
Gateways 2024 
 
 

 

Open OnDemand Overview and Customization 
 

Alan Chalker, Ph.D. 
Ohio Supercomputer Center 

Columbus, OH 
alanc@osc.edu 

 
Julia Ma 

Massachusetts Green HPC Center 
Chicago, IL 

jma@mghpcc.org 
 

Jeff Ohrstrom 
Ohio Supercomputer Center 

Columbus, OH 
johrstrom@osc.edu 

 
 
 
 
 
 
 

Travis Ravert 
Ohio Supercomputer Center 

Columbus, OH 
travert@osc.edu 

 
Emily Moffat Sadeghi 

Ohio Supercomputer Center 
Columbus, OH 

emoffat@osc.edu 
 

Hazel Randquist 
Ohio Supercomputer Center 

Columbus, OH 
hrandquist@osc.edu 

 
Matt Walton 

Ohio Supercomputer Center 
Columbus, OH 

mwalton@osc.edu 
 
 
 

 
 

ABSTRACT 
Open OnDemand Overview 

Developed by the Ohio Supercomputer Center (OSC) and 
funded by the National Science Foundation, Open OnDemand 
(openondemand.org) is an open-source portal that enables web-
based access to HPC services. Clients manage files and jobs, 
create and share apps, run GUI applications and connect via 
SSH, all from any device with a web browser.   

Open OnDemand empowers students, researchers, and 
industry professionals with remote web access to 
supercomputers. From a client perspective, key features are that 
it requires zero installation (since it run entirely in a browser), is 
easy to use (via a simple interface), and is compatible with any 
device (even a mobile phone or tablet).  From a system 
administrator perspective, key features are that it provides a low 
barrier to entry for users of all skill levels, is open source and 
has a large community behind it, and is configurable and flexible 
for user’s unique needs. 

Relevance to the Gateways Community 

OOD is currently installed and running at 1,600+ academic, 
governmental, and commercial HPC centers both in the US and 
internationally, including the University of Utah, Stanford, 
Pittsburgh Supercomputer Center, Tufts University, University 
at Buffalo, University of Arizona, Texas A&M, and NVIDIA, 

and is actively being evaluated by many more. Most of these 
centers send representatives to the Gateways conferences.  

The OOD team has held tutorials at multiple PEARC and 
Gateways conferences in recent years as well as regular online 
webinars, each of which have seen significant attendance of 
many dozens of people.  As the Gateways series of conferences 
has historically had many attendees from locations that utilize 
OOD, as well as attendees from many of the most prolific 
science gateways development teams, holding another tutorial is 
a natural fit for the conference.   

This proposed tutorial is meant to follow that same general 
format as utilized at PEARC and Gateways in the past with 
regards to application development and integration, with some 
key updates to reflect the changes in the Open OnDemand 
ecosystem over the past year. 

A key differentiator of this year’s BOF compared to previous 
years is that the Open OnDemand project has new funding from 
the NSF POSE program, which is designed to establish a new 
governance model for the ecosystem.  Open OnDemand is in the 
process of establishing a steering committee and working 
groups, which is of significant interest to a large portion of the 
Gateways24 attendees.   

An additional notable differentiator from previous years is 
the release in early 2024 of version 3.1 of the platform, that has 
many additional features that are of interest to the community, 
including integration with Globus and a new project manager.  



Gateways 2024 
 
 

 
Details of each of these key features will be included in the 
presentation.   

Tutorial Overview:  

 This tutorial is meant to provide attendees with the basic 
tools to allow them to develop or integrate new applications into 
Open OnDemand.  Nearly any software application can be made 
accessible via OOD.  The official OOD github repo currently 
has links to software that appeals to a wide range of scientific 
disciplines, such as Jupyter, Abaqus, ANSYS, COMSOL, 
MATLAB, RStudio, Tensorboard, QGIS, VMD, RELION, 
STATA and Visual Studio.  The OOD development team is also 
aware of planned or ongoing work to integrate many other 
software packages and platforms, including many that are 
prominent within the Science Gateways community, such as 
Galaxy, TAPIS, Globus, and Pegasus. 

 

 

 

A general agenda is as follows: 

Introduction to Open OnDemand:  

~5 minutes (lecture & demonstration) 

A very basic introduction to OnDemand will be presented to 
provide attendees with the goals of using OnDemand later in the 
session.  

Open OnDemand Hands-on Introduction:   

~15 minutes (hands-on activity) 

The hands on walk through will provide details of how to use 
OnDemand and serve as an example of user training. We will 
walk users through several steps including how to log in as well 
as using the Files, Job Composer, Active Jobs, Shell, and the File 
Editor App. We will walk users through a similar tutorial 
showing how to launch multiple interactive Apps.  Participants 
will gain a working knowledge of how to use Open OnDemand. 

Open OnDemand Customization:   

~45 minutes (hands-on activity) 

The instructor will walk attendees through basic 
configuration of the Open OnDemand dashboard.  This will go 
through basic configurations like navigation bar color to more 
complex additions like adding html to the page. The instructor 
will then review how apps work with some detail to familiarize 
the participant with the concepts in this tutorial.  The hands-on 
tutorial will then guide the participant through getting a Jupyter 
app to work in the environment.  Participants will then extend 
and customize this app through detailed instructions.   

Open Floor Discussion: 

~20 minutes 

 The remainder of the time will be dedicated to open floor 
discussions and questions from the participants regarding 
specific ideas or issues they may have.  

The tutorial will end with a short PowerPoint presentation that 
provides attendees with options for contacting the instructors 
and other software developers at OSC.  We will also discuss 
future development plans, invite attendees to participate in the 
community, and answer questions. 

Tutorial Logistics:  

This is a 90 minute long, hands-on, step-by-step instructional 
tutorial utilizing a mixture of PowerPoint presentations, brief 
pre-recorded videos, and demonstrations.  Attendees will utilize 
pre-configured Docker containers and materials published on 
GitHub to step through key aspects of the semi-automated 
installation/configuration process on their own machines.  
Because all the materials are publicly available, they can repeat 
the process outside the tutorial at their leisure and share it with 
colleagues. 
 
Attendee Skill Level:  
 Intermediate 
 
Tech Requirements: 

Attendees must utilize their own laptop with the Docker 
client preinstalled and tutorial containers pre-downloaded.  
Docker experience is helpful, but not required. Linux command 
line experience and an understanding of HPC clusters and batch 
scheduling is required. 

 

 

Keywords—Open OnDemand, App Development, HPC 

REFERENCES 
[1] Wisniewski, L, Chalker, A, et al. (2023) Augmenting the User Experience 

in Open OnDemand.  PEARC '23: Practice and Experience in Advanced 
Research Computing. https://doi.org/10.1145/3569951.3597546 

[2] Chalker, A, Settlage, R, Hudak, D. (2021) Open OnDemand App 
Development and Integration. Gateways 2021. 
https://doi.org/10.5281/zenodo.5570225 

[3] Settlage, R, Chalker, A, et al. (2021) Open OnDemand as a Platform for 
Virtual Learning in Higher Education. Proceedings of Sixth International 
Congress on Information and Communication Technology. 
https://doi.org/10.1007/978-981-16-1781-2 

[4] Chalker, A, et al. (2020) Open OnDemand: State of the platform, project, 
and the future. Concurrency and Computation: Practice and Experience. 
https://doi.org/10.1002/cpe.6114 

[5] Settlage, R, Chalker, A, et al. (2020) Portals for Interactive Steering of 
HPC Workflows. Tools and Techniques for High Performance 
Computing. https://doi.org/10.1007/978-3-030-44728-1_11 

[6] Settlage, R, Chalker, A, et al. (2019) Open OnDemand: HPC for 
Everyone. International Conference on High Performance Computing. 
https://doi.org/10.1007/978-3-030-34356-9_38  

[7] Franz, E, Chalker, A, et al. (2019) Scaling R Shiny Apps to Multiple 
Concurrent Users in a Secured HPC Environment Using Open 
OnDemand. Proceedings of the Practice and Experience in Advanced 



Gateways 2024 
 
 

 
Research Computing on Rise of the Machines. 
https://doi.org/10.1145/3332186.3332211  

[8] Rodgers, M, Chalker, A, et al. (2019) Data Commons to Support 
University-Wide Cross Discipline Research. Proceedings of the Practice 
and Experience in Advanced Research Computing on Rise of the 
Machines. https://doi.org/10.1145/3332186.3335198  

[9] Nicklas, J, Chalker, A, et al. (2018) Supporting distributed, interactive 
Jupyter and RStudio in a scheduled HPC environment with Spark using 
Open OnDemand. Proceedings of the Practice and Experience on 
Advanced Research Computing. 
https://doi.org/10.1145/3219104.3219149  

[10] Hudak, D, Chalker, A, et al., (2018) Open OnDemand: A web-based client 
portal for HPC centers. Journal of Open Source Software. 
https://doi.org/10.21105/joss.00622 

 



How to Spin Up a Short-term Cloud Science Platform for 
Workshops

Alex Antunes 
Johns Hopkins Applied Physics 

Laboratory
Laurel, USA

0000-0002-3098-2602

Peter Shumate
Johns Hopkins Applied Physics 

Laboratory
Laurel, USA

peter.shumate@jhuapl.edu

Shawn Polson
Laboratory for Atmospheric and 

Space Physics
University of Colorado Boulder

Boulder, USA
shawn.polson@lasp.colorado.edu

Abstract— We discuss approaches for instantiating a short-
term multi-user cloud for a large audience of cloud newcomers to 
teach  better  research  software  engineering  skills  within  a 
domain-specific  environment. We  walk  through  our  PyHC 
Summer School environment using the HelioCloud open source 
platform as the example, and discuss the logistics required and 
lessons learned.

Keywords—  gateways,  cloud,  research  software  engineer, 
containers, heliophysics

I. INTRODUCTION (HEADING 1)
We discuss gateway management approaches for transitory 

cloud  environments  including  logistics,  costs,  guardrails, 
difficulties  in  syncing  containers  with  outside  tutorial 
contributors, risks, and benefits.  We have spun up a week-long 
cloud environment to train early careers in the specific software 
and  problems  for  heliophysics  research,  then  torn  it  down 
afterwards.  Each time we run this "PyHC Summer School", 
we improve our 'one button deploy'  (spoiler:  more than one 
button  involved)  and  get  better  at  container  management  to 
support  the  dozen  sometimes  conflicting  science  packages 
required by the environment.  Success requires a mix of good 
technical basis and really structuring how both contributors and 
participants will interact with the system. 

Our goal for running PyHC workshops is that engaging in 
research as a scientist or research software engineer requires 
domain  knowledge,  programming  skills,  and  access  to  big 
datasets  and enough compute  power  to  grind through them. 
Building these skills  gets  boosted when experienced experts 
guide hands-on sessions within a uniform environment. Hence 
an open source cloud + container + data sources customized for 
the domain, with an easy interface such as Jupyter Notebooks, 
and sufficient cloud performance to scale.

However,  running  such  an  event  efficiently  involves 
crafting  infrastructure,  gathering  tutorials  from  disparate 
community users, and creating a secure yet easily accessible 
environment that need only be ephemeral for the duration of 
the event. Unlike onboarding long-term users or creating tools 
for  existing  working  groups,  the  logistics  of  spinning  up  a 
temporary yet fully functional scientific platform with domain-
required software pre-loaded and tested are complex.

Specifically  because  such  events  are  short-term  and 
ephemeral,  the  risk  profile  is  different  than  an  institutional 
research environment.  Concerns include the need for a pop-up 
architecture requiring minimal dev time to deploy, difficulties 
in creating a stable container that supports multiple presenter 
needs with potential package incompabilities, and dealing with 

costs  and  guardrails  for  the  runtime.   The  design  should 
minimize  hurdles  in  attendees  mastering  the  interface  while 
limiting cost risk and exposure for the provider. 

Our  HelioCloud  [1]  platform  is  a  Pangeo-derived  open 
source  set  of  cloud  software  for  the  heliophysics  research 
community, available on github with details at heliocloud.org. 
Collaborating  with  the  'Python  in  Heliophysics  Community' 
(PyHC.org,  [2])  community,  we've  supported  spinning  up  a 
Jupyter Daskhub AWS-backed framework for their week-long 
summer schools, where 400+ participants learn how to use both 
'the  cloud'  and  the  scientific  Python  packages  needed  for 
research software engineering via hands-on problems presented 
by package developers that draw on real science problems.  It is 
aimed at graduate students, early career scientists, and anyone 
eager  to  deepen  their  understanding  of  Python  in  the 
Heliophysics and Space Weather disciplines.

In  our  90  minute  tutorial,  we  walk  through  the  basics 
needed to:

(a)  install  a  multiple  user  AWS cloud environment  with 
easy sign on and Jupyter notebooks, backed by a single AWS 
account

(b)  resolve  conflicting  dependencies  for  the  supporting 
container build (an iterative process, alas)

(c)  quickly  onboard  the  participants  with  accounts  pre-
loaded with the content tutorials so everyone can try it from the 
user perspective

(d) discuss the runtime support needed for the inevitable 
individual problems

(e) discuss the cost risks we're willing to accept and the 
steps we took to mitigate these

(f) provide statistics on usage, costs, and outcomes

We also  invite  questions  and  sharing  of  other  solutions 
people have used.

1) Proposed length: 90 minutes

2) Recommend skill level:

Beginner to 'cloud', intermediate familiarity with containers 
and/or Python environments

3)  Technology  and/or  Software  requirements:  Web 
connection required.  We will have a pop-up environment set 
up with demo Notebooks (some including deliberate bugs) to 
provide an example runtime experience, and provide examples 
of the reporting cost dashboards the administrator will use.



REFERENCES

[1] “HelioCloud:  a  community  cloud-based  approach  to  heliophysics 
analytics  and  software  development.  Thomas,  B.A.  et  al,  2022, 
2022AGUFMSH45B..01

[2] Python  in  Heliophysics  Community  (PyHC)  Standards, 
10.5281/zenodo.2529130



Cheap and FAIR: Building a Serverless Research
Data Repository

1st Andrea Zonca
San Diego Supercomputer Center
University of California San Diego

La Jolla, CA USA
0000-0001-6841-1058

2nd Rick Wagner
San Diego Supercomputer Center
University of California San Diego

La Jolla, CA USA
0000-0003-1291-5876

Abstract—In this tutorial we will walk our attendees through
the process of starting from data files in a folder, organizing
them into a Globus collection and then publish a data catalog
website to GitHub pages using the ”Serverless Research Data
Repository” (SRDR) tools.

At each stage of the process we will highlight the features
required to make a published dataset compliant to the FAIR
(Findability, Accessibility, Interoperability, and Reuse) principles.

The tutorial is targeted both at gateway developers interested
in deploying and administering their own data portal and at
attendees interested in publishing their data in the most effective
way.

Index Terms—Science Gateways, FAIR, Globus, GitHub,
Markdown

I. TUTORIAL SPECIFICATIONS

TABLE I
TUTORIAL LENGTH, LEVEL, AND REQUIREMENTS

Tutorial Length 3 hours
Recommended Skill Level Intermediate
Prerequisites Familiarity with GitHub and Mark-

down
Technical Requirements A web browser and either SSH or a

terminal with git and Python. GitHub
and Globus accounts are needed (both
are free).

II. SERVERLESS RESEARCH DATA REPOSITORY MODEL

The Serverless Research Data Repository (SRDR) architec-
ture was created to meet four goals common to the CMB-S4
Collaboration1 and other research projects:

• establishing data repositories which incorporate best prac-
tices;

• reducing or eliminating operational costs for projects to
maintain a data repository;

• providing new projects with a base of good data practices;
• streamlining the later publication or curation of datasets.
While there are several related terms used to describe a

data repository, including archive, data portal, and registry,
the SRDR is based on this definition:

1https://cmb-s4.org

A data repository is a set of datasets organized in
and accessible from a collection, described by and
discoverable in a catalog, and managed by one or
more policies.

These four components provide a conceptual framework for
research projects to organize their data practices. We also make
the premise that the quality of a data repository is based on
the policies it adopts (e.g., metadata standards and availability)
and how well it implements them.

III. SRDR ARCHITECTURE

The SRDR architecture, shown in Figure II, is based on
the goals, definition, and premise delineated in the previous
section. The SRDR combines Globus Guest Collections [1]
for data storage and access (the collection) and GitHub [2]
Pages for data discovery and description (the catalog) with pol-
icy recommendations as a data repository template requiring
minimal effort to adopt and operate. Like the Django Globus
Portal Framework [3] the SRDR architecture is derived
from the Modern Research Data Portal [4] design pattern
which provides a robust system of decoupled components.
Many projects can deploy a data repository based on the
SRDR without incurring any ongoing operational costs. An
inspiration for this design is X-ray Tomography Data Bank,
or TomoBank [5], which uses Read the Docs to publish a
catalog of datasets originally hosted on Petrel at the Argonne
Leadership Computing Facility [6].

The SRDR model has been deployed by the authors to
build the Data Portal for the CMB-S4 experiment in the
field of Cosmology to share maps of the Universe in the
microwave regime both within the scientific collaboration and
publicly: data.cmb-s4.org. Fig. VII-A shows a screenshot of
the CMB-S4 data portal homepage and a page containing list
of files identified by their own metadata and containing links
to download the actual files via HTTPS through Globus.

IV. TUTORIAL GOALS

The two main goals of the tutorials are to teach the attendees
the most important aspects of the FAIR principles and apply
them in practice by deploying their own data portal using the
SRDR tools.

https://cmb-s4.org
https://data.cmb-s4.org


permissions

groups

markdown

data
steward

catalog

collection

datasets

site
generatordata

discovery

data
access

researcher

https
globus
connect

Fig. 1. Overview of the SRDR architecture.

The tutorial will cover many general aspects of data repos-
itories, also from the users’ perspective. Therefore, it is not
only targeted to gateway developers but also to scientists who
want to learn how to publish their own datasets in the most
effective way.

After this tutorials, attendees will:

• understand the basic components of a research data
repository;

• understand the FAIR data guidelines;
• know the difference between a dataset’s files, metadata,

identifier, and landing page;
• the role of machine-readable metadata in data discovery;
• be able to apply access control policies to datasets and

their metadata;
• know how to use the tools provided by SRDR.

V. PREREQUISITES

Prior to the tutorial, attendees should have a GitHub
(github.com) and Globus (globus.org) accounts. Attendees can
reuse their accounts. When creating a Globus account, users
can select GitHub to login, so creating a GitHub account first
is recommended.

Attendees will have the option to download the sample
datasets and run the required scripts on their own laptops.
However, it is recommended to connect via SSH to the AWS
EC2 instances provided during the tutorial. This will ensure a
consistent environment for all attendees.

We will provide pre-configured Globus Guest Collections
and GitHub repositories with GitHub Pages enabled.

VI. TUTORIAL AGENDA

TABLE II
TUTORIAL AGENDA

Time Topic
0:00 - 0:15 Introduction & Setup
0:15 - 0:30 Background: The SRDR Model & Components
0:30 - 0:45 Prepare Datasets
0:45 - 1:00 Background: FAIR Data
1:00 - 1:30 Create the Collection
1:30 - 2:00 Break
2:00 - 2:15 Background: Identifiers & Landing Pages
2:15 - 2:45 Create the Catalog
2:45 - 3:00 Enhancing the Catalog
3:00 - 3:15 Demos: Extending the SRDR
3:15 - 3:30 Discussion & Wrapup

VII. TUTORIAL CONTENT

A. Introduction on SRDR

In the first part of the tutorial we will present the SRDR
architecture, as shown in Figure II, we will focus on the
role played by Globus (data hosting and permissions) and by
GitHub (website hosting and metadata catalog).

We will highlight how the SRDR model is designed to
be cheap both in terms of operational costs and in terms of
maintenance effort. This is achieved by relying on institutional
data storage and Globus services, generally free for academic
users, and on GitHub Pages for hosting the static catalog
website.

https://github.com
https://docs.globus.org/guides/tutorials/manage-files/transfer-files/


Fig. 2. Screenshot of the CMB-S4 Data Portal, the catalog component of SRDR, and a list of datasets.

B. The Datasets and Collection

We will provide example datasets with an open license that
the attendees will work with. They will start by packaging
the datasets adhering to FAIR principles, including defining
an identifier and generating metadata for each dataset. The
attendees will ingest the datasets into a Globus Guest Col-
lection that will be shareable through the Globus platform.
The attendees will also learn how to configure the Globus
Guest Collection with permissions suitable to their needs and
to expose the data for HTTPS access. Finally, they will run
a tool to extract minimal metadata about the files that will
be shared both via Globus and via the Data Portal to enable
automated data retrieval.

C. The Catalog

Next the attendees will learn how to use SRDR tools to
automatically create Markdown files to build the data catalog
as a statically generated website. We will introduce concepts
of FAIR related to the catalog and establish nomenclature
of its main components. The attendees will then push their
Markdown files to GitHub to be automatically compiled by a
GitHub Action into a website using Jekyll [7] and published
via GitHub Pages. They will be able to navigate through the
data catalog on their browser and verify they can download
data files directly to their laptop with no need of having Globus
installed. Finally we will go though a quick demo on how to
build more advanced features on top of SRDR, for example
doing visualization and basic analysis right in their browsers.

VIII. INSTRUCTORS

Andrea Zonca is the lead of the Scientific Computing
Applications Group at the San Diego Supercomputer Center
(SDSC), he has a background in Cosmology and is a member
of CMB-S4. He is in charge of maintaining the Data Portal
for the CMB-S4 collaboration.

Rick Wagner is the Chief Technology Officer (CTO) at
SDSC. Previously, Rick was the Globus Professional Services
Manager where he led the development of several data portals
and architected the Django Globus Portal Framework. He has
supported FAIR data within astrophysics, climate science, and
bioinformatics.

ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a Department
of Energy Office of Science User Facility using NERSC award
HEP-ERCAP0023125. Support was also provided by UC San
Diego Research IT Services [8].

REFERENCES

[1] K. Chard, I. Foster, and S. Tuecke, “Globus: Research data management
as service and platform,” in Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability,
Success and Impact, ser. PEARC ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3093338.3093367

[2] GitHub, “Github pages — websites for you and your projects.” https:
//pages.github.com, 2024, [Online; accessed 9-April-2024].

[3] N. Saint, R. Chard, R. Vescovi, J. Pruyne, B. Blaiszik,
R. Ananthakrishnan, M. Papka, R. Wagner, K. Chard, and I. Foster,
“Active research data management with the django globus portal
framework,” in Practice and Experience in Advanced Research
Computing, ser. PEARC ’23. ACM, Jul. 2023. [Online]. Available:
http://dx.doi.org/10.1145/3569951.3593597

[4] K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, and J. Williams,
“The modern research data portal: a design pattern for networked,
data-intensive science,” PeerJ Computer Science, vol. 4, p. e144, Jan.
2018. [Online]. Available: http://dx.doi.org/10.7717/peerj-cs.144

[5] F. D. Carlo, D. Gürsoy, D. J. Ching, K. J. Batenburg, W. Ludwig,
L. Mancini, F. Marone, R. Mokso, D. M. Pelt, J. Sijbers, and M. Rivers,
“Tomobank: a tomographic data repository for computational x-ray sci-
ence,” Measurement Science and Technology, vol. 29, no. 3, p. 034004,
feb 2018.

https://doi.org/10.1145/3093338.3093367
https://pages.github.com
https://pages.github.com
http://dx.doi.org/10.1145/3569951.3593597
http://dx.doi.org/10.7717/peerj-cs.144


[6] W. E. Allcock, B. S. Allen, R. Ananthakrishnan, B. Blaiszik, K. Chard,
R. Chard, I. Foster, L. Lacinski, M. E. Papka, and R. Wagner, “Petrel:
A programmatically accessible research data service,” in Proceedings of
the Practice and Experience in Advanced Research Computing on Rise
of the Machines (Learning), ser. PEARC ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[7] Jekyll Core Team, “Jekyll,” 2024. [Online]. Available: https://jekyllrb.
com/

[8] UCSD Research IT, “Research it services,” https://research-it.ucsd.edu,
2024, [Online; accessed 14-April-2024].

https://jekyllrb.com/
https://jekyllrb.com/
https://research-it.ucsd.edu


Creating Science Gateway or HPC portal on OneSciencePlace 
 
Duration: 90 mins 
Recommended skill: Beginner 
Requirements: Web browser 
Project website: OneSciencePlace.org 
 
OneSciencePlace is a new platform to build an online and composable cyberinfrastructure that aims to 
transform delivery of FAIR content and computing in a single and easy to use environment. The platform 
could be used to build Science Gateways, HPC portals, Data repositories, Knowledgebase, and other 
highly customized applications. OneSciencePlace platform is built on a set of mature technologies that 
includes Drupal, SeedMeLab, Tapis and others. It can seamlessly interface with more than one compute 
resources such as Linux hosts, HPC clusters as well as data resources such as POSIX file systems or S3 
object storage.  Integration with other options such as Kubernetes and Globus are also on the future 
development roadmap. 
 
This tutorial will focus on Science Gateway and HPC portal use cases and will guide attendees to explore 
OneSciencePlace in a hands-on manner. Each of the following aspects will be discussed/demonstrated in 
the tutorial with hands on component: 
·    Overview of available compute and data systems 
·    Using predefined applications (apps) (Hands-on) 
o   Containerized web app such as Jupyter/RStudio 
o   Containerized VNC app such as Linux Desktop 
o   Command line executable on a system 
·    Use above apps on a Linux host or an HPC cluster (Hands-on) 
·    Creating and using a apps along with their user interface (Hands-on) 
·    Adding a new compute system 
·    Authentication options including local accounts, LDAP or Single-sign-on 
·    FAIR publishing and data sharing 
  
Attendee outcomes 
Attendees will be able to gain hands-on experience of OneSciencePlace. They will learn to use apps and 
data management on more than one system, in a single environment. Attendees will gain an 
understanding of creating new apps along with its user interface with no-code. The tutorial will help 
germinate ideas on how OneSciencePlace could be used to serve as a single environment that seamlessly 
integrates to more than one cluster/host and provides users an ability to run a variety of applications. 
They will also gain an understanding and feasibility allowing users to bring and add their own 
applications on OneSciencePlace that is scalable and empowering to users. 
  
 

 

https://onescienceplace.org/


Reproducible ML Workflows and Deployments with Tapis

Joe Stubbs1 , Nathan Freeman1, Anagha Jamthe1, Christian Garcia1 , Dhanny Indrakusuma1

Texas Advanced Computing Center, Austin, TX, USA
{jstubbs, nfreeman, ajamthe, cgarcia}@tacc.utexas.edu, dhannywi@utexas.edu

Abstract:

This tutorial aims to provide researchers with a comprehensive introduction to the latest
reproducible Machine Learning (ML) workflows and tooling provided by the NSF-funded Tapis
v3 Application Programming Interface (API) and User Interface (UI). Through hands-on
exercises, participants will gain experience in querying pre-trained ML models from public ML
infrastructures such as Hugging Face or the ICICLE AI Institute, deploying various ML
work-environments, and developing ML workflows on national-scale supercomputing resources.
Throughout this tutorial, we will focus on utilizing the Tapis Workflows API, Tapis Pods API,
Tapis ML Hub API, and TapisUI. These production-grade services are designed to simplify the
facilitation and creation of trustworthy, reproducible, scientific workflows. By abstracting the
complexities of underlying technologies behind user-friendly APIs, the Tapis services enable
seamless integration with high performance computing (HPC) resources available at institutions
with a Tapis deployment. Ultimately the tutorial aims to empower researchers to efficiently
develop, deploy, and maintain their own ML workflows.

Description and Format:

We will set up training accounts for attendees so they can access Tapis resources regardless of
their current TACC account creation status. Course material, including the slides and hands-on
exercises for the tutorial, will be published on Github pages and will remain available to the
attendees during and after the tutorial.
The section Introduction to Tapis will include theoretical concepts followed by simple
hands-on-exercises. Attendees will be able to run the exercises in both Jupyter Notebooks and
TapisUI. TapisUI is a serverless interactive science gateway that runs entirely on GitHub pages
to interact with different Tapis services. A pre-computed example Jupyter notebook containing a
description of building and running the scientific workflows will be available in case of internet
outage. The tutorial will have a good mix of presentation and hands-on exercises for the
attendees to learn and implement their own scientific computing workflows. We will have
proctors working throughout the session to help attendees with the tutorial. The proposed
tutorial schedule is as follows:



Time Block Topics

40 min 1 Introduction to Tapis, Authentication, TapisUI
Overview

20 min 1 Introduction to Tapis Pods and deploy Pod instances

30 min 1 Introduction to Tapis ML Hub and interfacing with
models

30 min - Break

25 min 2 Introduction to Tapis Workflows

20 min 2 Creating an ML workflow to facilitate automatic data
collection

25 min 2 Overview of more Tapis use cases and integrations

10 min 2 Potential Tapis Use Cases (discussion with attendees)

10 min 2 Q/A

Tutorial Duration: 3 hours (excluding break)

Learning Outcomes:

By the end of this workshop attendees will be able to:
● Use Tapis APIs for creating and executing ML workflows
● Interact with Tapis ML Hub and interface with models
● Deploy instances with the Pods API which utilize GPU resources
● Launch ML oriented JupyterHub instances alongside other ML containers
● Understand how to create defined workflows for a real-world scientific use-case
● Have a basic understanding of deploying LLM models from Hugging Face
● Utilize Tapis UI to interact with Tapis services

Target Audience:

The audience for this workshop fits into three categories:

1) Researchers that utilize national, campus and local cyberinfrastructure resources and wish to
do so in a reproducible, scalable and programmable manner.

2) Cyberinfrastructure specialists such as research software engineers (RSE), gateway
providers/developers and infrastructure administrators. People in these roles can utilize open
source technologies and state-of-the-art techniques to enable portable, reproducible
computation.



3) Cyberinfrastructure directors, managers and facilitators that are looking for solutions to aid
and educate their institutional researchers in order to better leverage local and distributed
computational and cyberinfrastructure resources.

Content Level:

Beginner 70%, Intermediate 30%

Audience Prerequisites:

Attendees should have DockerHub accounts. Attendees must use their own laptop for the
hands-on part of the tutorial. Attendees should have TACC accounts or use day-of training
credentials.

Acknowledgement:

This workshop material is based upon work supported by the National Science Foundation Plant
Cyberinfrastructure Program (DBI-0735191), the National Science Foundation Plant Genome
Research Program (IOS-1237931 and IOS-1237931), the National Science Foundation Division
of Biological Infrastructure (DBI-1262414), the National Science Foundation Division of
Advanced CyberInfrastructure (1127210), (2112606), and (1931439 and 1931575).

