jean-Marie
Léon Dufour (1780-1865, France)). Their interest in insects pre-
dates entomology as a recognized field of study. In the mid-1850s,
Hermann Hagen in Germany became interested in odonate nymphs,
encouraging a student Louis Cabot to study them, which resulted
in the description of Anisoptera nymphs, whereas in Britain, W. J.
Lucas described numerous Zygoptera nymphs. The study of odonate
nymphs was continued by others in several western European
countries.

While there has been an effort to associate Zygoptera nymphs
with adults, either through rearing (Tennessen and Tennessen
2019) or molecular studies (Yeo et al. 2018), there is a lot of work

remaining. For instance, there has been more effort to rear and asso-
ciate Zygoptera from temperate regions than tropical regions, which
is the same pattern in Anisoptera (Ware et al. 2025). For example,
nearly all species of the temperate genera Enallagma and Ischnura are
known in the nymph stage whereas about 30% of the Neotropical
genus Acanthagrion Selys, 1876 and about 20% of Telebasis Selys,
1865 are known. Fortunately, contributions to nymph descriptions
and associations have been made increasingly in the last 2 decades
by students in Argentina, Brazil, and Colombia. Much work is left to
be done in Africa and Southeast Asia.

Currently, very little is known about which morphological
nymph characters reveal phylogenetic affinities. For example,
Coenagrionidae, the largest family still has major hurdles to over-
come including (i) in the subfamily Coenagrioninae, nymphs of only
60% of the 50 Western Hemisphere genera have been described and
less than 30% of the species are known; (ii) within the 2 largest
genera of Coenagrioninae, nymphs of less than 30% of the Argia
species and about 20% of the Pseudagrion species are known; (iii)
in the family Protoneuridae, only five of the 15 genera have been
discovered with only about 15% of the species known. Worldwide,
a rough estimate of nymph descriptions is probably around 30%
of the ~6,420 species, offering huge opportunities for taxonomic,
evolutionary, and ecological studies. It is likely that nymph morph-
ology, when better known, will contribute greatly to the phylogeny
of the suborder. Examples of traditional nymph morphology to sup-
port phylogenetic inferences is demonstrated in Amphipterygidae
(Novelo-Gutiérrez 1995) and Synlestidae (Simaika et al. 2020).
However, it is unclear whether mouthparts (eg mandibular struc-
ture) (Bisse et al. 2017), thoracic structures and patterns (Tennessen
2020), and lateral abdominal and anal gills are homoplasious.

In the future, as comparative morphological studies that incorp-
orate microtomography (WCT—a 3D imaging technique utilizing
X-rays) (Busse et al. 2017), become more common, there is the po-
tential for them to greatly expand our knowledge of odonate phyl-
ogeny for both adults and nymphs. The capabilities of nCT allow
researchers to examine and compare internal structures, including
musculature and their attachments, in a biomechanical framework.
These characters can be coded in large numbers for phylogenetic
analysis and offer an untapped data set for phylogenetic systematics.

Paleontological Record

Odonata has one of the best paleontological records within in-
sects. Extant Odonata are modern day representatives of one of
the most ancient lineages of winged insects. They occupy aquatic
habitats conducive to fossilization (wetlands with fine sediments),
and their large, sclerotized wings lead to well-preserved wing ven-
ation. Odonate fossils are primarily compression fossils, but many
are known from amber as well, especially within Zygoptera. Fossil
wing venation offers informative characters for identification and
provides insight into the evolution of the group as well as insect
flight. With such a rich fossil record, classification and taxonomy
of the group has been given significant attention. Additionally, ana-
lyses of wing venation in living species are also common and well-
documented (Trueman 1996). However, the classifications of the
fossil taxa and the extant taxa have been siloed and are not currently
integrated using modern methods.

Odonatoptera Classification

Extant Odonata represent a clade within the ancient superorder of
winged insects, Odonatoptera. There exist at least 16 extinct clades,
many of which have clear synapomorphies that relate to extant
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Fig. 4. Current superfamily and family relationships within Zygoptera reconstructed from Bybee et al. (2021) with general divergence times based on unpublished

data.

