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Program veri�cation and synthesis frameworks that allow one to customize the language in which one is

interested typically require the user to provide a formally de�ned semantics for the language. Because writing

a formal semantics can be a daunting and error-prone task, this requirement stands in the way of such

frameworks being adopted by non-expert users. We present an algorithm that can automatically synthesize

inductively de�ned syntax-directed semantics when given (i) a grammar describing the syntax of a language

and (ii) an executable (closed-box) interpreter for computing the semantics of programs in the language of the

grammar. Our algorithm synthesizes the semantics in the form of Constrained-Horn Clauses (CHCs), a natural,

extensible, and formal logical framework for specifying inductively de�ned relations that has recently received

widespread adoption in program veri�cation and synthesis. The key innovation of our synthesis algorithm is

a Counterexample-Guided Synthesis (CEGIS) approach that breaks the hard problem of synthesizing a set

of constrained Horn clauses into small, tractable expression-synthesis problems that can be dispatched to

existing SyGuS synthesizers. Our tool Synantic synthesized inductively-de�ned formal semantics from 14

interpreters for languages used in program-synthesis applications. When synthesizing formal semantics for

one of our benchmarks, Synantic unveiled an inconsistency in the semantics computed by the interpreter

for a language of regular expressions; �xing the inconsistency resulted in a more e�cient semantics and, for

some cases, in a 1.2x speedup for a synthesizer solving synthesis problems over such a language.
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1 Introduction

Recent work on frameworks for program veri�cation and program synthesis has created tools that
are parametric in the language that is supported [5, 13, 15]. A user of such a framework must de�ne
the language of interest by giving both a syntactic speci�cation and a formal semantic speci�cation

Authors’ Contact Information: Jiangyi Liu, University of Wisconsin – Madison, Madison, USA, jiangyi.liu@wisc.edu;

Charlie Murphy, University of Wisconsin – Madison, Madison, USA, tcmurphy4@wisc.edu; Anvay Grover, University of

Wisconsin – Madison, Madison, USA, anvayg@cs.wisc.edu; Keith J.C. Johnson, University of Wisconsin – Madison, Madison,

USA, keith.johnson@wisc.edu; Thomas Reps, University of Wisconsin – Madison, Madison, USA, reps@cs.wisc.edu; Loris

D’Antoni, University of California, San Diego, La Jolla, USA, ldantoni@ucsd.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART284

https://doi.org/10.1145/3689724

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 284. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



284:2 Jiangyi Liu, Charlie Murphy, Anvay Grover, Keith J.C. Johnson, Thomas Reps, and Loris D’Antoni

of the language. The semantic speci�cation assigns a meaning to each program in the language.
However, for most programming languages, and even for simple ones used in program-synthesis
applications, it is usually a demanding task to create a formal semantics that de�nes the behaviors
of the programs in the language. Obstacles include: (i) the language’s semantics might only be
documented in natural language, and thus may be ambiguous (or worse, inconsistent), and (ii) the
sheer level of detail that is involved in writing such a semantics.

Synthesizing Formal Semantics from Interpreters. In this paper, we propose an alternative
approach—based on synthesis—that is applicable to any programming language for which a com-
piler or interpreter exists. Such infrastructure serves as an operational semantics for the language,
albeit one for which anything other than closed-box access would be di�cult. Assuming existence
of a working compiler or interpreter is not hard — usually a language (typically not an “academic”
language) already has an interpreter already implemented, and the language users, if they want to
access techniques like veri�cation and synthesis, need a formal semantics. Thus, we take closed-box
access as a given, and ask the following question:

Is it possible to use an existing compiler or interpreter for a language ! to create a formal

semantics for ! automatically?

In this paper, we assume that the given compiler or interpreter is capable of executing any program
or subprogram in language !.
This question is natural, but answering it formally requires one to address two key challenges.
First, in what formalism should the formal semantics be expressed? The right formalism should

be expressive enough to capture common semantics, yet structured enough to allow synthesis to be
possible. Furthermore, the formalism should not be tied to any speci�c programming language—i.e.,
it should be language-agnostic.
Second, how can the synthesis problem be broken down into simple enough small problems

for which one can design a practical approach? The representation of the semantics of most
programming languages is usually very large, and a monolithic synthesis approach that does not
take advantage of the compositionality of semantics de�nitions is bound to fail.

Our Approach. In this paper, we address both of these challenges and present an algorithm that
can automatically synthesize an inductively de�ned syntax-directed semantics when given (i) a
grammar describing the syntax of the language, and (ii) an executable (closed-box) interpreter for
computing the semantics of programs in the language on given inputs.
To address the �rst of the aforementioned challenges, we choose to synthesize the formal

semantics in the form of Constrained Horn Clauses (CHCs), a well-studied fragment of �rst-order
logic that already provides the foundation of SemGuS [6, 13], a domain- and solver-agnostic
framework for de�ning arbitrary synthesis problems. CHCs can naturally express a big-step
operational semantics, structured as an inductive de�nition over a language’s abstract syntax,
which makes them appropriate for compositional reasoning.

For example, the operational semantics for an assignment to a variable x in an imperative
programming language can be written as the following CHC:

J4K(s1) = A1 B0 = B1 ' A0 = B0 [G ↦→ A1]

Jx := 4K(s0) = A0

The CHC is de�ned inductively in terms of the semantics of the child term 4 .
To address the second aforementioned challenge, we take advantage of the inductive structure

of CHCs and design a synthesis algorithm that inductively synthesizes the semantics of programs
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in the grammar, starting from simple base constructs and moving up to more complex inductively-
de�ned constructs. For each construct in the language, our algorithm uses a counter-example-guided
inductive synthesis (CEGIS) loop to synthesize the semantic rule—i.e., the CHC—for that construct.
For each construct, we use input-output valuations obtained by calling the closed-box interpreter
to approximate the behavior of its child terms. Such an approximation allows us to synthesize
the semantics construct-by-construct, rather than all at once, which converts the problem of
synthesizing semantics into many smaller problems that only have to synthesize part of the overall
semantics.
To evaluate our approach, we implemented it in a tool called Synantic. Our evaluation of

Synantic involved synthesizing the semantics for languages with a wide variety of features,
including assignments, conditionals, while loops, bit-vector operations, and regular expressions.
The evaluation revealed that our approach not only can help synthesize semantics of non-trivial
languages but can also help debug existing semantics.

Goals and No-goals. Our tool Synantic mainly targets users who want to use veri�cation and
synthesis techniques on an existing language. Once Synantic creates the semantics in SemGuS
format, a wide range of tools based on SemGuS can be instantly applied [10]. For example, such
a way enables the user to get a synthesizer for the existing language for free, because the cre-
ation of SemGuS �les requires minimal manual labor. Also the original goal is helping SemGuS
users, our techniques are general and we envision they could potentially be applied to other
semantic-speci�cation frameworks (e.g., to help formalize semantics for use with a theorem prover).
Synthesizing semantics of purely academic languages is a no-goal for our tool, because most of
them already have a formal semantics available before the interpreter is implemented, thus creating
the SemGuS speci�cations would be trivial.

Contributions. Our work makes the following contributions:

• We introduce a new kind of synthesis problem: the semantics-synthesis problem (Section 3).
• We devise an algorithm for solving semantics-synthesis problems (Section 4). In this algorithm,
we harness an example-based program synthesizer (speci�cally a SyGuS solver) to synthesize
the constraint in each CHC.
• We implement our algorithm in a tool, called Synantic, which also supports an optimization
for multi-output productions, i.e., productions whose semantic constraints include multiple
output variables (Section 5).
• We evaluate Synantic on a range of di�erent language benchmarks from the program-
synthesis literature. For one benchmark, the Synantic-generated semantics revealed an
inconsistency in the way the original semantics had been formalized. Fixing the inconsistency
in the semantics resulted in a more e�cient semantics and a speedup (in some case 1.2x) for
a synthesizer solving synthesis problems over such a language (Section 6)

Section 2 illustrates how our algorithm synthesizes the semantics of an imperative while-loop
language. Section 7 discusses related work. Section 8 concludes.

References of the form Appendix A.1 refer to appendices that are available in the arXiv version
of this paper [17].

2 Illustrative Example

As discussed in Section 1, our technique synthesizes a semantic speci�cation that is compatible with
the Semantics-Guided Synthesis (SemGuS) format [13]. SemGuS is a domain- and solver-agnostic
framework for specifying program synthesis and veri�cation problems [6]. A SemGuS problem
consists of three components that the user must provide: (i) a grammar specifying the syntax
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of programs; (ii) a semantics for every program in the language of the grammar, provided as a
set of Constrained Horn Clauses (CHCs) assigned to the productions of the grammar; and (iii) a
speci�cation of the desired program that makes use of the semantic predicates. Crucially, SemGuS
enables the development of general tools for program synthesis and veri�cation, thus reducing the
burden of creating such tools for custom languages [10]. However, the stumbling block is that the
end user must be able to provide a semantics of the language they are interested in working with,
a task that can be burdensome and error-prone to perform by hand. In this section, we illustrate
how our technique (implemented in Synantic) automatically synthesizes such a semantics for
an imperative language Imp (cf. Example 2.1)—a simple but illustrative example of Synantic’s
abilities.

Example 2.1 (Syntactic De�nition of Imp). Consider the grammar �ImpĤ that de�nes the syntax of
Imp for programs with = variables x1, . . . , xn:

( F x1 := � | · · · | xn := � | ( ; ( | ite � ( ( | while � do (

| do ( while � | repeat ( until �

� := false | true | ¬ � | � ' � | � ( � | � < �

� := 0 | 1 | x1 | · · · | xn | � + � | � − �

The Imp language consists of arithmetic and Boolean expressions, statements for assignment to
the variables x1 through xn, sequential composition, if-then-else, and various looping constructs.
Imp also comes equipped with an executable interpreter IImp that assigns to each term C ∈ L(�)

its standard (denotational) semantics (e.g., arithmetic and Boolean expressions are evaluated as in
linear integer arithmetic, xi := 4 takes as input a state, and outputs the input state with Gğ ’s value
updated by the result of evaluating 4 , etc.).

Suppose that we did not know the semantics of Imp a priori; that is, suppose that we only have
access to the interpreter IImp . How can we synthesize a formal semantics for each program in �Imp

using the interpreter? A naïve approach would randomly generate a large set of terms and inputs,
and try to learn a function mapping inputs to outputs for each term. However, this approach would
only provide a semantics for the enumerated terms, and fails to generalize to the entire language. A
less naïve approach might attempt to form a monolithic synthesis problem to synthesize a semantic
function for each production of the grammar that satis�es a set of generated example terms and
input-output pairs. However, it is known that synthesizers scale exceptionally poorly in the size
of the desired output [3], even for Imp1, which has only 17 productions, this approach would be
practically impossible.

Nullary productions. One of the key innovations of our approach is that we synthesize the
semantics on a per-production basis, i.e., working one production at a time. We start by synthesizing
a semantics for nullary (leaf) productions. For Imp1, this means we synthesize a semantics for the
productions 0, 1, x1, false, and true before we synthesize the semantics of any other productions.
For a nullary production p, we synthesize a semantics of the form:

Gout0 = 5 (G in0 )

Sem(p, G in0 , G
out
0 )

which states that, because the term p has no sub-terms, the output is only a function of the input G in
0
.