Presentation team:

Dr. Joe Stubbs is a Research Associate and leads the Cloud and Interactive Computing (CIC)
group at the Texas Advanced Computing Center at the University of Texas at Austin. Dr. Stubbs
is currently the PI of two NSF-funded projects and has played a fundamental role in developing
numerous national-scale cyberinfrastructure systems for various scientific and engineering
communities used by thousands of researchers.
Previous trainings:

● PEARC 23: Best Practices of CI/CD for High Performance Computation with Tapis
Workflows API

● PEARC 22: Building Portable, Scalable and Reproducible Scientific Workloads across
Cloud and HPC for Gateways

● TACCster 2022: Tapis day at TACC
● Gateways 21: Portable, Scalable, and Reproducible Scientific Computing: from Cloud to

HPC
● PEARC 2020: Leveraging Tapis For Portable, Reproducible High Performance

Computing In the Cloud
● Gateways 2019: Portable, Reproducible High Performance Computing In the Cloud



● PEARC 2019: Portable, Reproducible High Performance Computing In the Cloud

Nathan Freeman is an Engineering Scientist Associate in the Cloud and Interactive Computing
(CIC) group at the Texas Advanced Computing Center at the University of Texas at Austin.
Nathan manages the development of the Tapis Workflows API and related services, libraries,
and UI.
Previous trainings:

● PEARC 23: Best Practices of CI/CD for High Performance Computation with Tapis
Workflows API

● TACCster 2022: Tapis day at TACC

Dr. Anagha Jamthe is a Research Associate in the Cloud and Interactive Computing group
(CIC) at the Texas Advanced Computing Center at the University of Texas at Austin. Dr. Jamthe
has played a key role in developing and validating Tapis APIs.
Previous trainings:

● PEARC 23: Best Practices of CI/CD for High Performance Computation with Tapis
Workflows API

● TACCster 2022: Tapis day at TACC
● PEARC 22: Building Portable, Scalable and Reproducible Scientific Workloads across

Cloud and HPC for Gateways
● Gateways 21: Portable, Scalable, and Reproducible Scientific Computing: from Cloud to

HPC
● PEARC 2020: Leveraging Tapis For Portable, Reproducible High Performance

Computing In the Cloud
● Gateways 2019: Portable, Reproducible High Performance Computing In the Cloud
● PEARC 2019: Portable, Reproducible High Performance Computing In the Cloud

Christian Garcia is an Engineering Associate in the Cloud and Interactive Computing group
(CIC) at the Texas Advanced Computing Center at the University of Texas at Austin. Christian
manages the Tapis Pods Service and related services, libraries, and UI.

Dhanny Indrakusuma is a Research Assistant in the Cloud and Interactive Computing group
(CIC) at the Texas Advanced Computing Center at the University of Texas at Austin. Dhanny
manages the Tapis ML Hub and related services, libraries and UI.

Resources:

1) Tapis Project: https://tapis-project.org
2) Tapis v3 documentation: https://tapis.readthedocs.io/en/latest/
3) Tapis Slack http://bit.ly/join-tapis

https://tapis-project.org
https://tapis.readthedocs.io/en/latest/
http://bit.ly/join-tapis


FABRIC Introduction and Tutorial
Paul Ruth

RENCI - UNC Chapel Hill
pruth@renci.org

James Griffioen
University of Kentucky

griff@netlab.uky.edu

Kuangching Wang
Clemson University
kwang@clemson.edu

Abstract—FABRIC project is an NSF Midscale research and
education infrastructure that enables experimentation, rapid
prototyping, and validation of new network and distributed
computing methods and applications that are impossible or
impracticable with commonly available research infrastructures.

This tutorial will introduce attendees to the FABRIC testbed,
sign them up with an account, and walk them through a hands-on
experience with introductory and intermediate example experi-
ments. Example topics will include: 1) Creating and deploying
basic experiments, 2) Using wide-area networks, and 3) Using
FABRIC’s integrated measurement framework.

Index Terms—networking, testbed, tutorial

I. MOTIVATION

There is a broad range of infrastructure available to the
research community, however the awareness of the community
of the existence and capabilities of these testbeds remains
limited. In fact, for many types of research these testbeds
provided the resources and the flexibility to build scalable
documented experiments that can then be shared and built
upon by others. Importantly many of these platforms, namely
FABRIC provide a path to scaling and evolving simple exper-
iments into something that is persistent and can be used by
external users, bridging the important valley that lies between
a simple prototype and a robust system used by others. This
effect where experiments can rapidly grow from simple to
complex and become usable and useful systems can have a
deep transformative effect on systems and networking research
in the immediate future.

FABRIC testbed [Baldin et al.(2019)] was built with many
of these ideas in mind - it provides the scale, robustness
and programmability to meet these challenges. Even more
importantly, FABRIC is designed from the ground up to be a
‘fabric’ that interconnects other experimental and production
Cyberinfrastructure (CI) facilities around the world (Figure 1).
Thus it achieves a multiplier effect of not only allowing the
experimenters to harness its own resources, but to bring to bear
the resources and investments in CI in many other disciplines
thus vastly increasing the scale and reach of the experiments
conducted on it.

II. TUTORIAL ORGANIZATION AND CONTENT

The goal of this tutorial is to introduce participants to the
FABRIC platform, its tools and resources and demonstrate
how a simple experiment can be transformed into something
complex, measurable and shareable. In the first session the

Identify applicable funding agency here. If none, delete this.

attendees will get a basic introduction to FABRIC and a
simple “Hello FABRIC!” experiment. In the second session
they will proceed to grow this experiment to spans FABRIC’s
geographically distributed resources and employ FABRIC’s
measurement framework.

A. Sessions and Length

Session 1 (90 mins):

• Introduction to FABRIC (45 mins) - this lecture will
describe FABRIC and its capabilities and provide a tour
of the portal 2, Jupyter Hub, and documentation.

• Hello, FABRIC (45 mins) - in this hands-on component,
participants will create FABRIC accounts and run a
“Hello FABRIC!” experiment that demonstrates the basic
features of the APIs

Session 2 (90 mins):

• Intermediate Networking Experiment (45 mins) - in
this hands-on component, participants will work under the
guidance of tutorial instructors to create a more complex
experiment. In this experiment the participants will create
a topology across multiple FABRIC locations, deploy a
packaged networking experiments, and collect network
performance data.

• FABRIC Measurement Framework (45 mins) - in this
hand-on component, participants will deploy an experi-
ment that utilizes the FABRIC measurement framework
to collect low-level performance metrics from their ex-
perimental topology.

B. Recommended skill level

Minimum skill set: This tutorial is designed for users who
have little or no experience with FABRIC. Basic experience
with programming (i.e. python) and an ability to use remote
virtual machines is required.

C. Technology and Software Requirements

All hands-on tutorials will use the FABRIC JupyterHub 3.
Participants will need a laptop with Internet connectivity, a
modern browser, and an SSH client. Specific instructions can
be sent in advance for participants to create an account on the
research infrastructure and be added to the designated project
by the tutorial instructors.



Fig. 1. FABRIC Infrastructure spanning the U.S., Europe, and Japan

Fig. 2. FABRIC Portal

Fig. 3. FABRIC JupyterHub

III. REFERENCES TO PREVIOUS ITERATIONS OF SIMILAR
TUTORIALS

FABRIC team has presented introductory and advanced
tutorials covering the GENI, Chameleon, and FABRIC
testbeds at various venues over more than a decade. These
venues include many of the GENI Engineering Confer-
ences (GECs), Chameleon user meetings, FABRIC KNIT
Workshops and other conferences. Recent examples in-
clude Internet2 TechEx [Ruth and Ilya(2022)], Massachusetts
Open Cloud Alliance Workshop [Ruth(2023c)], SIGCOMM
2023 [Ruth(2023b)], and several FABRIC KNIT work-
shops [Ruth(2022)], [fab(2023)], [Ruth(2023a)], [Ruth(2024)].

ACKNOWLEDGMENT

This work is funded by NSF awards CNS-1935966, CNS-
2029176, CNS-2029200, CNS-2029235, CNS-2029260, CNS-
2029261, CNS-2330891

REFERENCES

[fab(2023)] 2023. FABRIC KNIT6. https://learn.fabric-
testbed.net/knowledge-base/knit-6-a-fabric-community-workshop/.

[Baldin et al.(2019)] Ilya Baldin, Anita Nikolich, James Griffioen, Inder-
mohan Inder S. Monga, Kuang-Ching Wang, Tom Lehman, and Paul
Ruth. 2019. FABRIC: A National-Scale Programmable Experimental
Network Infrastructure. IEEE Internet Computing 23, 6 (2019), 38–47.
https://doi.org/10.1109/MIC.2019.2958545

[Ruth(2022)] Paul Ruth. 2022. FABRIC KNIT5, FABRIC: Introduction and
Advanced Tutorials. https://fabric-testbed.net/events/2022-knit-5-event.

[Ruth(2023a)] Paul Ruth. 2023a. FABRIC KNIT7. https://learn.fabric-
testbed.net/knowledge-base/knit-7-a-fabric-community-workshop/.

[Ruth(2023b)] Paul Ruth. 2023b. FABRIC KNIT8.
https://conferences.sigcomm.org/sigcomm/2023/tutorial-fabric.html.

[Ruth(2023c)] Paul Ruth. 2023c. Massachusetts Open Cloud Alliance Work-
shop, FABRIC Tutorial. https://massopen.cloud/2023-workshop/.

[Ruth(2024)] Paul Ruth. 2024. FABRIC KNIT8. https://learn.fabric-
testbed.net/knowledge-base/knit-8-a-fabric-community-workshop/.

[Ruth and Ilya(2022)] Paul Ruth and Baldin Ilya. 2022. Internet2 TechEx:
FABRIC Early Experimenter Tutorial. https://internet2.edu/2022-
technology-exchange/tutorials/.



The Event Horizon Telescope Science Gateway -
Progress and Lessons Learned

Rob Quick, Esen Gokpinar Shelton, and Jun Wang
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, Indiana

rquick@iu.edu ORCID: 0000-0002-0994-728X
egokpina@iu.edu ORCID:0000-0001-9520-0037
wang208@iu.edu ORCID: 0000-0002-8457-1235

Abstract—The Event Horizon Telescope (EHT) recently used
10 petabyte-scale observation data to construct the first images of
black holes and 100 terabyte-scale simulation data to constrain
the plasma properties around supermassive black holes. This
work leveraged the Open Science Grid (OSG) high throughput
resources provided by the Partnership to Advance Throughput
Computing (PATh). While EHT has successfully utilized PATh
to create the most extensive black hole simulation library to
date, the broad adoption of this resource for data processing
has been slower. The sophisticated command-line-driven HTCon-
dor environment creates barriers for less technical researchers,
limiting PATh’s reach and impact on the broader astronomy
and science communities. The Cyberinfrastructure Integration
Research Center (CIRC) at Indiana University was awarded an
NSF EAGER award to collaborate with EHT and PATh to imple-
ment a targeted science gateway instance that integrates critical
EHT workflows to leverage OSG within the Apache Airavata
framework. This work began in July of 2023. The EHT Science
Gateway project was introduced to the Gateways community at
last year’s Gateways 2023 event. This paper and presentation
will detail the work during the project’s design, development,
implementation, and release phases. The production release is
scheduled for July 2024.

Index Terms—High Throughput Computing, User Experience,
Gateways for Science, Astrophysics, Apache Airavata

I. INTRODUCTION

The Partnership to Advance Throughput Computing (PATh)
is the NSF’s premier resource for high throughput computing
(HTC), delivering over 139 million core hours last year
(one-year period ending 25-May 2024) to multi-institutional
projects and an additional 274 million core hours to smaller
groups that constitute the Open Science Grid (OSG) Connect
community [1]. Usage groups include some of the most high-
profile research investments by the NSF, such as the multi-
institutional Event Horizon Telescope (EHT) collaboration.
EHT used 10 petabyte–scale observation data to construct the
first images of black holes and 100 terabyte-scale simulation
data to constrain the plasma properties around supermassive
black holes. While the EHT has successfully utilized PATh
to create the biggest black hole simulation library to date,
the broad adoption of this resource is much slower for data

National Science Foundation Award 2324672

processing. The sophisticated OSG command-line-driven en-
vironment turns out to be a major barrier to the less technical
users, limiting PATh’s reach and impact within the wider
astronomy and science communities.

Science gateways [2] have proven a successful mechanism
for broadening access to scientific cyberinfrastructure (CI) by
providing science-centric user environments tailored to end-
user communities. An emerging and potentially transformative
area of research in science gateway development involves the
integration of established science gateway technologies with
the methodologies of human-computer interactions (HCI) and
user experience–based (UX) design.

To overcome barriers to adoption and create a highly func-
tional science gateway environment that can effectively utilize
the computing power of HTC resources, this project, which
began in July 2023, will focus on the EHT community’s use of
PATh as a case study for this methodological approach. This
exploratory project aims to demonstrate the effectiveness of
combining human-computer interaction design methodologies
with science gateway technologies, thereby enhancing the
EHT’s analysis of large astronomical data sets. This novel
approach has the potential to transform both astrophysics and
high throughput computing, offering a fresh perspective that
benefits existing PATh user communities and supports the
growth of PATh to include new research teams and projects.

Our team consists of experienced leaders from the EHT,
HTC, and science gateways communities, bringing together
a wealth of expertise in coupling CI resources with science
stakeholder workflows and possessing in-depth knowledge of
the EHT ecosystem. Working alongside these leaders are a
science gateway developer and a graduate student from the
Human-Centered Computing Department at Indiana University
as well as a postdoctoral researcher in astronomy from the Uni-
versity of Arizona. Together, we have designed, prototyped,
tested, and will release the EHT science gateway in July of
2024. The resulting science gateway will be highly functional
and designed to meet the HTC needs for researchers rang-
ing from experienced researchers to students. By prioritizing
UX design and emphasizing the necessary human-computer
interactions within a science gateway environment, we have



ensured a positive experience for EHT researchers, fostering
continued engagement and reliance on PATh HTC resources.

While this project is short-term and focuses on the EHT
collaboration, the foundational work of integrating science
gateways with PATh-provided resources has the potential for
long-term benefits for both the science gateway and PATh
communities. Science gateways will enhance their toolbox
of offerings by incorporating high-capacity, high-availability
resources. PATh will get a UX-centric access method, pro-
viding an entry point for users unfamiliar with command-line
interfaces and with minimal time or effort available to learn
new technologies on their path to discovery.

II. EHT SCIENCE GATEWAY PROTOTYPE

In 2022, CIRC collaborated with EHT researchers from
the University of Arizona to develop a proof of concept
for the EHT gateway [3] as part of the XSEDE Extended
Collaborative Support Services program. The proof of concept
version demonstrated the basic integration of PATh resources
with Apache Airavata, but it lacked the advanced functionality
required by a large number of EHT researchers and did not
incorporate user requirements or UX design methods. The
current project builds on the proof of concept by creating a
highly functional science gateway. This gateway will cater to a
large portion of the EHT community and accommodate various
levels of analysis tasks.

III. PROJECT OBJECTIVES

This project is divided into three overarching objectives.
1) Deliver a highly functional, UX-centric gateway to the

EHT project. This gateway will enable the integration
of existing workflows that leverage OSPool resources.

2) Address the technical hurdles to allow the utilization
of HTC resources from a science gateway environment
within the Apache Airavata framework.

3) Conduct targeted outreach efforts aimed at astronomy
researchers and the CI community to amplify the impact
of the project.

IV. THE EVENT HORIZON TELESCOPE GATEWAY

The prototype EHT gateway described previously allowed
single runs of the ipole application on PATh resources and
was demonstrated in a collaboration-wide training webinar.
The proposed work will extend this prototype to launch large-
scale image analysis from science gateways on PATh. We
have focused on the most widely used EHT application, ipole,
which provides spacial and numerical analysis of black hole
images from the eight ground-based radio telescopes which
make up the EHT international collaboration.

V. USER EXPERIENCE DESIGN (UXD)

Our approach to designing the platform for EHT scien-
tists using OSG resources has followed the double-diamond
framework [4], which comprises four stages: Discover, Define,
Develop, and Deliver. Here’s a detailed overview of our
process at each stage and our current status:

Fig. 1. Black hole simulation library generated for interpreting the image of
the supermassive black hole at the center of the Milky Way. The computation
was done on PATh-provided resources.

(1) Discover: In the Discover phase, we focused on under-
standing user needs. We immersed ourselves in the world of
EHT scientists by engaging in conversations with stakeholders
and analyzing user workflows. This exploration allowed us to
identify pain points, user preferences, and specific challenges
scientists face when using the OSG platform. By tracing the
journey from job submission to the receipt of output files, we
uncovered a crucial need for interactive analysis of output files
and the pivotal role of post-processing in their research.

(2) Define: During the Define phase, we synthesized our
findings from the Discover phase to pinpoint the core is-
sues and user requirements. We revisited a previous proof
of concept and conducted heuristic analyses to validate our
initial insights. This helped us identify what worked well
and areas needing improvement. By closely collaborating
with two expert OSG users, we refined our understanding of
user requirements. These interactions revealed the necessity
for significant platform revisions, such as restructuring the
platform to support multiple job submissions and improving
information presentation for better clarity and ease of naviga-
tion.

(3) Develop: In the Develop phase, we transitioned from
insights to solutions. Based on our research findings, we
created three personas representing the diverse user types
within the EHT community:

1) Expert Users with High Coding Skills: These users need
a platform offering customization options and advanced
scripting capabilities.

2) Novice Users, Early Researchers with Limited Coding
Skills: These users seek user-friendly interfaces and
intuitive workflows to simplify the submission process.

3) Students: This group includes users who utilize the
platform for educational purposes.

We used these personas to guide our design decisions,
ensuring the platform meets the unique needs of each user
type. Additionally, we explored various use cases to anticipate
a wide range of user interactions, enhancing the platform’s
adaptability and responsiveness. We mapped out the user
journey from the homepage to job submission completion,
detailing each step to ensure a seamless user experience.



(4) Deliver: We are currently in the Deliver phase, where we
implement and refine our solutions based on iterative testing
and feedback. Users begin their journey at the homepage,
where they can sign up or log in. Upon logging in, they are
directed to a personalized dashboard providing an overview
of active applications, job statuses, and recent submissions.
Users then select their desired application and choose their
preferred submission method, whether through a web form
for novices or a Python script for experts. Post-submission,
users can monitor job progress and access completed analyses
directly from the dashboard.

To sum up, throughout the design process, we identified
several key takeaways that have significantly informed our
development approach and feature prioritization. One of the
highest priorities for the UI was to submit jobs to the OSG
as intuitively as possible. We recognized that many users
lacked the technical expertise to navigate complex command-
line interfaces, so streamlining this process became critical. In
this regard, we used several techniques such as information
icons and tooltips to provide users with on-demand guid-
ance throughout the submission process. Information icons
next to key fields offered detailed explanations of what was
required without overwhelming users with technical jargon.
Furthermore, we organized the job submission process into a
clear, step-by-step sequence, ensuring that users were guided
through each necessary action, reducing the risk of error or
incomplete submissions. Additionally, the platform provides
real-time validation and feedback if a submission field is
incomplete or contains incorrect data, enabling users to correct
mistakes before submission.

While the majority of the features were made available
through the user-friendly UI, the outcome analysis was specif-
ically left for Jupyter notebooks. This decision was made
because Jupyter offers more flexibility for advanced users
to perform detailed and customizable analysis. However, to
accommodate users with less experience in Jupyter, we provide
pre-prepared workbook templates that guide them through the
analysis process. These templates reduce the need for in-depth
knowledge of Jupyter while still offering powerful analytical
capabilities.

By adhering to the double-diamond framework, we have
systematically developed a user-centered platform that ad-
dresses the specific needs and challenges of EHT scientists,
ensuring a robust and responsive user experience.

VI. INTEGRATION WITH APACHE AIRAVATA

Our project is implementing a web-based science gateway
that leverages the open-source Apache Airavata [5] gateway
framework. The Airavata Django Portal is a web interface
to the Apache Airavata API implemented using the Python
Django web framework. The Airavata Django Portal can be
used as is for a full-featured web-based science gateway. It can
also be customized through various plugins to add domain-
specific functionality. The primary objective of EHT gateway
is to provide users with a streamlined and user-friendly in-
terface for interacting with PATh resources, eliminating the

challenges associated with command-line interfaces for users
familiar with browser-based interfaces.

By implementing an Apache Airavata–based gateway with
a graphical user interface (GUI), we will significantly reduce
the learning curve associated with command-line interfaces,
enabling more researchers to utilize HTC resources effectively.
The web interface will be designed to be user friendly,
providing clear instructions and visual aids to guide users
through the process. This will make the system more ac-
cessible to researchers with varying levels of technical pro-
ficiency. Web-based interfaces provided by Apache Airavata
have proved highly effective, allowing researchers to more
quickly and efficiently utilize high performance computing
(HPC) environments than traditional command-line interfaces.
Moreover, the OSPool—accessible through Apache Airavata
middleware—provides hundreds of thousands of hours of daily
access to HTC resources, further enhancing its appeal to the
scientific community.

Fig. 2. A depiction of the proposed EHT science gateway, which will enable
users to interact with Apache Airavata’s gateway services and access the
OSPool through HTCondor access points.

While coupling the Apache Airavata science gateway frame-
work with PATh resources is an undoubtedly significant
advancement and beneficial to both the HTC and Apache
Airavata communities, it has taken substantial effort to fully
integrate the two systems beyond a mere proof of concept.
Our project will provide a highly integrated EHT portal
while recording and addressing the challenges of interactions
between web-based environments and HTC workload creation
and submission. By addressing these challenges, we seek
to streamline the adoption process for future projects that
leverage these technologies. This, in turn, will enable the
seamless utilization of HTC resources within science gateway
environments.

In April of 2024, the first large-scale test run was submitted
from the EHT gateway for OSG analysis. This test consisted
of 3000 telescope images and considered six unique parameter
conditions for 36000 HTC jobs. This run was completed in
less than 24 hours. While some errors were encountered,
more than 94% were completed successfully. By re-compiling
iPole application with less aggressive optimization flags and
increasing the value max retries in submission, the error rates
have reduced to less than 0.04% in the latest experiments.

The project has drawn upon the insights gained from PATh’s
EHT integration and concurrent survey work. This collabora-
tive effort has established a strong foundation for supporting



additional research communities. The PATh project leadership,
the science gateways community, and the project management
are jointly identifying these communities.

VII. TRAINING AND OUTREACH ACTIVITIES

The PATh team and the CIRC team at IU conducted joint
tutorials throughout the 2022 calendar year. This included
delivering an EHT-targeted webinar in September and con-
ducting a tutorial at the Gateways 2022 conference. Building
upon these events, we will further refine the materials and
continue to provide training at CI events and target existing
projects that could benefit from the collaborative PATh and
CIRC relationship.

To expand our outreach efforts, upon production release
of the EHT Science Gateway, the project team will specifi-
cally target EHT user groups at semiannual, in-person EHT
collaboration meetings as well as through an online tutorial
webinar event that we will organize. These outreach events
feature tutorials focused on increasing the user base and
identifying user needs for future functionality. In 2024, we
plan to submit papers to the PEARC and the Science Gateways
conference. We also hope to initiate engagements with two
additional PATh-recommended communities currently using
HTC resources but are likely to embrace science gateways
during High Throughput Week in July 2024.

By strategically targeting these events and communities, we
aim to enhance user engagement, expand the user base, and
identify opportunities for collaboration and future development
within the PATh framework.

A. Collaboration

The project receives dedicated effort and oversight from the
funded institutions of Indiana University and the University of
Arizona. The University of Illinois Urbana-Champaign, MIT
Haystack Observatory, the Harvard-Smithsonian Center for
Astrophysics, and the Harvard Black Hole Initiative will pro-
vide additional community technical and research support. To
further strengthen the project, we will leverage the support and
operational assistance of the PATh team from the University
of Wisconsin–Madison and Morgridge Institute for Research.
This collaboration entails hosting an OSPool Access Point and
providing support for HTCondor integration issues that may
arise throughout the project’s duration.

Before the formal development process of the platform,
informal consultations with some of these key stakeholders and
potential collaborators were an integral part of the planning
phase. These early conversations helped highlight some of the
challenges and best practices learned from similar projects.
As the project evolves, we plan to formalize this feedback
loop with surveys and interviews to better capture insights
and avoid pitfalls experienced by others in the astronomy
community. By incorporating feedback from both internal
users and external collaborators, we aim to ensure the gateway
remains responsive to evolving user needs and adaptable to
broader astronomical applications.

VIII. PROJECT DELIVERABLES

The project receives dedicated effort and oversight from the
funded institutions of Indiana University and the University of
Arizona. The University of Illinois Urbana-Champaign, MIT
Haystack Observatory, the Harvard-Smithsonian Center for
Astrophysics, and the Harvard Black Hole Initiative will pro-
vide additional community technical and research support. To
further strengthen the project, we will leverage the support and
operational assistance of the PATh team from the University
of Wisconsin–Madison and Morgridge Institute for Research.
This collaboration entails hosting an OSPool Access Point and
providing support for HTCondor integration issues that may
arise throughout the project.

IX. COLLABORATION

The principal project deliverable is a fully functional EHT
Science Gateway. This gateway will support the EHT needs for
preparing and submitting black hole image simulation (ipole)
to PATh resources. A significant amount of effort has been
concentrated on user experience (UX) design, allowing these
applications to be widely usable by EHT scientists through
science gateway user interfaces. We will integrate the lessons
learned from the UX-based design and development of the
EHT science gateway to integrate new science gateway portals
that leverage HTC resources. These may include additional
astronomy communities (such as the Vera Rubin Observatory),
and other current OSPool users identified by our PATh collab-
orators. We will submit this work at both cyberinfrastructure-
focused conferences (PEARC, High Throughput Week, Gate-
ways) and to the multi-messenger astronomy community
(Semi-annual EHT Collaboration Meetings). These outreach
deliverables will include developer and user tutorials and
training events.

REFERENCES

[1] OSG by the Numbers, https://gracc.opensciencegrid.org/d/000000074/gracc-
home?orgId=1

[2] Gesing, S., Wilkins-Diehr, N., Dahan, M., Lawrence, K., Zentner, M.,
Pierce, M., Hayden, L. and Marru, S., 2017. Science gateways: the long
road to the birth of an institute.

[3] Event Horizon Telescope Prototype. Gateway https://eht.scigap.org/
[4] Kochanowska, M. and Gagliardi, W.R., 2022. The double diamond

model: In pursuit of simplicity and flexibility. Perspectives on Design
II: Research, Education and Practice, pp.19-32.

[5] Marru, S., Gunathilake, L., Herath, C., Tangchaisin, P., Pierce, M.,
Mattmann, C., Singh, R., Gunarathne, T., Chinthaka, E., Gardler, R.
and Slominski, A., 2011, November. Apache Airavata: a framework for
distributed applications and computational workflows. In Proceedings
of the 2011 ACM workshop on Gateway computing environments (pp.
21-28).



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Serverless, Cost-Effective Hybrid Cloud Solution 
for Executing HPC Programs through Web 

Application Interfaces   
 

 
Mark Durbin  

Office of Research 
University of Central Florida 

Orlando, Florida 
mark.durbin@ucf.edu 

 
 

Nikhil Balachandra 
 Office of Research 

University of Central Florida 
Orlando, Florida 
nikhil.b@ucf.edu 

 
 

Paola Canales 
 Office of Research 

University of Central Florida 
Orlando, Florida 

paola.canales-bigio@ucf.edu 
 
 

Ezequiel Gioia 
 Office of Research 

University of Central Florida 
Orlando, Florida 

ezequiel.gioia@ucf.edu

 

 
Abstract— This paper presents a serverless, cost-effective 

hybrid cloud solution for deploying web applications that leverage 
High-Performance Computing (HPC) resources. The proposed 
architecture addresses the challenges faced by researchers in 
securely exposing software running on HPC clusters to the 
internet while minimizing costs. By integrating AWS services with 
an on-premises HPC cluster, the solution enables researchers to 
deploy interactive web applications that offload computationally 
intensive tasks to the HPC cluster. The implementation details, 
including the technology stack and workflow, are discussed, 
highlighting the benefits of this hybrid approach.   

Keywords —hybrid-cloud, serverless-architecture, high-
performance-computing, cloud-computing 

I. INTRODUCTION 
 Researchers encounter challenges when showcasing 
resource intensive computer programs intended for high-
performance computing clusters. These programs, characterized 
by custom dependencies and proprietary codebases, are 
impractical to install on typical desktop or laptop computers and 
often exceed the capabilities of consumer hardware. To address 
these limitations, researchers develop interactive solutions to 
execute their programs, hosting websites or applications directly 
on their high-performance computing clusters. These web 
applications enable users to run complex code through simple 
web interfaces, allowing a broader audience to access these tools 
without requiring specialized hardware or technical expertise. 
However, exposing these clusters directly to the internet raises 
security concerns and may breach institutional policies. 
Conversely, deploying self-contained solutions entirely in a 
public cloud environment can mitigate these security risks, but 
may be cost-prohibitive. 

  

While these challenges are common in the field, our specific 
case presented a unique set of constraints that required a tailored 
approach. In our case, the researcher's requirements included 
maintaining code privacy, adhering to institutional policies, and 
operating within a limited budget while providing a user-
friendly web interface for interacting with the HPC cluster.  

These constraints made both fully cloud-based and 
exclusively on-premises approaches unworkable. A cloud-only 
solution was not viable due to budget constraints, as the costs of 
provisioning and maintaining cloud infrastructure would exceed 
the project's limits. Additionally, the need to keep the codebase 
private within the on-prem HPC cluster ruled out the use of 
publicly available science gateways. Deploying a dedicated on-
prem web server or gateway was not feasible due to the lack of 
available infrastructure and the resources required for setup and 
maintenance. Furthermore, our solution needed to eliminate the 
need to open any inbound network ports on the HPC cluster, 
relying solely on outbound internet connections to maintain both 
security and simplicity while ensuring a seamless user 
experience.  

To address these specific challenges and constraints, this 
paper presents a cost-effective hybrid cloud solution that 
combines the benefits of serverless cloud services and on-
premises resources. By leveraging AWS services in conjunction 
with an on-premises HPC cluster, our proposed architecture 
enables researchers to securely deploy interactive web 
applications without the complexity of managing web servers. 
This approach minimizes costs by utilizing serverless 
technologies, maintains the privacy of the codebase by keeping 
it on-premises, and avoids direct exposure of the HPC cluster to 
the internet. The result is a streamlined solution that provides a 
web interface to interact with the HPC cluster while meeting all 
the identified requirements and overcoming the limitations of 
traditional approaches. 



   
 

   
 

II. SOLUTION ARCHITECTURE 
The proposed solution architecture integrates cloud services 

with an on-premises HPC cluster to provide researchers with a 
secure and cost-effective way to deploy interactive web 
applications. The architecture is composed of three key 
components: web application, job queue, and job queue worker. 

The web application is deployed to managed hosting, with 
Continuous Integration and Continuous Deployment (CI/CD) 
from a GitHub repository. Users submit a form containing input 
parameters for the researcher’s application, and these 
parameters are included in the message sent to the job queue.  
The job queue worker, running on the on-premises HPC cluster, 
continuously monitors the queue for new jobs, executes the 
researcher’s application using the provided input parameters, 
stores output files in the cloud, publishes a message to the web 
application in real-time, and marks the job as completed. The 
solution leverages Python and JavaScript libraries and 
frameworks, such as Boto3, Node.js, and React.js, to create a 
cohesive and efficient serverless architecture. 