Odonata based on wing venation (Fig. 5) (Nel and Piney 2023).
There are 4 main wing innovations, known as smart mechanisms—
nodus, pterostigma, discoidal cell, discoidal triangle—which arose
in a stepwise pattern throughout the Odonatoptera that assisted in
the evolution of extant Odonata, where these mechanisms appear to
evolve together (Wootton 1991, 1992, 1998, 2002, 2003; Bybee et
al. 2008; Nel and Piney 2023). The oldest Odonatoptera fossils date
to the Serpukhovian age of the Early Carboniferous period (325-
324 Mya), which also represent some of the oldest known winged
insect fossils (Petrulevi¢ius and Gutiérrez 2016). The most recogniz-
able stem group at this time was Meganisoptera (griffenflies or giant
dragonflies) with a wingspan up to 70 cm (Nel and Piney 2023).

During the Mesozoic era, modern Odonata arose in the Triassic
period with extant Zygoptera diversifying in the late Jurassic period
(Kohli et al. 2016; Suvorov et al. 2021; Nel and Piney 2023). There
are ~1,000 fossil records for odonates between several databases (eg
ENDA Fossil Insect Database fossilworks, Paleobiology Database),
with new ones continuing to be discovered and described (eg Zheng
et al. 2016, Huang et al. 2017, 2018). These databases catalog fossil
holotypes, taxonomy, and geology with an extensive bibliography.

Dated Phylogenies
Molecular data in conjunction with the fossil calibrations suggest
Zygoptera diverged from Anisoptera in the Triassic (~226 Mya),
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although this story is complex and may not have been a clean split
(Fig. 4) (Suvorov et al. 2021). Zygoptera began to diversify in the
Jurassic with estimates for the origins of the extant superfamilies
as follows: Platystictoidea arising in the late Jurassic, Lestoidea
arising in the early Cretaceous, Coenagrionoidea arising in the
Mid-Cretaceous, and Calopterygoidea arising in the late Cretaceous
(Kohli et al. 2021; Suvorov et al. 2021). With such an extensive fossil
record to select from, careful consideration needs to be taken when
selecting fossils to use as calibration points. Previous work has been
done to select crown fossils for Odonata (Triassolestodes asiaticus
Pritykina, 198), Anisoptera (Sinacymatophlebia mongolica Nel
and Huang, 2009) and Zygoptera (Mersituria ludmilae [Vasilenko,
2005]) but more work is needed to select optimal fossils for add-
itional groups within Zygoptera (Kohli et al. 2016).

Discussion on Taxonomic Databases

The taxonomy for Odonata is published and maintained in the World
Odonata List (Paulson et al. 2024), which is hosted on TaxonWorks
through Odonata Central (Paulson et al. 2024). Regularly updated
by a worldwide community of odonatologists, the list includes all
known species, subspecies, and synonyms. Planned expansions
will integrate additional taxonomic information, such as notes and
country distributions.

Collections

Abbott and Sandall (2023) conducted a survey of the physical
odonate collections at 13 institutions that possess at least 100 type
specimens. Notable among these are the FSCA (~1.1 million spe-
cimens representing ~1,800 species and 178 types), the Naturalis
Biodiversity Center (RMNH) (~200,000 samples and 964 types),
and the Natural History Museum at London (NHMUK) (~110,000
samples and 1,289 types).

Citizen Science

In addition to physical collections, digital repositories play an im-
portant role in modern Odonatology. Numerous platforms exist
(ie Odonata Central, African Dragonflies and Damselflies Online,
Dragonflies and damselflies of Vietnam, Odonata of China,
Dragonflies of India, iNaturalist) which allow community scientists
to upload observations and photos, which can then be vetted by
expert identifiers. These databases, along with museum collections
and academic datasets, are aggregated by services like the Global
Biodiversity Information Facility (GBIF) to provide a wealth of data
for the odonate researcher. GBIF currently utilizes 581 datasets with
entries for Zygoptera, which represent 38,981 preserved specimens
and 49,409 observations.

Community databases, such as those mentioned above, offer
substantial advantages, particularly in data quantity and geographic
coverage, thanks to contributions from professional and citizen
scientists (Bried et al. 2020). However, limitations exist regarding
data quality control, species identification accuracy, and taxonomic
resolution. While expert vetting helps mitigate these issues, there is
an ongoing need for continuous curation and validation of entries
to ensure scientific reliability. Such platforms are invaluable for
large-scale biodiversity studies, species distribution mapping, and
conservation efforts despite these challenges.