In our approach, we use a Counter-Example-Guided Synthesis (CEGIS) approach to synthesize a
function 5 that captures the behavior of IImp on production ? . Within the CEGIS loop, we synthesize
a candidate function 5 , then verify if it is consistent with IImp (e.g., on a larger number of inputs
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G in
0
). If 5 is consistent, then we have successfully learned the semantics of ? ; otherwise, the veri�er

generates a counter-example and a new candidate semantic function 5 .

Inductively synthesizing semantics. Next, our approach synthesizes the semantics for other arith-
metic and Boolean expressions. In this step, we inductively synthesize the semantics of productions
by reusing the semantics of previously learned productions to learn the semantics of new produc-
tions. At this point, we may assume that we know the semantics of all nullary productions. For
instance, suppose that we wish to next learn the semantics of +. At �rst, our algorithm generates
examples favoring terms like 1 + 1, x + 1, etc. that contains sub-terms whose semantics have already
been learned. For t1 + t2, our algorithm generates a semantics that can rely on the semantics of its
sub-terms t1 and t2. Speci�cally, the semantics of t1 + t2 takes the following form:

sem(t1, G
in
1 , G

out
1 ) sem(t2, G

in
2 , G

out
2 )

G in1 = 51 (G
in
0 ) G in2 = 52 (G

in
0 , G

out
1 ) Gout0 = 50 (G

in
0 , G

out
1 , Gout2 )

sem(t1 + t2, G
in
0 , G

out
1 )

which states that the semantics of t1 + t2 is inductively de�ned in terms of the semantics of t1 and
the semantics of t2. The semantics enforces a left-to-right evaluation order:1 the rule expresses
that the input to t1, G

in
1
, is a function of t1 + t2’s input, G

in
0
, and similarly that t2’s input, G

in
2
, is

a function of t1 + t2’s input, G
in
0
, and t1’s output, G

out
1

. Finally, it also expresses that the t1 + t2’s

output, Gout
0

, is a function of its input, G in
0
, and the outputs of t1 (G

out
1

) and t2 (G
out
2

).
When the semantics of a sub-term ti is known (e.g., for nullary productions), we substitute its

learned semantics for sem(ti, G
in
ğ , G

out
ğ ); otherwise, we approximate its semantics using examples.

Again, we use a CEGIS loop to generate examples for the entire term t1 + t2, as well as any sub-
terms whose exact semantics have not yet been synthesized (e.g., for a sub-term that uses + or −).
The process proceeds analogously for most other productions in Imp.

Semantically recursive productions. The �nal interesting case is for while loops, for
which the semantics is recursive on the term itself. For semantically recursive produc-
tions, we assume that the semantics can make a recursive call (i.e., e�ectively acting
as if the term itself is a sub-term). We additionally synthesize a predicate determin-
ing if the recursive call should be made or not. For while b do s, we synthesize two
semantic rules, one in which the recursive call is made, and one in which it is not.

sem(b, G in1 , G
out
1 ) sem(s, G in2 , G

out
2 ) ¬Predrec (G

in
0 , G

out
1 , Gout2 )

G in1 = 51 (G
in
0 ) G in2 = 52 (G

in
0 , G

out
1 ) Gout0 = 50 (G

in
0 , G

out
1 , Gout2 )

sem(while b do s, G in0 , G
out
1 )

sem(b, G in1 , G
out
1 ) sem(s, G in2 , G

out
2 ) sem(while b do s, G in3 , G

out
3 ) Predrec (G

in
0 , G

out
1 , Gout2 )

G in1 = 51 (G
in
0 ) G in2 = 52 (G

in
0 , G

out
1 ) G in3 = 52 (G

in
0 , G

out
1 , Gout2 ) Gout0 = 50 (G

in
0 , G

out
1 , Gout2 , Gout3 )

sem(while b do s, G in0 , G
out
1 )

As with the previous productions, our algorithm uses a CEGIS loop to synthesize a candidate
semantics of the above form, verify its correctness, and generate a counter-example if the candidate
semantics is incorrect. While we may employ learned semantics for sub-terms, recursive calls to
a sub-term must be approximated using examples because we are still in the process of learning
its semantics. We formally de�ne the semantics-synthesis problem that we solve in Section 3 and
explain how our synthesis algorithm works in Section 4.

Multi-output productions. In the above while-loop example, we saw that the function 50 had four
inputs that must be considered when synthesizing a term to instantiate 50. As the number of input

1We show how to overcome this restriction in Section 5.1.
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variables and the size of the desired result grows, synthesis scales poorly. In the above examples,
the notation is not showing the full picture. For ImpĤ all input and (most) output variables are an
=-tuple of variables representing a state of an ImpĤ program. Even for just Imp2, 50 has twice as
many inputs.
To address this problem, we allow synthesizing the semantics of each output of a production

independently. For example, consider the production x0 := t (for Imp2). We generate a semantics
using two constraints � and � , independently. The constraint � (resp. �) represents the pair of
functions 50 and 51 (resp. 60 and 61).

sem(t, G in1 , G
in
1 ) G in1 = 51 (G

in
0 ) Gout0 = 50 (G

in
0 , G

out
1 )

sem(x0 := t, G in0 , G
out
0 )

�

sem(t, G in1 , G
in
1 ) G in1 = 61 (G

in
0 ) Gout0 = 60 (G

in
0 , G

out
1 )

sem(x0 := t, G in0 , G
out
0 )

�

By independently synthesizing � and � , we reduce the burden on the underlying synthesizer;
however, now the synthesizer is allowed to return an � and � for which 51 ≠ 61. Thus, � and �
have inconsistent inputs being provided to the child-term C . We use an SMT solver to determine
if 51 and 61 are consistent for each of the example inputs to the term x0 := t. If so, we will return
either 50, 60, 51 (or 50, 60, 61 because 51 and 61 are consistent on all examples—i.e., when evaluated on
the same example they return equal outputs—otherwise, we discover that 51 and 61 are inconsistent
on some input and add a new constraint to ensure that the same pair of functions 51 and 61 cannot
be synthesized again. This optimization is further discussed in Section 5.3.

3 Problem Definition

In this paper, we consider the problem of synthesizing a formal logical semantics for a deterministic
language from an executable interpreter. While there are many possible ways to logically de�ne a
semantics, we are interested in an approach that is language-agnostic and inductive. The SemGuS
synthesis framework has proposed using Constrained Horn Clauses as a way of de�ning program
semantics that meets both of our desiderata. Concretely, SemGuS already supports synthesis for
a large number of languages (which we consider in our experimental evaluation) by allowing a
user to provide a user-de�ned semantics. As mentioned above, in SemGuS, semantics are de�ned
inductively on the structure of the grammar (i.e., per production/language construct) using logical
relations represented as Constrained Horn Clauses (CHCs) [13]. In this paper, we follow suit and
address the problem of learning a semantics of this form from an executable interpreter for the
given language. This section formalizes the semantics-synthesis problem that we consider. We
begin by detailing our representation of syntax (Section 3.1), interpreters (Section 3.2), semantics
(Section 3.3), and semantic-equivalence oracles (Section 3.4). Finally, we formalize the semantics-
synthesis problem in Section 3.4.

3.1 Syntax

We consider languages represented as regular tree grammars (RTGs). A ranked alphabet is a tuple
ïΣ, A:Σð that consists of a �nite set of symbols Σ and a function A:Σ : Σ→ N that associates every
symbol with a rank (or arity). For any = g 0, ΣĤ ¦ Σ denotes the set of symbols of rank =. The set
of all (ranked) Trees over Σ is denoted by )Σ. Speci�cally, )Σ is the least set such that Σ0 ¦ )Σ and if
fġ ∈ Σ

ġ and C1, . . . , Cġ ∈ )Σ, then fġ (C1, . . . , Cġ ) ∈ )Σ. In the remainder of the paper, we assume a
�xed ranked alphabet ïΣ, rkΣð.
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A typed regular tree grammar (RTG) is a tuple � = ï#, Σ, X,T, \, gð, where # is a �nite set of
non-terminal symbols of rank 0, Σ is a ranked alphabet, X is a set of productions over a set of types
T, and for each non-terminal � ∈ # , and \ý (resp. gý) assigns � an input-type (resp. output-type)
from T. Each production in X takes the form:

�0 → f
(
�1, �2, . . . , �ĨġΣ (Ă )

)
where �ğ ∈ # and f ∈ Σ. We use L(�) to denote the language of non-terminal � and X (�) the
set of all productions associated with � (i.e., all productions where �0 is �). In the remainder, we
assume a �xed grammar � = ï#, Σ, X,T, \, gð.

Example 3.1 (�Imp as a Regular Tree Grammar). Consider the Imp language detailed in Section 2,
�Imp is a regular tree grammar that has been stylized to ease readability. For example, the non-
terminals consist of the rank-0 symbols �, �, and ( . The productions include ( → x1 :=(�),
( → ;((, (), and ( → while(�, (). For Imp2 (Imp with two variables G1 and G2), \ā is the type Z×Z,
representing the state of the two variables, and gā is Z, representing the return type of arithmetic
expressions.

3.2 Interpreters

We consider a class of deterministic executable interpreters—i.e., a program evaluator for which we
may only observe input-output behavior.

De�nition 3.2 (Interpreter). Formally, an interpreter for � maps each non-terminal � ∈ # to
a partial function Iý : (L(�) × \ý) → gý—with the interpretation that the interpreter maps a
program C ∈ L(�) and input value in ∈ \ý to some output out ∈ gý if and only if C starting with
the input value in terminates with the output value out.

Example 3.3 (Interpreters for Imp1). Recall the Imp language de�ned in Section 2. The interpreter
I for Imp consists of three base interpreters Iā , Iþ , and Iď , which are used to evaluate arithmetic
expressions, Boolean expressions, and statements, respectively. Throughout this paper, we assume
the interpreters for Imp1 (and all Imp variants) evaluate according to the standard denotational
semantics (e.g., 0 is the expression that always returns 0 regardless of input state; + is mathematical
+; while b s evaluates 1, executes the loop body, and recurses if b evaluates to true and otherwise
immediately terminates; etc.).

3.3 Semantics

We represent the big-step semantics of a language (de�ned by some grammar �) using a set
of Constrained Horn Clauses (CHCs) within some background theory T per production. While
CHCs (at �rst glance) seem limiting, this formulation of semantics has been employed by the
SemGuS framework to represent user-de�ned semantics for many languages [6, 13], including
many variations of Imp, regular expressions, SyGuS expressions within the theory of bit vectors,
algebraic data types, linear integer arithmetic.

De�nition 3.4 (Constrained Horn Clause). A CHC (in theory T ) is a �rst-order formula of the
form:

∀Ḡ1, . . . , ḠĤ, Ḡ . q ' '1 (Ḡ1) ' · · · ' 'Ĥ (ḠĤ) ⇒ � (Ḡ)

where '1, . . . , 'Ĥ and � are uninterpreted relations, Ḡ1, . . . , ḠĤ and Ḡ are variables, and q is a
quanti�er-free T -constraint over the variables.

To specify the big-step semantics of a non-terminal � ∈ # (for which the interpreter has type
Iý : (L(�) × \ý) → gý), we introduce the semantic relation Semý (Cý, G

in
ý
, Gout

ý
), where Cý is a
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variable representing elements of L(�), G in
ý
is a variable of type \ý, and G

out
ý

is a variable of type gý.