III. IMPLEMENTATION DETAILS 

A. Web Application 
 The web application is hosted on AWS Amplify, a service 
designed for deploying full-stack web and mobile applications 
without the need to manage underlying infrastructure. The 
application displays a form in the user's browser, allowing them 
to specify input parameters for the research application. Since 
the app needs to be publicly accessible on the internet, 
traditional authentication and authorization mechanisms were 
not implemented. Instead, Google reCAPTCHA is used to 
prevent abusive form submissions. Once the form inputs are 

validated, the reCAPTCHA verified, and the form submitted, an 
API request is executed. 

B. Job Queue 
 The job submission process is handled by a Representational 
State Transfer (REST) API developed with Amazon API 
Gateway and AWS Lambda. API Gateway receives the HTTP 
request and invokes a Lambda function that processes the form 
data and places a message in AWS SQS, a message queue 
service. The message represents a pending job for the HPC 
cluster and contains the user’s specified parameters. 

C. Job Queue Worker 
Pending jobs remain in the message queue until they are 

polled and processed. A Python script that functions as a worker 
or job queue consumer, monitors for new jobs submitted into 
the SQS queue using HTTP long-polling. The polling process 
creates continuous loops of requests and responses, which 
allows the client to receive job submission updates. Long-
polling reduces the number of requests made, reducing network 
traffic and server load, and minimizing computational costs. 
When a new job is detected by the worker, the worker processes 
the input data and uses it to execute a local command on the 
HPC cluster, for example, the instruction to execute a 
FORTRAN program. Once the program performs the 
computation and produces its output, the worker captures the 
program’s response and uploads files the program generates to 
cloud object storage, Amazon S3. 

D. Real-time Notifications 
 Providing real-time feedback after the web application form 
is submitted presents challenges due to the limitations of the 

Fig. 1. Architecture diagram of the proposed solution 



   
 

   
 

HTTP protocol, where requests are always initiated by the client. 
One approach to overcome this limitation is to make continuous 
requests to a REST API at consistent intervals to check the job 
status. While feasible, this solution is inefficient and requires 
developing a web API that will allow a client to make numerous 
and potentially dubious requests. Another approach is to utilize 
web sockets to initiate two-way communication, enabling the 
server to push updates back to the client. However, this would 
require a web server, that provides a web socket service, 
something that was not within the constraints of this project.     

To address this challenge, the proposed solution leverages 
AWS IoT Core, a serverless message broker service designed 
for IoT device communication. AWS IoT Core establishes two-
way communication through the MQTT protocol, treating each 
web client and the HPC cluster as IoT devices. This approach 
enables communication in both directions without the need to 
deploy additional infrastructure. AWS IoT Core employs a 
publish/subscribe (pub/sub) model, using "topics" to categorize 
and route messages between devices and applications. 
Publishers, such as devices or applications, send messages to 
the AWS IoT Core message broker on specific topics. 
Subscribers, also devices or applications, receive messages 
from the broker by subscribing to specific topics. This pub/sub 
model enables efficient, scalable, and flexible communication 
between IoT devices and applications.  

 
In the proposed workflow, after submitting a job, the web 

client subscribes to a topic in AWS IoT Core. The topic ID is a 
globally unique object identifier (GUID) to ensure that the 
client only receives notifications related to their specific job, 
preventing interference with other users' jobs. Upon job 
completion, the worker publishes a JSON message to the AWS 
IoT MQTT endpoint and topic. This message contains the 
program's response, and secured temporary URLs, allowing the 
client to download the generated files. The web client, having 
subscribed to the relevant topic, receives the JSON message and 
updates the user interface accordingly. This approach provides 
near real-time feedback, including job status and links to 
download the output files, without the need for continuous 
polling or the deployment of a dedicated server for web socket 
communication. 

E. Deployment 
The deployment process for this system is handled through 

the AWS Amplify CLI, a command-line tool that automates the 
creation and configuration of cloud resources. It utilizes AWS' 
Infrastructure as Code tools, such as AWS CloudFormation and 
the AWS Cloud Development Kit (CDK), to generate the 
required configurations. After the initial setup, developers can 
use the Amplify “push” command to deploy the latest version 
of the web application along with any new or updated cloud 
resources. This command manages the deployment of the web 
application code, configures services like Lambda functions 
and API Gateway endpoints, and handles their configurations. 
However, the queue worker Python script, which interacts with 
these cloud services, must be manually copied to the HPC 

cluster to ensure proper integration with the newly deployed or 
updated cloud resources. 

IV. BUDGET CONSIDERATIONS 
In determining the most cost-effective solution for our 

computational workflow, we compared the costs of different 
infrastructure setups, reference Table III. While science 
gateways offer valuable tools for many research projects, they 
typically require a dedicated server. For example, running a 
web server on a virtual machine (t3.medium EC2 instance) on 
AWS with storage (50 GB) and a public IP address would cost 
approximately $29.55 per month. This example EC2 virtual 
machine is with a Compute Savings Plan of 1 year commitment 
with no upfront costs. This setup represents an average scenario 
in terms of minimizing costs. All AWS costs presented on this 
paper were calculated using the North Virginia (us-east-1) 
AWS region.  
 

The web application component of the hybrid proposed 
solution is estimated to incur only $2.75 per month for 25,000 
jobs. This includes AWS Amplify for the web hosting, AWS 
Lambda and Amazon API Gateway for the web API, Amazon 
Simple Queue Service for application integration, and AWS 
IoT Core as a pub/sub message broker. Please note, AWS 
provides a free tier for certain services, including AWS Lambda 
and Amazon SQS, which offer up to 1,000,000 requests per 
month at no cost. The cost estimate is based on 25,000 requests 
per month, well within this free tier limit. 

TABLE I.  SOLUTION COST FOR 25,000 JOBS PER MONTH 

Resource Cost 

Amazon Simple Queue Service (SQS) $ 0.00 
AWS IoT Core $ 0.04 
AWS Lambda $ 0.00 
Amazon API Gateway $ 0.09 
AWS Amplify $ 2.62 

Total Cost $ 2.75 

 
The key driver in the total cost being AWS Amplify's web 

hosting service which is 95% of the estimated cost. What 
influences the cost for the Amplify service is determined by 
metrics such as total build time, amount of data stored, and 
amount of data served. 

TABLE II.  AWS AMPLIFY MONTHLY COST 

Resource Usage Cost 

Build time 100 minutes $1.00 
Data Stored 5 GB $0.12 
Data Served 10 GB $1.50 
Total Cost  $ 2.62 

 
This hybrid solution offers a highly cost-effective 

alternative, with a total estimated monthly expense of just $2.75 
for handling 25,000 monthly jobs. This approach leverages the 
free tier quotas offered by some of the AWS services, such as 



   
 

   
 

AWS Lambda and Amazon SQS, and provides substantial 
savings and flexibility to accommodate future growth. 

TABLE III.  COMPARING SCENARIOS 

Scenario Cost per 
Month 

Cost per 
Year 

Web Server: EC2 instance, t3.medium, 50 GB 
storage $29.55 $354.60 

Amplify: 25,000 jobs per month $2.75 $33.00 

Amplify: 1,000,000 jobs per month $12.10 $145.20 

 

V. FUTURE WORK 
Future work on the proposed hybrid cloud solution will 

focus on enhancing its capabilities and usability. This could 
involve integrating additional AWS services for improved 
monitoring and maintainability, as well as exploring 
containerization and serverless computing for increased 
scalability and portability. Seeking community feedback could 
help identify potential integration opportunities with existing 
tools such as the GenApp framework. Updating the front-end 
tooling from the deprecated standard React.js tooling (Create 
React App) to Next.js could offer greater flexibility in the 
application design, as well as long-term support from the open-
source community. Finally, transforming this solution into a no-
code service will allow researchers to showcase their HPC-
based projects,  deploying and managing HPC-powered web 
applications without the need for extensive programming 
knowledge.  

VI. CONCLUSION 
The implemented hybrid cloud solution successfully 

addresses the challenges faced by researchers in deploying web 
applications that leverage privately accessible HPC resources. 
By combining serverless cloud services with on-premises HPC 
clusters, this approach offers significant advantages. Managed 

serverless services incur minimal costs for this specific use case 
while eliminating the need for server patching, infrastructure 
management, and opening network ports. This simplifies 
deployment, enhances security, and reduces maintenance 
overhead. 

This solution offers researchers a secure, cost-effective, and 
efficient method to disseminate and execute computationally 
intensive programs via intuitive interfaces. By enhancing 
security, ease of use, and significantly reducing operational 
costs, this model presents a scalable solution for future research 
needs without the complexity of managing additional 
infrastructure. 

ACKNOWLEDGMENTS 
We would like to thank the researcher, Dr. Shengli Zou, at 

the University of Central Florida (UCF) for bringing this 
challenge to our attention and collaborating with the UCF 
Research IT team to develop and implement this solution. We 
also acknowledge the support provided by AWS in terms of 
services and documentation. 

REFERENCES 
[1] “GenApp”, GenApp Framework. [Online]. Available: 
https://genapp.rocks/ [Accessed: 2023] 
[2] “React”, React. [Online]. Available: https://react.dev/ [Accessed: 
2023] 
[3] “Amplify documentation”, AWS Amplify Gen 2 Documentation. 
[Online] https://docs.amplify.aws/ [Accessed: 2023] 
[4] “Boto3 documentation”, Boto3 1.34.112 documentation.  [Online] 
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html 
[Accessed 2023] 
[5]  “What is ReCAPTCHA?”, Google. [Online]. Available: 
https://www.google.com/recaptcha/about/ [Accessed 2023] 
[6] “MQTT: The Standard for IoT Messaging”, MQTT. [Online] 
Available: https://mqtt.org/  [Accessed 2023] 
[7] “WebSocket API”, Websocket.org. [Online]. Available:  
https://websocket.org/reference/websocket-api/ [Accessed 2023]

 
 

 
 
 
 
 
 
 
 
 
 
 



Tapis Machine Learning Hub Service
for Science Gateways

Dhanny Indrakusuma, Joe Stubbs, Nathan Freeman and Anagha Jamthe
Texas Advanced Computing Center
The University of Texas at Austin

Austin, TX, USA
Email: dhannywi@utexas.edu, (jstubbs, nfreeman, ajamthe)@tacc.utexas.edu

Abstract—The adaptation of machine learning (ML) in scien-
tific and medical research in recent years has heralded a new era
of innovation, catalyzing breakthroughs that were once deemed
unattainable. In this paper, we present the Machine Learning
Hub (ML Hub) – a web application offering a single point of
access to pre-trained ML models and datasets, catering to users
across varying expertise levels. Built upon the NSF-funded Tapis
v3 Application Programming Interface (API) and Tapis User
Interface (TapisUI), the platform offers a user-friendly interface
for model discovery, dataset exploration, and inference server
deployment.

Index Terms—machine learning, tapis, open-source, science
gateways

I. INTRODUCTION

In recent years, the integration of machine learning method-
ologies into scientific and medical research has propelled
the boundaries of innovation, leading to remarkable break-
throughs. As highlighted in the 2024 Artificial Intelligence
Index Report by Stanford University, this transformative adop-
tion has ushered in a new era of possibilities [1].

In response to the evolving landscape of research, we
designed Machine Learning Hub [2] as a user-friendly Tapis
service [3] to help users with varying machine learning ex-
pertise discover and interact with pre-trained machine learning
models and datasets. In addition to the details described below,
we are working with the team at Intelligent Cyberinfrastructure
with Computational Learning in the Environment (ICICLE) AI
Institute [4] to create a federated models repository by includ-
ing the machine learning models developed by researchers on
the ML Commons platform into the ML Hub.

II. SYSTEM DESIGN

The Machine Learning Hub aims to streamline Tapis users’
machine learning workflows. The system is divided into two
distinct components: the user interface (UI) component and the
server-side components. Communication between the server
and the UI client is facilitated by the Flask-CORS extension
[5] that handles Cross-Origin Resource Sharing (CORS), en-
abling cross-domain queries, and the authentication middle-
ware uses Tapis API [6] to generate JSON Web Token (JWT)
to authenticate a user’s session. The server-side components
consist of a set of RESTful APIs served over HTTP with
Hugging Face Hub API [7] integration - consisting of the
hub and the inference server, and persistent data storage. The

Fig. 1. Overview of ML Hub Service

server-side components are deployed to a Kubernetes cluster
using Tapis Pods service [8]. We describe below the key
functionalities of each component. An illustration of the ML
Hub system can be seen in Fig. 1.



A. Hub: Models and Datasets Discovery

The Hub consists of two REST APIs developed in Python
Flask [9] - models hub and datasets hub. Each API has several
endpoints with functionalities allowing users to view detailed
popular models or datasets, filter them by specified parameters,
view detailed information, and download models or datasets.
We describe these functionalities in more detail below.

1) Models Hub: The models hub showcases the most
downloaded machine learning models from Hugging Face
[10]. In addition, it has additional functionalities such as (i) fil-
tering models by author, task, trained dataset, query keyword,
foundational libraries, and languages; (ii) fetching detailed
information for a particular model and its associated model
card; (iii) model download; (iv) checking the availability of
inference server for a given model.

2) Datasets Hub: Like the models hub, the datasets hub
allows users access to the top open-source datasets from
Hugging Face and filter them by author, query keyword, task,
language, size category, and official benchmark. In addition
to fetching detailed information for a specified dataset and
its dataset card, users also have the option to download the
dataset.

B. Inference Server

Implemented using FastAPI [11], the inference server cur-
rently supports PyTorch-based [12] pre-trained models based
on the FLAN-T5 (Text-to-Text Transfer Transformer) archi-
tecture [13]. The Flan-T5 is a fine-tuned T5 model that can
perform various language tasks such as keyword generation
and editing an English text based on the given instruction.

When running an inference, the inference server validates
the user’s request and then loads the user-specified model from
the data storage. After processing the user’s input, the server
returns a JSON response containing the model’s output. Users
can also request that an inference server be provisioned if a
model currently does not have an active inference server.

C. Persistent Data Storage

The persistent data storage uses a Network File System
(NFS) volume to cache the machine learning models used
by the inference server and the configuration file containing
metadata of the associated models.

D. User Interface

The user interface (UI) for ML Hub is implemented using
React [14] and TypeScript [15] and is currently under active
development. The TypeScript types and fetch bindings for ML
Hub are part of the @tapis/tapis-typescript NPM package [16].
The ML Hub module within the tapis-typescript is generated
automatically from the Hub API’s OpenAPI specifications
[17], and the fetch bindings are then used to make API calls
for the UI.

The UI for ML Hub is a service within TapisUI [18], a
serverless web application built on the Tapis API. TapisUI
runs entirely on GitHub pages and provides a user-friendly
platform to interact with the models, datasets, and inference

server. Screenshots and descriptions of the user interface can
be seen in Fig. 2.

III. TARGET USERS

The target users for this demo fall into two categories:
• Researchers with domain expertise that utilize national,

campus, and local cyberinfrastructure resources who want
to leverage machine learning to improve their research
outcome but do not have machine learning expertise.

• Researchers with moderate machine learning expertise
who are looking for a simpler way to host their model
without worrying about user authentication and network
issues.

IV. SESSION

We presented the Machine Learning Hub as a dynamic
platform designed to help researchers with different levels of
machine learning expertise discover and explore pre-trained
machine learning models and datasets. For the session, we
will begin by giving the audience a high-level overview of
ML Hub functionalities and proceed with a live demo.

During the live demo, we will show how a user can utilize
the ML Hub service within TapisUI to discover models and
datasets, as well as interact with the inference server to run
inference and initiate a model’s inference server deployment.
In case of a poor internet connection, we will present a pre-
recorded version of the demo.

ACKNOWLEDGMENT

The Machine Learning Hub project is supported by the
National Science Foundation Division of Advanced CyberIn-
frastructure Awards: 1931439, 1931575, and 2112606.

REFERENCES

[1] R. Perrault and J. Clark, Artificial Intelligence Index Report
2024. Stanford University’s Institute for Human-Centered Artificial
Intelligence, 2024. [Online]. Available: https://aiindex.stanford.edu/
wp-content/uploads/2024/04/HAI 2024 AI-Index-Report.pdf

[2] D. Indrakusuma, N. Freeman, and J. Stubbs, “Machine learning
hub for tapis poster presentation,” in Science Gateways 2023
Annual Conference. Zenodo, 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.10055681

[3] J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy, S. Terry,
J. Looney, J. Meiring, S. Black, M. Dahan, S. Cleveland, and G. Jacobs,
“Tapis: An api platform for reproducible, distributed computational
research,” in Advances in Information and Communication, K. Arai,
Ed. Cham: Springer International Publishing, 2021, pp. 878–900.

[4] (2021) Icicle. Last access: 2024-05-31. [Online]. Available: https:
//icicle.osu.edu/

[5] (2013) Flask-cors. Last access: 2024-05-31. [Online]. Available:
https://github.com/corydolphin/flask-cors

[6] (2020) Tapipy. Last access: 2024-03-31. [Online]. Available: https:
//github.com/tapis-project/tapipy

[7] (2020) Hugging face hub. Last access: 2024-03-08. [Online]. Available:
https://github.com/huggingface/huggingface hub

[8] R. C. Christian Garcia, Joe Stubbs and N. Freeman, “Tapis
pods service exploration and initial performance analysis,” in Science
Gateways 2023 Annual Conference. Zenodo, 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.10034631

[9] (2023) Flask. Last access: 2023-4-19. [Online]. Available: flask.
palletsprojects.com/en/2.3.x/

[10] (2017) Hugging face. Last access: 2024-03-08. [Online]. Available:
https://huggingface.co

https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf
https://doi.org/10.5281/zenodo.10055681
https://doi.org/10.5281/zenodo.10055681
https://icicle.osu.edu/
https://icicle.osu.edu/
https://github.com/corydolphin/flask-cors
https://github.com/tapis-project/tapipy
https://github.com/tapis-project/tapipy
https://github.com/huggingface/huggingface_hub
https://doi.org/10.5281/zenodo.10034631
flask.palletsprojects.com/en/2.3.x/
flask.palletsprojects.com/en/2.3.x/
https://huggingface.co


Fig. 2. User Interface for ML Hub, from top to bottom: (1) ML Hub Dashboard, (2) Top 100 models with filtering functionalities, and (3) A single model
details page

[11] (2018) Fastapi. Last access: 2024-03-08. [Online]. Available: https:
//fastapi.tiangolo.com

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[13] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li,
X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai,
M. Suzgun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu,
V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean,
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling
instruction-finetuned language models,” 2022. [Online]. Available:

https://arxiv.org/abs/2210.11416
[14] (2013) React. Last access: 2024-05-31. [Online]. Available: https:

//react.dev/
[15] (2012) Typescript. Last access: 2024-05-31. [Online]. Available:

https://www.typescriptlang.org/
[16] (2021) Tapis-typescript. Last access: 2024-05-31. [Online]. Available:

https://github.com/tapis-project/tapis-typescript
[17] (2017) Openapi specification. Last access: 2023-02-13. [Online].

Available: https://swagger.io/specification/
[18] J. Y. Chuah, J. Rosenberg, K. Strmiska, J. Stubbs, S. Cleveland, and

J. McLean, “Tapis ui - a rapid deployment serverless science gateway
built on the tapis api,” in Gateways 2021. Zenodo, 2021. [Online].
Available: https://zenodo.org/record/5570569

https://fastapi.tiangolo.com
https://fastapi.tiangolo.com
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2210.11416
https://react.dev/
https://react.dev/
https://www.typescriptlang.org/
https://github.com/tapis-project/tapis-typescript
https://swagger.io/specification/
https://zenodo.org/record/5570569


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Automating Instrument Data Analysis, Sharing and 
Publication Using the Globus Portal Framework 

Vas Vasiliadis  
University of Chicago 
Chicago, IL, U.S.A. 

0000-0002-4486-5431 

  
  
   
 

 
 
 

 
Abstract—Managing the deluge of data from high-resolution 

microscopes, genome sequencers, and other research instruments 
is a growing burden for research computing professionals. Over 
the past seven years we have employed the modern research data 
portal (MRDP) design pattern to facilitate management of 
instrument-generated data, from creation through publication. In 
recent implementations of the design pattern, we incorporate data 
search, remote computation, and publication of resulting data 
products for downstream discovery, effectively making data FAIR 
(Findable, Accessible, Interoperable, Reusable) by default. We 
will demonstrate one such implementation and describe how it 
may be used by science gateway developers to jumpstart their own 
efforts. 

Keywords—instrument data management, data portal, remote 
computation, search, data discovery, mrdp. 

I. INTRODUCTION 
Since its inception in 2017, the modern research data portal 

(MRDP) design pattern [1] has helped research institutions that 
implemented it, dramatically improve performance when 
moving data. Beyond fast, reliable data transfer, data portals that 
adhere to the MRDP design pattern allow broad access through 
federated authentication, while maintaining fine-grained access 
controls. In many instances, data accessible via portals is 
retrieved and analyzed to support new research directions. 
Traditionally, this requires a series of disconnected actions, 
including (1) moving data to a remote compute resource, (2) 
creating the required environment in which to analyze the data, 
(3) starting the analysis and managing it through its completion, 
(4) moving the resulting data to a suitable system for 
publication, (5) defining or extracting metadata to describe the 
data, and (6) adding the metadata to an index so that it may be 
searched by others. We have developed a framework that 
automates these actions and removes the friction associated with 
working in multiple, distributed data and computation 
environments. A particular focus of this framework is to ensure 
that data are findable, accessible, interoperable, and reusable 
(FAIR) [2] without requiring complex, out-of-band-processes. 
The framework has been used to implement data portals and 
science gateways that effectively automate research operations 
for instruments at core facilities and national laboratories. We 
demonstrate here one such implementation that can be leveraged 
by developers building their own science gateways, data portals 
or data commons to support 

II. REFERENCE IMPLEMENTATION DESCRIPTION 
Our implementation comprises the following components: 

• A science DMZ [3] that eliminates the bottlenecks 
created by network configurations not designed for 
research. We refer the reader to the Energy Sciences 
Network website (fasterdata.es.net/science-dmz) for a 
comprehensive description of science DMZ concepts 
and components. 

• Django (www.djangoproject.com), a Python framework 
for developing web applications. The reference 
implementation uses Django to implement template-
driven search results and landing pages for the portal. It 
integrates with various Globus platform services to 
provide a streamlined user experience, from initial login 
through data analysis and publication. 

• Globus Auth [4], a foundational federated authentication 
and access control service. The reference 
implementation enables users from over 1,800 
organizations to access to the portal using their existing 
institutional credentials. 

• The Globus Search service for managing scalable search 
indexes with and fine-grained access control over user-
defined metadata. The reference implementation 
includes a multi-faceted index that allows the user to 
progressively refine a search query until the desired data 
are found. 

• The Globus Compute service for managed remote 
computation using the function-as-a-service paradigm. 
Globus Compute was previously known as funcX [5]. 
The reference implementation allows the user to analyze 
selected data on a remote computing resource. The portal 
is agnostic with respect to the compute resource, and 
allows analyses to be run at all scales, wherever the user 
has access to computing capacity. 

• The Globus Flows service, for reliable orchestration of 
data management and compute tasks at scale. The 
reference implementation uses this service to enable 
“fire-and-forget” movement, analysis, and sharing of 
data without requiring human intervention. The portal 
uses the Flows service to initiate downstream processing 
of data returned by searches. 

III. DEMONSTRATION 
We will demonstrate the following user experience: 

1) Authentication: Log into the science gateway using an 
existing institutional identity. 



2) Data Discovery: Search and select a dataset of interest. 
3) Data Analysis: Invoke a compute job on a remote system 

to analyze the selected dataset. 
4) Results Sharing: Transfer the data to a system of the 

user’s choice and make it available to collaborators. 
 

Steps 3 and 4 above will be handled by an automated flow 
trigerred by the user. 

 

REFERENCES 
 

[1] K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, J. Williams, “The 
Modern Research Data Portal: a design pattern for networked, data-
intensive science,” in PeerJ Computer Science, 2017, 
https://peerj.com/articles/cs-144. 

[2] Wilkinson, M., Dumontier, M., Aalbersberg, I. et al, “The FAIR Guiding 
Principles for scientific data management and stewardship”. Sci Data 3, 
160018 (2016). https://doi.org/10.1038/sdata.2016.18 

[3] E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, “The Science 
DMZ: a network design pattern for data-intensive science,” in SC '13: 
Proceedings of the International Conference on High Performance 
Computing, Networking, Storage and Analysis, November 2013, Article 
No.: 85, Pages 1–10, https://doi.org/10.1145/2503210.2503245. 

[4] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S. 
Rosen, and I. Foster, “Globus Auth: A Research Identity and Access 
Management Platform,” in IEEE 12th International Conference on 
eScience, 2016. 

[5] Z. Li, R. Chard, Y. Babuji, B. Galewsky, T.Scluzacek, K. Nagaitsev, A. 
Woodward, B. Blaiszik, J. Bryan, D. Katz, I. Foster, K. Chard, “𝑓uncX: 
Federated Function as a Service for Science,” in IEEE Transactions on 
Parallel and Distributed Systems, Volume: 33, Issue: 12, December 2022, 
pp. 4948-4963. 

 



A Lidar and Radar Meteorology Science Gateway
for Education and Research on the NSF Jetstream2

Cloud
1st Jennifer DeHart

Department of Atmospheric Science
Colorado State University

Fort Collins, CO USA
https://orcid.org/0000-0001-8536-4927

2nd Brenda Javornik
Earth Observing Laboratory

NSF NCAR, UCAR
Boulder, CO USA
brenda@ucar.edu

3rd Julien Chastang
NSF Unidata Program Center

UCP, UCAR
Boulder, CO USA

https://orcid.org/0000-0003-2482-3565

4th Ana Espinoza
NSF Unidata Program Center

UCP, UCAR
Boulder, CO USA

https://orcid.org/0000-0002-6292-073X

5th Michael Dixon
Earth Observing Laboratory

NSF NCAR, UCAR
Boulder, CO USA

https://orcid.org/0000-0002-9597-9113

6th Michael Bell
Department of Atmospheric Science

Colorado State University
Fort Collins, CO USA

https://orcid.org/0000-0002-0496-331X

Abstract—This paper introduces a lidar and radar meteorology
science gateway deployed on the NSF Jetstream2 cloud, designed
to enhance educational and research activities in atmospheric
science. Utilizing the "Zero to JupyterHub with Kubernetes"
workflow, we have created a science gateway that integrates lidar
and radar meteorology software packages, notably the Lidar
Radar Open Software Environment (LROSE). This integration
allows users to execute applications directly from the JupyterLab
terminal, streamlining the creation of datasets for further anal-
ysis and visualization within Jupyter notebooks. By combining
traditional command-line operations with modern Python-based
tools for data analysis and visualization, this gateway provides
a robust end-to-end solution that caters to both educational
and research needs. The gateway has already been vital in
facilitating LROSE instructional workshops and will see future
enhancements such as GPU acceleration to boost performance.
Our work demonstrates the significant potential of merging
established scientific computing techniques with advanced Python
environments, opening new avenues for computational science
education and research.

Index Terms—LROSE, Cloud-based Science Gateway, Radar
Meteorology, Lidar Meteorology, Data Visualization, Educa-
tional Technology in Atmospheric Science, JupyterHub, NSF
Jetstream2, Atmospheric Data Analysis

I. INTRODUCTION

In the rapidly evolving field of computational science,
integrating traditional scientific tools with modern data anal-
ysis platforms is essential for advancing research and educa-
tional outcomes. The Lidar Radar Open Software Environment
(LROSE; [1] [2] [3]) is an open-source project collaboratively
developed by Colorado State University’s Department of At-
mospheric Science and the Earth Observing Laboratory at the
National Center for Atmospheric Research. It provides modu-
lar tools for processing lidar and radar observations, including
data conversion, derived quantities, quality control, gridding,

and visualization. The integration of Jupyter notebooks and
JupyterLab with sophisticated scientific computing tools like
LROSE facilitates access to advanced analytical capabilities,
allowing users to manipulate software packages directly from a
web browser. By deploying these tools on the NSF Jetstream2
cloud [4] [5] through a JupyterHub science gateway, we
significantly lower barriers to entry and democratize access to
compute resources for educational institutions and researchers,
facilitating seamless transitions between executing complex
command-line tools and visualizing outputs in pre-configured
Jupyter notebooks. Additionally, it facilitates the hosting of
LROSE instructional workshops, enhancing learning through
hands-on experience. This integration, which includes tools
like the Python ARM Radar Toolkit (Py-ART) [6], enhances
educational and research activities by making advanced lidar
and radar data analysis more accessible.

A. LROSE Background

The goal of the LROSE suite is to provide the lidar and
radar community with well-tested applications for scientific
research. The primary programming language of most LROSE
applications is C++, providing the computational speed to
work with large datasets. The LROSE team contributes to the
Open Source Radar community [7]. LROSE applications can
be categorized into the following: data conversion, display,
gridding, quality control, and scientific analysis of echo and
Doppler wind observations. Examples of the scientific analysis
supported by LROSE include particle identification (e.g., dis-
tinguishing between rain and snow), quantitative precipitation
estimation analysis, and wind retrievals from either a single or
multiple Doppler instruments. Most applications, particularly
those that perform scientific analysis, are based on algorithms



that are described in peer-reviewed literature, of which Radx-
Pid [8] and RadxEvad [9] are examples.

B. Why LROSE in a Science Gateway?

The LROSE team first explored the idea of an LROSE Sci-
ence Gateway to improve accessibility. Educational exercises
are often complicated by users having a variety of operating
systems, potentially different versions of LROSE, and varying
levels of experience with the applications. A cloud-based
science gateway removes any installation barrier and ensures
all participants are using the same version of the software.
The use of JupyterHub as a science gateway was proposed by
Zonca and Sinkovits [10]. Expanding upon the idea of using
JupyterHub as a science gateway, since 2020 the NSF Unidata
Program Center at the University Corporation for Atmospheric
Research, has deployed numerous specialized PyAOS (Python
for Atmospheric and Ocean Science) JupyterHubs tailored
for semester-long academic courses and workshops [11] [12].
JupyterHub, and particularly Jupyter notebooks, is ideal as
a Science Gateway for LROSE as notebooks mimic user
workflows.

Previously, the LROSE team explored a specialized graph-
ical user interface (GUI) as a gateway; however, any modi-
fications to the workflow required development by software
engineers. In general, the LROSE audience is familiar with
programming in Python and wants to customize their interac-
tions with LROSE. With Jupyter and Python, the interface is
directly customized, without the need for additional software
engineering. Specialized JupyterLabs can be deployed for
specific workshops by the software engineers and radar scien-
tists can focus their efforts on tutorial and Jupyter notebook
materials. Finally, community members can develop their own
workflows and submit them to the Gateway, thereby increasing
engagement.