Genetic Resources

The genetic dimension of taxonomic research is supported by re-
positories like the National Center for Biotechnology Information

(NCBI) GenBank, which hosts public genetic resources, such as 9
Zygoptera genome assemblies and 76,817 nucleotide sequences
(Clark et al. 2015; Newton et al. 2023). Many journals require that
genetic data used in published analyses be deposited in public re-
positories like NCBI to enhance transparency, reproducibility, and
collaborative opportunities. Combining existing genetic data with
new datasets, as demonstrated in a recent study (Willink et al. 2023),
expands taxon sampling and minimizes duplicated efforts.

Conservation

For conservation assessments, the International Union for
Conservation of Nature (IUCN) Red List evaluates Odonata species
extensively. Of the 6,224 odonate species currently assessed for the
Red List, 1,830 are classified as Data Deficient. In addition to its
conservation assessments, the Red List also provides occurrence and
trait data (IUCN 2024). Further trait data can also be found from
resources such as the Odonate Phenotypic Database.

Regions in Need of Biodiversity Exploration
and Documentation

Biodiversity exploration and survey coverage has historically been
biased, for varying reasons, and numerous publications have high-
lighted potential causes and note regions where there are still gaps
in biodiversity knowledge today (Dijkstra and Clausnitzer 2004;
Paulson 2004; Wijesekara 2006, Kalkman et al. 2007, 2020, Dijkstra
et al. 2011, 2013; Bota-Sierra et al. 2016; Brasil et al. 2021, Dow
et al. 2024; Pires et al. 2024; Sumanapala 2024). The IUCN Red
List assessment (2024) found that 16% of odonates are threatened
with extinction, primarily due to the rapid decline and degradation
of freshwater habitats. Many of these areas suffer from insufficient
sampling efforts, leaving critical knowledge gaps in species distribu-
tion, taxonomy, and conservation status. Expanding survey coverage
in these regions is important to better understand their biodiversity
and develop effective conservation strategies before more species
face extinction. Therefore, we aim to address the regions that ur-
gently require biodiversity exploration and documentation. We focus
on the gaps that occur in the Afrotropics, Australasia, Indomalaya,
the Neotropics, and Oceania (Fig. 6).

Afrotropics

Currently, 760 species are described from mainland Africa and 227
from the Malagasy region (~80% endemic), but many areas are
underinvestigated. Specifically, there is a need for exploration in areas
where relict species are found (Dijkstra 2003). This includes areas
such as the Western Highlands of Cameroon (Pentaphlebia Forster,
1909, Neurolestes Selys, 1882, Nesolestes Selys, 1891, Nubiolestes
Fraser, 1945), eastern forests of Madagascar (Libellulosoma Martin,
1907, Nesocordulia McLachlan, 1882), South Africa (Syncordulia
Selys, 1882), and Tanzania (Amanipodagrion Pinhey, 1962) (Dijkstra
and Clausnitzer 2006). For example, the Cameroon Dragonfly
Project expedition in 1995-1997 was the last major survey in the
Western Highlands of Cameroon. However, a smaller recent ex-
pedition in the mountains of Nigeria recorded Pentaphlebia stahli
Forster, 1909 and Neurolestes trinervis Selys, 1885 (Vries et al.
2024), but failed to record Pentaphlebia gamblesi Parr, 1977, which
is only known from the holotype.

On a continental scale, Central Africa as a whole is the least ex-
plored region but also the most diverse and threatened. The highest
proportion of [UCN Red List Data Deficient species in Africa (41.8%)
are found within this region (Dijkstra et al. 2011, Bemah 2019).
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Fig. 5. Current hypothesis of Odonatoptera with focus on Paneodonatoptera
reconstructed by hand from Nel and Bertrand (2023).

Additional areas with several listed Data Deficient species include
Madagascar and islands in the Indian Ocean (Clausnitzer and Martens
2004; Suhling et al. 2015). More fieldwork in these areas will help
provide more distribution records, establish an updated species range,
and reassess their conservation status (Kalkman et al. 2007; Dijkstra
et al. 2011). Other areas of priority include the Upper and Lower
Guineas, West and South Congo Basin and Angolan Escarpments and
Highlands, and the Albertine Rift (Dijkstra et al. 2011).