Throughout this paper, we may also use JCýKSem (G
in
ý
) = Gout

ý
to denote that Semý (Cý, G

in
ý
, Gout

ý
) holds.

Example 3.5 (Semantic relations). Consider the Imp1 language introduced in Section 2; a semantics
for Imp1 uses the semantic relations:

Semā : L(�)×Z×Z→ bool Semþ : L(�)×Z×bool→ bool Semď : L(()×Z×Z→ bool

While CHCs are quite general and capable of de�ning both deterministic and non-deterministic
semantics, we limit our scope to CHCs that represent deterministic semantics. Furthermore, for a
grammar � , we assume that each production �0 → f (�1, . . . , �Ĥ) ∈ � evaluates sub-terms in a
�xed order from left to right (i.e., for a term ? (C1, . . . , CĤ) sub-term C1 is evaluated before C2, etc.).
While this imposed order may seem too restrictive, we later show how this restriction can be lifted
by considering all permutations of sub-terms.

De�nition 3.6 (Semantic Rule, Semantic Constraint). Given a production �0 → ? (�1, . . . , �Ĥ) a
semantic rule for ? is a CHC of the form:

Semý1
(C1, G

in
1 , G

out
1 ) . . . SemýĤ

(CĤ, G
in
Ĥ , G

out
Ĥ ) � (G in0 , . . . , G

in
Ĥ , G

out
0 , . . . , GoutĤ )

SemýĤ
(? (C1, . . . , CĤ), G

in
0 , G

out
0 ) (1)

where � is constraint over theory T , which we call a semantic constraint, that takes the form:

G in1 = 51 (G
in
0 ) ' · · ·'G

in
Ĥ = 5Ĥ (G

out
1 , . . . , GoutĤ−1, G

in
0 ) 'G

out
0 = 50 (G

out
1 , . . . , GoutĤ , G in0 ) '% (G

in
0 , G

out
0 , . . . , GoutĤ )

(2)
where each 5ğ is a function that returns a term of type \ýğ

for 8 > 0 and gý0
for 8 = 0. The semantic

constraint also includes predicate % (G in
ý0
, Gout

ý1
, . . . , Gout

ýĤ
) that determines when the semantic rule is

valid (e.g., for conditionals and loops).

Example 3.7 (Semantics of do_while). We give the semantics of the do_while Imp statement
below:

JBK(G1) = G ′1
J1K(G2) = AĘ Jdo B while 1K(G3) = G ′3 AĘ G1 = G0 G2 = G ′1 G3 = G ′1 G ′0 = G ′3

Jdo B while 1K(G0) = G ′0

JBK(G1) = G ′1 J1K(G2) = AĘ ¬AĘ G1 = G0 G2 = G ′1 G ′0 = G ′1

Jdo B while 1K(G0) = G ′0

The �rst rule executes the statement B and then, if the guard 1 is true recursively executes the
whole loop and returns the resulting value. The second rule executes the statement B and then, if
the guard 1 is false returns the output produced when executing the statement B .

3.4 Equivalence Oracle and Semantics Synthesis Problem

For a grammar � , a semantics Sem for � , and an interpreter I for � , an equivalence oracle is used
to determine whether Sem is equivalent to the semantics de�ned by the interpreter I.

De�nition 3.8 (Equivalent, Equivalence Oracle). Given an interpreter I for a language � , a
subgrammar � ′ ¦ � , and a semantics Sem for � ′, we say that I and Sem are equivalent on � ′ if
and only if for every term C ∈ L(� ′), input in ∈ \ý, and output out ∈ g , we have:

� (C, in) = out ô JCKSem (in) = out

An equivalence oracle E for I is a function that takes as input a semantics Sem for � ′ and
determines if Sem is equivalent to I on � ′. If Sem is not equivalent to I, then E returns an
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example ïin, C, outð for which I and Sem disagree—i.e., there is some term C and input in such that
JCKSem (in) ≠ JCKI (in)—and otherwise returns None when Sem and I are equivalent.

Given a language (a grammar and accompanying interpreter), the semantics synthesis problem
is to �nd some semantics of the language that is equivalent to the interpreter. We formalize the
semantics synthesis problem as follows:

De�nition 3.9 (Semantics-Synthesis Problem, Solution). A semantics-synthesis problem is a
tuple P ≜ ï�,I, Eð, where � is a grammar, I is an interpreter for � , and E is an equivalence
oracle for I. A solution to the semantics-synthesis problem P is a semantics Sem for � that is
equivalent to I as determined by E.

4 Semantics Synthesis

This section presents an algorithm SemSynth (Algorithm 1) to synthesize a semantics for a language
from an executable interpreter. The input to SemSynth is a semantics-synthesis problem consisting
of (i) a grammar � , (ii) an executable interpreter I for � , and (iii) an equivalence oracle E for I.
Upon termination, SemSynth returns a semantics Sem for � that is equivalent to the executable
interpreter I as determined by the equivalence oracle E.
Synthesizing a semantics for arbitrary languages comes with several challenges. In general,

semantics are de�ned as complex recursively de�ned functions that provide an interpretation
to every program within the language. Trying to directly synthesize such a semantics is already
impractical for relatively small languages, such as the Imp language de�ned in Example 2.1.
As described in Section 3.3, we consider semantics represented using logical relations de�ned

by a set of Constrained Horn Clauses per production of � (cf. De�nition 3.6). By formulating
the desired semantics as CHCs per production, SemSynth can synthesize the semantics of � one
production at a time. In fact, because SemSynth uses examples to approximate the semantics of
all sub-terms during synthesis (cf. Section 4.1), SemSynth can synthesize the semantics of each
production independently. Finally, by �xing the shape of the semantics (i.e., as a set of CHCs per
production), SemSynth reduces the monolithic synthesis problem to a series of �rst-order synthesis
problems—speci�cally, by using a SyGuS or sketch-based synthesizer to synthesize the constraint
of each semantic rule (CHC) de�ning the semantics of a production.

The remainder of this section is structured as follows: Section 4.1 provides a high-level overview
of how SemSynth solves semantic-synthesis problems, Sections 4.2 and 4.3 provide speci�cations
for SynthSemanticConstraint andVerify, which synthesize semantic constraints from examples
and verify candidate semantic constraints against the interpreter, respectively. Finally, Section 4.4
explains how SemSynth handles semantically recursive productions.

4.1 Overview of SemSynth

SemSynth (Algorithm 1) uses the counter-example-guided synthesis (CEGIS) paradigm to synthe-
size a semantics for � that is equivalent to I according to the equivalence oracle E. Throughout
this section, we will use the Imp language from Example 2.1 to illustrate how SemSynth operates.

Synthesizing a Candidate Semantics. After initialization, SemSynth synthesizes the semantics of
each production. SemSynth employs a CEGIS loop to synthesize the semantics of each production.
During each iteration, SemSynth �rst synthesizes a candidate semantic constraint (cf. De�nition 3.6)
for production ? using SynthSemanticConstraint. The procedure SynthSemanticConstraint
returns some semantic constraint for ? that satis�es the set of examples �. Section 4.2 provides a
formal speci�cation of SynthSemanticConstraint’s operation.
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Algorithm 1: Semantics-Synthesis Algorithm

1 Procedure SemSynth (� , I, E)
2 foreach production ? of � do

3 � ← ∅ ; // Example Set for Production Ħ

4 do

5 Sem[?] ← SynthSemanticConstraint(?, �) ; // Get candidate semantics

6 CEX ← Verify(Sem[?], ?,I, E) ; // Check candidate semantics

7 if ��- ≠ ∅ then

8 � ← � ∪ CEX ; // Update example set

9 while CEX ≠ ∅;

10 return Sem;

SemSynth then uses the procedure Verify to determine if the semantics synthesized for produc-
tion ? is consistent with the interpreter I as determined by the equivalence oracle E. A formal
speci�cation of Verify is provided in Section 4.3. If Verify determines that the candidate semantics
of ? is correct, then Verify returns an empty set of examples and SemSynth proceeds to synthesize
the semantics of the next production. Otherwise, if Verify determines that the candidate semantics
of ? is not equivalent to the interpreter I, Verify returns a set of examples. The new examples are
added to the example set �, and the CEGIS loop repeats and synthesizes a new candidate semantics
for ? .

4.2 Specification of SynthSemanticConstraint

Before formally specifying SynthSemanticConstraint (Section 4.2.3), we �rst de�ne example
sets (Section 4.2.1) and when a semantic constraint is consistent with an example set (Section 4.2.2).

4.2.1 Example Sets. For an interpreter I, an example set � is a set of examples consistent with I.

De�nition 4.1 (Example set for interpreter I). Given an interpreter I for grammar � , an example
set � for interpreter I is a �nite set of examples of the form ïin, C, outð, where C ∈ !(�) and
I(C, in) = out.

Example 4.2 (Example set for Imp1). Recall the interpreter IImp1 described in Example 3.3
for language Imp1. An example set � for IImp1 might include the examples ï0, 0, 0ð, ï1, 0, 0ð,
ï1, x := 0; x := x + 4, 4ð, and ï10, while 0 < x do x := x − 1, 0ð; however, an example set for IImp

could not include any example of the form ï=, while 0 < x do x := x + 1, =′ð where = (the initial
value of x) is some positive number. Since, while 0 < x do x := x + 1 would not terminate on the
input =. The example ï=, while 0 < x do x := x + 1, =′ð would violate the assumption that � only
contains examples consistent with the interpreter IImp .

4.2.2 Example Consistency. In SemSynth, we use the example set � to ensure that the semantic
constraint returned by SynthSemanticConstraint is consistent with I for at least the examples
appearing in �.

De�nition 4.3 (Consistency with Example Set). Given a production �0 → ? (�1, . . . , �Ĥ), a se-
mantic rule ' with semantic constraint � of the form de�ned in De�nition 3.6, and example set
�, we say ' is consistent with � if and only if the semantic constraint � is consistent with �.
Furthermore, the semantic constraint � is consistent with the example set � if for every example
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〈
iný0

, ? (C1, . . . , CĤ), outý0

〉
∈ � the following condition holds:

∀G in0 , . . . , G
in
Ĥ , G

out
0 , . . . , GoutĤ .

©­­­­­
«

G in
0
= in0

' Summary(C1)

. . .

' Summary(CĤ)

' �

ª®®®®®¬
⇒ Gout0 = out0 (3)

where Summary(Cğ ) =
∨
{G inğ = inğ ' G

out
ğ = outğ : ïinğ , Cğ , outğð ∈ �} summarizes the semantics of

Cğ according to the examples found in �.

Example 4.4 (Example Consistency). Consider the production for the operator +, and the (correct)
semantic constraint � ≜ G in

1
= G in

0
'G in

2
= G in

0
'Gout

0
= Gout

1
+Gout

2
; � is consistent with the examples

ï0, x0 + 1, 1ð, ï0, x0, 0ð, and ï0, 1, 1ð. Speci�cally, the following formula is valid:

∀G in0 , G
in
1 , G

in
2 , G

out
0 , Gout1 , Gout2 . (G in0 = 0 ' (G in1 = 0 ' Gout1 = 0) ' (G in1 = 0 ' Gout1 = 1) ' � ) ⇒ Gout0 = 1.

4.2.3 Formal Specification of SynthSemanticConstraint. The procedure SynthSemantic-

Constraint takes as input the production ? whose semantics is to be synthesized and the current
example set �; it returns a constraint �—of the form de�ned in De�nition 3.6—de�ning a semantics
for production ? that is consistent with the example set �.