II. METHODOLOGY

In the spring of 2023, the LROSE team acquired an ex-
ploratory allocation on the NSF Jetstream2 cloud at Indiana
University through ACCESS [5]. To develop the LROSE
Science Gateway [13], we employed the "Zero to JupyterHub
with Kubernetes" workflow ported to the NSF Jetstream2
cloud [10], enabling rapid and scalable deployment to accom-
modate a variable number of users. Authentication is managed
via GitHub OAuth, reducing the maintenance burden. Since
LROSE is a collection of C/C++ applications, we configured
Docker containers based on the Jupyter Docker Stack to
integrate the LROSE software, including command-line tools
such as RadxConvert, FRACTL (Fast Reorder and CEDRIC
Technique in LROSE), and SAMURAI (Spline Analysis at
Mesoscale Utilizing Radar and Aircraft Instrumentation; [14])
available via the JupyterLab terminal. These containers also
include Conda package manager environments equipped with
Python packages like Py-ART [6] and Metpy [15] for further
data analysis. A shared drive visible to all JupyterHub users
contains instructional datasets for lidar and radar data anal-
ysis, which users can access and manipulate using LROSE

command-line tools. Additionally, we crafted custom Jupyter
notebooks that can function as tutorials or operational tools,
complete with pre-loaded examples to guide users from data
analysis to visualization.

A significant amount of effort was made to optimize re-
source allocation and enable the execution of computationally
intensive command-line applications like SAMURAI within a
multi-user JupyterHub environment. SAMURAI’s substantial
resource demands often caused the single user server to stall,
rendering it inaccessible. Additionally, heavy concurrent usage
by multiple users risked overloading the entire Kubernetes
cluster. To mitigate these issues, we increased the CPU and
RAM allocation per user and adjusted Kubernetes pod con-
figurations to ensure the JupyterHub "core" pods are isolated
from the single user pods which utilize the majority of CPU
cycles when running such intensive workflows [16]. These ad-
justments aimed to ensure cluster stability, despite occasional
individual node disruptions. This remains an active area of
research as we continue to refine our resource management
strategies.

III. RESULTS AND DISCUSSION

A. Education Applications

These tutorials are designed to be used in workshop or class-
room environments or by users who wish to learn more about
specific LROSE tools. All the notebooks are also available
on GitHub for offline usage on personal devices. The current
tutorials offered on the LROSE Science Gateway highlight
data quality control, particle identification (e.g., distinguishing
between rain and snow, identifying ground clutter or birds),
quantitative precipitation estimation, multi-Doppler analysis
(e.g., SAMURAI), and the creation of mosaics from multiple
radars. The user interface and the introductory portion of the
quantitative precipitation estimation tutorial are shown in Fig.
1. Initial tutorials provided pre-made parameter files so a user
could run all relevant applications without worrying about
incorrect parameters that might produce errors. Based on user
feedback, we have since created a "guided" multi-Doppler
analysis tutorial that helps the user understand how to set
each necessary parameter, inspired by instructional notebooks
created for Metpy [15]. We plan to expand this type of tutorial
to the existing notebooks.

Our first class-based tutorial took place in the spring of
2024, where students in Prof. Michael Bell’s Radar Meteorol-
ogy class generated dual-Doppler analyses from two mobile
radars that sampled a tornado in Goshen County, Wyoming
observed during the Verification of the Origins of Rotation in
Tornadoes Experiment (VORTEX2) field campaign in 2009.
LROSE applications RadxPrint, FRACTL, and SAMURAI
were used to generate gridded analyses of the two-dimensional
wind field. RadxPrint provides the students with the radar file
metadata, including variable names needed to run FRACTL
and SAMURAI. FRACTL and SAMURAI use two different
approaches to retrieve two-dimensional winds from radar data;
FRACTL’s point error statistics help identify regions where
the SAMURAI analysis is of higher quality. Once the gridded



Fig. 1. A screenshot of the JupyterLab layout and the RadxRate tutorial that
a user sees after logging into the LROSE Science Gateway.

analyses were produced, standard Python packages matplotlib
[17], numpy [18], and xarray [19] were used in conjunction
with cartopy [20] and Metpy [15] to visualize the wind field
and storm structure; one of the images the students created
in the tutorial is shown in Fig. 2, showing the horizontal
tornado circulation in vectors and the radar reflectivity in
color shading. Students provided positive feedback about the
exercises in the "guided" tutorial and constructive feedback to
improve tutorials for the future.

Fig. 2. Map of SAMURAI-analyzed 1.5-km radar reflectivity (colors) and
wind vectors (arrows) of the VORTEX2 tornado case analyzed during the
Spring 2024 classroom exercise.

B. Challenges

As previously discussed, computationally-intensive applica-
tions like SAMURAI are challenging to run, even when data
sets are carefully chosen to minimize memory and computa-
tional usage for demonstrations and exercises. For example,
SAMURAI will utilize as much CPU as is allocated to the
environment–in this case, the Kubernetes pod–in which it is
executed. When stress testing SAMURAI on the JupyterHub
with two simultaneous JupyterLab instances on the same node,
we noticed a slow down in the execution time as compared to
the same workflow running on only one JupyterLab instance
at a time. In addition, the step in the workflow where data is

read into the program also suffers a significant performance hit
with two simultaneous workflow executions. While the latter
is being investigated in the SAMURAI code, the former is
still a subject of research and uncertainty. It is speculated that
the multiple degrees of separation from the physical hardware
(i.e., a hypervisor/VM, Kubernetes/containerization, Jupyter-
Hub/Lab) may affect how efficiently SAMURAI and other
computationally intensive processes are executed. We find it
necessary to close the knowledge gap using new or existing
documentation and research in order to better determine the
cause of the performance losses due to simultaneous execution.
One way to mitigate them is to isolate single user pods to
their own Jetstream2 virtual machine. This solution, however,
is only realistically viable for certain scenarios, as described
below.

With open-ended assignments, in contrast to time-limited
workshops, preallocating virtual machines can unnecessarily
drain ACCESS resources, particularly when usage is incon-
sistent (e.g., overnight when students are not working). In
the cases where gateway usage is better known, we use the
soft scale technique to quickly bring nodes up and down as
needed [21]. This technique reduces the allocation usage rate
by allowing for worker nodes to be pre-configured as part
of the Kubernetes cluster and then "shelved," a VM state
that does not exhaust Service Units. However, this technique
requires developer intervention. Automated scaling of virtual
machines on Jetstream2 would be a useful functionality in the
future. The authors are open to feedback or suggestions on
how the hurdles described in this section can be overcome.

IV. CONCLUSION AND FUTURE WORK

In conclusion, the LROSE Science Gateway enhances the
accessibility and usability of advanced atmospheric analysis
tools in education and research. By leveraging the NSF Jet-
stream2 cloud infrastructure and integrating it with Jupyter-
Hub, we have effectively reduced the entry barrier for students
and researchers to utilize sophisticated lidar and radar data
analysis tools. This gateway facilitates seamless transitions
between command-line operations and interactive data visu-
alization, making it easier to enter this specialized field.

Forthcoming development efforts will focus on improving
the gateway’s performance and exploring GPU acceleration.
Future educational plans include partnering with more univer-
sity classrooms, running an intermediate SAMURAI tutorial
to help users understand how the advanced parameters affect
scientific results, and developing more tutorials to encompass
more aspects of lidar and radar meteorology. Based on the
positive feedback to our "guided" multi-Doppler analysis tu-
torial, we plan to upgrade our remaining notebooks to teach
users to create their own parameter files independently. New
tutorials are in the preliminary stages of development, which
would highlight other LROSE applications and explain how to
debug common error messages. Finally, we intend to showcase
how users can integrate LROSE applications with other open-
source packages (e.g., Py-ART, CSU RadarTools [22]).



V. ACKNOWLEDGMENTS

LROSE development is supported by NSF grants #2103776
and #2103785. This material is based upon work supported
by the NSF National Center for Atmospheric Research, which
is a major facility sponsored by the U.S. National Science
Foundation under Cooperative Agreement No. 1852977. NSF
Unidata Program Center funding is supported by NSF grant
#1901712. This work used NSF Jetstream2 at Indiana Univer-
sity through allocation #EES200002 from the Advanced Cy-
berinfrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603,
and #2138296.

VI. REFERENCES

[1] M. M. Bell, “nsf-lrose/lrose-topaz: lrose-topaz-
20220222.” Zenodo, 2022. doi: 10.5281/zenodo.6909479.

[2] “LROSE: The Lidar Radar Open Software Environ-
ment.” http://lrose.net.

[3] “Main Page.” http://wiki.lrose.net/index.php/Main_Page.
[4] D. Y. Hancock et al., “Jetstream2: Accelerating Cloud

Computing via Jetstream,” in Practice and Experience in
Advanced Research Computing (PEARC ’21), New York, NY,
USA: Association for Computing Machinery, 2021, pp. 1–8.
doi: 10.1145/3437359.3465565.

[5] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth,
and J. Towns, “ACCESS: Advancing Innovation: NSF’s Ad-
vanced Cyberinfrastructure Coordination Ecosystem: Services
& Support,” in In Practice and Experience in Advanced
Research Computing (PEARC ’23), Portland, OR, USA: As-
sociation for Computing Machinery, 2023, pp. 173–176. doi:
10.1145/3569951.3597559.

[6] J. Helmus and S. Collis, “The Python ARM Radar
Toolkit (Py-ART), a Library for Working with Weather Radar
Data in the Python Programming Language,” Journal of
Open Research Software, vol. 4, no. 1, p. e25, 2016, doi:
10.5334/jors.119.

[7] M. Heistermann et al., “The Emergence of Open-Source
Software for the Weather Radar Community,” Bulletin of the
American Meteorological Society, vol. 96, no. 1, pp. 117–128,
2015, doi: 10.1175/BAMS-D-13-00240.1.

[8] J. Vivekanandan, D. S. Zrnic, S. M. Ellis, R. Oye,
A. V. Ryzhkov, and J. Straka, “Cloud Microphysics Re-
trieval Using S-Band Dual-Polarization Radar Measure-
ments,” Bulletin of the American Meteorological Society,
vol. 80, no. 3, pp. 381–388, 1999, doi: 10.1175/1520-
0477(1999)080<0381:CMRUSB>2.0.CO;2.

[9] T. Matejka and R. C. Srivastava, “An improved version
of the extended velocity-azimuth display analysis of single-
doppler radar data,” Journal of Atmospheric and Oceanic Tech-
nology, vol. 8, no. 4, pp. 453–466, 1991, doi: 10.1175/1520-
0426(1991)008<0453:AIVOTE>2.0.CO;2.

[10] A. Zonca and R. S. Sinkovits, “Deploying Jupyter
Notebooks at scale on XSEDE resources for Science Gateways
and workshops,” in Proceedings of the Practice and Experi-
ence on Advanced Research Computing (PEARC ’18), New

York, NY, USA: Association for Computing Machinery, 2018,
pp. 1–7. doi: 10.1145/3219104.3219122.

[11] J. Chastang and A. Espinoza, “Unidata Science Gate-
way.” GitHub, 2017. doi: 10.5065/688s-2w73.

[12] J. Chastang and A. Espinoza, “Advancing Atmospheric
Science Education: Customized PyAOS JupyterHubs via the
Unidata Science Gateway,” in Proceedings, 40th Conference
on Environmental Information Processing Technologies, 104th
AMS Annual Meeting, Baltimore, Maryland, USA, 2024. doi:
10.6084/m9.figshare.25251655.v1.

[13] J. DeHart, T. Barbero, T.-Y. Cha, M. Bell,
M. Dixon, and B. Dolan, “LROSE Science Gateway.”
https://github.com/nsf-lrose/lrose-hub, 2024.

[14] M. M. Bell, M. T. Montgomery, and K. A. Emanuel,
“Air-sea Enthalpy and Momentum Exchange at Major Hurri-
cane Wind Speeds Observed during CBLAST,” Journal of the
Atmospheric Sciences, vol. 69, no. 11, pp. 3197–3222, 2012,
doi: 10.1175/JAS-D-11-0276.1.

[15] R. M. May et al., “MetPy: A Meteorological Python
Library for Data Analysis and Visualization,” Bulletin of
the American Meteorological Society, vol. 103, no. 10, pp.
E2273–E2284, 2022, doi: 10.1175/BAMS-D-21-0125.1.

[16] A. Espinoza, J. Chastang, and W. G. Blumberg, “De-
ploying an Educational JupyterHub for Exploratory Data Anal-
ysis, Visualization, and Running Idealized Weather Models
on the Jetstream2 Cloud,” in Gateways 2023, Pittsburgh, PA,
USA, 2023. doi: 10.5281/zenodo.10034606.

[17] J. D. Hunter, “Matplotlib: A 2D graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95,
2007, doi: 10.1109/MCSE.2007.55.

[18] C. R. Harris et al., “Array programming with
NumPy,” Nature, vol. 585, pp. 357–362, Sep. 2020, doi:
10.1038/s41586-020-2649-2.

[19] S. Hoyer and J. Hamman, “Xarray: N-D labeled arrays
and datasets in Python,” Journal of Open Research Software,
vol. 5, no. 1, 2017, doi: 10.5334/jors.148.

[20] Met Office, Cartopy: a cartographic python library
with a Matplotlib interface. Exeter, Devon, 2010. Available:
https://scitools.org.uk/cartopy

[21] A. Zonca, “Soft Scaling Kubernetes on Jetstream.”
https://www.zonca.dev/posts/2024-02-02-soft-scaling-
kubernetes-jetstream, Feb. 2024.

[22] T. Lang, B. Dolan, N. Guy, C. Gerlach, and J.
Hardin, “CSU-Radarmet/CSU_RadarTools: CSU_RadarTools
v1.3.” Zenodo, Feb. 2019. doi: 10.5281/zenodo.2562063.

https://doi.org/10.5281/zenodo.6909479
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.5334/jors.119
https://doi.org/10.1175/BAMS-D-13-00240.1
https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
https://doi.org/10.1175/1520-0426(1991)008<0453:AIVOTE>2.0.CO;2
https://doi.org/10.1175/1520-0426(1991)008<0453:AIVOTE>2.0.CO;2
https://doi.org/10.1145/3219104.3219122
https://doi.org/10.5065/688s-2w73
https://doi.org/10.6084/m9.figshare.25251655.v1
https://doi.org/10.1175/JAS-D-11-0276.1
https://doi.org/10.1175/BAMS-D-21-0125.1
https://doi.org/10.5281/zenodo.10034606
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.148
https://scitools.org.uk/cartopy
https://doi.org/10.5281/zenodo.2562063


A Fast TIFF File Value Extractor For Generating
Timeseries Data to Enable Virtual Climate Stations

Jared McLean
University of Hawai‘i - System, Hilo, HI, USA

mcleanj@hawaii.edu

Sean Cleveland
University of Hawai‘i - System, Honolulu, HI, USA

seanbc@hawaii.edu

Abstract—This paper presents a specialized C++ library that
efficiently extracts values from TIFF files to allow for fast
generation of timeseries information from a large set of GeoTIFF
data. This was produced to assist in generating timeseries for
the Hawai‘i Climate Data Portal (HCDP), an online portal
providing climatological data for the state of Hawai‘i. The library
utilizes a strip-oriented reading approach and a specialized
LZW compression decoder that will process partial strips. A
parallelized driver program was created to further enhance
extraction efficiency for large sets of data. Experimental results
demonstrate a significant speedup for extracting values in early
columns from TIFF files. This library is integrated into an API
backing the HCDP and is being leveraged to generate on-demand
timeseries visualizations for climatological variables at arbitrary
points throughout Hawai‘i.

Index Terms—TIFF, GeoTIFF, LZW, climate data

I. INTRODUCTION

To improve access to climatological data and accelerate
research requiring this data in Hawai‘i, the Hawai‘i Climate
Data Portal (HCDP) [1], [2] was created. The HCDP provides
public access to climatological data collected by sensor sta-
tions throughout the state, as well as derived data products and
visualizations. The primary derived data product provided by
the HCDP is a set of gridded data maps representing estimated
statewide values at a 250m x 250m resolution. These maps are
available for rainfall, temperature, and normalized difference
vegetation index, with additional variables in development.
These are generated by an automated workflow at a daily and
monthly timescale and include 30+ years of historical data.

The Tag Image File Format (TIFF) is a file format com-
monly used to store raster graphic images – images stored
as a matrix of values. The GeoTIFF format is an extension
to this that allows for georeferencing data to be stored in
the images metadata. This provides a good way to store and
display gridded data over a geographical region. GeoTIFFs are
used to store climatological data for the HCDP.

Since the HCDP contains a large amount of data over a
period of time, it is useful to be able to construct a timeseries
representation of the data. While this is relatively straight-
forward for the sensor station data, which has a relatively
limited number of data points which are stored in a database,
the ability to view timeseries of ”virtual stations” - arbitrary
points on the map - is more complicated. This will potentially
require processing a very large number of the GeoTIFF files
the data is stored in. As such, a method conducive to providing

these timeseries to a user without excessive delay requires an
efficient method for extracting the values.

This timeseries generator is integrated into an application
programming interface (API) [3] that backs the HCDP. The
API is set up to index the GeoTIFF data files and can pull
a list of files for a given dataset and time period. A TIFF
extraction program was created to take this set of files and
efficiently generate a timeseries of the data for an index in
the gridded data or geographical location. This project is open
source and the code can be found at https://github.com/HCDP/
geotiff extract.

II. BACKGROUND

A number of libraries for handling TIFF and GeoTiff files
exist such as tifffile [4] for python and the geotiff.js [5] and
tiff.js [6] libraries for JavaScript. These are general purpose
libraries and will generally read all of the data in a TIFF
file and package it into a class for easy handling. This is
great if trying to render the data or manage it in a reusable
fashion; however, reading all of the data in a file has a large
memory and computational overhead, particularly if the data
is compressed.

Lower-level libraries such as libtiff [7] for C++ also exist.
Libtiff has the advantage of providing a strip-oriented reading
method which allows specific strips to be read. While this is a
great improvement over the aforementioned libraries that read
and decompress all of the data, with the added advantage of
being implemented in a compiled language, it is possible to
further speed up this process by decompressing partial strips
of data. A further advantage of a specialized library is that it
can be very lightweight.

Since decompressing the data composes the majority of the
computational overhead of pulling values from a compressed
TIFF file, optimizations to this process can have a large benefit
to the overall time needed to pull values over a large number
of files. To support this ability, a specialized method for
extracting an index from the compressed files was developed.

III. IMPLEMENTATION

This TIFF value extractor was implemented in c++ as a
header only library. This was designed to support TIFF files
using Lempel–Ziv–Welch (LZW) compression, one of the
most widely used compression types for TIFF files. The library
is broken into two main components, a Reader class that

https://github.com/HCDP/geotiff_extract
https://github.com/HCDP/geotiff_extract


extracts the necessary data from the file and a Decoder class
that handles decoding the LZW compressed data strip.

A. Reader Class
TIFF files are broken into three logical components, the

Image File Header (IFH), Image File Directory (IFD), and
the image data [8]. The IFH contains some basic information
about the file and the file offset for the first IFD. The Reader
will read this header to verify the file is valid and then move
to the location of the first IFD.

The IFD contains a header indicating the number of entries
in the IFD, followed by a set of entries containing tagged
values. For the purposes of value extraction, only four values
from this section are needed, the map width and height, the
offsets for the data strips, and the strip byte counts. The Reader
will scan the IFD for these tags and break after getting the
required data.

The gridded map data in the TIFF file is stored in strips.
Each row of values is considered a strip. These strips may
not be stored in a contiguous block of data and have variable
lengths when compressed. The strip offset entry in the IFD
contains a set of file offsets where each strip is located, while
the strip byte counts contains a set of values indicating the
size of these strips. This provides all the information needed
to read the strip of data containing the requested value. The
Reader reads this data strip into a buffer and passes it to the
Decoder along with the column of the value being requested.

B. Decoder Class
The LZW decoder is modeled on the decoder used by the

python Tifffile library with an important modification. The
decoder relies on and builds out a code table for decoding
values as it goes. This is built as normal, but the decoded data
itself will be ignored until the desired value is reached. Once
the value being extracted has been decoded, the Decoder can
terminate without decompressing the remaining portion of the
data strip. This will result in a variable speed up depending on
what column the value being extracted falls in, but the effects
can be relatively large particularly for locations close to the
left edge of the map, since this decompression is the primary
source of computational overhead.

C. Driver
Since the primary purpose for creating this efficient TIFF

value extractor is to quickly pull values from a large number
of TIFF files, a driver program was also created leveraging
this library. The driver takes a set of TIFF files and the
requested value index as command line argument, which are
provided to the Reader. OpenMP [9] is used to parallelize
this process, allowing for a number of files to be processed
at once. OpenMP utilizes an internal thread pool to divide the
work over an optimal number of threads and is very easy to
integrate into the driver program. It uses a pragma compiler
directive system allowing the loop handling the calls to the
Reader to be parallelized in one line.

Ultimately, this driver code is designed to be integrated into
the HCDP API, which will call this as a subprocess and use the

Index 0 Index 1143 Index 2287

2.08ms 2.15ms 2.33ms

TABLE I
THE AVERAGE TIME TAKEN FOR THE FIRST, MIDDLE, AND LAST INDEX TO

BE EXTRACTED OF A SINGLE FILE.

Index 0 Index 1143 Index 2287

With Threading 112.83ms 206.36ms 233.64ms
Without Threading 171.41ms 347.21ms 389.36ms

TABLE II
THE AVERAGE TIME TAKEN FOR THE FIRST, MIDDLE, AND LAST INDEX TO
BE EXTRACTED OF 400 FILES WITH AND WITHOUT THREADING ENABLED.

results to construct a timeseries of the values. To accommodate
this usage, this driver program takes the values and outputs
them to stdout in the same order as the files were provided
as a space separated list. In the event that any of the TIFF
reader functions fail, an underscore is output instead of a value.
This output can then be handled by the API and parsed into
a JavaScript object notation (JSON) object to be returned to
the caller.

IV. RESULTS

The extraction code was tested on the machine running the
HCDP API directly. This machine has an Intel(R) Xeon(R)
CPU E5-2687W v3 @3.10GHz which has 2 cores. The data
files this was tested against have a width of 2288 columns,
so the tests were run on column 0, 1143, and 2287 to test
the speedup achieved by the partial decompression. At column
2287 the entire strip is decompressed, so this will be analogous
to implementations such as the libtiff strip reader that read
and decode a single strip. Tests were done on an input of a
single file (Table I) as well as on 400 files with multithreading
enabled and disabled (Table II). A sample size of 400 was
selected since this roughly matches the number of months
stored by the data portal’s monthly data sets. All tests were
averaged over 100 executions.

The tests demonstrated a significant speedup for values at
the beginning of a strip vs at the end, with the elements at
index 0 taking less than half the time of the last element in
the 400 file test, though there does seem to be a more sig-
nificant speedup at lower indices. Additionally, the threading
made a significant improvement in the runtime, with greater
improvements being possible if this machine were allocated
additional CPUs.

V. HCDP INTERFACE INTEGRATION

The API endpoint leveraging this GeoTIFF extraction pro-
cess was integrated into the HCDP’s user interface to generate
visualizations of the timeseries of values for climatological
variables at any location in Hawai‘i. This allows users to select
an arbitrary map location and create a “virtual station”. The
location of this virtual station is sent as a query to the API
along with information about the climatological variable being
viewed, and a timeseries of data at this location for the lifespan



Fig. 1. A timeseries graph of gridded maximum temperature data provided by the HCDP. This data is produced from the gridded GeoTIFF products derived
from sensor station data. This data is generated and returned by the GeoTIFF processing endpoint in the HCDP API.

of the dataset is returned. Most of the variables measured are
at a daily and monthly timescale. Timeseries for both of these
scales are requested and made available to the user.

While the TIFF extraction process described is able to pull
values relatively quickly, very large queries can still take some
time to process. For example, daily data over the lifespan
of a dataset going back to 1990 – the range of many of
the HCDP datasets – must index and process over 12,000
files. To improve the responsiveness of the interface and user
experience, large queries are separated into multiple chunks.
This way data can be loaded into the timeseries visualization
as it is received rather than requiring all of the data to be
loaded at once. This has the additional benefit of allowing
some chunks of a query to be cancelled if a user selects a
different location before all of the data from one is complete.
The web application throttles the number of requests that are
sent to the API at the same time and has a queue of remaining
query chunks that can be cancelled before being issued. Single
large queries issued to the API whenever a user selects a
new location could generate increased load on the API and
underlying file system since there is no way to halt an API
request once issued.

Once the data is returned to the user it is loaded into a
set of interactive graphs for each timescale (Figure 1). Graphs
are generated using Plotly.js [10] and have the built-in ability
to rescale and manipulate the graph view as well as produce
and download an image of the graph. Users can download
the timeseries data for the location as a comma separated
value (CSV) file containing timestamp and value columns for
additional analysis without requiring API access.

VI. FUTURE WORK

Currently, this implementation has some limitations. No-
tably, it only handles files with little endian byte order that
use LZW compression or no compression. LZW compression
will generally be the most common compression particularly
for applications that require a lossless algorithm such as the
intended use case for this project; however, it would be useful
to extend this to handle other compression algorithms, such
as deflate.

Given the intended use case of extracting a value from the
same index of GeoTIFF files with the same spatial extent, a
further heuristic could be implemented in the case that part of
the strips contain background no-data values for a portion of
the leading edge of the data. It would be possible to partially
decompress the strip from one of the files up to the first real
value and begin at that point for the rest of the files, sharing the
decompression table state at that position. Assuming all of the
files use the same no-data value, the decompression up to this
point will be identical; so, this should allow subsequent files
to further limit the amount of data they need to decompress.

REFERENCES

[1] J. McLean, S. B. Cleveland, M. Dodge, M. P. Lucas, R. J. Longman,
T. W. Giambelluca, and G. A. Jacobs, “Building a portal for
climate data—mapping automation, visualization, and dissemination,”
Concurrency and Computation: Practice and Experience, Nov. 2021.
[Online]. Available: https://doi.org/10.1002/cpe.6727

[2] R. J. Longman, M. P. Lucas, J. Mclean, S. B. Cleveland, K. Kodama,
A. G. Frazier, K. Kamelamela, A. Schriber, M. Dodge, G. Jacobs,
and T. W. Giambelluca, “The hawai‘i climate data portal (hcdp),”
Bulletin of the American Meteorological Society, Apr. 2024. [Online].
Available: http://dx.doi.org/10.1175/BAMS-D-23-0188.1

https://doi.org/10.1002/cpe.6727
http://dx.doi.org/10.1175/BAMS-D-23-0188.1


[3] J. Mclean and S. Cleveland, “Design and implementation of web apis
for supporting data product visualization and dissemination in science
gateways,” Proceedings of the 56th Hawaii International Conference
on System Sciences, vol. 10, p. 6966, 2023. [Online]. Available:
https://hdl.handle.net/10125/103478

[4] C. Gohlke, “tifffile: Read and write tiff files,” https://pypi.org/project/
tifffile/, 2021, accessed: May 12, 2023.

[5] geotiffjs, “geotiff.js: Geotiff reader and writer in javascript,” https:
//www.npmjs.com/package/geotiff, 2021, accessed: May 12, 2023.

[6] seikichi, “tiff.js: Tiff decoder/encoder in javascript,” https://www.npmjs.
com/package/tiff.js, 2015, accessed: May 12, 2023.

[7] S. Leffler and I. Silicon Graphics, libtiff: Library for Reading and
Writing TIFF Files, 4th ed., LibTIFF Group, San Francisco, CA, August
2021, http://www.simplesystems.org/libtiff/.

[8] International Telecommunication Union, “TIFF specification,” 1992,
technical Report. [Online]. Available: https://www.itu.int/itudoc/itu-t/
com16/tiff-fx/docs/tiff6.pdf

[9] OpenMP Architecture Review Board, “OpenMP application program
interface version 4.5,” 2015. [Online]. Available: https://www.openmp.
org/wp-content/uploads/openmp-4.5.pdf

[10] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

https://hdl.handle.net/10125/103478
https://pypi.org/project/tifffile/
https://pypi.org/project/tifffile/
https://www.npmjs.com/package/geotiff
https://www.npmjs.com/package/geotiff
https://www.npmjs.com/package/tiff.js
https://www.npmjs.com/package/tiff.js
http://www.simplesystems.org/libtiff/
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://plot.ly


User Competence Metrics for Science Gateways:
The Case of the KnowCOVID-19 Gateway
MD Ashraful Goni

Media and Communication
Texas Tech University
Lubbock, Texas, USA

mgoni@ttu.edu

Roland Oruche
Computer Science

University of Missouri-Columbia
Columbia, Missouri, USA
ro2q2@mail.missouri.edu

Minhaz Uddin
Media and Communication

Texas Tech University
Lubbock, Texas, USA

minuddin@ttu.edu

Opeyemi Lawal
Media and Communication

Texas Tech University
Lubbock, Texas, USA

oplawal@ttu.edu

Prasad Calyam
Computer Science

University of Missouri-Columbia
Columbia, Missouri, USA

calyamp@missouri.edu

Kerk Kee
Media and Communication

Texas Tech University
Lubbock, Texas, USA

kerk.kee@ttu.edu

Abstract—This study provides statistical validation of three
composite scales designed to calculate metrics for gateway user
competence in terms of domain knowledge, technical skills, and
problem-solving orientation. Based on an online survey (N =
365) fielded by an online panel company (Centiment.co) with US
based participants, analyses using SPSS software demonstrated
that technical competence varied between age groups (lower
scores for participants aged 60 and higher) and educational levels
(lower scores for participants without a bachelor’s degree) at a
statistically significant level (at 95% confidence interval). These
findings suggest that gateway developers may need to provide
more technical support to users who are senior researchers and
when gateways are being introduced into high school classrooms.
Conversely, ethnicity and gender were found to be non-predictors
of technical competence. These findings suggest the stereotype of
white males being more tech-savvy than other ethnic and gender
groups may not hold true anymore.

Index Terms—KnowCOVID-19, User Competence, Compe-
tence Metrics, Usability, Science Gateway

I. INTRODUCTION

The COVID-19 disease created both an alarming patient
death rate and a data deluge problem for medical profession-
als during the pandemic. When medical professionals search
online about the disease, they drown in a sea of information
available on the Internet. However, science gateways can be a
solution to this problem. More specifically, our research team
developed a (prototype) science gateway augmented by an
AI powered chatbot designed to assist medical professionals
to search and filter the results based on different levels of
evidence [1], so they can focus on a narrower set of literature
to identify the information they need to treat their patients. The
gateway is called “KnowCOVID-19” and the chatbot is called
“Vidura,” named after a wise advisor in Indian mythology.

The use of the evidence pyramid [2] is a common approach
in the medical profession to filter research papers. For exam-

This project was funded by the US National Science Foundation under
grant numbers NSF-2006816 and NSF-2007100. We thank Eric Milman and
Chaitra Kulkarni for their assistance in the early usability study.

ple, a doctor may specifically want to rely on findings from
randomized controlled trials (RCTs) and not observational
studies. Methodologically, RCTs and observations are different
levels of evidence. A doctor can specify which level of
evidence to filter their search results on KnowCOVID-19. This
approach helps users to more effectively and efficiently find
the information they need, and the Vidura chatbot can assist
the users on the gateway platform.

However, two issues remain. First, many gateways face
limited funding for usability and technical support; funding is
mainly for developing open-source prototypes. Many gateways
suffer from usability issues, leading to challenges in user
adoption and implementation. Second, different users come
to the gateway with different levels of competence. Different
users may need different answers even if they ask the same
question to the AI chatbot. For example, a medical student in
training may need more medical explanation about symptoms
associated with COVID-19, but a senior medical doctor who
is not familiar with online platforms may need more help with
technical navigation on the gateway.