Recently, efforts have been made to publish data on the is-
lands surrounding Africa, notably in the Malagasy region (Dijkstra
and Cohen 2022); Principe, Sio Tomé, Annobén, and Cape Verde
(Aistleitner et al. 2008, Martens 2010, 2013, Dijkstra et al. 2022).
While this effort has increased our understanding of these islands,
they are still underexplored in general.

Australasia

Wallacea, belonging to the Australasia realm, is one of the world’s
biodiversity hotspots and has high levels of endemism (Struebig et al.
2022). There are 270 odonate species in Wallacea (not including Papua
and Papua New Guinea) (Dow et al. 2024). However, the number of
odonate species in New Guinea alone has been estimated to be as
high as 500 (Kalkman and Orr 2013; Orr and Kalkman 2015). The
last new species from Sulawesi was described 6 years ago, and the
types were from museum collections in the 1940s to late 1990s (Tol
and Giinther 2018). Sulawesi, Moluccas, Lesser Sunda Islands, and
the Indonesian portion of Papua are still relatively poorly explored.
Hence, biodiversity surveys that describe the patterns and ecology
are valuable for these areas (Dow et al. 2024). Including taxa from
Wallacea in phylogenetic studies of the broader odonates, especially
for the complex biogeographical history of Sulawesi, will likely yield
highly interesting results regarding their colonization of the region.

Indomalaya

The Indomalaya region ranges from the Indian subcontinent to
South China, Mainland Southeast Asia up to the Philippines, and
Sundaland in Indonesia. This area represents one-fifth of the world’s
diversity of flora and fauna. There are no exact numbers of described
species of Odonates in Indomalaya, but according to Sinchez-
Herrera and Ware (2012), the odonate diversity in the Oriental re-
gion (now called Indomalaya) is about 1,665 species. Sandall et al.
(2022) compiled country level checklists of odonates that are de-
picted on the Map of Life (Jetz et al. 2012). The recent number of
odonate species reported from the Indian subcontinent and adjacent
countries is 559 species (Kalkman et al. 2020) and with Sundaland
having 549 species (Dow et al. 2024), while the Philippines have 224
species (Himaildinen and Miiller 1997).

The Himalayas and China are regions that need expanded explor-
ation. The Himalayas are formed by well-defined geographical bar-
riers between the Afrotropical and Indomalaya regions (Kalkman et al.
2022). The border between the Palearctic and the Indomalaya region
in China is located on the line between the Qin Mountains of southern
Saanxi to the mouth of the Yangtze River, so this demarcation can test
whether there is a clear disparity between the Palaeartic and Oriental
fauna (Huang et al. 2020; Kalkman et al. 2022). In addition, Northeast
India and the Himalayan area have the highest number of poorly
known species and noted taxonomic issues. The adjacent Myanmar is
likely the least studied country in Asia (Kalkman et al. 2020).

Sri Lanka, the Western Ghats, Pakistan, and northeast India still
need more exploration. Many genera are difficult to identify due to
a lack of taxonomic work (Kalkman et al. 2020). Moreover, a large
issue for this region is the accessibility of type material. Type ma-
terial is often unavailable for loan, under documented, and some-
times lost (Kalkman et al. 2020).

Both nymphs and adults of odonates in Sundaland also deserve
more taxonomic work in species description, identification keys, and
generic revisions (Kalkman et al. 2008; Dow et al. 2024). Lack of
local expertise, lack of education in systematic entomology, expen-
sive technology, accessibility to online depositories, accessibility to
comprehensive literature collections (Wijesekara 2006; Sumanapala
2024), challenges in legislation for research and export of scientific
material permits, security issues (some protected areas are inside
conflict areas), and access to remote areas and islands create a gap of
knowledge that are challenging to resolve.