Example 4.5 (Synthesizing semantics of x := consistent with examples). Recall that for the language
Imp, the semantics of the production x := is represented as (a set of) CHC rule(s) of the form:

Semā (4, G
in
1 , G

out
0 ) ' G

in
1 = 5 (G in0 ) ' G

out
0 = 6(G in0 , G

out
1 )

Semď (x :=4, G in0 , G
out
0 )

for some functions 5 and 6 (in the theory of linear integer arithmetic). The procedure call
SynthSemanticConstraint(x :=, �) synthesizes the formulas 5 (G in

0
) = CĜ and 6(G in

0
, Gout

1
) = Cĝ,

and returns the constraint � ≜ G in
1
= CĜ ' G

out
0

= Cĝ so that � is consistent with �.
We note that for functions expressible in a decidable �rst-order theory, this problem can be

exactly encoded as a Syntax-Guided Synthesis (SyGuS) problem [2] and solved by a SyGuS solver
(e.g., cvc5 [4]).

4.3 Specification of Verify

The procedure Verify takes as input the production ? , a candidate semantics of ? , the interpreter
I, and the equivalence oracle E; it determines if Sem is equivalent to the interpreter I for all
terms of the form ? (C1, ..., Cġ ) ∈ !(�). If Verify determines that the candidate semantics of ? is not
equivalent to I, Verify returns a set of counter-examples CEX such that (i) CEX is consistent with
I, (ii) CEX is not consistent with the candidate semantics of production ? , and (iii) for the input
production ? , there is exactly one example of the form ï8, ? (C1, . . . , Cġ ), >ð appearing in CEX (for
any other production ?′ ≠ ? , there can be many examples of the form ï8′, ?′ (C1, . . . , Cġ ), >

′ð in CEX).
Otherwise, Verify returns an empty-set to signify that the semantics of ? is equivalent to I for all
terms of the form ? (C1, . . . , Cġ ) ∈ !(�).

Example 4.6 (Synthesizing Semantics of 0 for �Imp ). Recall the Imp language in Example 2.1.
On some iterations, SemSynth will consider the production 0 (a leaf/nullary production).
During the �rst iteration of the CEGIS loop for 0, the example set � will be empty and
SynthSemanticConstraint may return any constraint � of the form Gout

0
= 5 (G in

0
). Assume

that SynthSemanticConstraint returns the constraint Gout
0

= 1. Verify returns the counter-
example ï0, 0, 0ð, and the example set � is updated.
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In the next iteration, the CEGIS loop must return a constraint satisfying the updated example set.
For example, suppose that SynthSemanticConstraint returns the constraint Gout

0
= G in

0
. Again,

Verify determines that Gout
0

= G in
0
is incorrect and returns the new counter-example ï1, 0, 0ð. The

example set � is updated with the returned counter-example.
A new iteration of the loop is run. On this iteration, SynthSemanticConstraint must return

a constraint that satis�es both of the previously returned examples. This time SynthSemantic-
Constraint returns the constraint Gout

0
= 0, Verify determines that Gout

0
= 0 is correct, and

SemSynth proceeds to synthesize the semantics of the next production (e.g., 1).

In Example 4.6, we see how SemSynth handles nullary (leaf) productions. SemSynth works
nearly identically for most production rules (excluding semantically recursive productions like
while loops). We demonstrate in Example 4.7 how SemSynth synthesizes a semantics for non-
nullary productions.

Example 4.7 (Synthesizing Semantics of Sequencing for Imp.). Continuing from Example 4.6,
SemSynth proceeds and comes to the sequencing operator (i.e., for production ( → ;((, ()).
After several attempts at synthesizing the semantics of sequencing, � contains the examples
ï0, x := 1; x := 0, 0ð, ï0, x := 0; x := x + 1, 1ð, and ï1, x := 0; (x := 1; x := x + 1), 2ð.
In addition to these examples, we summarize the semantics of each example’s sub-term with

further examples in the example set �. These summarized examples of sub-terms are generated by
data-�ow propagation through the term ? (C1, . . . , Cġ ) using the input 8 . Because the execution output
of a certain sub-term C Ġ can be used as input for any following term CĢ where ; > 9 , we repeatedly
enumerate all possible inputs for each sub-term (and add them into �) until we reach a �x-point, i.e.,
no new examples for sub-terms are found. SemSynth then generates the formula specifying that
the desired semantic constraint is consistent with the example set � using the generated summaries,
and produces a new semantic constraint using SynthSemanticConstraint. On this iteration,
SynthSemanticConstraint returns the correct semantic constraint, Verify determines that it is
correct, and SemSynth proceeds to synthesize a semantics for the next production.

4.4 Synthesizing Semantics for Semantically Recursive Productions

So far, we have seen how SemSynth handles nullary productions and structurally recursive pro-
ductions (e.g., ite and sequencing). However, we have not yet seen how to handle productions that
are semantically recursive (e.g., while loops). To handle semantically recursive productions, we
augment the form of the desired constraint to be synthesized: SynthSemanticConstraint must
synthesize a predicate %rec and two base constraints �nonrec and �rec such that for every example
ïin, ? (C1, . . . , CĤ), outð, the following conditions hold:

Semý1
(C1, G

in
ý1
, Goutý1
)

. . . SemýĤ
(CĤ, G

in
ýĤ
, GoutýĤ
) ¬%rec (G

in
ý0
, Goutý1

, . . . , GoutýĤ
) �non−rec (G

in
ý0
, Goutý1

, . . . , GoutýĤ
) G iný0

= in

Goutý0
= out

non-rec

Semý1
(C1, G

in
ý1
, Goutý1
) . . . SemýĤ

(CĤ, G
in
ýĤ
, GoutýĤ
)

Semý0
(? (C1, . . . , CĤ), G

in
ý0

′
, Goutý0

′
) %rec (G

in
ý0
, Goutý1

, . . . , GoutýĤ
) �rec (G

in
ý0
, Goutý1

, . . . , GoutýĤ
) G iný0

= in

Goutý0
= out

rec

where %rec determines if the non-rec or rec condition should hold. The non-recursive case is similar
to the conditions for non-semantically recursive statements (with the addition of asserting that %rec
is false). The recursive case, however additionally allows the semantics to make use of a recursive
call to the program term. Other than the change in the shape of the desired semantics, SemSynth
remains unchanged.
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Example 4.8 (Synthesizing semantics of while loops for Imp.). Continuing from Example 4.7,
SemSynth eventually considers the while production. We assume that the grammar� additionally
annotates whether each production is semantically recursive.
After several iterations of the CEGIS loop, the example set � contains the examples ï0, C, 0ð,
ï1, C, 0ð, and ï2, C, 0ð, where C is the term while 0 < x do x := x − 1. In this iteration, SynthSeman-
ticConstraint gets called with a recursive summary of C containing the three examples, and
examples for x := x − 1 and 0 < x.
In this iteration, SynthSemanticConstraint �nds the correct %rec , �non−rec and �rec . Verify

determines that the result is indeed correct and the main loop of SemSynth continues to the next
production. If while is the last production of the considered grammar� , then SemSynth terminates
and returns the synthesized semantics for each production.

Now that we have de�ned how SemSynth handles semantically recursive productions, SemSynth
is fully speci�ed. Theorem 4.9 states that SemSynth is sound.

Theorem 4.9 (SemSynth is sound). For any semantics-synthesis problem P = ï�,I, Eð, if

SemSynth(�,I, E) returns a semantics Sem, then Sem is a solution to P.

Proof. SemSynth iterates over the productions in some order, say ?0, . . . , ?ġ−1. For all iterations
0 f 8 f : , SemSynth maintains the invariant that the synthesized semantics Sem is correct with
respect to the oracle E for all previously considered productions ?0 through ?ğ−1. This condition
trivially holds on the �rst iteration. To proceed to iteration 8 + 1, the CEGIS loop for production
?ğ must terminate. For the CEGIS loop to terminate, Verify must return an empty set of counter-
examples, which implies that Sem is correct for the production ?ğ (and that the semantics for
productions ?1, . . . , ?ğ−1 were left unmodi�ed)—and thus the invariant is maintained. The algorithm
only terminates after exploring all productions. Consequently, upon termination, Sem must be
correct for all productions of �—i.e., Sem satis�es the given semantics-synthesis problem P. □

While Theorem 4.9 states the soundness of SemSynth, it fails to show that SemSynth will
eventually synthesize a correct semantics. Theorem 4.10 states that SemSynth makes progress.
Intuitively, it states that once a semantic rule for production ? is explored during some iteration of
the CEGIS loop, it is never explored in any future iteration of the CEGIS loop for production ? .

Theorem 4.10 (SemSynth makes progress). For any semantics-synthesis problem P = ï�,I, Eð,

if SemSynth(�,I, E) is synthesizing the semantics of production ? and on the : th iteration of the

CEGIS loop for production ? , SynthSemanticConstraint produces the semantic relation 'ġ , then for

all future iterations 9 > : , SynthSemanticConstraint will return some relation ' Ġ ≠ 'ġ .

Proof. Assume that the negation holds, i.e., “∃ 9 > :.' Ġ = 'ġ”. By the assumption 9 > : , it must
be that Verify ('ġ , ?,I, E) returned a non-empty set of examples CEX. Otherwise, the CEGIS loop
for production ? would have immediately terminated and not continued to iteration 9 . By de�nition,
'ġ is inconsistent with the set of counter-examples CEX. The returned counter-examples CEX are
then added to the example set � for all future iterations. By assumption, ' Ġ must be consistent with
the example set �, and thus ' Ġ must not be 'ġ , a contradiction. □

5 Implementation

This section gives details of Synantic, which implements our approach to synthesizing semantics
via the algorithm SemSynth. Synantic is developed in Scala (version 2.13), and uses cvc5 (version
1.0.3) to solve SyGuS problems—which are used within our implementation of SynthSemantic-
Constraint to generate candidate semantic constraints. The remainder of this section is structured
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as follows: Section 5.1 details how we implement SynthSemanticConstraint. Section 5.2 summa-
rizes the implementation of Verify, and explains how we approximate an equivalence oracle for an
interpreter. Section 5.3 presents an optimization of SynthSemanticConstraint for productions
with multiple outputs (i.e., where the output type of a production is a tuple).

5.1 Implementation of SynthSemanticConstraint

In Section 4, SemSynth is parameterized on the procedure SynthSemanticConstraint. On line 5
of Algorithm 1, we assume that SynthSemanticConstraint produces a semantic constraint �
for production ?ğ that satis�es the example set �. To accomplish this task, we construct a SyGuS
problem consisting of a grammar of allowable semantic constraints and a set of conditions to
enforce that the semantic constraint is consistent with the example set. To handle productions
whose semantics does not evaluate its child terms from left to right, we run in parallel a version
of SynthSemanticConstraint for each permutation of the child terms and immediately return
upon any permutation’s success. In practice, for all of our benchmarks, all the productions evaluate
their children from left to right.
We defer discussion of the SyGuS grammars we use to Section 6.1 when we discuss each

benchmark. The speci�cation of the semantic constraint is exactly the condition speci�ed in
Equation (3).