Given these two challenges, the present paper seeks to sta-
tistically validate our recently developed approach to measure
user competence [3]. Measuring user competence can first
help gateway developers to identify the users who need more
support. Second, two users with different levels of competence
(high vs. low in technical competence; high vs. low in COVID-
19 knowledge) can be given customized responses based on
their competence levels, even if they ask the Vidura chatbot
the same question. Having valid user competence metrics is
helpful for our gateway and other science gateways across
domains. Therefore, we aim to answer the research question,
“How can the user competence metrics (domain, technical,
and problem-solving scales) be statistically validated and then
be used to generate insights about gateway users?”

In order to report on the work we set out to accomplish, this
paper is outlined as follows. First, we provide a brief review



of the literature on medical information-seeking and user com-
petence. Second, we describe the methods we employed for
data collection and statistical validation of our three composite
scales for measuring user competence. Third, we present our
statistical validations of the scales and how one example of
technical competence varied across demographic groups. The
findings show how user competence metrics can be used in
practical ways to generate user insights. Fourth, we wrap up
the paper with a conclusion.

II. LITERATURE REVIEW

A. Medical Information Seeking

Seeking health information about diseases to provide the
best treatments to their patients is of great importance to
medical professionals [4]. However, how to source health
information in a timely fashion and make the best decisions
to help their patients was a daunting task for many during
the pandemic [5]. When searching for health information,
medical professionals often use strategies such as keywords,
Boolean Operators, advanced search, and medical synonyms
[5]. However, barriers to seeking health information include
insufficient time, lack of information search skills, unaware-
ness of accessible sources, high search costs, organizational
challenges, location constraints, inadequate information tech-
nology infrastructure, and a shortage of medical librarians [4]–
[6]. In a systematic review [5] it was reported that medical
professionals spend approximately 2 to 32 minutes to finding
answers to health questions. In this paper, we believe that what
differentiates those who can find the needed information faster
than others may be their user competence, especially when it
involves a science gateway.

B. User Competence

The notion of competence, originally proposed by White in
1959 [7], [8] as a motivational concept in psychology, has
now become a subject of growing research interest across
many disciplines. White defined competence as “an organism’s
capacity to interact effectively with its environment” [8].
In the case of gateways, this can involve an individual’s
capacity to interact effectively with the technical environment.
Similarly, Rychen and Salganik [9] described competence
as the individual capacity or capability to effectively fulfill
personal or societal requirements, or to perform a specific
action or duty. In the case of COVID-19, it can be a medical
professional’s capacity/capability to effectively find the most
rigorous medical information to treat patients. Conversely,
many scholars described competence as the observable and
measurable attributes of a person, including a mix of their
knowledge, skills, abilities, motivations, and self-perception,
that lead to outstanding performance [10]. Computer com-
petence encompasses a wide-ranging concept and overlaps
with associated terms such as computer experience, expertise,
accomplishments, abilities, and literacy. Related to computer
competence, Internet competence is conceptualized as a col-
lection of mindsets related to an individual’s self-assessed

proficiency and comfort with utilizing internet-based tools and
platforms [11].

Prior to the present paper, our research team conducted a
usability study with 20 participants with KnowCOVID-19 and
Vidura chatbot [3]. Participants were assigned various tasks
to complete, and their actions were recorded through screen
capture videos while they interacted with the gateway. Based
on this prior work, we found three types of user competence:
medical domain, technical, and problem-solving competence,
and we developed three composite scales to measure them in
a questionnaire as presented below. Gateway developers can
customize the composite scales to fit their own domains.

Medical Domain Competence (User’s expertise or special-
ized knowledge in COVID-19.)

1) When searching for information about COVID-19, I
understand the search task at hand.

2) When searching for information about COVID-19, I
know the right search terms, keywords, etc., to specify
the search.

3) When searching for information about COVID-19, I am
able to assess the relevance of search results vs. second-
guessing if I have found the answers.

4) When searching for information about COVID-19, I am
able to explain the relevance of search results.

5) When searching for information about COVID-19, I am
able to tell when the relevant information is found, and
the task is done.

6) When searching for information about COVID-19, I can
effectively evaluate the credibility of information during
my searches.

Technical competence (User’s ability to effectively and
efficiently use the search engine gateway’s features and tools
to locate the information they are seeking.)

1) I have experience with basic browser functions (e.g.,
opening a new tab, sorting, filtering).

2) I have experience with basic keyboard shortcuts (e.g.,
Ctrl-F, Ctrl-Alt-Delete).

3) I have experience with basic mouse clicks (e.g., right-
click for features).

4) I have experience with basic Internet terminologies (e.g.,
URL, hyperlinks).

5) I can move through the necessary steps for a search
task (including browser, keyboard, mouse) logically in
sequence vs. missing steps and having to backtrack.

6) I can effectively make use of visual content on web
pages and confidently navigate different interfaces on
new web pages.

Problem-solving competence (Motivation to adapt them-
selves to any new innovative technologies to complete the
assigned task.)

1) I show some level of calmness and/or enthusiasm when
using technology rather than being nervous and/or con-
fused.

2) I show confidence with quick actions when using tech-
nology, rather than hesitating or pausing frequently.



3) I am willing to act and try something on a technology
even when I am unsure about it.

4) I try another approach immediately when my first at-
tempt does not work while using technology.

5) I am willing to work around usability issues when using
a technology.

6) I know when to ask for help and guidance when using
technology.

III. METHODS AND ANALYSIS

For data collection, we contracted with an online survey
panel company (Centiment.co) to field the survey with paid
participants based in the US between 4/26/2024 and 4/29/2024.
Data collection yielded a total of 396 responses. However,
upon a close examination, we eliminated 31 responses because
these participants failed the attention check embedded in the
questionnaire, giving us a final sample of 365 responses for
analysis. An attention check (e.g., Please select “All of the
above” as the answer for this question) is a fake question in a
survey designed to test if a participant picked answers without
reading carefully. We assessed participants’ level of agreement
with the 18 items across three composite scales using a 7-point
Likert scale. Prior to collecting survey responses, we obtained
IRB approval for the study. Table 1 summarizes the descriptive
statistics of key demographic variables of the final sample.

TABLE I
DESCRIPTIVE STATISTICS OF THE DEMOGRAPHIC VARIABLES OF THE

FINAL SAMPLE

Demographic
Variables

Categories Number of Participants
(Percentage of Sample)

Gender Females 181 (49.6%)
Males 183 (50.1%)
Other 1 (0.3%)

Ethnicity Whites 254 (69.6%)
People of Color 111 (30.4%)
-African Americans 68 (18.6%)
-Asians/Pacific Islanders 10 (2.7%)
-American Indians 9 (2.5%)
-Hispanics 7 (1.9%)
-Mix 14 (3.8%)
-Other 3 (0.8%)

Education Non-Bachelor’s Degrees 270 (74%)
≥ Bachelor’s Degrees 153 (26%)

Age Groups Young Adults (18-29) 64 (17.5%)
Adults (30-59) 197 (55.0%)
Older adults (≥ 60) 97 (26.6%)

Based on the final sample (N = 365), we performed a
reliability analysis using the SPSS (Statistical Package of
Social Sciences) Software. Specifically, a reliability analysis
refers to the process of measuring the consistency of the items
in a composite scale based on inter-item correlations. In other
words, let’s take the medical domain competence scale with
six items discussed earlier as an example: if the six items in the
composite scale share a high level of inter-item correlations
above 0.70, then the composite scale is deemed consistent
enough to converge as a coherent measure of the concept
of medical domain competence. Similarly for the composite
scales of technical and problem-solving competence.

This inter-item correlation score is called Cronbach’s alpha,
where the value of 1 means a perfect 100% correlation among
all 6 items, and a value of 0 means no correlation at all. With
a satisfactory alpha score, a composite score for each type of
competence can be calculated by averaging the six individual
item scores within the three respective composite scales. Then
the three composite scores will serve as the domain, technical,
and problem-solving competence metrics.

IV. FINDINGS

Based on our analysis, the medical domain competence
scale achieved a satisfactory alpha score (α = .93), similarly
for the technical competence scale (α = .93) and the problem-
solving competence scale (α = .89). While 0.70 is commonly
considered the minimum score for a reliability analysis, some
sources suggest that a 0.60 score may be acceptable, especially
for a scale in progress. However, statistically, our three scales
achieved a high degree of reliability.

Recall that we discussed averaging the individual item
scores to obtain three composite scores (metrics). These met-
rics can be used to assess and evaluate the three types of
competence in the case of using the KnowCOVID-19 gateway.
However, social scientists can use the metrics to explore their
relationships with other variables in the same questionnaire.
We explored how the three scores varied across different
groups based on gender, ethnicity, age, and education at the
95% confidence level (p < 0.05). Due to space limitations,
we only report findings of technical competence as a case in
point.

1) Ethnicity: An independent sample t-test assessed
whether technical scores differed between Whites and people
of color. White participants (M = 5.72, SD = 1.18) did not
differ significantly from people of color (M = 5.98, SD =
1.23), t(363) = -1.89, p = .059. Because the difference is
not statistically significant, this finding suggests that ethnicity
is not a generalizable predictor of technical competence,
although people of color scored higher than Whites in the
sample.

2) Gender: An independent sample t-test was conducted to
compare the technical competence between males and females.
There was no significant difference between males (M = 5.82,
SD = 1.23) and females (M = 5.77, SD = 1.17; t(362) = 0.35,
p = .730). This result suggests that gender is not a statistically
significant predictor of technical competence.

3) Age Groups: A one-way between-groups ANOVA was
conducted to assess the differences in technical competence
across different age groups: young adults (18-29), adults
(30-59), and older adults (≥ 60). The test results showed
significant differences in technical competence (F(2, 355) =
15.63, p < .001, η2 = .081) across age groups. Post hoc
comparisons using Tukey’s HSD test further showed that
adults (M = 6.05, SD = 1.06) had significantly higher technical
competence compared to older adults (M = 5.26, SD = 1.22,
p < .001). Additionally, young adults (M = 5.91, SD = 1.28)
also had significantly higher technical competence compared
to older adults (p < .001). However, adults did not differ



significantly from young adults in terms of technical scores
(p = .694). Therefore, the significant differences lie primarily
between older adults and the other two groups. The partial eta
squared value of .081 indicates a moderate effect size.

4) Education: An independent sample t-test was conducted
to compare technical competence scores for participants based
on education attainment at two levels (bachelor’s degree
or higher vs. non-bachelor’s degree holders). There was a
significant difference in scores between participants with at
least a bachelor’s degree (M = 6.05, SD = 1.05) and non-
bachelor’s degree holders (M = 5.71, SD = 1.23). The t-test
results indicated a statistically significant difference, t (363) =
-2.39, p = .018. The result suggests having a bachelor’s degree
or higher is a predictor of technical competence.

V. CONCLUSION AND FUTURE RESEARCH

In conclusion, with a sample of 365 participants, we statis-
tically validated three previously developed composite scales
to measure user competence in terms of medical domain
knowledge, technical ability, and problem-solving orientation.
The data collection involved an online survey fielded by Centi-
ment.co, and the reliability analysis was performed using SPSS
software to ensure the internal consistency of these scales.
The three composite scales achieved satisfactory Cronbach’s
alpha scores, confirming their reliability for future use as
user competence metrics. These validated metrics were then
employed to assess competence levels across demographic
groups, providing valuable insights into variations in user
competence.

Furthermore, we demonstrated how technical competence
scores (as an example for demonstration in this paper) varied
across age groups and educational levels. Specifically, adults
(ages 30-59) and young adults (ages 18-29) both scored higher
than older adults (aged 60 and above) at a statistically signifi-
cant level. This finding suggests that age 60 is the demarcation
point, where users aged 59 or younger are technically more
competent. Gateway developers may need to provide more
onboarding and technical support for users aged 60 or older.

Additionally, participants with at least a bachelor’s degree
also scored higher than participants without a bachelor’s
degree in terms of technical competence. Because the majority
of gateways are being used by graduate students and faculty
who hold a bachelor’s degree or higher, gateway developers
could expect a certain level of technical competence. Gateway
developers may need to provide more technical support to
users when a gateway is being introduced into a high school
classroom. Future research should investigate the technical
competence of undergraduate students who are working to-
wards their bachelor’s degrees.

Conversely, ethnicity and gender were not found to be
predictors of technical competence at a statistically significant
level. Gateway developers may be able to take comfort in our
results, which suggest that the digital divides between ethnic
and gender groups may have been successfully bridged, at
least in our study sample. In other words, the stereotype of
white males being more tech-savvy than other ethnic and/or

gender groups may not be true anymore today, at least in the
case of using online technologies to search for COVID-19
information.

How else can the user competence metrics be used to
support the adoption of science gateways? We measured
participants’ degree of agreement with the 18 items across
three composite scales using a 7-point Likert scale. Given this,
the value of 4-point represents the midpoint of the Likert scale.
Generally, one can consider an individual composite score of
3.9 or below to be “low” and a score of 4.0 or higher to
be “high”. Other demarcation variations (e.g., using the mean
or median instead of the midpoint) can be the judgments of
the gateway developers within their particular contexts. Let’s
say we use 4 as the midpoint of the scale and divide all the
users of a gateway into two groups of high vs. low domain
knowledge (specific gateway domain), technical, and problem-
solving competence, then we can create a 2x2x2 matrix of
eight different quadrants. This means each gateway user can
be placed in one of these quadrants (e.g., high in domain,
low in technical, and high in problem-solving), thus allowing
the AI chatbot to customize the responses as discussed in the
introduction. However, users are likely to improve on the three
competence metrics over time, thus being able to transition
from one quadrant to another. This approach can allow our AI
chatbot to further customize its responses to the users based
on their latest position in the matrix.

REFERENCES

[1] B. W. Shibo, R. Oruche, M. A. Goni, X. Cheng, E. Milman, P. Calyam,
and K. Kee, “Challenges faced by medical professionals as gateway
users: The case of knowcovid-19,” in Proceedings of Science Gateways
2023 (SG23), Pittsburgh, PA, October 30 2023.

[2] M. H. Murad, N. Asi, M. Alsawas, and F. Alahdab, “New evidence
pyramid,” BMJ Evid.-Based Med., vol. 21, no. 4, pp. 125–127, 2016.

[3] M. A. Goni, R. Oruche, M. Uddin, O. Lawal, P. Calyam, and K. E.
Kee, “User competence metrics for cyberinfrastructure: The case of
know covid-19 science gateway,” in Metrics 2023, Denver, Colorado,
November 2023.

[4] M. Andualem, G. Kedebe, and A. Kumie, “Information needs and
seeking behavior among health professionals working at public
hospitals and health centers in bahur dar, Ethiopia,” BMC Health
Services Research, vol. 13, p. 534, 2013. [Online]. Available:
https://www.biomedcentral.com/1472-6963/131534

[5] A. Daei, M. R. Soleymani, H. Ashrafi-Rizi, A. Zargham-Boroujeni, and
R. Kelishadi, “Clinical information seeking behavior of physicians: A
systematic review,” International journal of medical informatics, vol.
139, p. 104144, 2020.

[6] F. A. Geda, “The roles of medical library in information seeking
behavior of health care professionals: A review of literature,” Journal
of Hospital Librarianship, vol. 21, no. 4, pp. 405–416, 2021.

[7] K. Schneider et al., “What does competence mean?” Psychology, vol. 10,
no. 14, p. 1938, 2019.

[8] R. W. White, “Motivation reconsidered: the concept of competence,”
Psychological Review, vol. 66, no. 5, p. 297, 1959.

[9] D. S. Rychen and L. H. Salganik, “Definition and selection of competen-
cies (deseco): Theoretical and conceptual foundations. strategy paper,”
2002, neuchatel, Switzerland: Swiss Federal Statistical Office.

[10] L. M. Spencer and S. M. Spencer, Competence at Work: Models for
Superior Performance. John Wiley & Sons, 2008.

[11] B. W. Wirtz, R. Piehler, and P. Daiser, “E-government portal characteris-
tics and individual appeal: An examination of e-government and citizen
acceptance in the context of local administration portals,” Journal of
Nonprofit & Public Sector Marketing, vol. 27, no. 1, pp. 70–98, 2015.



1

Locking Down Science Gateways
Steven R Brandt∗ , Patrick Diehl‡∗†

∗LSU Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.
† Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.

‡ Applied Computer Science (CCS-7), Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.

Abstract—The most recent Linux kernels have a new feature
for securing applications: Landlock. Like Seccomp before it,
Landlock makes it possible for a running process to give up access
to resources. For applications running as Science Gateways, we
want to have network access while starting up MPI, but we want
to take away network access prior to the reading of parameter
files in order to prevent malicious exploits of the gateway code.
We explore the usefulness of this tool by modifying and locking
down two mature scientific codes: The Einstein Toolkit, and Octo-
Tiger.

Index Terms—Science Gateways, security, landlock

I. INTRODUCTION

Science Gateways typically provide a graphical or web
interface to scientific code, allowing users who are less savvy
about the command line, supercomputers, Slurm, etc. to have
ready access to advanced codes. Often, in the interest of
democratization, the vetting process for users of the Gateway
is less rigorous than a typical user account. Because scientific
codes are typically written in C, C++, or Fortran without a
thought about security, these applications represent a potential
security hazard via buffer overruns, poor input sanitization,
etc. Full audits of these codes represent a cost few are willing
to undertake.

An ideal solution for these systems would be to sandbox
the code, limiting what it can do even if a hacker were to
gain control of the running process. Because these applications
typically run in a distributed fashion over MPI, they need
the ability to turn on the sandbox (and take away the ability
to make new connections) after calling MPI_Init(). In
addition, of course, the sandbox should limit what directories
the process can read or write.

The most recent Linux kernel (version 6.9), fortunately,
offers a way to lock down an application, i.e. a way for an
application to give up its access to the network and to files. Can
this tool (landlock) readily address the needs of the Science
Gateway and make sophisticated scientific applications secure?
Can it accomplish this without overburdening the Gateway
developer with the need to understand deep things about
security or make extensive modifications of their code?

In this paper, we explore the difficulty in securing two
codes: The Einstein Toolkit, which we will use to simulate
a spherically symmetric neutron star, and Octo-Tiger, which
we will use to simulate a white dwarf. These codes have little
in common except that they are large C++ codes that explore
astrophysical scenarios. We will show that it is relatively easy
to modify these codes to employ Landlock.

The paper is structured as follows: Section II discusses
security tools and methodologies. Section III briefly introduces
the studied scientific applications. Section IV addresses the
implementation and testing. Section V shows examples to
lock the file systems access and network. Section VI shows
some run time measurements for Octo-Tiger with and without
Landlock. Finally, Section VII concludes the work.

II. SECURITY TOOLS AND METHODOLOGIES

Landlock is far from the first tool designed to lock down
an otherwise insecure application and prevent it from doing
malice. The original Linux had chroot to serve this purpose.
The chroot system call changed the effective root of the
process calling it. It thereby gave up access to all files below
the new root passed to it. Unfortunately, subsequent calls to
chroot can undo the first call, so it is inadequate even
for a low-level sandboxing. The pivot_root system call,
introduced in Linux 2.3.41, provides an irreversible change of
the root directory. While it does make it possible to sandbox
direct access to the file system from the current process, it
does not prevent the local process from opening network
connections, creating IPC resources, etc. So it is, at best, a
start at building a sandbox.

Another, more comprehensive effort at limiting what appli-
cations can do, is provided by the seccomp facility and has
been available since Linux 3.17. This tool allows system calls
to be selectively blocked and filtered. However, seccomp
does not claim to be able to sandbox an application, but it does
provide a way for an application to give up a wide variety of
privileges. One limitation of seccomp is that one cannot pass
pointers to it. This means it cannot be given character arrays,
and this means it cannot be used to limit access to specific
files or directories. In principle, it could be combined with
pivot_root to accomplish this end.
SELinux and AppArmor provide true sandboxing capa-

bilities, but they must be configured by the root user and
provide system-wide restrictions. It should, in theory, be
possible to configure them into an image and launch the image
from MPI. In principle, these tools could be configured for an
Apptainer image and launched by a user. Alternatively, rules
could be crafted collaboratively between the sysadmins and
the Science Gateway developer. While these tools are fully
capable of providing the necessary level of restriction, turning
them on after calling MPI_init() might, however, prove
challenging.

OpenBSD has similiar capabilities to Landlock through
its pledge and unveil system calls. However, very few

https://orcid.org/0000-0002-7979-2906
https://orcid.org/0000-0003-3922-8419


2

clusters currently use OpenBSD on their clusters. Namespaces
also have the capability of limiting what an app can do, but
they were designed more for virtualization than for security.
Landlock, however, allows programmers the flexibility of
controlling when restrictions are turned on and requires neither
special permission from sysadmins nor virtualization. We
believe that, in many cases, this will make it the best choice
for locking down a science gateway.

III. SCIENTIFIC APPLICATIONS

Although theoretically present in kernel version 5.13, the
first version in which Landlock was capable of stopping
network connections seems to be Fedora 40 running kernel
version 6.8.1. We feel that this is a crucial capability for the
purposes for preventing bad actors from gaining control of or
misusing local resources.

We constructed a function call named landlockme() [1]
which our applications can call. It is based on an example
landlock sandboxing code found here [2]. This code uses
environment variables to communicate which directories the
application is allowed to read, write, and where (if anywhere)
it is allowed to make internet connections and on what ports.

Most scientific codes follow a standard workflow: (1) initial-
ize MPI, (2) then read parameter and/or data files, (3) and then
finally produce a result. To secure such an application, one
inserts a call to landlockme() or the equivalent between
steps (1) and (2). For this strategy to be effective, the gateway
should not give the user any control over command line
arguments to the application, only to the contents of the
parameter and input files.

The insertion of this call can be performed in one of two
ways: (1) editing the source code, or (2) using PMPI to call
MPI_Init().

A. The Einstein Toolkit

The Einstein Toolkit (ET) [3] is a hybrid code constructed
from C, C++, and Fortran. It’s core infrastructure was first
created in 1977 and it has been under continuous develop-
ment since. While the core infrastructure, Cactus, is generic
and could be used for any Cauchy problem, the family of
science-specific modules in the ET centers on fully relativis-
tic astrophysical simulations, e.g. black holes, neutron stars,
supernovae, and cosmology. Cactus provides adaptive mesh
refinement (AMR) with subcycling in time. Using the Carpet
driver, this is in the form of nested and moving boxes rather
than a fully general refinement system.

The test problem we are using in this paper is a TOV
star [?]. This is a simple, spherically symmetric neutron star
which we model on a full 3D Cartesian grid. While this is
more computational infrastructure than is needed for such a
simple simulation, it is a common test problem that is run
to verify code correctness and to teach students about neutron
stars and the ET code. The TOV star will exercise all important
components of the solvers required for more sophisticated
problems.

B. Octo-Tiger
Octo-Tiger is an astrophysical code simulating the evolution

of non-relativistic star systems using adaptive octrees [4].
Octo-Tiger simulates the following multi-physics: Gravity is
solved using a fast-multipole method (FMM) and the hydro
equation is solved using a finite volume method with a fully
adaptive mesh refinement (AMR) without subcycling in time
(subcycling is avoided because of the need to solve elliptic
equations). Octo-Tiger is implemented in C++ using the C++
standard library for parallelism and concurrency (HPX) [5].

IV. IMPLEMENTATION AND TESTING

We note that while Landlock works on Fedora 40, we
were unable to get the default installed valgrind to work.
As far as valgrind and the emulated CPU it uses work,
the system does not have the capability. The GNU debugger
project (gdb) worked with Landlock.

A. The Einstein Toolkit
We began by testing very basic MPI codes that exchange

simple messages of random data using MPI_Send and
MPI_Recv in order to verify whether our method works.

We were able to show that if landlockme() was called
before MPI_Init, then the application did not run. If we
called landlockme() after MPI_Init, then the applica-
tion ran without difficulty using MPICH. When we attempted
the same test using OpenMPI, Landlock blocked an attempt
to use shared memory. In principle, we could ask OpenMPI
not to do this, or we could change the rules to allow shared
memory. For simplicity, we tested our scientific codes using
MPICH.

The modification to the Einstein Toolkit was straight-
forward. We were able to identify the function call
CCTKi_InitialiseCactus and insert the call to
landlockme() after the call to a method named
CCTKi_InitialiseDataStructures. With the addi-
tion of this single line of code, our TOV star example was
able to run and generate data files.

As a double check that the Landlock was indeed active,
we ran the tests again, running it in directories it was not
supposed to be able to access. As expected, Landlock
prevented it from reading or writing files.

B. Octo-Tiger
For the Octo-Tiger version without networking, we called

landlockme() as the first thing after entering the main
method. As expected, Landlock prevented it from reading
or writing files. For the version with networking on, we had
to make sure that each MPI rank calls landlockme().
Here, we called the function in the initialization of each MPI
rank. For debugging purposes, we added simple stdout/stderr
messages to the landlockme() function. So the function
is called for each MPI rank. Adding LandLock to Octo-
Tiger was straightforward and had no major issues. We have
to mention that we had to do code changes unrelated to
LandLock but specific to GCC 14. We are in the process to
prepare a pull request for adding LandLock as an optional
feature to Octo-Tiger.



3

Listing 1. Example variables to land lock applications.
export LL_FS_RO="/bin:/lib/:$USER/"
export LL_FS_RW="$USER/"
export LL_TCP_BIND=""
export LL_TCP_CONNECT=""

C. Generic Science Codes

We note that, with Landlock, it is theoretically possible
to create a service which runs arbitrary MPI codes on behalf
of unknown users. One way to accomplish this would be to
accept a user code in the form of a shared library (i.e. a .so
file) with some kind of standard method, e.g. runcode().
The service would call MPI_Init, then landlockme(),
then it would use dlopen() and dlsym() to access and
run the user method. By using dlopen() instead of linking
the shared object file, we circumvent the potential problem of
constructors being called prior to landlockme() in C++’s
initialization sequence.

V. CONFIGURATION

Listing 1 shows some of the configuration options we
used in this study. The first option is LL_FS_RO, which
takes a list of paths separated by colons. These are the files
and directories the application is allowed to read. We gave
access to the system-wide installed libraries and executables.
The second option LL_FS_RW provides a list of files and
directories the application is allowed to write to. The third
option LL_TCP_BIND restricts the port binding and the fourth
options LL_TCP_CONNECT restricts the ports for connec-
tions. We refer to the Linux kernel documentation [6] for more
options.

VI. RUNTIME MEASUREMENTS

Using landlockme() should not introduce any overhead
to the process. We executed the rotating star problem from
Octo-Tiger’s test suit to investigate the claim. We adaptive
refined the intial mesh four times and executed the simulation
for ten steps. Both runs with and without landlock took around
92 seconds. We compiled Octo-Tiger using Spack [7] and
restricted it to access the Spack installation directory and the
user’s home directory to read and write the output files. We
could not observe introduced overheads for the Octo-Tiger
version with networking.

VII. CONCLUSION

In this work we have studied the use of Landlock for
securing scientific applications for use in Science Gateways.
Because Science Gateways typically involve taking large,
mature, C/C++ and Fortran codes and making them semi-
publicaly available on the web, they represent a potential
security hazard. These codes usually are based on MPI and
follow a pattern of starting up, reading initial data files,
computing, then generating results. Modifying such codes to
invoke Landlock after MPI startup but before the reading
of parameter files should secure the code against attackers

launching attacks based on input files (e.g. exploiting buffer
overruns or unsanitized inputs).

We note, however, that Landlock provides no protection
against denial of service attacks, e.g. using up file space,
inodes, file descriptors, etc. While these types of threats can
still cause significant problems, they are of a different class.
They should not allow user data or password information to
be stolen, back doors to be installed, etc.

We have demonstrated that, even with large, complex codes
such as Octo-Tiger and the Einstein Toolkit, sandboxing a code
with Landlock is a relatively straightforward task. Not only
was this done with relative ease, it introduced no performance
penalties or observable runtime overheads.

APPENDIX A
SUPPLEMENTARY MATERIALS

Octo-Tiger is available on GitHub [8] and can be compiled
with Spack [9]. The scripts and input data to reproduce the
runs in Section VI are available on Zenodo [10].

The Einstein Toolkit is free under the GPLv3 license and is
available for public download using instructions found at the
Einstein Toolkit website [11].

ACKNOWLEDGMENT

The authors would like to thank the IT support staff of
the Center for Computation and Technology who setup our
test machines for us. Also, we wish to acknowledge the
support of NSF grant OAC 2004157 to support work on
the Einstein Toolkit. This work was supported by the U.S.
Department of Energy through the Los Alamos National Lab-
oratory. Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security
Administration of U.S. Department of Energy (Contract No.
89233218CNA000001). LA-UR-24-27511

REFERENCES

[1] “landlock(7) — linux manual page,” last accessed 07/20/2024. [Online].
Available: https://man7.org/linux/man-pages/man7/landlock.7.html

[2] S. R. Brandt, “Sandbox for landlock,” last accessed
07/18/2024. [Online]. Available: https://gist.github.com/stevenrbrandt/
ced0bd99a90628453cbd899480d435d2

[3] “The einstein toolkit,” 2023. [Online]. Available: https://doi.org/10.
5281/zenodo.10380404

[4] D. C. Marcello, S. Shiber, O. De Marco, J. Frank, G. C. Clayton, P. M.
Motl, P. Diehl, and H. Kaiser, “Octo-tiger: a new, 3d hydrodynamic code
for stellar mergers that uses hpx parallelization,” Monthly Notices of the
Royal Astronomical Society, vol. 504, no. 4, pp. 5345–5382, 2021.

[5] H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lelbach, P. Amini, A. Berge,
J. Biddiscombe, S. R. Brandt, N. Gupta, T. Heller et al., “HPX-the
C++ standard library for parallelism and concurrency,” Journal of Open
Source Software, vol. 5, no. 53, p. 2352, 2020.