Neotropics

The Neotropics contains 1,888 (29.5%) of all described odonate
species (Neiss and Hamada 2014; Pessacq et al. 2018; Beatty
et al. 2022; Paulson et al. 2024). All Zygoptera superfamilies
occur in the Neotropics, with high endemism in the region (Neiss
and Hamada 2014; Pessacq et al. 2018). Multiple families (ie
Amphipteryridae, Dicteriadidae, Heteragrionidae, Hypolestidae,
Megapodagrionidae, Mesagrioniidae, Neopetaliidae, Philogeniidae,
Perilestidae, Polythoridae, Rimanellidae, and Thaumatoneuridae)
are exclusively Neotropical, and families with broad distributions
(eg Calopterygidae, Coenagrionidae, Lestidae, and Platystictidae)
have exclusively Neotropical genera and species (Kalkman et al.
2008, Bybee et al. 2022). This region includes diverse geography,
including mountain ranges, tropical rainforests, active volcanoes,
large rivers, and complex drainage systems, providing heteroge-
neous habitat conditions that can contribute to diversification. Areas
such as the Andes, the Atlantic forests, the Mexican Altiplano, the
Amazon rainforest, and the Guyanese tepuis are known for extensive
odonate diversification (Kalkman et al. 2008).
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Fig. 6. Biogeographic regions based on Newton et al. (in prep) and family-level distribution data.

Although the number of well-sampled locations has increased
15-fold over the past 5 decades, our understanding of Neotropical
Zygoptera diversity, distribution, and biology is lacking (Juen and De
Marco 2012; Beatty et al. 2022; Ferreira et al. 2023; Alves-Martins et
al. 2024; Pires et al. 2024). Reliable information on species richness
exists for only about 1% of the region, with notable knowledge gaps
particularly evident in the Caribbean, Central America, northeastern
Brazil, and northern Chile (Alves-Martins et al. 2024). For example,
a recently published update of the Colombian Odonata checklist
showed an increase of 233 new country species records in the 13 years
since the last checklist publication, highlighting the historical gaps in
Odonata records in the region (Bota-Sierra et al. 2024). Other specific
regions in need of attention are the Pampas and the Amazon basin
(Kalkman et al. 2008; Brasil et al. 2021; Renner et al. 2022; Ferreira
et al. 2023; Pires et al. 2024). An assessment of the occurrence records
for the Pampas showed that odonates were recorded in only 1.7% of
grasslands (Pires et al. 2024). In addition to the study gaps, multiple
species in the Neotropics are listed by the IUCN Red List as endan-
gered or critically endangered, most of which are mountain forest spe-
cialist damselflies with narrow distributions (Bota-Sierra et al. 2021,
2016, IUCN 2024, Pires et al. 2024).

It is important to note that despite the knowledge gaps in the
Neotropics, there have been recent local advancements in expertise
and research. Recently, multiple new records have been documented
for the Amazon region, shedding light on both the progress being
made and the current gaps in knowledge (Garcia Junior et al. 2020;
Koroiva et al. 2020; Stand-Pérez et al. 2021; Miranda Filho et al.
2022; Cano-Cobos et al. 2023; Gongalves et al. 2023; Medina-
Espinoza et al. 2024). New molecular data for Neotropical taxa not
previously included in analyses have driven updated phylogenies (eg
Polythoridae (Sdnchez-Herrera et al. 2020) and Pseudostigmatidae
(Ingley et al. 2012)). Completing the species lists and performing
comprehensive studies of odonates in Neotropical countries remains
vital to more fully characterize odonate diversity and monitor the
status of populations and at risk species across the region (Bota-
Sierra et al. 2016).

The creation of the Latin American Odonatology Society (SOL)
represents a pivotal milestone for advancing Odonata studies in the
Neotropics. Through its efforts, SOL has promoted the integration
of researchers from various Latin American countries, fostering

scientific collaborations and knowledge exchange. Additionally,
society plays a crucial role in building cooperative networks and
partnerships, providing opportunities for student and early career
researcher exchanges, thereby strengthening regional research. As a
result, SOL has been a key player in developing collaborative pro-
jects and expanding our knowledge of the biodiversity and conser-
vation of Odonata, especially in underexplored areas with significant
gaps in taxonomic and ecological studies.

Oceania

Oceania includes over 4,500 islands across the Pacific, with a total
land area of 47,150 km?2. The isolation of these islands has resulted
in highly endemic flora and fauna, including Zygoptera. Recent
taxonomic work on Zygoptera in Oceania has led to the description
of several new species (eg Englund and Polhemus 2010; Rivas-Torres
et al. 2021; Saxton 2021; Beatty et al. 2023) and one new genus en-
demic to Fiji (Ferguson et al. 2023). Additional specimens collected
from archipelagos such as the Marquesas, the Austral Islands, and
the Society Islands need description (pers. comm. Jordan). These spe-
cimens may represent new species and/or genera endemic to their
respective islands or archipelagos.