5.2 Implementation of Verify

In Section 4, Algorithm 1 is parameterized on the procedure Verify (line 6), which uses the
equivalence oracle E to determine if the learned semantics Sem is consistent with the interpreter
for all terms of the form ? (C1, . . . , Cġ ) ∈ !(�) for some production ? . In Synantic, we approximate
an equivalence oracle using fuzzing. Speci�cally, we randomly generate terms and inputs and use
the interpreter I to generate an output. We then use the learned constraint for ?ğ to generate
inputs to each sub-term (from left to right), and compute outputs for each using interpreter I. In
e�ect, we are computing a new example set �′, and testing the semantic constraints learned so far.
If any example disagrees with the learned semantics of production ? , we return the example (and
necessary child-term summaries) as a counter-example.

When Verify fuzzes the semantics, it uses the interpreter to generate examples (i.e., terms with
corresponding input-output examples). During example generation, we set a recursion limit of 1,000
recursive calls. We discard an example—i.e., we assume the program does not terminate—if its run
exceeds the recursion depth. We then evaluate the candidate semantic constraint from left-to-right
to ensure that the semantic constraint is consistent with each of the generated examples. We return
the �rst example (and the child-term summaries for the example) that is inconsistent with the
candidate constraint.

5.3 Optimized SynthSemanticConstraint for Multi-Output Productions

In Section 5.1, we described how SynthSemanticConstraint produces and solves (using cvc5) a
SyGuS problem to synthesize a semantic constraint that is consistent with the current example set.
However, it is well known that SyGuS solvers scale poorly as a function of the size of the desired
grammar/result. This issue is especially problematic when learning a semantic constraint for a
language in which productions have multiple outputs (e.g., statements for Imp with more than one
variable) and thus the grammar and resulting constraint grow with the number of outputs.

For some languages, it is possible to augment the semantics of the language to use a suitable
theory to encode multiple outputs as a single output—e.g., using the theory of arrays to support
multi-variable states in the ImpArr language (cf. Section 6.1). However, for other languages this
methodology may require the use of theories that are not well suited for existing SyGuS and
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Algorithm 2: Veri�er implementation using (approximate) fuzzing based oracle.

1 Procedure Verify ('Ħ , ?,I, ·)

2 � ← random set of examples of the form ïin, ? (C1, . . . , Cġ ), outð consistent with I;

3 (
∧

ğ G
in
ğ = 5ğ ) ' G

out
ğ = 50 ← 'Ħ ; // Destruct semantic constraint to recover each Ĝğ

4 for ïin, ? (C1, . . . , Cġ ), outð ∈ � do

5 �′ ← ïin, ? (C1, . . . , Cġ ), outð;

6 " ← {G in
0
↦→ in} ; // Build up model to evaluate sub-terms’s semantics

7 for 8 ← 1 to : do

8 inğ ← J5ğKĉ ; // Get input to term Īğ.

9 outğ ← I(Cğ , inğ ) ; // Evaluate term Īğ

10 " ← " [Goutğ ↦→ outğ ] ; // Update model. Ensures next term’s input is defined.

11 �′ ← �′ ∪ {ïinğ , Cğ , outğð} ; // Add sub-term’s summary to set of examples

12 if J50Kĉ ≠ out then

13 return �′ ; // The output computed by evaluating ĎĦ is inconsistent with ā′

14 return ∅

SMT solvers (e.g., RegEx(:) in Section 6.1 would require the theory of strings). Instead, for such
instances we developed a variant of SynthSemanticConstraint that synthesizes a constraint for
each output independently. However, this process may lead to constraints that do not agree on the
internal data �ow of the constraints (i.e., the functions determining the input to each child term). To
remedy this issue, our implementation of SynthSemanticConstraint uses an additional CEGIS
loop that resynthesizes the constraint for each output until all agree on the inputs to each child
term.

We detail SynthSemanticConstraint for # outputs in Algorithm 3. For simplicity, we explain
how Algorithm 3 works for a production that has two outputs (i.e., # = 2). Consider the case for
�0 → ? (�1, . . . , �Ĥ) where gý0

≜ g1 ×g2. In this scenario, our goal is to synthesize two constraints
� and � (i.e., � = �1 and � = �2),

� ≜ G1 = 51 (G0) ' · · · ' GĤ = 5Ĥ (G0, G
′
1, . . . , G

′
Ĥ−1) ' G0

′
0 = 50 (G0, G

′
1, . . . , G

′
Ĥ) (4)

� ≜ G1 = 61 (G0) ' · · · ' GĤ = 6Ĥ (G0, G
′
1, . . . , G

′
Ĥ−1) ' G0

′
1 = 60 (G0, G

′
1, . . . , G

′
Ĥ) (5)

To determine if � and � agree on each child term’s input for example set �′, we generate the
formula q shown below, for each example ïin, ? (C1, . . . , CĤ), outð ∈ �

′:

GĂ0 = Gă0 = in ' Summary(C1) (G
Ă
1 , G

′Ă
1 ) ' · · · ' Summary(CĤ) (G

Ă
Ĥ , G

′Ă
Ĥ )

' Summary(C1) (G
ă
1 , G

′ă
1 ) ' · · · ' Summary(CĤ) (G

ă
Ĥ , G

′ă
Ĥ )

' � '� ' (GĂ1 ≠ Gă1 ( · · · ( G
Ă
Ĥ ≠ GăĤ ) '

〈
G0
′Ă
0 , G0

′ă
1

〉
= out

(6)

which asks if � and � agree on the input to each child term for the given example. To make this
concept concrete, consider the following example.

Example 5.1 (Synthesizing Semantic Constraint for Multi-Output Production.). Consider the task of
synthesizing a semantics for x0 := in the language Imp2, using the examples: ïï0, 1ð , x0 := x1, ï1, 1ðð,
ïï0, 1ð , x1, 1ð, ïï1, 1ð , x1, 1ð.
For the above examples, SynthSemanticConstraint might generate � ≜ G in

1,0 = G in
0,0 ' G

in
1,1 =

G in
0,1 ' G

out
0,0 = Gout

1,1 and � ≜ G in
1,0 = G in

0,1 ' G
in
1,1 = G in

0,1 ' G
out
0,0 = Gout

1,1 , where G
in
ğ, Ġ is the 9 th projection

of G inğ . While both � and � are consistent with the examples, the data-�ow of � is not consistent
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Algorithm 3: SynthSemanticConstraint for multi-output productions.

1 Procedure SynthSemanticConstraint(?, �)

2 �0 → f (�1, . . . , �Ĥ) ← ?;

3 g1 × · · · × gĊ ← gý0
; // Determine number of outputs for production Ħ.

4 � ← true ; // Data flow constraints.

5 while true do

6 � ← � ;

7 for 8 ← 1 to # do
// Construct per-output conditions (c.f., Equation (4))

8 �ğ ← G1 = 5 Ăğ
1
(G0) ' · · · ' GĤ = 5 ĂğĤ (G0, G

′
1
, . . . , G ′Ĥ−1) ' G0

′
ğ = 5 Ăğ

0
(G0, G

′
1
, . . . , G ′Ĥ);

9 � ← � ' �ğ ;
// Generate SyGuS conditions (c.f., lines 1-2 of Equation (6))

10 q ←
(∧

ğ, Ġ Summary(Cğ ) (G
Ă Ġ
ğ , G

Ă Ġ
ğ

′
)
)
' ïG0

Ă0
0

′
, . . . , G0

ĂĤ
Ĥ
′
ð = out;

11 � ← q '
(∧

ğ G
Ăğ
0

= in
)
;

12 < ← SolveSygus(�);

13 " ← CheckSat(q);
// Check if inconsistency is found (line 3 of Equation (6))

14 if ".sat ' ∃8, 9, : : " (G
Ă Ġ
ğ ) ≠ " (G

Ăġ
ğ ) then

// Inconsistency is caused by inaccurate summary of a child term

15 if ∃Cğ : ∀ïin, Cğ , outð ∈ � : ∀9 : in ≠ " (G
Ă Ġ
ğ ) then � ← � ∪ {ïin, C,I(Cğ , in)ð} ;

// Real data flow inconsistency

16 else � ← � '
(∨

ğ, Ġ G
Ă Ġ
ğ ≠ " (G

Ă Ġ
ğ )

)
;

17 else
// No inconsistency

18 merge 5
Ă Ġ
ğ ∈< to form the solution;

19 return solution;

with the data-�ow of � (i.e., in � , G in
1,0 is assigned G in

0,0, while in � , G in
1,0 is assigned G in

0,1). We can

construct the formula in Equation (6) for � and � , and �nd out that in � , the variable G in
1,0

Ă
takes

the value 0, and in � , the variable G in
1,0

ă
takes value 1. Thus, � and � are not consistent on data-

�ows to children for the provided example. We generate a new condition for the next iteration of

SynthSemanticConstraint that asserts G in
0,0

Ă
≠ 0 ( G in

0,0
ă
≠ 1.

In practice, we create a copy of each variable indexed by � and � , respectively, to avoid clashing
variable names when encoding the constraints � and � within a single formula. To check the
consistency of � and � ’s data �ows, we use cvc5 to check the satis�ability of the formula q in
Equation (6). If q is unsatis�able, then � and � must agree on the inputs of all child terms for the
given examples. If so, then we may return either � 'G02 = 60 (. . . ) or� 'G01 = 50 (. . . ) (i.e., because
� and� agree on all child term inputs, we may use either to constrain the data-�ow to child terms).

If q is satis�able, then � and� do not agree on the input to all child terms. In this case, we �nd a
model that satis�es q . If there is some subterm Cğ such that there is no example ïin, Cğ , outð ∈ � such
that in = " (GĂğ ) or in = " (Găğ ), then we add the example ïin, C,I(Cğ , in)ð to the set of examples,
and resynthesize the constraints � and � . Otherwise, we know that the sub-term summaries are
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su�cient to fully specify both � and � for all examples in �. Thus, we must add a new constraint
that ensures the pair of constraints � and � are never synthesized again. To do this, we add a new
constraint GĂ

0
≠ " (GĂ

0
) ( Gă

0
≠ " (Gă

0
) ( · · · ( GĂĤ ≠ " (GĂĤ ) ( G

ă
Ĥ ≠ " (GăĤ ), which ensures that the

input of at least one of the child terms for either � or � must change. A new candidate � and �
are then synthesized. The CEGIS loop continues until it �nds a valid pair of � and � for the set of
examples.

6 Evaluation

The goal of our evaluation is to answer the following questions:

RQ1 Can Synantic synthesize the semantics of non-trivial languages?
RQ2 Where is time spent during synthesis?
RQ3 Is the multi-output optimization from Section 5.3 e�ective?
RQ4 How do synthesized semantics compare to manually written ones?

All experiments were run on a machine with an Intel(R) i9-13900K CPU and 32 GB of memory,
running NixOS 23.10 and Scala 2.13.13. All experiments were allotted 2 hours, 4 cores of CPU, and
24 GB of memory. Cvc5 version 1.0.3 is used for SMT solving and SyGuS function synthesis. For
the total running time of each experiment, we report the median of 7 runs using di�erent random
seeds. For every language, we record whether Synantic terminates within the given time limit of
2 hours, and when it does, we also record the set of synthesized semantic rules. A language that
does not terminate within the time limit on more than half of the seeds is reported as a timeout.

6.1 Benchmarks

We collected 15 benchmarks from the two sources discussed below. For every language discussed
in this section, we manually translated the semantics to a simple equivalent interpreter written in
Scala; our goal was then to synthesize an appropriate CHC-based semantics from the interpreter.
The one non-standard feature of our setup is that the interpreter must be capable of interpreting
the programs derived from any nonterminal in the grammar.