[6] M. Salaün, “Landlock: unprivileged access control,” 2024, last accessed
07/17/2024. [Online]. Available: https://docs.kernel.org/userspace-api/
landlock.html

[7] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The Spack Package Manager: Bringing
Order to HPC Software Chaos,” ser. Supercomputing 2015 (SC’15),
Austin, Texas, USA, November 15-20 2015, lLNL-CONF-669890.
[Online]. Available: https://github.com/spack/spack

[8] D. Marcello et al., “Octo-tiger: Astrophysics program simulating
the evolution of star systems based on the fast multipole method
on adaptive octrees,” last accessed 07/15/2024. [Online]. Available:
https://github.com/STEllAR-GROUP/octotiger

https://man7.org/linux/man-pages/man7/landlock.7.html
https://gist.github.com/stevenrbrandt/ced0bd99a90628453cbd899480d435d2
https://gist.github.com/stevenrbrandt/ced0bd99a90628453cbd899480d435d2
https://doi.org/10.5281/zenodo.10380404
https://doi.org/10.5281/zenodo.10380404
https://docs.kernel.org/userspace-api/landlock.html
https://docs.kernel.org/userspace-api/landlock.html
https://github.com/spack/spack
https://github.com/STEllAR-GROUP/octotiger


4

[9] G. Daiß, J. Yan, P. diehl, and C. Junghans, last accessed 07/18/2024.
[Online]. Available: https://github.com/G-071/octotiger-spack

[10] P. Diehl, “Data: Locking down science gateways,” May 2024. [Online].
Available: https://doi.org/10.5281/zenodo.11355929

[11] “The einstein toolkit,” last accessed 07/15/2024. [Online]. Available:
https://einsteintoolkit.org

https://github.com/G-071/octotiger-spack
https://doi.org/10.5281/zenodo.11355929
https://einsteintoolkit.org


Designing and Deploying a FAIR Resource Portal
for Geospatial Data

Yiqing Qu
Computer and Information Technology

Purdue University
West Lafayette, USA
qu112@purdue.edu

Christopher Thompson
Rosen Center for Advanced Computing

Purdue University
West Lafayette, USA
thompscs@purdue.edu

Rajesh Kalyanam
Rosen Center for Advanced Computing

Purdue University
West Lafayette, USA
rkalyana@purdue.edu

Abstract—In recent years, the need for FAIR (Findable, Ac-
cessible, Interoperable, and Reusable) data portals has become
increasingly important for effective utilization of the wealth
of data that is being generated through growing access to
computational resources. Despite this growing demand, there
are currently no canonical open-source solutions available for
FAIR-compliant resource data portals. This paper reports on
our preliminary results in trying to address this critical gap
by providing a practical implementation strategy for deploying
FAIR-compliant portals. Specifically, this paper presents our
experience in designing and systematically implementing a FAIR-
compliant resource portal for geospatial data. The paper outlines
the system architecture, including the high-level design, data
resource management, and metadata extraction processes.

Index Terms—FAIR,portal,gateway,geospatial

I. INTRODUCTION

The FAIR data principles proposed in 2016 [1] have gained
broad acceptance and importance in data management strate-
gies for research projects. At the same time, a variety of FAIR
evaluation tools have been designed [2] that can help evaluate
the FAIR compliance of a particular data portal. However,
gateway (and more specifically, data portal) developers still
lack clear guidelines on how to implement these principles
in practice. Existing solutions for data portals often fall short
in fully adhering to FAIR principles, particularly in terms of
interoperability and reusability.

Our project aims to address these gaps by developing
a FAIR-compliant resource portal specifically designed for
geospatial data1. While our focus on geospatial data is in
response to the needs of a resource management portal for
managing workflow outputs from the GeoEDF workflow en-
gine [3], we believe that our portal design and implementation
strategies can be adapted for any other scientific domain.

The development of this portal involved several key steps,
including the design of a robust system architecture around
an extensible open source portal framework, the integration of
domain-specific metadata extraction and standardization, and
the implementation of features that ensure adherence to FAIR
principles. We describe each of these steps in the following
sections and conclude with a summary of the lessons learned
during our implementation.

1https://geoedf-portal.anvilcloud.rcac.purdue.edu/

II. BACKGROUND

A. GeoEDF

The Extensible Geospatial Data Framework (GeoEDF) [3] is
designed to reduce the amount of effort geospatial researchers
spend in wrangling data for their research workflows. GeoEDF
provides a plug-and-play workflow engine that enables re-
searchers to integrate data acquisition and processing oper-
ations into their workflows through community-contributed,
reusable workflow building blocks termed “data connectors”
and “data processors” respectively. GeoEDF also seeks to
support the FAIR principles by enabling researchers to publish
both their workflows and the workflow outputs to a data
portal where other researchers can discover and reproduce
these workflows. Rather than utilize an existing geospatial data
portal such as Hydroshare [4], the GeoEDF team sought to
develop a FAIR-compliant portal from the ground up in order
to systematically identify the components of FAIR compliance
and the means to address each of these requirements. The
portal described in this paper is the result of this endeavor.

B. Metadata Schema

A key component of FAIR compliance is the use of a struc-
tured metadata schema to describe the hosted datasets. Com-
mon schemas used in describing data include Schema.Org,
ISO 19115 and Dublin Core. These schemas provide stan-
dardized elements for documenting various aspects of data. We
selected Schema.org for our portal due to its rich semantics
and flexibility for geospatial data [5]. ISO 19115 while highly
formalized and comprehensive is not specifically designed for
web applications. Dublin Core although more web-friendly,
lacks specific geospatial properties and hierarchical structures
that are useful for describing complex resources [6]. In
contrast, Schema.org supports detailed properties like spatial
coverage, making it suitable for comprehensive geospatial data
descriptions. Its ability to embed elements allows us to repre-
sent a resource with multiple files as a single, coherent entity.
Additionally, Schema.org’s adoption by Google enhances the
discoverability of datasets. Its established framework ensures
consistency and interoperability [7].



C. Globus Modern Research Data Portal

The first step in designing the data portal was identify-
ing a suitable extensible open-source portal framework that
could serve as the baseline for further customization. We
chose the Globus Modern Research Data Portal [8] both due
to its extensibility as well as its integration with Globus
authentication, data management, and search. Globus Auth,
the authentication system, integrates with institutional single
sign-on services for secure access and privacy compliance.
Globus Search enhances data discoverability with advanced
indexing and search capabilities based on metadata, content,
and queries. Furthermore, since the portal is based on the
Django framework, this readily provides a collection of tools
that can be used to implement other features such as a data
publication API.

III. PORTAL DESIGN

The system architecture of our data portal is shown in
Figure 1 and illustrates the custom-developed components as
well as existing services and tools that have been leveraged
in our implementation. At its core is a customized Globus
Django Data Portal that serves as the central hub, managing a
set of searchable published data resources through integration
with a Resource Database and a dedicated Globus Search
Index. Each published data resource has a dedicated resource
landing page, which displays detailed metadata (including
where available, spatial coverage) and includes embedded
Schema.org metadata for indexing via web crawlers, leading to
enhanced web searchability. Resource publication is primarily
via a publication API that can be invoked from a variety of
client interfaces such as an external JupyterHub or a built-
in file manager. On invocation, the publication API triggers
asynchronous metadata extraction and indexing to Globus via
the RabbitMQ message broker and a scalable set of Resource
Metadata Extractor workers. The FAIRness Evaluator assesses
published resources for compliance with the FAIR principles.
Finally, the portal integrates with Google, allowing it to crawl
and index resources, thus displaying rich results in search
queries.

A. Resource Management

We define a resource as any dataset or file collection that
users wish to publish and share. We categorize resources
into three types to streamline their management and metadata
extraction:

• Geospatial Files: This type includes vector and raster files
with geospatial data. For these files, we extract metadata
such as geospatial coverage and projection information
which can be used in search and display.

• Workflow: This category includes resources related to
GeoEDF workflows, which is a design specific to the
GeoEDF project. In order to enable reproducibility, these
resources include workflow input files (if any), the work-
flow definition file in the YAML format, and the workflow
output files. The resulting resource is packaged as a single

zip file, with metadata being extracted for each of the
components.

• General Files: This type includes all other datasets that
do not fall into the previous categories. These files can
include various types of research data, and we extract
general metadata such as file type, size, and descriptive
information provided by the user.

The Resource Database manages administrative information
about each resource such as the uniquely assigned resource
ID, the user requesting its publication, and its publication
status as it goes through the process of metadata extraction
and registration in the Globus Search Index.

B. Metadata Extraction

The metadata extraction process is designed to extract
metadata from various file types and submit it to Globus,
ensuring resources are well-described and discoverable. A re-
source publication request via the publication API results in a
message routed to the RabbitMQ broker. Using RabbitMQ for
asynchronous communication prevents the loss of publication
requests, which might occur due to the long processing time
for large files or errors from external services. Asynchronous
processing enhances fault tolerance and reliability, ensuring
that the system can handle long-running tasks and recover
from failures without losing data.

A scalable set of metadata extraction workers continuously
listen for new messages on the configured RabbitMQ queue.
Upon receiving a message, the corresponding resource files are
processed to extract and assemble metadata in the Schema.org
format and submitted to Globus Search via the use of the
Globus SDK. Periodic polling is utilized to enquire the status
of the metadata ingestion into Globus Search, which is then
updated in the Resource Database.

C. Making the Portal FAIR

As a first step to ensuring the FAIRness of the data portal,
we sought to ensure that each “findable” resource (that has a
unique resource identifier) has sufficient discoverable metadata
in the resource landing page reachable via its unique identifier.
Additionally, we also sought to implement a rich resource API
that will support programmatic metadata discovery as well as
integration with external tools.

1) Embedded Schema.org metadata: Resource metadata
is compiled into a Schema.org JSON by mapping the ex-
tracted metadata to corresponding Schema.org properties. The
resulting Schema.org JSON-LD metadata is then embedded
directly into the HTML source of the landing page of each
resource using Django derived templates. To ensure that the
embedded metadata is recognized and validated by Google,
our implementation follows the documentation and guidelines
provided by Google Dataset Search [9]. The key elements
included in the Schema.org object are basic information such
as name, size, and modification time; unique identifiers for
findability; a detailed description providing contextual infor-
mation; information about the resource creator; geospatial and



Fig. 1. System Diagram illustrating the custom-developed components (blue) and leveraged services and tools (green).

temporal coverage details; URLs for accessing the resource
and downloading it; and licensing details promoting reuse.

2) Resource API: The Resource API complements the data
portal and is designed to support programmatic management
and discovery of the published resources and their metadata.
Token-based authentication is used for access control and to
verify user identity before performing certain data operations.
The API supports various operations, including publishing
resources and retrieving metadata. Parameters are logically
arranged for easy parsing and processing to ensure clear user
interaction with the API2.

IV. PORTAL DEPLOYMENT

In order to ensure scalability and portability, the portal and
associated components (such as the metadata extractor) are
deployed using Docker containers and Kubernetes orchestra-
tion in Purdue’s Anvil composable cloud. Docker image builds
for the portal and metadata extractor are automated through
GitHub Actions to streamline the CI/CD process and push
container images to the Anvil composable cloud’s Harbor
registry. The various deployment files and configurations are
available in our public GitHub repositories [10, 11].

V. FAIRNESS EVALUATION

To further ensure the FAIRness of the data portal, we next
applied a data-driven, systematic approach to improving its
quantitative score using well-known FAIRness evaluators.

A. Evaluator Selection

In assessing various FAIRness evaluators we tested three
tools: F-UJI [12], FAIRsharing [13], and FAIRshake [14].
While each evaluator had its strengths, F-UJI proved to be
the most mature in automatically assessing aspects of FAIR

2https://geoedf-portal.anvilcloud.rcac.purdue.edu/swagger

compliance with well-developed assessment metrics as well as
providing detailed feedback on missing elements that impact
the assessment score.

B. Evaluation Result

The evaluation results obtained from F-UJI are presented in
a structured JSON format, which includes metric identifiers,
names, outputs, statuses, and scores for a total of 16 FAIR
evaluation metrics. In order to perform a systematic improve-
ment of our data portal, we first carried out a preliminary
evaluation following our initial implementation. This evalu-
ation revealed gaps in persistent identifiers, comprehensive
metadata, and integration with semantic resources, resulting
in a FAIR compliance score of 47% (Figure 2). After imple-
menting targeted improvements to address these specific areas,
the portal’s score increased to 60% (Figure 3), reflecting the
positive impact of these enhancements on FAIR compliance.

Broadly, there are certain key considerations in ensuring
FAIRness as revealed by the evaluation. In terms of findability,
our portal effectively uses globally unique identifiers and
supports metadata retrievability. However, there is room for
improvement in the use of persistent identifiers and compre-
hensive descriptive metadata. For accessibility, the portal show
full compliance in providing secure data and metadata access
through network protocols, ensuring clear and reliable data
access conditions. Regarding interoperability, the use of JSON-
LD for metadata structuring of linked and composite resources
is effective. When it comes to reusability, our portal satisfies
requirements in data content specification and clear licensing
for reuse.

VI. DISCUSSION AND FUTURE ENHANCEMENTS

Based on the evaluation, we identified several areas of future
improvement to enhance the FAIR compliance of our portal.



Fig. 2. FAIR evaluation report on the initial version

Fig. 3. FAIR evaluation report on the enhanced version

The implementation of these enhancements varies in difficulty
but is crucial to improving the portal’s alignment with FAIR
principles. We briefly summarize the changes that will have
the most impact on the FAIRness score:

1) Using established persistent identifier providers such as
DOI, w3id, URN, or PURL is a key aspect of findability.

2) Ensuring that metadata explicitly includes core descrip-
tive elements (creator, title, object identifier, publication
date, publisher, object type, summary, and keywords) is
another key aspect of findability.

3) Interoperability requires having multiple methods for
metadata access. Including methods such as content
negotiation, typed links, or SPARQL endpoints will
improve the interoperability score.

4) Incorporating additional semantic resources such as
DCAT2 which is a RDF vocabulary designed to facilitate
interoperability between web-based data catalogs is a
key area of improving interoperability.

5) Discrepancies between the file size in the metadata and
the actual downloaded size impact the reusability score.

6) Detailed provenance tracking including the resource’s
editing history is another key factor in the reusability
score.

While it can be argued that an overemphasis on the quanti-
tative FAIRness score of a data portal takes away from the us-
ability and domain or project-specific features and capabilities,
we believe that having an agreed upon FAIRness evaluator and
a community-driven implementation of capabilities that can
ensure FAIR-compliant portals would be a valuable baseline
for the science gateways community. While we do not claim
to have solved this challenge, we hope that this paper provides
some useful ideas for other gateway developers who need to
design a customized data portal that solves a domain need,
while also ensuring adherence to the FAIR principles.

ACKNOWLEDGMENT

This work was funded in part by NSF award no. 1835822.
The portal was deployed to the Purdue Anvil Composable
subsystem under the ACCESS allocation: EES220056.

REFERENCES

[1] Mark D Wilkinson et al. “The FAIR Guiding Principles
for scientific data management and stewardship”. In:
Scientific data 3.1 (2016), pp. 1–9.

[2] Robert Huber and Anusuriya Devaraju. “F-UJI: an au-
tomated tool for the assessment and improvement of the
FAIRness of research data”. In: EGU General Assembly
Conference Abstracts. 2021, EGU21–15922.

[3] Rajesh Kalyanam et al. “GeoEDF: An Extensible
Geospatial Data Framework for FAIR Science”. In:
Practice and Experience in Advanced Research Com-
puting. PEARC ’20. Portland, OR, USA: Association
for Computing Machinery, 2020, pp. 207–214. ISBN:
9781450366892. DOI: 10.1145/3311790.3396631. URL:
https://doi.org/10.1145/3311790.3396631.

[4] David G Tarboton et al. “HydroShare: advancing col-
laboration through hydrologic data and model sharing”.
In: (2014).

[5] Peter F Patel-Schneider. “Analyzing schema. org”. In:
The Semantic Web–ISWC 2014: 13th International Se-
mantic Web Conference, Riva del Garda, Italy, October
19-23, 2014. Proceedings, Part I 13. Springer. 2014,
pp. 261–276.

[6] Jean Brodeur et al. “Geographic information meta-
data—an outlook from the international standardization
perspective”. In: ISPRS International Journal of Geo-
Information 8.6 (2019), p. 280.

[7] Ramanathan V Guha, Dan Brickley, and Steve Macbeth.
“Schema. org: evolution of structured data on the web”.
In: Communications of the ACM 59.2 (2016), pp. 44–51.

[8] Kyle Chard et al. “The Modern Research Data Portal:
a design pattern for networked, data-intensive science”.
In: PeerJ Computer Science 4 (2018), e144.

[9] Google. Google Dataset Structured Data Documenta-
tion. URL: https://developers.google.com/search/docs/
appearance/structured-data/dataset.

[10] GeoEDF Project. GeoEDF Metadata Extraction GitHub
Repository. 2024. URL: https : / / github . com / geoedf /
geoedf-metadata.

[11] GeoEDF Project. GeoEDF Portal GitHub Repository.
2024. URL: https://github.com/geoedf/geoedf-portal.

[12] Anusuriya Devaraju and Robert Huber. F-UJI - An
Automated FAIR Data Assessment Tool. URL: https://
doi.org/10.5281/zenodo.6361400.

[13] FAIRSharing Authorship Group. FAIRSharing FAIR
Maturity Evaluation Tool. URL: https : / / fairsharing .
github.io/FAIR-Evaluator-FrontEnd/#!/.

[14] Daniel JB Clarke et al. “FAIRshake: toolkit to evaluate
the FAIRness of research digital resources”. In: Cell
systems 9.5 (2019), pp. 417–421.



projectEureka 
A Gateway for Cloud and K8s HPC & AI Bursting 

 

 

Mary Brandenburg 
Project Lead 

Omnibond Systems 
Central, SC 

mary@omnibond.com 

 

Jeremy Grieshop 
Infrastructure Developer 

Omnibond Systems 
Clemson, SC 

jeremy@omnibond.com 

David Reynolds  
Storage Developer  
Omnibond Systems 

Greenville, SC 
David@omnibond.com 

 
 

Kristen Smith 
Application Developer 

Omnibond Systems 
Anderson, SC 

kristen@omnibond.com 

Aaron Crawford 
UI Developer 

Omnibond Systems 
Anderson, SC 

Aaron@omnibond.com 
 
 

Justin Cooley 
Infrastructure Developer 

Omnibond Systems 
Pelzer, SC 

Justin@omnibond.com 

Jeff Denton 
Infrastructure Developer 

Omnibond Systems 
Charleston, SC 

JDenton@omnibond.com 

 

Boyd Wilson 
CEO/CTO 

Omnibond Systems 
Salem, SC 

boyd@omnibond.com

 
 
 
 

 

Abstract—A demonstration of projectEureka and overview 
of its design and development. It is based on a new meta-
scheduler, omni-scheduler, and is built for routing HPC and 
artificial intelligence jobs between Kubernetes (K8s), 
multicloud, and traditional HPC schedulers. projectEureka 
leverages this unified meta-scheduler for interactive application 
integration with Open OnDemand with a newly developed 
project-based user interface. 

Keywords—HPC, Artificial Intelligence, AI, scheduling, Open 
OnDemand, Interactive Applications, Multicloud 

I. INTRODUCTION 
Drawing from our extensive experience in developing and 

maintaining CloudyCluster, we have encountered numerous 
scenarios where researchers and research computing support 
teams have articulated a need for enhanced integration 
between cloud-based and on-premises systems. This demand 
is accentuated by the ongoing expansion of computational 
workloads, which range from traditional batch High 
Performance Computing (HPC) and High Throughput 
Computing (HTC) to interactive computing, AI model 
training, and inference. These workloads span various 
platforms including Slurm clusters, Kubernetes clusters, and 
diverse cloud services, highlighting the critical need for tools 
that can streamline orchestration and usability of these 
complex environments. 

To address this challenge, we initiated a project in January 
2023 aimed at developing a system that tackles the following 
key problem areas in the current state-of-the-art:  (1) Seamless 
cloud integration with on-premises systems, (2) Intelligent job 
routing between on-premises and multiple cloud accounts, (3) 
Integrated multi-point data staging between various cloud 
accounts and on-premises systems, and (4) A project-based 
user interface designed to simplify processes for researchers 
and support personnel. 

In this paper, we discuss the design and development of a 
meta-scheduler-based system that incorporates these goals to 
provide a simple, secure layer for managing resources in a 
unified manner across both cloud and on-premises 
environments, as outlined in Fig 1. 

 

 

Fig 1. 

II. COMPONENTS 

A. Meta-scheduler Core 
The meta-scheduler will provide the core facility for 

managing jobs, job routing, multi-location resource 
provisioning, and simplifying the integration of core 
functionality, addressing the four key problem areas outlined in 
the introduction.  

The core of the meta-scheduler architecture is built on 
Adaptive Framework (AFW)[1], which provides: (1) a JSON 
object store that surfaces a consistent interface for abstracted 
data-store access, (2) customizable rules-based authorization of 
object interactions, (3) internal and external event triggers 
based on object changes.  Facilities have and will also be built 
around these to support: (4) an event driven data staging 
subsystem, (5) a comprehensive job language, and (6) an 
adaptable interface to support standard Slurm commands and 
additional job directives to provide access to the core 
capabilities. 

 

mailto:mary@omnibond.com
mailto:David@omnibond.com
mailto:Aaron@omnibond.com
mailto:Justin@omnibond.com
mailto:JDenton@omnibond.com
mailto:boyd@omnibond.com


As outlined in Fig 2, AFW provides a common interface to 
all the end user components, such as Open OnDemand[2], the 
Eureka project based user interface, and command line utilities, 
through https and leveraging JSON as the payload.  

Fig 2. 

These components, while authenticated as the end-user, 
reducing the risk of privilege escalation,  can create objects that 
represent jobs directly into the meta-scheduler data-store. 
Authorization of this process is governed by the AFW rules that 
are put in place to securely restrict access to those previously 
given permissions within the object-store. Once the job object is 
created, an AFW event notification is sent to the meta-scheduler 
process which, based on the resource configuration, determines 
when and where the job should be executed. Once determined, 
the meta-scheduler will create the appropriate resource objects 
in the AFW-based data-store, triggering the resource creation in 
the respective provider.  The providers will be either AWS, 
Google Cloud, Azure, Kubernetes (K8s), or in the case of job 
routing, it will forward the job to the designated slurm scheduler. 
When the meta-scheduler determines the resources from the 
provider are ready, an event-listener on the compute nodes will 
be notified of the job to be executed on the nodes. Whenever a 
job is marked completed it will cause an - to trigger the clean-up 
of the respective provider resources.  

 

B. Multi-cloud Data Staging System 
Seamlessly integrating data for research computing jobs is 

the third key area. Research data is expanding not only in size, 
but also in the number of storage locations. While there are tools 
such as Globus[3] that can help manage data between sites, 
within a site most users are left to leverage system utilities. After 
several months of attempting to use existing on-premises open 
tools for this, we determined that we needed to develop tools 
directly dedicated to on-premises multi-cloud data transfers.  

A multi-point data transfer system, omni-copy (ocp), based 
on smart_open [4], has been developed to be leveraged by the 
meta-scheduler to handle data transfer as part of the job and 
resource provisioning process. As outlined above, the event 
driven process which translates jobs into the respective objects 
is core to how the meta-scheduler operates. An additional 
object-event that is built into the system is that of a data-transfer 
object. When a job script includes a transfer directive, it is 
translated into a data-transfer object that causes the specified 
data on a storage provider to be transferred to another location 
on its respective storage provider.  The transfer will not initiate 
until all of the storage provider dependencies have been met, 

will be performed as the user to significantly reduce the 
likelihood of privilege escalation, and once the transfer is 
complete, will mark the data-transfer object as complete so the 
clean-up process can start when appropriate. 

 

C. Comprehensive Job Control Language 
Research computing workloads have been shell script jobs 

for many decades, and there is a great amount of experience and 
existing knowledge and technical infrastructure to support these.  
To enable simplified adoption we are creating meta-scheduler 
job directives that can be added directly to existing jobs that will 
enable them to leverage projectEureka to allow for elastic 
resource provisioning and job routing.  To achieve this goal we 
will be creating a language that will allow for existing shell 
scripts, that contain the new directives, to be transformed into 
the more comprehensive language that can support multiple 
cloud and processing parts. 

This job control language, Omni Control Language (OCL), 
has been designed to be able to take new OCL job directives that 
can be added to traditional slurm scripts and translate them into 
native OCL, thus making the meta-scheduler have day-one 
value to researchers. On the other side, OCL is designed to 
provide more flexibility and capability with regard to 
extensibility and more complex jobs, including cross-provider 
capabilities within a single job.  The directives will be in four 
parts: (1) computing resources that will be provisioned on 
demand as the job requires, (2) storage resources can be 
provisioned on demand as the job requires, (3) data staging can 
be configured to stage data and results at the appropriate time 
during the job, and (4) allow for multiple script executions that 
can interact with the provisioned resources and staged data. 

 

D. Resource Provisioning Subsystem 
The resource provisioning subsystem is the event-driven 

interface that creates and destroys resources used by the meta-
scheduler, including clouds such as AWS, Google, Azure, and 
Kubernetes. In the initial development versions of 
projectEureka, we built an interface called Constellation that 
leveraged Terraform as the cloud interface.  We found that 
Terraform lacked the parallelism needed for the dynamic nature 
of research computing jobs.  Terraform also did not provide 
real-time interactive status of the resources that it provisioned.  
Terraform also was not implemented with the most efficient 
scalable cloud resource choices, such as bulk inserts on Google 
cloud. 

 
Once a majority of the AFW event-based system was in 

place we looked to leverage the same capabilities of AFW to 
provide provisioning and deprovisioning of cloud resources.  
AFW has customizable extensions, and we are in the process of 
building these extensions that allow the meta-scheduler to 
interact natively with the cloud-provider and Kubernetes APIs. 
This will enable real-time interaction with the cloud provider 
control planes and direct adaptive interaction with the cloud 
resources. Job routing between provisioned and existing 
systems will be handled based on events as well.  The 



interaction between the meta-scheduler and the resource will 
happen through a similar interface leveraging this AFW 
capability.  

 
 

E. Project Centric User Interface (UI) 
To simplify data access and interactive application 

launching capabilities, a project-based user interface was 
developed to allow project leads and members to share common 
project data sources and common applications. This project 
interface provides a common way to access self-service resources. 
The associated data locations can also be referenced for data 
staging activities mentioned previously. 

The project-centric UI is built using Vue and UI5 web 
components. The overarching project overview page from the 
user interface can be seen in the screenshot in Fig 3.  

Fig 3. 

An example of the running applications in a project is shown 
in the screenshot in Fig 4 

Fig 4. 

F. Multi-cloud Storage Management User Interface (UI) 
The storage manager UI provides a project-based view of 

the directories and files associated with a project so members 
can easily manually manage files as required between the 
various storage locations residing in different clouds and on-
premise resources. 

The data staging system is abstracted both from the UI and 
scheduler, allowing for common code and key management for 
the data transfer operations of data and results staging. The 
system allows for directory traversal and listing across multiple 
clouds and local resources in an extensible fashion, where it 
can easily be extended to support additional storage locations 

as outlined in Fig 1. An example of the storage manager UI is 
in Fig 5.  This UI provides drag and drop support across 
multiple cloud and local storage resources.  The storage 
manager UI leverages OCP outlined earlier. 

 
Fig 5. 

III. COMMUNITY ENGAGEMENT 
Throughout the months of developing projectEureka we 

have engaged with various communities to determine its 
usefulness and are tailoring it to meet the needs therein.  We 
have had various meetings with potential communities in the 
US, EU, Japan, Singapore, and Australia; all have been met with 
positive feedback and significant interest in testing the system 
when available. The testing is scheduled to begin in the fall.   

To address usability from a student community, we have 
participated in targeted ADMI and HPC in the City, SC23 
hackathons.  The system, projectEureka, was the main 
development collaboration system used in these hackathons, 
providing valuable usability feedback.  As an example, the 
interactive job portion of the UI had previously launched 
separate cards from the launchers during application startup. 
After a majority of the 40 participants launched the same card 
multiple times we decided to have the main card transition to the 
running card and give another menu option to launch additional 
ones.  We tested the changes during a design-safe hackathon 
with Texas Advanced Computing Center and it was much more 
user friendly. 

 To directly support the various research and education 
communities, the base of this project will be made free of charge 
with the option for paid support. We hope that this will provide 
a cross cloud and on-prem interconnectivity foundation for 
batch jobs, interactive virtual scientific workstations, and data 
staging that can be built upon. 

 As the final weeks of development approach on the v1 beta 
of this project, we have a list of users from various states and 
countries and different types of institutions, from technical 
schools to national centers, that will be deploying projectEureka 
to test, evaluate, and give feedback.  Through this process we 
will iterate through the suggestions and incorporate ideas based 
on the feedback. 

IV. RELATED WORK 
One of the concepts that is key to reducing costs of federated 

cloud infrastructure is to have a zero-cost footprint in the cloud 
as outlined in the Eric Lam Tapis paper [5]. 



Scalability of jobs in the cloud is required to meet the 
stringent demands of HPC and AI training systems as outlined 
in the Posey Urgent HPC papers [6] [7]. 

V. CONCLUSIONS AND WORK BREAKDOWN 
Given the broad interest in and need for integrating on-

premises and cloud resources while providing integrated 
tools for data staging, elastic resource provisioning, and job 
routing and the growing complexity of computational 
resources, we feel this project has the potential to ease 
researcher computational interactions and reduce time to 
meaningful results. 

With our continued development and internal testing we 
are seeing that the simplified event-driven architecture is 
providing both good stability and scalability while reducing 
the active scheduler code, relying more on infrastructure 
pieces to accomplish the tasks at more efficient rates.  

Additionally, based on the early usability tests with the 
platform at various hackathons it appears to accelerate access 
to resources and provides a time boost for those who use the 
system. Also, based on feedback from those hackathons, 
refinements have been made in the user experience. 

Simplified data access through the web user interface 
also appears to streamline access and facilitate reduced time 
with data interaction. 

We look forward to finishing the initial version of this 
project in the last quarter of 2024 and continue to iterate with 
the installations to refine, simplify, and improve the 
multicloud and on-premises research computing 
infrastructure integration.  

The Gantt chart in Fig 6 outlines the progress to date and 
the anticipated workpieces through initial testing with sites 
that have expressed interest. 

 

ACKNOWLEDGMENT 
This work was supported by Omnibond, and the authors 

would like to thank the DICE lab at Clemson University for the 
prior research. The AFW development team that enabled us to 
create an efficient and flexible core. The OrangeFS project for 
the scalable storage system. The Open OnDemand team, the K8s 
community, Google Cloud, AWS, and Azure Cloud teams for 
their support.  

 

FIG 6. 

 

 

 

 

 

 

 

 



REFERENCES 
[1] Grieshop, Gossett, Adaptive Framework Open Source Project, 

https://afw.tools. 
[2] Hudak et al., (2018). Open OnDemand: A web-based client portal for 

HPC centers. Journal of Open Source Software, 3(25), 622, 
https://doi.org/10.21105/joss.00622. 

[3] Foster, I., "Globus Online: Accelerating and Democratizing Science 
through Cloud-Based Services," Internet Computing, IEEE , vol. 15, no. 
3, pp. 70,73, May-June 2011 

[4] Radim Řehůřek et al., (2014), Smart Open - utils for streaming large files 
in Python, https://github.com/piskvorky/smart_open 

[5] Lam, Eric, et al. "Extending Tapis Workflow Management Framework 
with Elastic Google Cloud Distributed System using CloudyCluster by 
Omnibond." Science Gateways 2022 (2022). 

[6] B. Posey et al., "On-Demand Urgent High Performance Computing 
Utilizing the Google Cloud Platform," 2019 IEEE/ACM HPC for Urgent 
Decision Making (UrgentHPC), Denver, CO, USA, 2019, pp. 13-23, doi: 
10.1109/UrgentHPC49580.2019.00008. 