The Zygoptera of Oceania often have extraordinary ecology,
morphology, behavior, and/or evolutionary and biogeographic his-
tories (eg Polhemus and Asquith 1996; Polhemus 1997; Jordan et al.
2003; Lorenzo-Carballa et al. 2009; Saxton et al. 2023). Odonates
across the Pacific, especially Zygoptera, may be more significant as
bioindicators compared to Zygoptera on more biodiverse continents
due to their specialized adaptations, and the lack of other traditional
bioindicators, especially macroinvertebrates (Englund and Arakaki
2003). Unlike Anisoptera, oceanic species require running water
making them a more informative island bioindicator.

Areas of Taxonomic Impediments and
Challenges in Advancing Systematic Research

As the expertise and interest in Odonata biodiversity has grown, so
has the ability to document the odonate species of the world and
place them in an evolutionary context. Placing them in an evolu-
tionary context is essential so that their taxonomy, natural history,
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behavior, ecology, systematics, and phylogenetics can be assessed
simultaneously to test hypotheses related to systematics, as well
as identify plausible drivers of their diversity. Yet as expertise in
Odonata has grown, so have barriers that have thwarted what is
the tantalizing possibility of all odonate species being placed in an
evolutionary context.

International Laws and Regulations

Much needed laws enacted to protect biodiversity have also proven
to be roadblocks to large-scale international collaboration and the
overall spirit of scientific collaboration. We recognize the import-
ance of laws and regulations, as well as the sovereignty of local
scientists to have the priority of stewardship over the biodiversity
of their countries (Sdnchez Herrera et al. 2024). Currently there
is an inability to share samples outside the researcher’s country,
nonexistent or difficult permit processes for both local and inter-
national researchers, and the lack of a mechanism or desire to
work with local researchers, which inhibits collaboration efforts.
Additionally, international travel has become more restricted. This
may include scientists not being able to travel for workshops, confer-
ences, lab exchanges, etc. where relationships are fostered and grow
face-to-face. These examples, among others, offer a major challenge
to the transfer of knowledge.

Natural History Collections

In consequence of dwindling administrative support, funding cuts,
and the debates over the ethics of collecting, growth rate of nat-
ural history collections has sharply declined in recent years (Rohwer
et al. 2022). Based on GBIF Odonata occurrence data for five nor-
thern institutions with prominent odonate collections (Naturalis
Biodiversity Center; Smithsonian Institution, National Museum
of Natural History; FSCA, The Museum of Entomology; Natural
History Museum, London; Harvard University, MCZ), the number
of Zygoptera specimens collected increased each decade from 1840
(excepting the decade after 1940), reaching a peak in the decade
after 1960 (12,000 specimens) (Fig 7). The following decades have
only attained one to two-thirds of that peak, but collection efforts
have remained fairly consistent. However, only 55 Zygoptera sam-
ples collected from 2020 until July 2024 have so far been added
to GBIF (Occurrence Download 2024). While there may be a time
delay from the date of collection to digitization and submission to
GBIF, this notable low count could be an effect of the COVID-19
pandemic, which surely impeded both sampling and archival efforts.
Nonetheless, the lack of increase in natural history collections for
Odonata species, and insects generally, is concerning.

On the other hand, although there is no such marked decline in
the number of specimens collected in Latin America, there is a sig-
nificant lack of funding for the proper functioning of its scientific
collections. The most striking example of this is, undoubtedly, the
fire in 2018 at the National Museum of Rio de Janeiro in Brazil,
which destroyed thousands of odonates and approximately 450 type
specimens (Loaiza and Anjos-Santos 2019), an immeasurable loss
for Neotropical odonatology. Although the growth of local research
groups and specialists has allowed the expansion of odonatological
collections in Latin America (eg Anjos-Santos 2019; Cano-Cobos et
al. 2022; Mendoza-Penagos et al. 2022; Navarro et al. 2024), the ab-
sence of clear and sustained science funding policies in each country
continues to hinder the advancement of neotropical odonatology.