SemGuS benchmarks. Our �rst source of benchmarks is the SemGuS benchmark repository [13].
This dataset contains SemGuS synthesis problems where each problem consists of a grammar of
terms, a set of CHCs inductively de�ning the semantics of terms in the grammar, and a speci�cation
that the synthesized program should meet. For our purposes, we ignored the speci�cation and
collected the grammar plus semantics for 11 distinct languages that appear in the repository. We
do not consider languages that contain abstract data types (e.g., stacks) or require a large range of
inputs (e.g., ASCII characters) due to their poor support by the SyGuS solver. These languages gave
us 11 benchmarks.

Some of the languages used in the SemGuS benchmark set are parametric (denoted by a parameter
:), meaning that the semantics is slightly di�erent based on a given parameter (e.g., number of
program variables for IMP and length of the input string for regular expressions). For these
benchmarks, we ran Synantic on an increasing sequence of parameter values and reported the
largest parameter value for which Synantic succeeds.

RegEx(:) is a language for matching regular expressions on strings of length : ; Given a regular
expression A and string B of length : (index starts from 0), the semantic functions produce a Boolean

matrix" ∈ Bool(ġ+1)×(ġ+1) such that"ğ, Ġ = true i� the substring Bğ ... Ġ−1 matches regular expression
A—here Bğ ...ğ denotes the empty string, and by de�nition,"ğ, Ġ = false for 8 g 9 .

Cnf(:), Dnf(:) and Cube(:) are languages of Boolean formulas (of the syntactic kind indicated
by their names, i.e., conjunctive normal form, disjunctive normal form, and cubes) involving up to
: variables.
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Imp is an imperative language that contains common control �ow structures, such as conditionals
and while loops, for programs with : integer variables. Note that Imp includes operators such
as while and do_while for which the semantics involves semantically recursive productions
(Section 4.4). The complete semantics of Imp can be found in the supplementary material. Two
versions of Imp are used in our benchmarks. The �rst version is called Imp(:), where we explicitly
record the states of : variables as : arguments of semantic functions. Synantic could synthesize
its semantics up to : = 2. We also present another version of this language called ImpArr where an
arbitrary number of variables can be used. In ImpArr, variables are named var0, var1, . . . where
the subscript is any natural number. We use the theory of arrays to store the variable states into an
array, passing the array as an argument to the semantic function. The array is indexed by variable
id. When we present results later in the section, the results for both languages (i.e., Imp(2) and
ImpArr) are shown for comparison. (For Imp(2), the goal is to synthesize a semantics that works
on states with exactly 2 variables; for ImpArr, the goal is to synthesize a semantics that works for
states with any number of variables.)
IntArith is a benchmark about basic integer calculations, like addition, multiplication, and

conditional selection. It also includes three constants whose value can be speci�ed in the input to
the semantic relations.
BvSimple(:) describes bit-vector operations involving: bit-vector constants.BvSimpleImp(<,=)

is essentially a variant of BvSimple(:) that augments the language with let-expressions. Param-
eters < and = mean that the language can use up to < bit-vector constants and = bit-vector
variables. BvSaturate(:) and BvSaturateImp(:) use the same syntaxes as BvSimple(:) and
BvSimpleImp(:), respectively, but operations use a saturating semantics that never over�ows or
under�ows.

Attribute-grammar synthesis [12]. Our second source of benchmarks is from the Panini tool for
synthesizing attribute grammars [12]. An attribute grammar (AG) associates each nonterminal of
an underlying context-free grammar with some number of attributes. Each production has a set
of attribute-de�nition rules (sometimes called semantic actions) that specify how the value of one
attribute of the production is set as a function of the values of other attributes of the production.
In a given derivation tree of the AG, each node has an associated set of attribute instances. The
attribute-de�nition rules are used to obtain a consistent assignment of values to the tree’s attribute
instances: each attribute instance has a value equal to its de�ning function applied to the appropriate
(neighboring) attribute instances of the tree. E�ectively, AGs assign a semantics to programs via
attributes, and the underlying attribute-de�nition rules can be captured via CHCs. While there
are AG extensions to handle circular AGs [11, 18]—i.e., AGs in which some derivation trees have
attribute instances that are de�ned in terms of themselves—the work of Kalita et al. concerns
non-circular AGs.

Kalita et al. [12] present 12 benchmarks. We ignored 4 benchmarks that are either (i) not publicly
accessible, or (ii) use semantic functions that cannot be expressed in SMT-LIB and are thus beyond
what can be synthesized using a SyGuS solver—e.g., complex data structures, or (iii) identical to
existing benchmarks from other sources. We did not run their tool on our benchmarks because our
problem is more general than theirs, supporting a wider range of language semantics: the scope of
our work includes recursive semantics, which can be handled only indirectly in a system such as
theirs (which supports only non-circular AGs)—i.e., by introducing powerful hard-to-synthesize
recursive functions that e�ectively capture an entire construct’s semantics. The running time is
also not directly comparable, because Kalita et al.’s approach uses user-provided sketches (i.e.,
partial solutions to each semantic action), which simpli�es the synthesis problem. In contrast, in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 284. Publication date: October 2024.



Synthesizing Formal Semantics from Executable Interpreters 284:19

our work we do not assume that a sketch is provided for the semantic constraints and instead
consider general SyGuS grammars.
The remaining 8 benchmarks of Kalita et al. are consolidated as 4 languages (i.e., giving us

four benchmarks). IteExpr is a language of basic integer operations, comparison expressions, and
ternary if-then-else expressions (not statements). Our IteExpr benchmark subsumes benchmarks
B3, B4, and B5 of Kalita et al. because their only di�erences stem from whether the expression
is written in pre�x, post�x, or in�x notation. For Synantic, such surface-syntax di�erences are
unimportant because Synantic uses regular tree grammars to express a language’s abstract syntax,
and the underlying abstract syntax of pre�x, post�x, and in�x expressions is the same. BinOp is
a language of binary strings (combined from benchmarks B1 and B2 of Kalita et al.), along with
built-in functions for popcount (counting the number of ones) and binary-to-decimal conversion.
Currency is a language for currency exchange and calculation. Diff is a language for computing
�nite di�erences. Because the original benchmark from Kalita et al. involves di�erentiation and
real numbers (which are not supported by existing SyGuS solvers), we modi�ed the benchmark to
perform the related operation of �nite di�erencing over integer-valued functions. Speci�cally, for a
function 5 , its �nite di�erence is de�ned as�5 = 5 (G+1)−5 (G). Starting from here, �nite di�erences
for sums and products can be obtained compositionally, e.g., � (D · E) = D (G)�E (G) + E (G + 1)�D (G).

SyGuS grammars. For each semantic function, we also provided a grammar for the SyGuS solver,
which contains the operators of the underlying logical theory and any speci�c functions that must
appear in the target semantics.

For instance, for all benchmarks using the logic fragment NIA, we allow the use of basic integer
operations and integer constants, along with language-speci�c operations like conditional operators
(if-then-else).

For the languages Diff and Currency we did not include conditional operators, because they
do not appear in the semantics.
For BVSaturated and BVIMPSaturated we provided operators for detecting over�ow and

under�ow.
Lastly, for languages known to be free of side e�ects, we modi�ed the SyGuS grammars to forbid

data �ow between siblings, and only allow parent-to-child and child-to-parent assignments.

6.2 RQ1: Can Synantic Synthesize the Semantics of Non-trivial Languages?

Table 1 presents a highlight of the results of running Synantic on each benchmark (column 1) for
each production rule (column 2). For the parametric languages, we ran each benchmark up to the
largest parameter : for which the solver timed out and reported the running time and other metrics
for the largest such : (more details below). The third column provides the median number of
CEGIS iterations taken to synthesize each production, and the fourth column provides the median
number of ïin, term, outð counterexamples found for one production rule. We take the median of
total execution time on one production rule and list it in column 7. Columns 5–6 are breakdowns
of the total time into time for SyGuS solving and time for SMT solving. To summarize, Synantic
could synthesize complete semantics for 12/15 ≈ 80% of benchmark languages (two languages
exist for the Imp benchmark, see below).

For RegEx(:) (: = 2, . . . , 8) , Synantic could synthesize a semantics for up to : = 2. For Cnf(:)
(: = 4, . . . , 8),Dnf(:) (: = 4, . . . , 8), and Cube(:) (: = 4, . . . , 11), Synantic could synthesize seman-
tics for all parameters included in the SemGuS benchmarks. For the bit vector benchmarks, Synantic
could synthesize a semantics for BVSimple(:) up to : = 3, and a semantics for BVIMPSimple(<,=)

((<,=) ∈ {(1, 2), (3, 3)}) up to< = 1 and = = 2.
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Table 1. Detailed results for selected benchmarks. See supplementary material for the full list of results.

Lang. Rule # Iter. # Ex SyGuS (s) SMT (s) Total (s)
Im
p
A
r
r

ā → 0 1 1 0.01 0.01 0.04
ā → 1 1 1 0.01 0.01 0.04
þ → f 1 1 0.01 0.01 0.05
þ → t 1 1 0.01 0.01 0.10
ď → dec_varğ 3 2 4.29 0.56 5.36
ď → inc_varğ 3 2 3.56 0.54 4.51
þ →¬þ 3 2 0.01 1.42 5.53
ā → varğ 3 2 0.01 0.28 0.66
ā →ā + ā 3 2 0.02 6.51 12.38
ā →ā − ā 3 2 0.01 6.43 12.13
þ →ā < ā 4 3 0.01 3.38 10.33
þ →þ ' þ 4 3 0.06 2.36 6.23
ď → varğ := ā 2 1 0.03 8.11 11.60
þ →þ ( þ 5 4 0.03 2.42 6.14
ď →ď ; ď 3 1 0.02 13.88 25.91
ď → do_while ď þ 5 2 0.22 342.25 499.11
ď → while þ ď 4 2 0.10 218.66 321.11
ď → ite þ ď ď 4 2 0.03 7.08 27.82

IM
P
(2
)

ā → 0 1 1 0.01 0.01 0.05
ā → 1 1 1 0.01 0.01 0.04
ď → x − − 2 2 0.06 0.02 0.11
ď → y − − 2 2 0.11 0.03 0.17
þ → f 1 1 0.01 0.01 0.06
ď → x + + 2 2 0.04 0.03 0.11
ď → y + + 2 2 0.12 0.02 0.16
þ → t 1 1 0.01 0.02 0.13
ā → x 2 2 0.01 0.01 0.04
ā → y 1 1 0.01 0.01 0.04
ď → x := ā 2 2 0.10 3.23 6.17
ď → y := ā 2 2 0.04 3.22 6.19
þ →¬þ 3 3 0.02 2.49 5.26
ā →ā + ā 4 3 0.05 8.52 14.83
ā →ā − ā 5 2 0.13 8.03 13.83
þ →ā < ā 8 5 0.08 7.50 13.66
þ →þ ' þ 4 4 0.03 5.33 11.71
þ →þ ( þ 4 4 0.05 4.61 8.99
ď →ď ; ď 5 3 4.55 15.00 72.53
ď → do_while ď þ 27 35 858.50 257.33 1374.13
ď → while þ ď 9 7 16.88 122.41 266.80
ď → ite þ ď ď 11 5 525.28 33.88 628.71

B
in
O
p

þ → 0 1 1 0.01 0.01 0.07
þ → 1 1 1 0.01 0.01 0.22
þ → x 2 2 0.01 0.01 0.08
Ċ → atom þ 2 2 0.09 0.04 0.30
ĉ → atom′ þ 3 3 0.07 0.05 0.26
ď → bin2decĉ 2 2 0.02 0.09 0.30
ď → count Ċ 2 2 0.04 0.05 0.24
Ċ → concat Ċ þ 5 5 8.61 0.22 10.31
ĉ → concat′ ĉ þ 5 5 288.81 0.23 308.50

R
e
g
E
x
(2
)

ďĪėĨĪ → eval Ď 3 3 0.02 4.43 13.40
Ď → ? 3 3 3.84 0.07 4.07
Ď → a 4 4 11.10 0.07 11.53
Ď → b 5 5 11.63 0.06 12.01
Ď →Ċ 1 1 0.07 0.07 2.38
Ď →∅ 1 1 0.19 0.07 0.46
Ď → !Ď 5 5 2.85 15.77 77.36
Ď →Ď∗ 6 6 0.99 13.06 31.91
Ď →Ď · Ď 24 24 333.71 72.58 495.45
Ď →Ď | Ď 10 10 10.96 59.54 140.82

For all these parametric cases that timeout, the number of input and output variables in semantic
functions is large: 10 inputs and 10 outputs for RegEx(3).