[7] B. Posey, et al., Dynamic HPC clusters within amazon web services 
(aws). Diss. Clemson University, 2016 
 

 

https://afw.tools/


Implementing Reproducible Cookbook
Environments for Advanced Analyses on Science

Gateways
Mobley

Texas Advanced Computing Center
University of Texas

Austin, USA
wmobley@tacc.utexas.edu

Pearson
Texas Advanced Computing Center

University of Texas
Austin, USA

0009-0006-4328-2476

Osorio
MetaLearn SPA

Chile
0000-0002-3611-6510

Tijerina
Texas Advanced Computing Center

University of Texas
Austin, USA

Trueheart
Texas Advanced Computing Center

University of Texas
Austin, USA

Faust
Department of Civil, Architectural, Environmental Engineering

University of Texas
Austin, USA

0000-0001-7986-4757

Pierce
Texas Advanced Computing Center

University of Texas
Austin, USA

0000-0002-3050-1987

Abstract—Science gateways face challenges supporting new
users that require complex environments for High-Performance
Computing (HPC). To address barriers to entry caused by
complex environments, an application was developed to integrate
science gateways with reproducible environments, reducing bar-
riers to entry. Leveraging concepts from systems like Binder and
Google Colab, we created reproducible computational cookbooks
— a flexible framework that supports containerizing and sharing
environments and workflows across users for advanced comput-
ing resources. These cookbooks utilize standardized repositories
and Docker images, which simplifies the environment setup
providing access through science gateways. By employing a
developers’ gateway, users can register and share applications
to enhance collaboration. Once registered, applications facili-
tate collaboration in HPC research, ensures consistency across
environmental dependencies, and enables access to reusable
analytical workflows. This paper outlines the cookbook system’s
development, demonstrating its potential to broaden access and
impact in HPC research environments.

Index Terms—High-Performance Computing, Reproducibility,
Science Gateways, Complex Environments, Workflow

I. INTRODUCTION

Complex research questions often require difficult to install
environments that can create barriers to entry for new HPC
users. The Texas Advanced Computing Center (TACC),a lead-
ing academic HPC institution, currently has limited options to

We acknowledge funding from the Planet Texas 2050 program of The Uni-
versity of Texas at Austin, the U.S. Department of Energy Office of Science,
Biological and Environmental Research Program under Award Number DE-
SC0023216, and the U.S. National Science Foundation Navigating the New
Arctic Award No. #2127353.

support users with low maintenance and reproducible envi-
ronments. For many technically inclined users, this limited
support is enough. Many research projects can build upon
a foundation of previous HPC research projects. However,
the amount of data available is ever increasing, and more
users are needing access to higher performance computers.
These users may not be comfortable with the command
line interface or other technical aspects of currents. Science
Gateways have been an answer to these technical problems.
Science gateways provide a web based user interfaces without
command line interactions, thus reducing barriers to entry
[1], [2]. To date, TACC has lacked an effective workflow to
connect the science gateway front end with standardized and
reproducible environments. This paper discusses the workflow
and application developed to provide this capability.

Various systems have been developed to improve scien-
tific reproducibility by reducing required installation times
and the variability within complex environments on scientific
computing [3]. Systems such as Binder [3], Google Colab
[4], and Open OnDemand [5] which provide a platform for
creating the provided environments and running code, enabling
users without extensive programming skills to rapidly interact
with and utilize the tools without standing up and manage
the underlying environment themselves. Other projects have
focused on organizing training and environments specific to
their field, for example Project Pythia for the geosciences [6],
or using Google Colab for training economic students [7]. Data
analysis workflows often use similar packages and the devel-



opment of reproducible computational cookbooks provides the
means to separate out the complex environment setup from
the downstream data research work and enables the sharing of
computational environments between collaborators and across
projects. This improves reproducibility and transparency of
research project. While effective, using cloud systems such as
Google Colab or Binder at scale can be quite costly, especially
if significant computational resources are needed. Many HPC
systems leverage the Open OnDemand infrastructure, which
allows the user to develop and share applications. However,
TACC currently uses the TAPIS infrastructure an alternative
system that provides a user-friendly and modern Web UI
that best allows TACC’s users to utilize our HPC systems
without needing to use the command line. TACC’s support
for Academic research can significantly reduce the cost and
make the work financially viable for users with access.

TACC users have access to powerful systems, such as Lon-
estar 6, but a number of constraints have limited user access to
these resources. First, installing software includes navigating
TACC security requirements which creates an extra layer of
difficulty. Second, the compute nodes are hidden behind a
login node which requires a customized JupyterLab [8] setup
to run as an interactive web session [8]. A typical Jupyter in-
stall is feasible [9], however varying scientific domains require
different components of the Jupyter environment, and as the
environments become increasingly complex, reproducibility
across users becomes more difficult. This is where the Binder
project comes into play, the binder design provides a standard
format to containerize repositories.

II. CURRENT STATUS OF TACC SCIENCE GATEWAYS

The cookbook system is designed to support complex en-
vironments (Fig. 1). Historically, TACC has received fewer
requests for certain packages, such as new software or geospa-
tial libraries (ex. GDAL, OSGEO), but as this field has
expanded further into the High Performance Computing space,
users require more support for these packages and TACC has
encountered issues providing these resources. Typically, when
a package has a low request rate on the system, users are
directed to install the package to their $WORK [10] space on
the machines. However, when investigating how users might
install these packages for themselves, we discovered that a
complex process was involved in almost every installation.
For environments such as GDAL, pip or conda install com-
mands were insufficient because they rely on the presence of
libraries the systems lack by default. Direct installation proves
difficult as these packages’ default to installing to the root
space, a restricted space for TACC users. Most users seeking
these packages were not Linux software specialists who were
familiar with how to work around such barriers.

With these complex software, we initially settled on system
installation by the administrators, but this approach required
significant maintenance due to the number of dependencies a
package ( e.g. GDAL or NLP). As such, this solution requires
frequent updates to all the associated software and libraries,
and still, users need to modify their environments to ensure

these packages are properly loaded in their $PATH before
submitting their jobs. All of these issues require a level of
HPC computing skill that creates a significant barrier to entry
for newer users.

III. USE CASE: COOKBOOK SOLUTION

The initial use case for this project was the development
of a cookbook environment that supports Natural Language
Processing (NLP). NLP research provides a perfect test case
for standing up this service on advanced computing resources.
NLP requires complex computing installation and frequently
involves researchers from non-technical backgrounds. These
non-technical users lack the requisite programming skills
to independently set up and maintain the necessary com-
pute environments. Additionally, many projects of interest
involve the analysis of potentially sensitive materials (example:
unredacted interview data, critical infrastructure details) where
maintaining control of the raw data, interim analytical data
outputs, and resultant data products is critical.

The initial use case was implemented codesigning a solution
with researchers on a Navigating the New Arctic research
project (NNA Team). The NNA team uses mixed method
approaches for evaluating the gaps between the socio-cultural
understanding of water resources in remote, rural Alaska and
the technical knowledge about the operational engineering
specifications of the water system infrastructure that serves
isolated communities. Using the cookbook service, TACC in-
stalled foundational large language models on HPC resources
and setup a complex cookbook service to support multi-
method NLP analyses that support the use of traditional NLP
libraries, such as BERTopic, and emerging workflows that
incorporate LLMs in a private environment. The social scien-
tists and environmental systems engineers tested the cookbook
systems using corpora from 1) interview data collections with
rural Alaskan community members and 2) technical water
infrastructure systems training materials. The NLP cookbook
provides access to a new group of HPC users and helps
complete advanced analysis was compared with manually
coded results social scientists, and lead to the creation of a
module in a software application called Sites and Stories. This
module is in development and will provide AI-enabled support
for modeling with stakeholders [11].

The cookbook services leverage science gateways and
TAPIS to provide users complex environments for interactive
scientific experiments. TAPIS is an API that connects to TACC
allowing users to organize and submit jobs to HPC systems
[12]. We adapted features from the Binder container standards
to make the environments easy to develop from templates.
While the cookbooks workflow can be used for a variety of
environments, we focused on creating a flexible JupyterLab
cookbook that can generate reproducible environments.

A. Required Repositories

The TACC cookbooks require two repositories to create a
working application. The first repository [13] provides the
Anaconda environment and the pip environment files in a



Fig. 1. Workflow and architecture for the TACC cookbook application. Users can 1) fork a template from github to create the appropriate repositories; 2)
register and share the application with the science gateway.

format (stored in a “.binder” folder at the top of the repository)
to work with Binder. Using this standard enables both files to
be used for the anaconda environment. Note: the anaconda
file is the primary environment file, while the pip file is
only for dependencies that either (a) require large amounts
of space or (b) are only available via pip. We separate the two
environmental files to reduce the size of the cache required
when creating the environment, as Pip allows for a no-cache
install while Anaconda does not. This repository is pulled
when creating the docker image for the container.

The second repository contains a Docker image forked from
the TACC Jupyter Lab application notebooks [14]. The docker
image sets up a JupyterLab environment, and then downloads
the first repository to install the required dependencies. The
application can further be configured to load and run additional
software. By separating these two repositories, we can provide
standardized repositories that require minimal customization
for differing environments. This docker image has GitHub
actions included in the repository to generate the docker image
automatically.

Both repositories have been generated as templates living
within GitHub.com. The current templates create a hello world
JupyterLab the users can create on TACC systems. In the
case of the NLP environment, we added a few functions
that ensure the Ollama software [15] is installed and running
as a service on the compute node. Ollama is a software
that enables efficient loading and use of LLM models for
Retrieval Augmented Generation (RAG [16]) of information
within a corpora. Ollama provides an API that is queried
through prompts, and is initiated through bash scripts. The
NLP cookbook repositories provide examples of the working
use case [17], [18].

B. Registering an Application

For development and production purposes, cookbooks need
to be registered within the TACC systems. Previously, users
would need to use TAPIS with either their own calls or using
the Python API to register their application. For this project
we developed a developers gateway [19] that allows users to
register their application using a UI.

This gateway requires the user to register their app.json
file with the gateway (Fig 2). The app.json file follows the
TAPIS example and provides the list of choices a user can
choose when submitting their application. This includes the
queues that the application should use, and any other variables
the image will need to run. For example, the NLP cookbook
leverages GPUs for analysis, therefore the queues without
GPUs have been removed from the drop down. Examples of
these files can be found in the docker template repository [14].

Once the application has been registered the user can decide
who to share the application with, whether this is a science
gateway (ex. PTDataX [20]) or a specific allocation. By
allowing the user to share to a specific allocation, we enable
users to share environments in a collaborative manner, without
publishing their application for all of TACC to access.

C. Availability on the Science Gateways

Once an application has been registered and shared it can
become available on a science gateway. If the user is sharing
with collaborators, the application will show up in the My
Apps tab, however if the user wants to share it with the entire
science gateway, they will need to request an admin add it
to the cookbooks tab. Once the TAPIS cookbook application
is running on a science gateway portal, the containerized
cookbook allows the application to run across any execution
system.



IV. CONCLUSION

Supporting users with complex software needs is a difficult
problem, and a lack of this support at TACC has proved
a significant research impediment for TACC users. In this
paper we outline the process we have developed to reduce
barriers to entry through cookbooks thereby increasing access
and impact. The TACC reproducible computational cookbook
services show promise for streamlining the reuse and sharing
or workflows and providing users a variety of complex services
on HPC systems without the need for root access. This work-
flow can be used both by science gateway managers, and also
individual users to improve reproducibility and collaboration.

REFERENCES

[1] Nancy Wilkins-Diehr, Michael Zentner, Marlon Pierce, Maytal Dahan,
Katherine Lawrence, Linda Hayden, and Nayiri Mullinix. 2018. The
Science Gateways Community Institute at Two Years. In Proceedings of
the Practice and Experience on Advanced Research Computing (PEARC
’18). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3219104.3219142 Received 26 April 2024, Vol.
1, No. 1, Article . Publication date: June 2024.

[2] Sean B. Cleveland, Rion Dooley, David Perry, Joe Stubbs, John M.
Fonner, and Gwen A. Jacobs. 2018. Building Science Gateway Infras-
tructure in the Middle of the Pacific and Beyond: Experiences Using
the Agave Deployer and Agave Platform to Build Science Gateways.
In Proceedings of the Practice and Experience on Advanced Research
Computing (PEARC ’18). Association for Computing Machinery, New
York, NY, USA, 1–8. https://doi.org/10.1145/3219104.3219151

[3] Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman,
Brian Granger, Tim Head, Chris Holdgraf, Kyle Kelley, Gladys Nalvarte,
Andrew Osheroff, M Pacer, Yuvi Panda, Fernando Perez, Benjamin
Ragan-Kelley, and Carol Willing. 2018. Binder 2.0 - Reproducible, Inter-
active, Sharable Environments for Science at Scale. In Python in Science
Conference. Austin, Texas, 113–120. https://doi.org/10.25080/Majora-
4af1f417-011

[4] 2024. Google Colab. https://research.google.com/colaboratory/faq.html.
[5] Chalker, Alan, Eric Franz, Morgan Rodgers, Trey Dockendorf, Doug

Johnson, Doris Sajdak, Joseph P. White et al. ”Open OnDemand: State
of the platform, project, and the future.” Concurrency and Computation:
Practice and Experience 33, no. 19 (2021): e6114.

[6] Julia Kent, Drew Camron, John Clyne, Robert G. Ford, Maxwell Grover,
Ryan May, Kevin Paul, Brian E. J. Rose, and Kevin Tyle. 2022. Project
Pythia: A Pangeo Community Tool for Open-Source Education. 2022
(Dec. 2022), ED16B–06.

[7] Masanori Kuroki. 2021. Using Python and Google Colab
to Teach Undergraduate Microeconomic Theory. International
Review of Economics Education 38 (Nov. 2021), 100225.
https://doi.org/10.1016/j.iree.2021.100225

[8] 2024. Jupyterlab/Jupyterlab: JupyterLab Computational Environment.
https://github.com/jupyterlab/jupyterlab.

[9] Joe Stubbs, Julia Looney, Marjo Poindexter, Elias Chalhoub, Gre-
gory J. Zynda, Erik S. Ferlanti, Matthew Vaughn, John M. Fonner,
and Maytal Dahan. 2020. Integrating Jupyter into Research Comput-
ing Ecosystems: Challenges and Successes in Architecting Jupyter-
Hub for Collaborative Research Computing Ecosystems. In Practice
and Experience in Advanced Research Computing (PEARC ’20). As-
sociation for Computing Machinery, New York, NY, USA, 91–98.
https://doi.org/10.1145/3311790.3396648

[10] 2024. Lonestar6 - TACC HPC Documentation.
https://docs.tacc.utexas.edu/hpc/lonestar6/.

[11] Suzanne Pierce, William Mobley, Kasey Faust, and Keri Stephens. in
preparation. AI-enabled Modeling with Stakeholders: Computational
Infrastructure, Knowledge Capture and Reasoning. (unpublished).

[12] Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti
Padhy, Steve Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal
Dahan, Sean Cleveland, and Gwen Jacobs. 2021. Tapis: An API Platform
for Reproducible, Distributed Computational Research. In Advances in
Information and Communication, Kohei Arai (Ed.). Springer Interna-
tional Publishing, Cham, 878–900. https://doi.org/10.1007/978-3-030-
73100 61

[13] Maximiliano Osorio, William Mobley, Lissa Pearson, and Suzanne
Pierce. 2024. Cookbook Template Repository for Conda Environ-
ments. https://github.com/In-For-Disaster-Analytics/Cookbook-Docker-
Template

[14] Maximiliano Osorio, William Mobley, Lissa Pearson, and Suzanne
Pierce. 2024. Cookbook-Tutorial-Template. https://github.com/In-For-
Disaster-Analytics/Cookbook-Tutorial-Template

[15] 2024. Download Ollama on macOS. https://ollama.com/download.
[16] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks. In Ad-
vances in Neural Information Processing Systems, Vol. 33. Curran
Associates, Inc., 9459–9474.

[17] Maximiliano Osorio, William Mobley, Lissa Pearson, and Suzanne
Pierce. 2024. Cookbook Template Repository for Conda Environ-
ments. https://github.com/In-For-Disaster-Analytics/Cookbook-Docker-
Template

[18] Maximiliano Osorio, William Mobley, Lissa Pearson, and Suzanne
Pierce. 2024. LLMRepository-Docker. https://github.com/In-For-
Disaster-Analytics/LLMRepository-Docker

[19] Maximiliano Osorio and William Mobley. 2024. sites-and-stories-nlp.
https://github.com/In-For-Disaster-Analytics/sites-and-stories-nlp

[20] Je’aime Powell, Sean Cleveland, Joe Stubbs, Suzanne Pierce, and
Michael Daniels. 2019. Streamed Data via Cloud-Hosted Real-Time
Data Services for the Geosciences as an Ingestion Interface into the
Planet Texas Science Gateway and Integrated Modeling Platform.



Quakeworx science gateway: A custom instance of OneSciencePlace 
 

Amit Chourasia, Choonhan Youn, Fabio Silva, Bar Olsen, Chunhui Zhao, Jeena Yun, Philip J. Maechling, 
David A. May, Ahmed E. Elbanna, Alice-Agnes Gabriel, & Yehuda Ben-Zion 
 
Keywords: Science Gateway, Data management, Community models, HPC, Containers,  
 
Earthquake rupture forecasts (ERFs) are critical seismic hazard research results that provide probabilities 
of future earthquake times, locations, and magnitudes for a given region. Several generations of ERFs have 
been developed for California jointly by the USGS and the Statewide California Earthquake Center (SCEC) 
and are used in broad impact seismic hazard maps. However, advanced physics-based models that account 
for fault system evolution and are well validated by observations are not yet used. Moreover, current models 
reside in the hands of a few highly skilled researchers, which reduces research pace and applications for 
societal benefits.  

 

The overarching goal of this project is to enable a wide community to access state-of-the-art models of 
rupture forecasts, further improve existing tools, validate model results, and use them for research and 
education. We have developed Quakeworx as a science gateway framework to significantly reduce barriers 
to execute/access simulation tools/data and facilitate rapid availability of emerging tools and results. Figure 
1 illustrates different elements of the project. The Quakeworx gateway will accelerate innovation in 
earthquake science by enabling generation of diverse outputs (seismicity, ground motion, fault network 
configuration, strain rates, topography) that can be used to validate model results, improve ERFs, and 
discover new patterns. 
Quakeworx gateway is built on OneSciencePlace, a content centric and composable online platform to 
transform delivery of FAIR content and computing in a single and easy to use environment.   
The Quakeworx gateway framework will provide a range of capabilities that includes: 

b. Curate Apps, Pipelines & Data a. Advance Science Tools

c. Build Quakeworx Gateway powered by OneSciencePlace platform

Website
Events
News

User access
Single sign on

Applications
Registry of 

simulation and 
modeling tools

Publications
Articles
Reports

Data

Workspaces
Groups
Projects

Data
Metadata

Vis plugins
Globus

Compute 
systems 
Registry of 

computational 
systems

Curate data 
CFM, CVM, 
CSM, CRM, 
Simulation 
results, …

NGES apps
SeisSol, 

ExaHype, 
Tandem, 
FEBE, … 

e. Fusion of simulation & modeling apps with curated data by Earthquake Rupture Forecast community

ML apps 
New methods,

simulated 
training data, 

…

SearchSupport
Tickets

Curate apps
ExaHype, 

FEBE, Seisol,  
Meshing tools, 

…

Quakeworx project and community activities

NGES - Next Generation Earthquake Simulator                                  ML - Machine Learning

FAIR FAIR FAIR

d. Engage 
Community

Organize events 
Symposium, 
workshops, 
hackathon, 

use in teaching 
courses, 

user training
EAG meetings

Outreach activities
Conferences, 

meetings, 
newsletters

Provide 
User support 

f. Community 
Contribution

Analysis & 
Vis apps 

Cookbooks,
IDV, Paraview, 

VisIt, …

Extend Add new 
capabilities, …
Publish Articles, data, 
reports, …
Add new Apps, Data, …

Figure 1: Illustration of Quakeworx activities: a) Project contributed apps to advance science tools; b) Curation of apps with input parameters and 
reference outputs to be deployed on gateway with user interface; c) Gateway that provides access to apps and data along with comprehensive set of 
collaboration, curation and execution capabilities; various research products can be published that follow FAIR data principles are highlighted with 
gray annotation; d) Engage community via multiple channels; e) Ability for the community to use the gateway for research, education and training; and 
f) Ability for the community to extend capabilities and publish research products including apps, data, and others.

https://quakeworx.org/
https://onescienceplace.org/


1. An app registry with a set of state-of-the-art-computational earthquake modeling codes such as 
SeisSol, Tandem, FeBE, RSQSim and others that are readily usable on computation resources. Both 
interactive (such as Jupyter) and command line apps are supported.  

2. Curated data such as input configurations and output results for selected earthquake scenario 
simulations using various curated apps. 

3. Online, web-based, workspaces for collaboration, training, and teaching. Apps, data and other 
content can be restricted to projects or shared with everyone. 

4. Publishing capability that enables users to publish ancillary information such as reports, data and 
other content. 

5. Users can easily use available apps, data, and publications or contribute new ones via a web 
browser. For instance, a new app can be contributed by uploading Docker or Singularity containers 
with necessary configurations and pairing them with the appropriate available computational 
resources. 

6. A website that provides the above capabilities to all registered users via single sign-on from various 
institutions. 

 

In this demonstration, we will provide an overview of the Quakeworx gateway. We will discuss apps, 
systems and data, single-sign-on capabilities and will also showcase some of the user interaction paths that 
are illustrated in figure 2. To ensure that it is accessible and easy to use for a large and diverse user 
community, the platform includes low-code and no-code options, as well as comprehensive training 
materials and tutorials.  Our project’s goal is to advance the science of rupture forecasts, to obtain new 
insights on earthquake physics, to improve seismic hazard estimates, and to create new opportunities for 
STEM education and engagement by providing a cyberinfrastructure platform for the broad community to 
easily use and reuse computational tools and data. 
 
Quakeworx gateway: https://quakeworx.org 
OneSciencePlace platform: https://onescienceplace.org 
 
 

1. Login

2. Browse App registry
NGES apps & user contributed apps

9a. Browse/Upload/Download
NGES curated, public, personal data

9b. Browse/Upload/Download
Remote data on clusters

3. Select
App/Pipeline

5a. Set
Batch app parameters via user interface

6. Select
Input data from curated datasets (9a)

7. Submit
Set job runtime parameters

4. Launch job

8. Monitor
Job status

Quakeworx gateway: User interaction sample

Contribute data 

5b. Interactive 
job

Contribute apps 

Simulate, 
Model

Visualize,
Analyze

Repeat,
Share,
Publish

Filter 
Curated NGES Apps

View/Download
Job output

Figure 2: Illustration of sample user interaction paths on the gateway. Blue boxes depict a series of steps to perform simulation, 
modeling, visualization, or analysis. Steps 1–4, 5b, 8 & 9 with green arrows show an interactive session for an app. Steps 1-4, 5b, 6-9 
with blue arrows show a batch job for an NGES app. Steps 1 & 9 show ability for users to contribute datasets for curation; apps may be 
contributed for curation with step 1 & 2 and both app and data can be published with FAIR principals. Yellow boxes indicate users ability 
to view and download curated NGES datasets, public or personal datasets (steps 1 & 9). The user interaction also allows cloning and 
repetition of simulation and analysis, and their output results may be shared or published at the gateway.

https://quakeworx.org/
https://onescienceplace.org/


Enabling Workflow Performance Evaluation for
Galaxy via Automated Benchmarking

Keith Suderman∗, Nuwan Goonasekera†, Alexandru Mahmoud‡, Michael C. Schatz∗, and Enis Afgan∗§
∗Department of Biology, Johns Hopkins University, Baltimore, MD, USA
†Australian BioCommons, University of Melbourne, Melbourne, Australia

‡Harvard Medical School, Boston, MA, USA
§Corresponding author: enis.afgan@jhu.edu

Abstract—As a science gateway grows, in terms of the number
of users, number of jobs it handles, diversity of the workload,
or number of installations, it becomes increasingly important to
focus on efficiency. Efficiency helps make better use of available
resources and hence better support users. Here we describe a
benchmarking automation framework for the Galaxy science
gateway platform that helps evaluate tool, workflow, and sys-
tem performance. The framework, named ABM for Automated
Benchmarking, allows users to easily benchmark and compare
workflow runtimes on different Galaxy deployments as well as
evaluate tool’s performance using different resource configura-
tions. Here we describe the ABM design, implementation details,
and showcase its use in three difference usage scenarios.

Index Terms—Galaxy, benchmark automation, cloud

I. INTRODUCTION

Evaluating the performance of software tools and scien-
tific workflows is crucial for end-users, tool developers, and
system administrators. End-users need to estimate runtimes,
costs, and compare performance across providers. Tool and
workflow developers benchmark to optimize performance.
Administrators evaluate for capacity planning and performance
tuning. However, comprehensive performance evaluation is
often time-consuming and nuanced, involving running tools
with varying resource allocations, input parameters, and on
different systems. For workflows, additional steps like tool
installation and reconfiguration are required. Collecting and
interpreting such performance data is complex, and therefore
often overlooked, leading to sub-optimal user experience or
system under-utilization.

We present Automated Benchmarking (ABM), a command-
line tool that automates and tracks the benchmarking process
of tools and workflows for Galaxy - a popular biomedical data
analysis and workflow management platform [4]. Galaxy sup-
ports thousands of domain-specific tools and workflows, with
public servers accommodating over 10,000 active monthly
users and processing approximately two million jobs each
month. Galaxy can also be launched on the cloud [7] or
installed on local hardware. This scale and heterogeneity of
uses necessitates performance optimization and cross-provider
comparisons, motivating ABM’s development. Other efforts,
such as JUBE [6] and Hummingbird [2], are alternative
benchmarking frameworks, but they lack support for Galaxy.

ABM enables comprehensive tool and workflow perfor-
mance evaluation by automating the benchmarking process

on any Galaxy installation, helping users better understand
and optimize their usage. It handles uploading of workflows
and input data, installing missing tools, running specified
benchmark configurations, monitoring workload execution,
and collecting runtime data. ABM uses descriptor files to
simplify the definition of complex experiments. This approach
also ensures consistent and repeatable benchmarking. We have
used ABM to benchmark various analyses, demonstrating
significant cloud cost reductions (40-80%) through identified
configuration changes [1].

We envision ABM adoption during tool/workflow publish-
ing, ensuring operational readiness, providing runtime esti-
mates, and optimizing default resource configurations. In this
paper, we describe ABM’s capabilities, implementation, and
usage, concluding with lessons learned and future enhance-
ment ideas.

II. AN OVERVIEW OF ABM

ABM enables users to run workflows, configure cloud
compute resources, and collect job runtime metrics in an
automated bulk fashion, thereby simplifying and accelerating
the benchmarking process required for performance eval-
uation. ABM is implemented in Python with a focus on
ease of use, scripting, and integration. It leverages BioBlend
[8] and Planemo [3] to interact with the Galaxy platform
(Fig. 1). ABM also includes mechanisms to monitor and
manage the status of jobs, providing real-time feedback,
job re-submission, and logs to users. ABM can be installed
directly from PyPI and the source code is available on
GitHub (https://github.com/galaxyproject/gxabm), where users
can find documentation, access the latest updates, and con-
tribute to development.

Interaction with ABM is managed via YAML-based con-
figuration files that capture all the benchmarking steps while
allowing users to define evaluation settings in a human-
readable and editable format. This approach also allows details
of each benchmark to be precisely captured, tracked, and easily
shared. A sample set of definitions is shown in (Fig. 2) (for
complete configuration details see the ABM documentation).
The configuration files have a three-tier structure. The highest
conceptual level is an Experiment. Each Experiment consists
of one or more Benchmarks and each Benchmark consists of
one or more Workflows and Input Datasets. The Experiment



R
es

t A
P

I

Compute resources
(e.g., HPC, K8s)

Galaxy

Upload worflows,

install tools,

import data

Compute resources
(e.g., HPC, K8s)

Get metrics

Run jobs

Manage cluster

A
B

M

B
io

B
le

nd
P

la
ne

m
o

R
eq

ue
st

s
ku

be
ct

l
&

 h
el

m

Fig. 1. Evaluation system design for ABM. ABM leverages existing libraries
to interact with Galaxy and collect benchmark data. ABM can also reconfigure
Galaxy to broaden the benchmarking space.

defines how many times each Benchmark should be run, which
resources to use, and an optional set of resource configuration
rules to iterate over. Each configuration rule defines the
number of CPUs and amount of memory a tool should use. The
Benchmark specifies input and output details for the Workflow,
such as dataset and history names, and matches inputs from
a Galaxy workflow submission form (Fig. 3). Workflow and
Input Dataset definitions point to where those objects can be
downloaded from.

A key advantage of using ABM to run workflows on several
Galaxy servers is that users are able to use the human readable
names for datasets, histories, and workflows. For security
reasons, Galaxy represents these objects using ID values that
are unique to a Galaxy instance. These ID values are used
when interacting with the Galaxy server through the REST
API. However, this presents problems when users want to run
the same workload on several different Galaxy servers. ABM
handles this translation from human readable name to the
Galaxy ID, significantly reducing the setup and configuration
time needed to perform benchmarking experiments.

III. USE CASES

In this section we present three sample use cases that each
showcase ABM’s utility for a different user persona. The first
use case focuses on end users, allowing them to compare
runtime characteristics of a workflow and performance of
different Galaxy servers. The second use case focuses on
tool or workflow developers and demonstrates how ABM
can be used to benchmark workflow’s execution as part of
continuous integration. The third use case focuses on systems
administrators, showcasing how to benchmark different cloud
resource configurations.

A. Evaluate Workflow Performance on Different Servers

Currently there are more than 150 public Galaxy servers
where various groups and institutions have set up a server

---
# Experiment definition
name: Variant-Analyses
runs: 3
benchmark_confs:
- benchmarks/vc.yml

cloud:
- australia
- usa

---
# Benchmark definition
- output_history_base_name: Variant-Calling
workflow_id: Generic variation analysis on WGS PE

data
runs:
- history_name: 2GB
inputs:
- name: Paired Collection

collection: Subsample of reads from
SRR24043307
- name: GenBank genome

dataset_id: GRCh38.p14.gbff.gz
- name: Name for genome database

value: h38
---
# Workflows defintion
variant: https://benchmarking-inputs.s3.amazonaws.

com/vc-iwc.ga

Fig. 2. A sample definition for an Experiment, a Benchmark, and a Workflow.
The Experiment definition specifies some metadata, which Benchmark file
to use, on which resources to run the Benchmark, and what job configu-
rations should be used (job configurations require administrative privileges
to use and are not shown here). The Benchmark definition specifies the
Workflow and Input Dataset information. The Workflow definition specifies
an online location of the Galaxy workflow file that ABM will import into
the relevant Galaxy server. Input Datasets are defined in the same fashion
as Workflows, but no example is shown. For a complete example, see
https://github.com/SchatzLabJHU/abm-examples.

Fig. 3. The variant analysis workflow configuration form on the Galaxy server.
The values and labels seen in the Galaxy interface are the same as the keys
and values used in the Benchmark configuration file.

either as a public resource or a way to expose their tools:
https://galaxyproject.org/use/. Within these servers there is a
subset of servers known as usegalaxy.*. These are general
purpose, national Galaxy servers that cater to a wide user
audience. Across all these servers there are many differences.
These include systemic differences such as system capabilities,
proximity to data, and legal jurisdiction. The differences also
include configuration differences, such as which tools are



installed or how many resources those tools are configured
to use. With many choices, service users often want to
know which servers can run their workloads and which one
perform best. Evaluating those servers is a time-consuming
task requiring the user to transfer data and workflows as well
as invoke and monitor job invocations. Here we showcase how
ABM can be used to simply perform server comparison.

australia:
url: https://usegalaxy.org.au
key: ***User’s Galaxy AU API key***

usa:
url: https://usegalaxy.org
key: ***User’s Galaxy US API key***

Fig. 4. Example ABM profile configuration pointing to two Galaxy servers
and letting ABM know how to access those servers. This is a global system
configuration file that contains links to any number of servers.