For taxonomists in developing countries, accessing type material
is challenging, as most of it is stored in foreign institutions. Shipping
valuable specimens internationally is risky and generally avoided

by institutions. This creates significant barriers to conducting taxo-
nomic work and increases the risk of taxonomic mistakes due to the
lack of access to type series. Thus, type material is often not available
where it is most needed. The current efforts to digitize specimens (see
below) might help to overcome this problem.

Natural history collection research has historically revolved
around taxonomy and systematics, but data from collections have
more recently been utilized, for example, to generate genomic re-
sources, analyze and predict the progression of climate change, and
observe changes in phenotypic traits (Kharouba et al. 2018). Wing
scans from museum samples are used to train machine learning
models for automated classification (Sdenz Oviedo et al. 2022), while
occurrence data are used to generate species distribution models
and estimate odonate diversity (Abbott et al. 2022; Kalkman et al.
2022). Digitization also improves access for the scientific commu-
nity and preserves data about irreplaceable type specimens against
the threat of natural disasters or loss of funding (De Almeida et al.
2021). However, it is estimated that less than 5% of North American
arthropod specimens have digitized records, and less than 1% have
associated images (Cobb et al. 2019). Citizen science platforms like
iNaturalist have demonstrated utility as free, externally funded,
out-of-the-box services for managing collection associated data (eg
digital photographs and geographic coordinates) (Heberling and
Isaac 2018). Convolutional neural networks have also been trained
on odonate images to provide a method of automated species deter-
mination (Theivaprakasham et al. 2022), which could be utilized by
collections with limited financial and human capital to clear back-
logs of unidentified specimens.

Future of Zygoptera Systematics

Clarifying and resolving the systematics of Zygoptera relies on 3
main areas of work: (i) descriptive work, including alpha tax-
onomy, biology, and distribution, (ii) phylogenetic analysis, based
in both morphological and/or molecular data, and (iii) classification,
including beta taxonomy and revision. Success in each of these 3
areas will require collaborative curation, databasing, and organiza-
tion and will facilitate the evaluation of evolutionary hypotheses,
including diversification, trait evolution, biogeography, and much

more.

Descriptive Work

Zygoptera is a relatively well-described group of insects; there
are currently 3,322 described species of damselflies (Paulson et al.
2024). At the current rate of description, 95% of the estimated 7,000
odonate species will be described by 2030 (Kalkman et al. 2008).
Nevertheless, extensive work remains to complete species descrip-
tions for the remaining undescribed species, especially in under-
studied regions mentioned above.

Most species descriptions are based on adult males, and there
are, by comparison, extremely few descriptions for adult females
and nymphs. For example, in the Neotropics, only the nymphs of
about 75% genera and 40% of the species have been described, and
many of these descriptions are overly brief and need to be updated
(Pessacq et al. 2018). Nymph descriptions are especially important
due to their presence in freshwater ecosystems, potential as bioindi-
cator taxa, and their ecological roles as both predatory and prey in
food webs. Characters used to define some species and genera may
be unstable or not true synapomorphies in the strictest sense. In these
cases, stable, distinguishing synapomorphies should be identified
and described (eg Pinto et al. 2022). Sound nymph and adult female
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descriptions will allow the use of nymph and adult female specimens
in future studies. Nymphs and females are especially important to
understanding the behavior and ecology of odonates.

Aside from field work to collect undescribed specimens, there are
many specimens in museums and personal collections that await de-
scription and further study. Inventory, digitization, and additional
study of existing data from these collections will help complete spe-
cies descriptions for Zygoptera and identify taxonomic and geo-
graphic areas that require additional exploration. Fossil collections
should also be reexamined as new discoveries may highlight pre-
viously obscure synapomorphies. As species descriptions continue,
identification keys must also be updated and tested to ensure con-
sistent functionality.

Alpha taxonomy, new species descriptions, likely make up a
small portion of the descriptive work remaining for Zygoptera. To
complement the remaining descriptive work, the natural history,
ecology, distribution, and behavior of each species should be a major
focus. This information will provide the ability to test evolutionary
hypotheses of animal evolution generally and odonate evolution spe-
cifically. It may also yield useful characters for keys, identification,
classification, and phylogenetic analyses (Waller et al. 2019). Recent
efforts (eg Abbott et al. 2022; Kalkman et al. 2022) have widely
improved distribution data and provided ecological niche modeling/
species distribution models for Palearctic and Nearctic odonates.
Alves- Martins et al. (2024) address the study of data quality on
the distribution and diversity of odonate species in the Neotropical
region and examine the influence of sampling completeness on cli-
mate-richness relationships. Similar studies of Zygoptera distribu-
tion and ecology in the Neotropics, Afrotropics, Asia, Australasia,
and Oceania are in progress.