Additionally, Synantic timed out for the benchmarks Diff, BVSaturated, and BVIMPSatu-

rated.2 For Diff, 4 of the 7 runs resulted in a timeout, so Diff is reported as a timeout (even
though at least one run could synthesize the semantics of all the productions). For the 4 runs that

2Data for some languages are only listed in the supplementary material.
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timed out, Synantic can solve the semantics of 5 of the 6 productions in the grammar. Synantic
could synthesize the semantics of 9/18 productions for BVIMPSaturated, and 10/17 productions
for BVSaturated in at least one run.

In benchmarks that timed out, the time-out happened during a call to the SyGuS solver—i.e., the
functions to be synthesized were too complex (more details in Section 6.3).

Finding: To answer RQ1, Synantic can synthesize semantics for many non-trivial languages as
long as the semantics does not involve very large functions (more than 20 terms).

6.3 RQ2: Where is Time Spent during Synthesis?

SyGuS vs SMT Time. Appendix B also presents the breakdown of how much time the solver
spends solving SyGuS problems (to �nd candidate functions) and calling SMT solvers (to compute
complete summaries). Among all the benchmarks, a median of 16.24% of the total solving time
is spent on SyGuS problems, and a median of 19.90% of the time is spent solving SMT queries.
However, for the slowest 10% production rules (>32.17 s), the median of SyGuS solving time grows
to 64.91%, which indicates that SyGuS contributes to most of the execution time on slow-running
cases.
Among all benchmarks, 90% of the per-production semantics are solved within 32.17 s. The

12 rules that take longer than 32.17 s to be synthesized are all non-leaf rules and their partial
semantic constraints fall into the following three categories: (i) 5 of them contain large integers or
complex SMT primitives (e.g., 32-bit integer division, theory of arrays); (ii) 3 of them involve large
logical formulas with sizes ranging between 8 and 24 subterms, e.g., formulas representing 3 × 3
matrix multiplication or other matrix operations; (iii) 4 of them contain multiple input and output
parameters of semantic functions that correspond to variable states, e.g., while and do_while.
In particular, Synantic takes 1374.13 s to synthesize the CHC for do_while in Imp(2) because
there can be many possible ways to modify the data �ow between the production’s child terms;
this aspect occurs in many CEGIS iterations. In all of the above cases, as expected from known
limitations of CVC5, the SyGuS and SMT solvers account for most of the execution time—45.63%
and 27.98% of the total running time is spent calling the SyGuS and SMT solvers, respectively.

Relation to CEGIS Iterations and Size of Solutions. Table 1 hints that the cost of synthesizing a
semantics may be proportional to the number of CEGIS iterations, which in general is a good
indicator of the complexity of a formula (and of how expressive the underlying SyGuS grammar
is). Additionally, the cost should also be proportional to the size of synthesized parts in the SyGuS
problems, which directly indicates formula complexity. We plotted Figure 1 to better understand
those relations by using the data from some slowest benchmarks.
Figure 1a shows the relationship between the time for synthesizing a per-production rule

semantics and the size of the �nal semantics. For the same language, the time grows exponentially
with the increase in the size of the �nal solution. Figure 1b shows that the time also grows
exponentially with the increase in solution size for per-output partial semantic constraint.
Because the performance varies greatly across di�erent benchmarks, to better understand the

impact of CEGIS iterations, we focus our attention on one di�cult benchmark, Imp(2). Speci�cally,
we analyze the time taken to synthesize the semantic rule for do_while, which was one of the
hardest productions in our benchmark set (2,500s). Figure 4 provides a stack plot detailing the
running time for all 16 CEGIS iterations needed to synthesize do_while. As expected, as more
examples are accumulated by CEGIS iterations, the SyGuS solver requires more time. The execution
time for di�erent parts is plotted by the areas of di�erent colors. We can conclude that for the rule
of do_while, SyGuS solver takes 64.3% of the execution time.
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Fig. 1. Plots relating the time to synthesize the semantics of one production rule vs final semantic constraint

solution size (a) and partial semantic constraint solution size (b).We only included selected slowest benchmarks

due to graph size limit.

J·KImp(2)
Sem.S

: L(() × Z × Z × Z × Z

J·KImpArrSem.S : L(() × AZ

Z
× AZ

Z

Fig. 2. Selected di�erences of semantic signatures between Imp(2) and ImpArr. AZ

Z
stands for an SMT array

mapping integers to integers.

J1K(f) = E JB1K(f) = f ′ JB2K(f) = f ′′

Jif 1 then B1 else B2K(f) = E ? f ′ : f ′′
Ite

J1K(f) = true JBK(f) = f ′ Jwhile 1 do BK(f ′) = f ′′

Jwhile 1 do BK(f) = f ′′
WhileLoop

J1K(f) = false

Jwhile 1 do BK(f) = (f)
WhileEnd

Fig. 3. Selected semantic rules for ImpArr. f, f′, f′′ are arrays.

Simplifying synthesis with appropriate SMT theory. To our surprise, the language ImpArr, which
uses the theory of array to model an arbitrary number of variables, takes 1041.2s on average, being
nearly twice as fast as Imp(2). To understand why this is the case, note the di�erence in their
semantic signatures (Figure 2): the signature of Imp(2)’s semantics contains 3 input arguments and
2 output arguments. However, the signature of ImpArr’s semantics contains only 2 input arguments
and 1 output argument, packing program states into a single array rather than : arguments (see
Figure 3 for some examples). By choosing an appropriate theory, the signature of the semantics
can be simpli�ed, thus shrinking the solution space for synthesis.
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Fig. 5. Speedup provided by optimization

Finding: To answer RQ2, Synantic spends most of the time (71.78%) solving SyGuS problems,
and the time is a�ected by the size of the candidate semantic function.

6.4 RQ3: Is the Multi-output Optimization from Section 5.3 E�ective?

Figure 5 compares the running time of Synantic with and without the multi-output optimization
(Section 5.3) on all the runs of our tools for the 7 di�erent random seeds.

With the optimization turned o�, Synantic timed out on 10 more runs (speci�cally all the 7
runs for RegEx and 3 more runs for Diff). All the benchmarks for which disabling the optimization
caused a timeout have 3 or more output variables. Comparing Figure 1a and Figure 1b shows how
the semantic functions used in the RegEx benchmarks are very large (up to size 50), but thanks to
the optimization, our algorithm only has to solve SyGuS problems on formulas of size at most 15.

On the runs that terminated both with andwithout the optimization, the non-optimized algorithm
is on average 8% faster—i.e., the two versions of the algorithm have comparable performance.
However, for 15/98 runs the optimization results in a 20% or more slowdown.When inspecting these
instances, we observed that the multi-output optimization spent many iterations synchronizing
the many possible data �ows for productions where the �nal term was actually small but many
variables were involved—e.g., sequential composition in Imp(2).

Finding: The multi-output optimization from Section 5.3 is e�ective for languages with 3 or more
output variables in their semantics.

6.5 RQ4: How do Synthesized Semantics Compare to Manually Wri�en Ones?

The synthesized semantics for almost all of our benchmarks are either identical to the original
manually constructed one, or each CHC in the synthesized semantics is logically equivalent to the
CHC of the original semantics.
The one exception is the semantics synthesized for the language of RegEx(2), for which the

individual CHCs for Or, Concat, Neg, and Star are not logically equivalent to the manually-
written ones. For instance, consider the Concat rule for the semantics of concatenation. For this
construct, the manually written CHC is shown in Figure 6a, whereas Synantic synthesizes the CHC
shown in Figure 6b. The two CHCs are not logically equivalent. For example, if the children evaluate

to the matrices" =

(
true false false

false false
true

)
and" ′ =

(
true false false

false false
true

)
, the outputs computed by the manually
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Fig. 6. Manually-wri�en and synthesized semantics for Concat in RegEx(2)
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Fig. 7. New semantics for Concat in RegExSimp.

written CHC and the synthesized CHC are "man =

(
true false false

false false
true

)
, and "syn =

(
false false false

true false
false

)
,

respectively, which have di�erent values on the diagonal.
When inspecting the two rules, we realized that the example matrices" and" ′ shown above

cannot actually be produced by the semantic rules for regular expressions. In particular, the
examples require di�erent Boolean values to appear on the diagonal of one 3 × 3 matrix. However,
all the elements on the diagonal represent the semantics of the regular expression on the empty
string, so they must all have the same value! We note that this inconsistency in the semantics
can also be observed without a reference semantics to compare against because di�erent runs of
the algorithm could return logically inequivalent CHCs—in fact, such inequivalence was how we
initially discovered the inconsistency.

Synantic helped us discover an ine�ciency in the semantics that was being used in the standard
regular expressions benchmarks in the SemGuS repository. We thus modi�ed the interpreter so

that for the example above it only produces a 2 × 2 matrix" =

(
ĉ0,1 ĉ0,2

ĉ1,2

)
(corresponding to the

non-empty substrings of the input string) and a single variable"Ċ to denote whether the regular
expression should accept the empty string (instead of the previous multiple copies of logically
equivalent variables). This semantics reduces the total number of variables in the semantic domain
from 6 to 4 in this example.
We call this new semantics RegExSimp (see Figure 7 for an example). After modifying the

interpreter to produce this new semantics, Synantic synthesized the corresponding CHCs in a
median of 1968.00 s.

To check whether the semantics RegExSimp is indeed more e�cient than the original semantics
RegEx, we modi�ed all the 28 regular-expression synthesis benchmarks appearing in the SemGuS
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benchmark set. Each of these benchmarks requires one to �nd a regular expression that accepts
some examples and rejects others.
We then used the Ks2 enumeration-based synthesizer to try to solve all the benchmarks with

either of the two semantics. Because Ks2 enumerates programs of increasing size and uses the
semantics to execute them and discard invalid program candidates, we conjectured that executing
programs faster allows Ks2 to explore the search space faster.

Ks2 was faster at solving synthesis problems with the RegExSimp semantics than with the RegEx
ones (although both solved the same set of benchmarks). Although the speedup over all benchmarks
is only 1.1x, the new semantics RegExSimp was particularly bene�cial for the harder synthesis
problems. When considering the 13 benchmarks for which synthesis using the RegEx took longer
than one second, the speedup increased to 1.18x.

Finding: Synantic synthesized semantics that were identical to the manually written ones
for 13/14 benchmarks. When Synantic found a logically inequivalent semantics, it unveiled a
performance bug.

7 Related Work

Semantics-based Synthesis vs. Library-based Synthesis.

As discussed throughout the paper, our framework is intended for extracting a formal SemGuS
semantics that can be used to then take advantage of existing SemGuS synthesizers. One can
compare our two-step approach (i.e., �rst synthesizing the semantics in SemGuS format, then using
it to synthesize programs) to one-step approaches that only use the given program interpreter in
a closed-box fashion to evaluate input-output examples and use them to perform example-based
synthesis. (Such an approach is also used when synthesizing programs that contain calls to closed-
box library functions [9].) On one hand, the closed-box example-based approach is �exible because
it can be used for a library/language of any complexity. On the other hand, our approach allows
one to use any program synthesizer, even constraint-based ones [13], and to synthesize programs
that meet logical (and not just example-based) speci�cations (e.g., as in [20]) our approach provides
an explicit logical representation of the program semantics, whereas example-based approaches
are limited to generate-and-test synthesis techniques, such as program enumeration [10] and
example-based speci�cations.

Synthesis of Recursive Programs. At a high level, the semantics-synthesis problem we consider is
similar to a number of works on synthesizing recursively de�ned programs [7, 8, 14, 19]. In e�ect, a
semantics for a recursively de�ned grammar is a recursive program assigning meaning to programs
within the language. Both Farzan et al. [7], Farzan and Nicolet [8] use recursion skeletons to reduce
their task from synthesizing a recursive program to synthesizing a non-recursive program. Our
use of semantic constraints plays a similar role. While both of their techniques assume programs
are only structurally recursive (i.e., no recursion on the program term itself), and our framework
explicitly allows for program terms that are self-recursive (e.g., while loops in Imp).
Similar to the approach used by Miltner et al. [19] to synthesize simple recursive programs,

SemSynth employs a bottom-up approach to synthesis (i.e., we �rst synthesize semantics for nullary
productions before moving on to other productions). However, unlike Miltner et al., SemSynth
is well-de�ned for any ordering of production rules and targets a more complex setting—i.e.,
synthesizing program semantics.
Finally, Lee and Cho [14] synthesize recursive procedures from examples by �rst �nding likely

sub-expressions that can be used to build a complex recursive program and then guessing the
recursive structure of the program. The key di�erence is that our approach targets a more restricted
program, synthesizing program semantics, and therefore already has the recursive structure in hand
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(thanks to the presence of the grammar in the problems Synantic is solving). Because we have
limited the synthesis target to an inductively de�ned program semantics, Synantic can directly
focus its e�ort on synthesizing the semantic functions of each CHC using well-known synthesis
techniques.

Datalog Synthesis. Albarghouthi et al. [1] synthesize Datalog programs (i.e., Horn clauses) with
SMT solvers, whereas Si et al. [21] use a syntax-guided approach. In our work, we use constrained
Horn clauses, which are strictly more expressive than Datalog programs, to denote semantics. Aside
from the fact that the Datalog-synthesis problem considers di�erent inputs (i.e., the data), a CHC
also contains a function in a theory T (such as LIA or BV), which Synantic has to synthesize.

Synthesizing Attribute Grammars. Kalita et al. [12] proposed a sketch-based method for synthesiz-
ing attribute grammars. When provided with a context-free grammar, their tool can automatically
create appropriate semantic actions from sketches of attribute grammars. Instead of semantic ac-
tions, in our work we use CHCs to express program semantics. Our approach can model recursive
semantics whereas the technique by Kalita et al. is limited to non-circular attribute grammars. Ad-
ditionally, while their method requires providing a distinct program sketch (i.e., a partial program)
for each production, our approach only requires providing a (fairly general) SyGuS grammar for
each nonterminal in the language.

8 Conclusion

Writing logical semantics for a language can be a di�cult task and our work supplies a method to
automatically synthesize a language’s semantics from an executable interpreter that is treated as a
closed-box. By generating example terms and input-output pairs from the interpreter, we use a
SyGuS solver to synthesize semantic rules. Our evaluation shows that the approach applies to a
wide range of language features, e.g., recursive semantic functions with multiple outputs.

As discussed in Section 2, one motivation for this work is to be able to generate automatically
the kind of semantics that is needed to create a program synthesizer using the SemGuS framework.
In our algorithm, we harness a SyGuS solver to synthesize the constraint in each CHC—i.e., we
harness SyGuS in service to SemGuS—which limits us to synthesizing constraints that are written in
theories that SyGuS supports. Going forward, we would like to make use of “higher-level” theories,
supporting such abstractions as stores or algebraic data types. As SemGuS-based synthesizers and
veri�ers improve, we might be able to satisfy this wish by using SemGuS in service to SemGuS!
That is, we could extend Synantic to use SemGuS solvers to synthesize semantic constraints.

Data-Availability Statement

The artifact that contains Synantic and all benchmark data is available on Zenodo [16].

Acknowledgments

Supported, in part, by a Microsoft Faculty Fellowship; a gift from Rajiv and Ritu Batra; and NSF
under grants CCF-1750965, CCF-1918211, CCF-2023222, CCF-2211968, and CCF-2212558. Any
opinions, �ndings, and conclusions or recommendations expressed in this publication are those of
the authors, and do not necessarily re�ect the views of the sponsoring entities.

References

[1] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. 2017. Constraint-based synthesis of datalog

programs. In Principles and Practice of Constraint Programming: 23rd International Conference, CP 2017, Melbourne, VIC,

Australia, August 28–September 1, 2017, Proceedings 23. Springer, 689–706.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 284. Publication date: October 2024.



Synthesizing Formal Semantics from Executable Interpreters 284:27

in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 1–8. https://ieeexplore.ieee.org/

document/6679385/

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enumerative program synthesis via divide

and conquer. In International conference on tools and algorithms for the construction and analysis of systems. Springer,

319–336.

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems, Dana Fisman and Grigore Rosu (Eds.). Springer International Publishing,

Cham, 415–442.

[5] Xiaohong Chen and Grigore Rosu. 2019. A Semantic Framework for Programming Languages and Formal Analysis. In

Engineering Trustworthy Software Systems - 5th International School, SETSS 2019, Chongqing, China, April 21-27, 2019,

Tutorial Lectures (Lecture Notes in Computer Science, Vol. 12154), Jonathan P. Bowen, Zhiming Liu, and Zili Zhang (Eds.).

Springer, 122–158. https://doi.org/10.1007/978-3-030-55089-9_4

[6] Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps. 2021. Programmable program synthesis. In Computer

Aided Veri�cation: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33.

Springer, 84–109.

[7] Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion synthesis with unrealizability witnesses. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 244–259.

[8] Azadeh Farzan and Victor Nicolet. 2021. Counterexample-Guided Partial Bounding for Recursive Function Synthesis.

In Computer Aided Veri�cation: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings,

Part I 33. Springer, 832–855.

[9] Kangjing Huang and Xiaokang Qiu. 2022. Bootstrapping Library-Based Synthesis. In International Static Analysis

Symposium. Springer, 272–298.

[10] Keith J. C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni. 2024. The SemGuS Toolkit. In Computer

Aided Veri�cation, Arie Gur�nkel and Vijay Ganesh (Eds.). Springer Nature Switzerland, Cham, 27–40.

[11] Larry G. Jones. 1990. E�cient Evaluation of Circular Attribute Grammars. ACM Trans. Program. Lang. Syst. 12, 3

(1990), 429–462. https://doi.org/10.1145/78969.78971

[12] Pankaj Kumar Kalita, Miriyala Jeevan Kumar, and Subhajit Roy. 2022. Synthesis of semantic actions in attribute

grammars. In 2022 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 304–314.

[13] Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. 2021. Semantics-guided synthesis. Proceedings of the

ACM on Programming Languages 5, POPL (2021), 1–32.

[14] Woosuk Lee and Hangyeol Cho. 2023. Inductive synthesis of structurally recursive functional programs from non-

recursive expressions. Proceedings of the ACM on Programming Languages 7, POPL (2023), 2048–2078.

[15] Junghee Lim and Thomas W. Reps. 2013. TSL: A System for Generating Abstract Interpreters and its Application to

Machine-Code Analysis. ACMTrans. Program. Lang. Syst. 35, 1 (2013), 4:1–4:59. https://doi.org/10.1145/2450136.2450139

[16] Jiangyi Liu, Charlie Murphy, Anvay Grover, Keith Johnson, Thomas Reps, and Loris D’Antoni. 2024. Artifact of paper

"Synthesizing Formal Semantics from Executable Interpreters". https://doi.org/10.5281/zenodo.13368062

[17] Jiangyi Liu, Charlie Murphy, Anvay Grover, Keith J. C. Johnson, Thomas Reps, and Loris D’Antoni. 2024. Synthesizing

Formal Semantics from Executable Interpreters. arXiv:2408.14668 [cs.PL] https://arxiv.org/abs/2408.14668

[18] Eva Magnusson and Görel Hedin. 2003. Circular Reference Attributed Grammars - Their Evaluation and Applications.

InWorkshop on Language Descriptions, Tools and Applications, LDTA@ETAPS 2003, Warsaw, Poland, April 12-13, 2003

(Electronic Notes in Theoretical Computer Science, Vol. 82), Barrett R. Bryant and João Saraiva (Eds.). Elsevier, 532–554.

https://doi.org/10.1016/S1571-0661(05)82627-1

[19] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up synthesis of

recursive functional programs using angelic execution. Proceedings of the ACM on Programming Languages 6, POPL

(2022), 1–29.

[20] Charlie Murphy, Keith J. C. Johnson, Thomas Reps, and Loris D’Antoni. 2024. Verifying Solutions to Semantics-Guided

Synthesis Problems. arXiv:2408.15475 [cs.PL] https://arxiv.org/abs/2408.15475

[21] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and Mayur Naik. 2018. Syntax-guided

synthesis of datalog programs. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 515–527.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 284. Publication date: October 2024.


	Abstract
	1 Introduction
	2 Illustrative Example
	3 Problem Definition
	3.1 Syntax
	3.2 Interpreters
	3.3 Semantics
	3.4 Equivalence Oracle and Semantics Synthesis Problem

	4 Semantics Synthesis
	4.1 Overview of SemSynth
	4.2 Specification of SynthSemanticConstraint
	4.3 Specification of Verify
	4.4 Synthesizing Semantics for Semantically Recursive Productions

	5 Implementation
	5.1 Implementation of SynthSemanticConstraint
	5.2 Implementation of Verify
	5.3 Optimized SynthSemanticConstraint for Multi-Output Productions

	6 Evaluation
	6.1 Benchmarks
	6.2 RQ1: Can Synantic Synthesize the Semantics of Non-trivial Languages?
	6.3 RQ2: Where is Time Spent during Synthesis?
	6.4 RQ3: Is the Multi-output Optimization from sec:implementation:optimization Effective?
	6.5 RQ4: How do Synthesized Semantics Compare to Manually Written Ones?

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