Phylogenetics
In the age of genomics and high-performance computing, phylogen-
etic analyses that include more taxa and more data are becoming
more feasible, common, and accessible. The GEODE (Genealogy &
Ecology of Odonata) group is a multidisciplinary effort involving
scientists worldwide, with a goal of using targeted enrichment to se-
quence two-thirds of Zygoptera species for ~20,000 base pairs. One
representative of each genus will also have expanded sequencing
of ~500,000 base pairs. These sequences will be used to recon-
struct phylogenetic estimates and test evolutionary questions across
Zygoptera. Determining the phylogenetic placement of the remaining
species of Zygoptera will involve a continuing effort to gather spe-
cimens and use similar sequencing techniques and Sanger data with
bioinformatic tools to add them to a comprehensive phylogeny
of Zygoptera. As these efforts coalesce with Anisoptera, Odonata
will become an insect order with one of the most complete extant
species-level phylogenies. Moreover, taxonomic and evolutionary
hypotheses will be testable at a resolution not previously possible
across any diverse insect order. These phylogenetic efforts, as well
as follow-up efforts to include the remaining species and newly de-
scribed species, will lay a firm foundation for taxonomic revision.
Additional work will be needed to fully explore the validity of
the taxonomy of currently described species. Species delimitation
may be in need of reexamination across the suborder. Some issues
are more obvious, such as paraphyly in recent phylogenetic analyses
(Zhang et al. 2021), while others are more nuanced. For example,
widespread species with several distinct populations may represent
multiple species, or subspecies that have been described based on
geography or morphology may be distinct species. These hypoth-
eses can be tested in a phylogenetic context including multiple

representatives within each species, subspecies, or population under
question to determine whether to raise subspecies or populations
to species status, or whether several populations or subspecies are
indeed members of the same species. In addition, despite the exten-
sive database of damselfly fossils and their use to calibrate phylogen-
etic analyses (Kohli et al. 2016; Suvorov et al. 2016, 2021), only a
fraction of these fossils have been included as taxa in phylogenetic
analysis (Bybee et al. 2008). Including fossils as taxa in phylogenetic
analyses will allow us to test taxonomic hypotheses and integrate the
systematics of extant and extinct Zygoptera.

Classification

Phylogenetic insights in recent decades have revealed paraphyly in
some families, genera, and species (eg Dijkstra et al. 2014a; Bybee
et al. 2021; Suvorov et al. 2021; Zhang et al. 2021). In many cases,
these issues can be resolved by moving some species or genera to the
most appropriate taxonomic group. Occasionally, describing new
species, genera, or families is practical or necessary. Fossil taxa also
warrant description of new genera or families and a phylogenetic
test of monophyly. By testing taxonomic hypotheses in a phylogen-
etic framework, we can develop an evidence-based and integrated
classification system for both extinct and extant Zygoptera that re-
flects evolutionary history and relationships.

The World Odonata List provides a comprehensive and fre-
quently updated taxonomic list of Zygoptera worldwide (Paulson
2004). Continuing to update this list will be paramount to making
progress in the 3 areas previously described. In addition, the inven-
tory, preservation, and databasing of type specimens will be a crit-
ical endeavor to ensure the future success of zygopteran systematics.
Collaboration between collections maintained by governments, in-
dividuals, and academic and private institutions will be necessary
to successfully describe and classify all damselflies and to maintain
efficiency in research projects testing evolutionary hypotheses. The
future of Odonata systematics will involve extensive curation of
existing specimens, holistic descriptions of ecology, biology, distri-
bution, and behavior, and a strong focus on both morphological
phylogenetics and phylogenomics. With this wealth of well-curated
data, the unique properties of Zygoptera will provide an intriguing
insect model for testing evolutionary hypotheses of flight, vision,
biogeography, and early insect evolution (Bybee et al. 2016).
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Specimens deposited in natural history collections over time
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