Running the performance benchmarks requires us to set up
the ABM configuration with the target servers. Fig. 4 shows
a sample configuration pointing to the Australian and US
usegalaxy servers. With the necessary configuration available,
we can invoke ABM to run a workflow on those servers:
#!/usr/bin/env bash
for server in australia usa ; do

abm $server workflow import variant
abm $server history import variant-2g

done
abm experiment run experiments/vc.yml
abm experiment summarize --markdown metrics/Variant-

Anaysis

The script uploads a workflow and input data to the given
Galaxy servers. Then the experiment is run (Experiment
definition in Fig. 2). The source locations of the supplied
workflow and input data objects from where they are uploaded
to Galaxy are defined in their respective configuration files
(not shown). Once submitted, ABM will monitor workflow
execution and upon completion of all workflow jobs, ABM
will retrieve runtime characteristics and summarize the re-
sults. A snippet of results is shown in Table I, capturing
runtime characteristics of each tool in the workflow. The data
shown in the table is a very condensed version of what the
history sumarize command returns to make it fit the
paper format. The full results returned include run ID, server,
tool resource configuration, workflow name, Galaxy history
name, inputs, tool ID, tool version, job state, number of CPUs
allocated, amount of memory allocated, job runtime, number
of CPUs used, memory limit, and maximum memory usage.
The output from this command can be saved to a CSV file for
downstream analysis or a more compact Markdown format for
a human readable overview.

As can be seen, with ABM, once a Benchmark has been
configured, the benchmarking process is reduced to a handful
of commands, making it a straightforward task for users. Once
the results are obtained, the evaluation can be performed.
At the moment, this is done by other downstream tools,
such as a spreadsheet, although there is future work planned
(described below) to interpret the results as well. Also, the

Run # Tool Runtime
(Sec)

Memory
(GB)

1 lofreq_indelqual 154 2.759
2 lofreq_indelqual 156 2.759
2 samtools_stats 40 0.005

...more results...
TABLE I

EXAMPLE OUTPUT GENERATED BY THE ABM history summarize
COMMAND, ALTHOUGH HEAVILY CONDENSED TO FIT THE PAPER FORMAT.
THE OUTPUT OF THIS COMMAND ALLOWS A USER TO EASILY GET A IDEA

OF RUNTIME CHARACTERISTICS OF INDIVIDUAL TOOLS COMPRISING A
WORKFLOW. THE INTENT IS TO USE THIS DATA IN DOWNSTREAM TOOLS

FOR FURTHER ANALYSIS AND VISUALIZATION.

next section shows an example of how short scripts can be
used to aggregate and interpret the collected data.

B. Monitor Workflow Performance with Continuous Integra-
tion

Galaxy has sophisticated workflow capabilities with com-
plex control structures, such as conditionals, dataset collec-
tions, and sub-workflows. These features are exposed via
an accessible graphical editor, making it straightforward to
develop sophisticated workflows. In addition, there are nearly
10,000 tools available in the Galaxy ecosystem, often offering
several choices for accomplishing a given step of the data
analysis process. As a consequence, design decisions and
tool choice may have impact on workflow performance and
runtime characteristics. As workflow developers interact with
this increasingly complex system, there is a growing need to
regularly evaluate and compare performance of different work-
flow builds. Ideally, this evaluation is part of the development
and publishing life cycle.

Here we provide template GitHub repository with a
GitHub Action that leverages ABM and allows a work-
flow developer to easily run workflow benchmarks and col-
lect performance data (https://github.com/SchatzLabJHU/abm-
action). The GitHub Action (shown in Fig. 5) will upload a
given workflow and test data on the specified Galaxy servers,
monitor its execution, collect the resulting performance data,
and deposit the data in the repository. The Action can be
defined to automatically run on each commit or pull request,
making it a seamless and integral part of workflow develop-
ment process. The collected performance data is visualized in
the repository as default preliminary analysis while additional
evaluation is certainly possible in downstream tools.

To start using this capability, anyone can add the action to
a GitHub workflow, do a one-time configuration to supply the
Galaxy API keys, and update a link to the workflow file and
its input data. Subsequently, every update to the workflow file
will yield a performance benchmark data point allowing easy
evaluation of any performance changes.

C. Estimate Cloud Costs

The third use case showcases ABM’s full capabilities in
identifying the most desirable resource configurations for a
given workload, going beyond benchmarking existing servers
or ensuring workflow operability. ABM can reconfigure



- name: Test a workflow with ABM
uses: SchatzLabJHU/abm-action@v1
with:

org-api-key: ${{ secrets.ORG_API_KEY }}
histories-path: histories.yml
workflows-path: workflows.yml
benchmarks-file-path: benchmarks/vc.yml
experiments-file-path: experiments/vc.yml

Fig. 5. GitHub Action used for Continuous Integration testing of a workflow.

Galaxy to explore how configuration changes impact workload
performance. We leveraged this capability to benchmark cloud
resources across tool/resource configurations to estimate work-
load costs on commercial cloud providers [1]. Cost estimation
is invaluable for scientists considering cloud adoption, where
cost uncertainty remains a major hurdle.

To identify desirable resource configurations and estimate
the costs, we performed a number of experiments to measure
the performance of several workflows across three dimen-
sions: input data size, number of CPU cores allocated, and
amount of memory allocated for a tool. In addition to all the
benchmarking steps already described above, this use case re-
quires Galaxy to be reconfigured for each distinct benchmark.
Changes include updating Galaxy’s configurations to specify
desired amount of resources for given tools and restarting
necessary processes. Because these are system-level changes,
this mode of ABM works only on Galaxy servers deployed on
Kubernetes and using the Galaxy Helm chart [5]. Kubernetes
offers a reliable mechanism for performing such changes in
an automated fashion and is hence the reason why ABM only
supports cluster changes for Kubernetes deployments.

To run such evaluation, in addition to defining an ABM
Experiment, such as the one in in Fig. 2, it is also necessary
to define desired job configurations as part of the Experiment:

job_configs:
- 8x32
- 32x64

Each of these configurations maps to a file
that contains necessary rules indicating how many
resources should be allocated for a given tool (e.g.,
https://github.com/ksuderman/Benchmarks/blob/master/rnaseq/
rules/8x32.yml). Behind the scenes, ABM issues kubectl and
helm commands to make the necessary cluster changes,
updating the Galaxy deployment, and then instantiating the
suitable workload. One thing to keep in mind that ABM will
not scale the underlying cluster, which needs to have adequate
resources to accommodate desired job configurations defined
in the Experiment. In this mode, ABM can also install any
missing tools in Galaxy, further automating the benchmarking
process for newly created or temporary Galaxy deployments.

IV. DISCUSSION AND FUTURE WORK

A systematic approach to collecting benchmarking data is
crucial for meaningful performance evaluation. The ABM tool
streamlines this process with its well-defined, reproducible,

and shareable benchmarking configurations. This allows users
from various backgrounds to easily evaluate their workloads.
Our use cases validate ABM’s capabilities and demonstrate its
support for different user personas.

One of the most impactful lessons from working with
ABM is the importance of thoughtful benchmarking design.
While ABM’s design capabilities enable quick execution of
numerous jobs and collection of extensive runtime data, this
can overwhelm users and produce noisy results. It is essential
to focus on the specific goals of the evaluation and design
compact experiments that test clear hypotheses, rather than
amassing large volumes of data without direction.

ABM enhances users’ ability to understand correlations
between different configuration options, such as resource
requirements relative to input data size. Despite its current
automation capabilities, manually collecting, organizing, and
interpreting the resulting data can still be challenging. To
address this, we plan to develop a hosted ABM service. This
service will allow users to upload an Experiment configuration
and ABM will automatically run the necessary workloads,
generating a summary report that highlights key findings.

In conclusion, ABM provides a powerful tool for systematic
and reproducible performance evaluation of Galaxy workloads,
enabling users to optimize their workflows. Our future en-
hancements aim to further simplify the benchmarking process,
making it more accessible and informative for users.

ACKNOWLEDGMENT

We would like to thank the Galaxy Community for their
contributions to the platform. This work was supported, in
part, by NIH awards U24HG010263, U24HG006620, and
R03CA272952 as well as NSF award 2005506.

REFERENCES

[1] Enis Afgan, Keith Suderman, Nuwan Goonasekera, Bridget Carr, Victor
Wen, Peiyuan Xu, Michelle Savage, Tyler Collins, and Michael C.
Schatz. Estimating cloud computing costs for bioinformatics workloads.
[Manuscript in preparation], 2024.

[2] Amir Bahmani, Ziye Xing, Vandhana Krishnan, Utsab Ray, Frank
Mueller, Amir Alavi, Philip S Tsao, Michael P Snyder, and Cuiping Pan.
Hummingbird: efficient performance prediction for executing genomic
applications in the cloud. Bioinformatics, 37(17):2537–2543, 2021.

[3] Simon Bray, John Chilton, Matthias Bernt, Nicola Soranzo, Marius
van den Beek, Bérénice Batut, Helena Rasche, Martin Čech, Peter JA
Cock, Björn Grüning, et al. The planemo toolkit for developing,
deploying, and executing scientific data analyses in galaxy and beyond.
Genome research, 33(2):261–268, 2023.

[4] The Galaxy Community. The Galaxy platform for accessible, repro-
ducible, and collaborative data analyses: 2024 update. Nucleic Acids
Research, 05 2024.

[5] Nuwan Goonasekera, Alexandru Mahmoud, Keith Suderman, and Enis
Afgan. Galaxy Helm chart: a standardized method for deploying produc-
tion Galaxy servers. Bioinformatics, 40(8):btae486, 08 2024.

[6] Sebastian Lührs, Daniel Rohe, Alexander Schnurpfeil, Kay Thust, and
Wolfgang Frings. Flexible and generic workflow management. In Parallel
computing: On the road to exascale, pages 431–438. IOS Press, 2016.

[7] Michael C Schatz, Anthony A Philippakis, Enis Afgan, Eric Banks,
Vincent J Carey, Robert J Carroll, Alessandro Culotti, Kyle Ellrott, Jeremy
Goecks, Robert L Grossman, et al. Inverting the model of genomics data
sharing with the nhgri genomic data science analysis, visualization, and
informatics lab-space. Cell Genomics, 2(1), 2022.

[8] Clare Sloggett, Nuwan Goonasekera, and Enis Afgan. BioBlend: au-
tomating pipeline analyses within Galaxy and CloudMan. Bioinformatics,
29(13):1685–1686, 2013.



An Introductory Guide to Developing GenAI
Services for Higher Education

Sarah Rodenbeck
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

srodenb@purdue.edu

Erik Gough
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

goughes@purdue.edu

Ashish
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

ashish@purdue.edu

Sathvika Kotha
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

kotha8@purdue.edu

K. Meher Hasanth
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

kmeherha@purdue.edu

Durga Dash
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN, USA

dashd@purdue.edu

Abstract—This paper reports on the lessons learned from
developing and deploying campus-wide large language model
(LLM) services at Purdue University for generative AI (GenAI)
applications in education and research. We present a frame-
work for identifying an LLM solution suite and identify key
considerations related to developing custom solutions. While
the GenAI ecosystem continues to evolve, the framework is
intended to provide a tool- and organization-agnostic approach
to guide leaders in conversations and strategy for future work
and collaboration in this emerging field.

Index Terms—Large Language Model Deployment, GenAI,
Cloud Computing, Software Design, Requirements Analysis,
Information Retrieval, Language Models, Software Management

I. INTRODUCTION

The release of recent Large Language Models (LLMs)
such as ChatGPT, LLaMA, Claude, and Gemini has catalyzed
significant interest in Generative AI (GenAI) across various
fields, including education [1]. The University of Michigan
has been at the forefront in this area, notably creating and
deploying the U-M GPT and U-M Maizey tools, designed for
general use and fine-tuning, respectively [2].

Over the past six months, our team at Purdue University has
sought to assemble a suite of LLM services to satisfy a range
of use cases within the campus and ACCESS communities.
Through our exploration, we have realized that there is little
agreement over best practices and approaches to embarking on
similar projects as new tools are released so frequently [3], [4].
Additionally, contrary to traditional software projects, a key
element of GenAI projects is adapting to constant changes in
the landscape (both internal GenAI-related priorities/appetite
and external services available). Therefore, planning to pivot
is a top-level consideration. This paper shares our experiences
and learnings in evaluating, adapting, and deploying a suite of
LLM services to enable AI-powered research. We have sought
to leverage this into a general framework with guidance for
other groups embarking on similar projects.

II. METHODS

We present our approach in the context of a decision frame-
work, which includes requirement analysis, suite selection, and
custom service development considerations as top-level issues,
which are discussed in turn.

A. Requirement Analysis

One pitfall that early adopters may fall into is to assume
that finding a single approach that works for all the needs at a
university is the single high-priority first step. On the contrary,
a suite of services is the likely outcome of a substantially
developed GenAI initiative. To note, the outcome might still
converge to one or a few solutions depending on the mission or
size of an institution; however, by assuming a multi-pronged
approach from the start, the development effort will likely be
more adaptable as requirements change. Therefore, much of
the early effort is best spent on formalizing 1) overall project
constraints, 2) user profiles, and 3) intra-project prioritization
rather than searching for a single solution. While a general
requirement analysis approach is still valid, there is a subtle
difference in the benefits posed by conducting this type of
analysis within the GenAI space. Rather than only being used
for initial planning, such an analysis is used as a basis for
assessing field developments. For example, suppose a new
model or tool comes out. What is the relative benefit of
adding support for this into the original suite versus shifting
to support this instead of something in the original suite
versus doing nothing and keeping the original approach? This
assessment depends on fully understanding the vision and
resources behind the project and the prioritized user profiles
but allows more focused discussions.

B. Tool Selection

This part of the framework primarily concerns identifying
a solution suite that satisfies the prioritized use cases from
section 2A. It explores the balance between commercial and



custom services, addressing not just a simple build vs. buy
decision but the optimal mix for usage and guidance.

Control is an overarching theme in this analysis, focusing
on the control provided by various solutions as well as the
level of control required. For instance, freely available tools
such as the public version of ChatGPT pose a trade-off with
data security, with chat histories being used by default for
further fine-tuning and offering users very little control [5].
Our community’s regular interactions with proprietary data
and the need for privacy and IP considerations made such
solutions generally inappropriate for organizational GenAI use
in our case.

Commercial services like Azure AI Studio offer access
to proprietary models while offering additional data privacy
[6] but remain bound to the provider’s policies and pricing
structures. These services necessitate the use of commercial
cloud resources and do not allow for the extraction of fine-
tuned models. However, they support a broader range of
models and include low-code tools for creating personal-
ized ”Assistants” with custom data. These services’ features
have been converging, with most providing APIs, model
playgrounds, assistant-building tools, and user data support.
However, different services offer access to different proprietary
models (e.g., Gemini is only available through Google). Thus,
partner selection hinges on existing organizational partner-
ships, desired flexibility/model access, and cost considerations.
Cost estimations consider factors like deterministic seat-based
versus undefined usage-based fees, intended usage, and the
size and characteristics of the user base (e.g., API calls
vs interface) [7], [8]. To serve all researcher needs (e.g.,
if access to many different proprietary models is needed),
forming partnerships with multiple commercial services may
be necessary.

Custom services, built from open-source tools/models and
hosted with on-premises resources, require more resources to
deploy and maintain but offer greater control. This makes them
particularly appealing to power users or those with stringent
data protection needs. Despite the growth in available open-
source tools, most resources still lack complete functionality
out of the box. Additionally, for the goals of our project,
building a custom service was crucial to enabling lower-
cost or free access to Generative AI tools to users who may
not have the funding to pay for commercial services. Rather
than having usage-based costs, custom services will incur
significantly more development and infrastructure costs, which
are discussed in more depth in section 2C. Still, when such
resources are already available, this can essentially subsidize
the raw cost [9].

Mapping use cases to the necessary level of control, bal-
anced against costs and priorities, forms a strategic execution
roadmap. It is crucial to understand both the short-term and
long-term solution landscapes. Figure 1 illustrates a sample
mapping of user types to services and feature usage, high-
lighting the flexibility in these mappings. While enterprise
cloud services may require less startup time, the end state
of custom services can be comparable, mainly differing in

the models available (which may be a key consideration,
depending on the user base). Initially, a GenAI solution suite
might focus more on enterprise services, but users may be
guided toward custom services as new features are added.
Additionally, some scenarios may necessitate hybrid solutions
where custom features are developed on top of commercial
APIs.

Fig. 1. Mapping of users to services and feature usage.

C. Custom Service Development

Assuming that a custom service has been identified as part
of the solution suite, as we did, understanding what goes into
a custom service is also critical for planning. We conducted a
comprehensive investigation into the process of deploying an
on-prem LLM, specifically the LLaMA LLMs, onto the Anvil
composable subsystem—a Kubernetes-based private cloud for
deploying and managing persistent services [10].

1) Approach and Deployment: The massive size of LLMs,
such as LLaMA3 with 70 billion parameters [11] and GPT
3.5, the most recent OpenAI model for which details are
available, with 175 billion parameters [12], makes deployment
more complex than with smaller services. Initial issues in-
cluded errors related to insufficient CUDA memory–internal
testing showed that hosting the full LLaMA3 model required
4x 80GB GPUs. Employing quantization was paramount to
navigating this issue. Quantization involves some information
loss, in this case reducing the precision of numerical values,
but allows the model to fit into smaller hardware than the
cluster it was trained on [13]. Significant work has been
done on these topics, and tools like Ollama automatically
employ quantization methods, even enabling LLMs to run on
local machines [14]. However, running quantized models on
a cluster with GPU resources improves performance. Initially,
we used a more manual approach for quantization, but the
development ecosystem surrounding Ollama presented a very
attractive option.

However, the model must still be paired with sufficient
GPU memory and resources to work well, especially for a
large community of users. On average, model performance
correlates with model size, but smaller models may still be
sufficient for particular tasks [15]. Assuming that anticipated
users will want a choice of models, though, sizing the de-
ployment to account for the largest model size will result in
the best performance. While LLaMA 3 70B, for example,
does work on GPUs with smaller memory, response times



suffer. For satisfactory performance with multiple models, we
recommend the minimum resource request includes 16 CPUs,
32GB of RAM, and a GPU with 40GB of memory. 40 GB
of GPU memory allows for loading multiple small models
simultaneously as well as larger models like LLaMA 3 70B
with 4 bit quantization. Deploying the solution in an auto-
scaling platform like Kubernetes is also desired to handle the
highly variable GenAI resource demand. Ongoing computing
costs must be factored into budgetary discussions.

2) Performance Benchmarking: Beyond our basic assess-
ment of minimum resources, benchmarking performance was
an essential aspect of our work to validate the scalability and
limits of our approach. While the actual models and tools
continue to shift, we anticipate the benchmarking approach
to be more transferrable [16].

Our approach was based on LLMPerf [17], a library de-
signed to validate and benchmark the throughput and latency
performance of LLMs [18]. The library supports multiple
backend frameworks and provides customizable scenarios
to simulate real-world usage. Key features include scalable
testing, detailed performance metrics, and extensibility for
integration with existing testing infrastructures. LLMPerf’s
design also allows users to reproduce results reliably, ensuring
that performance assessments are accurate and repeatable.
We found it particularly valuable for optimizing LLMs for
specific applications, as it offers pre-configured and user-
defined benchmarking capabilities. Building on LLMPerf’s
framework and what we have found to be standard metrics
in this domain, we chose to assess performance based on the
following metrics.

• Inter-Token Latency: Displays variability in processing
time between tokens, assessing fluctuating token process-
ing speeds [19].

• End-to-End Latency: Total time from initiating to com-
pleting a request, pointing to variability in total response
times.

• Time to First Token (TTFT): Latency from starting a
request to generating the first token, where differences
can indicate potential variations due to system load or
complexity.

• Request Output Throughput: Measures tokens generated
per second, which helps understand the system’s effi-
ciency in producing output.

We used a containerized benchmarking environment to
ensure a stable and replicable platform [20]. Benchmark-
ing was performed on an Ollama v0.2.4 container instance
running in Kubernetes that was allocated 32 CPUs, 64GB
of RAM and one A100 80GB GPU. The instance was
configured to process up to 64 parallel requests using the
OLLAMA NUM PARALLEL configuration option.

While LLMPerf did not have native support for an Ollama
model backend, we were able to use LiteLLM, a library that
standardizes API interactions across various LLM providers,
to facilitate interaction [21]. Notably, LiteLLM’s design is
optimized for low-resource environments, making it particu-

larly beneficial for our containerized setup, where resource
efficiency is paramount.

We used a dedicated node on Purdue’s Negishi cluster with
128 cores and 256 GB RAM as our benchmarking client and
validated no client bottlenecks were present. LLMPerf load
tests were conducted from inside a conda virtual environment
for an increasing number of parallel requests.

While results will be highly dependent on the allocated
resources for an LLM deployment as well as parameters
like number of input and output tokens, a sample of our
results can be found in Figure 2. Unsurprisingly, latency
reliably increases with the number of concurrent requests.
The relationship between Inter-Token latency and End-to-End
latency is also easily visualized. Results for token throughput
show that throughput drops quickly as more parallel requests
are handled, eventually reaching a point where responses are
less than 10 tokens/s, a threshold that would be considered too
slow for users of the system. Using this benchmarking data,
we plan to do future work to determine an optimal auto-scaling
configuration for Ollama instances.

Fig. 2. Benchmarking Results

3) Additional Development Considerations: Beyond model
deployment, numerous features are required to make custom
services usable to a community. Pursuing a hybrid solution
for building custom features on top of commercial model
APIs may be possible but typically requires configuration as
well [25]. However, solutions like Ollama are approaching
the functionality offered by commercial solutions by
automatically handling features such as streaming responses,
not just providing a model backend [14]. Fortunately, many
front-end tools have been designed to work with an Ollama
backend, such as OpenWebUI and Chatbot Ollama [25],



[26]. However, no solution satisfied all our scaling needs,
so having front-end expertise on the team was crucial for
application modifications. Key features to consider include
support for non-local backends, the ability to integrate with
SSO, and the functionality to enable users to create custom
retrieval augmented generation (RAG) systems [27], which
also requires deploying a vector store like ChromaDB or
PGVector. Figure 3 shows a sample deployment architecture.
Finally, the pace of innovation means that while many
frameworks are being released, there is not yet a consensus
on the best approach to these tasks. Thus, building services
modularly when possible and accounting for recurring costs to
update the service to avoid technical debt as initial approaches
become outdated are important. Support for RAG tools and
agents for multi-hop reasoning has become very popular and
should be considered a requirement for custom services in
the long term.

Fig. 3. Architecture of custom on-prem LLM service

III. DISCUSSION

The ecosystem of GenAI tools evolves rapidly, and today’s
models and tools may differ significantly by the time Gate-
ways ’24 starts. Although our team at Purdue has thoroughly
evaluated options for deploying a campus LLM, our specific
results are less important than the broader insights gained.
We believe other universities and research centers building
similar gateways, and we hope our findings will guide their
efforts. In this ever-changing environment, quickly adapting
and assessing new developments is crucial for success.

IV. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 2005632. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Y. Liu et al., ”Understanding LLMs: A Comprehensive Overview from
Training to Inference,” arXiv:2401.02038 [cs], Jan. 2024.

[2] T. Burns. ”ITS debuts custom artificial intelligence services across
U-M.” University of Michigan. https://record.umich.edu/articles/
its-debuts-customized-ai-services-to-u-m-community/ (accessed May
20, 2024).

[3] H. Crompton and D. Burke, ”Artificial intelligence in higher education:
The state of the field,” Int J Educ Technol High Educ, vol. 20, no. 1,
22, Apr. 2023, doi:10.1186/s41239-023-00392-8.

[4] WhyLabs, ”A Guide to Large Language Model Operations (LLMOps),”
WhyLabs. https://whylabs.ai/blog/posts/guide-to-llmops (accessed May
26, 2024).

[5] OpenAI. ”Data Controls FAQ.” OpenAI. https://help.openai.com/en/
articles/7730893-data-controls-faq (accessed May 20, 2024).

[6] OpenAI. ”Introducing ChatGPT Enterprise.” OpenAI. https://openai.
com/blog/introducing-chatgpt-enterprise#OpenAI (accessed May 20,
2024).

[7] S. Heshmatisafa and M. Seppänen, ”Exploring API-driven busi-
ness models: Lessons learned from Amadeus’s digital transfor-
mation.” Digital Business, vol. 3, no. 1, 100055, Jan. 2023,
doi:10.1016/j.digbus.2023.100055

[8] T. Hagendorff, ”The Ethics of AI Ethics: An Evaluation of Guide-
lines,” Minds and Machines, vol. 30, pp. 99-120, Feb. 2020,
doi:10.1007/s11023-020-09517-8

[9] F. Kumeno, ”Software engineering challenges for machine learning
applications: A literature review,” Intelligent Decision Technologies, vol.
13, no. 4, pp. 463-476, Feb 2020, doi:10.3233/IDT-190160

[10] X.C. Song et al. ”Anvil - System Architecture and Experiences from
Deployment and Early User Operations,” in Practice and Experience in
Advanced Research Computing (PEARC ’22), 1–9.

[11] H. Touvron et al. ”Llama 2: Open foundation and fine-tuned chat
models,” arXiv:2307.09288 [cs], July 2023.

[12] T. Brown et al., ”Language Models are Few-Shot Learners,”
arXiv:2005.14165 [cs], May 2020.

[13] B. Jacob, et al. (2017). ”Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference,” arXiv:1712.05877 [cs],
Dec 2017.

[14] J. Morgan. ”Ollama.” Ollama. https://ollama.com (accessed Apr. 16,
2024).

[15] T. Shnitzer et al., ”Large Language Model Routing with Benchmark
Datasets.” arXiv:2309.15789 [cs], Sept. 2023.

[16] J. Dodge, S. Gururangan, D. Card, R. Schwartz and N.A. Smith,
”Show Your Work: Improved Reporting of Experimental Results,”
arXiv:1909.03004 [cs], Sept. 2019.

[17] ”LLMPerf: Large Language Model Performance Benchmarking,”
GitHub repository, Ray Project. [Online]. Available: https://github.com/
ray-project/llmperf. (accessed Feb 4, 2024).

[18] J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, ”Scientific Machine
Learning Benchmarks.” Nature Reviews Physics, vol. 4, pp. 413-420,
2022, doi:10.1038/s42254-022-00441-7.

[19] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, ”SQuAD: 100,000+
Questions for Machine Comprehension of Text,” arXiv:1606.05250 [cs],
June 2016.

[20] X. Zhou et al, ”Benchmarking microservice systems for software
engineering research.” In ICSE ’18 Companion (pp. 323-324), doi:
10.1145/3183440.3194991.

[21] ”LiteLLM,” GitHub repository, Berri AI. [Online]. Available: https://
github.com/BerriAI/litellm (accessed Mar 5, 2024).

[22] K. Senjab, S. Abbas, N. Ahmed, A.u.R. Khan, ”A survey of Ku-
bernetes scheduling algorithms,” Journal of Cloud Computing: Ad-
vances, Systems and Applications, vol. 12, no. 1, 87, June 2023,
doi:10.1186/s13677-023-00471-1.

[23] Z. Sun, and A.V. Miceli-Barone, ”Scaling Behavior of Machine Trans-
lation with Large Language Models under Prompt Injection Attacks,” in
Proceedings of the First edition of the Workshop on the Scaling Behavior
of Large Language Models (SCALE-LLM 2024), pp. 9-23, Mar. 2024,
doi:https://doi.org/10.48550/arXiv.2403.09832.

[24] J. Dean and S. Ghemawat, ”MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-
113, Jan 2008, doi:10.1145/1327452.1327492.

[25] T.J. Baek. ”Open WebUI.” Open WebUI. https://docs.openwebui.com
(accessed Apr. 14, 2024).

[26] I. Fioravanti. ”ChatBot Ollama.” GitHub repository. https://github.com/
ivanfioravanti/chatbot-ollama. (accessed Feb. 23, 2024).

[27] P. Lewis, et al., ”Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks,” in Proceedings of Advances in Neural In-
formation Processing Systems: 33, pp. 9459-9474, Dec. 2020,
doi:10.5555/3495724.3496517.

https://record.umich.edu/articles/its-debuts-customized-ai-services-to-u-m-community/
https://record.umich.edu/articles/its-debuts-customized-ai-services-to-u-m-community/
https://whylabs.ai/blog/posts/guide-to-llmops
https://help.openai.com/en/articles/7730893-data-controls-faq
https://help.openai.com/en/articles/7730893-data-controls-faq
https://openai.com/blog/introducing-chatgpt-enterprise#OpenAI
https://openai.com/blog/introducing-chatgpt-enterprise#OpenAI
https://ollama.com
https://github.com/ray-project/llmperf.
https://github.com/ray-project/llmperf.
https://github.com/BerriAI/litellm
https://github.com/BerriAI/litellm
https://docs.openwebui.com
https://github.com/ivanfioravanti/chatbot-ollama.
https://github.com/ivanfioravanti/chatbot-ollama.


Community Growth: Achievements Enhanced by
SGCI/SGX3 Services

Sandra Gesing
San Diego Supercomputer Center

US Research Software Engineer Association
Chicago, IL, USA
sgesing@ucsd.edu

Sean B. Cleveland
University of Hawaii-System

Honolulu, HI, USA
seanbc@hawaii.edu

Carol Song
Purdue University

West Lafayette, IN, USA
cxsong@purdue.edu

M. Drew LaMar
William & Mary

Williamsburg, VA, USA
mdlama@wm.edu

Claire Stirm
San Diego Supercomputer Center

La Jolla, California, USA
cstirm@ucsd.edu

Abstract—Community growth is one of the cornerstones con-
tributing to the sustainability of a science gateway. Achieving
community growth requires careful planning and a multifaceted
approach. The Science Gateways Community Institute (SGCI)
and the Center of Excellence for Science Gateways (SGX3) offer
services such as UX advice, sustainability training via the Focus
Week, and an annual conference to support the science gateway
community with developers and users. This panel will discuss four
successful use cases – QUBES, MyGeoHub, CHEESE, and the
Hawaii Behavioral Health Dashboard – where the teams utilized
various SGCI/SGX3 services, which significantly contributed to
their community growth. The discussion will highlight specific
strategies and outcomes from these use cases, providing valu-
able insights into the effective practices that drive community
engagement and sustainability in science gateways. Additionally,
panelists will share lessons learned and good practices that can
be applied to other science gateways seeking to enhance their
community presence and impact.

Index Terms—SGX3, Center of Excellence, science gateways,
community growth, SGCI

I. INTRODUCTION

Sustainability is a significant concern for many science gate-
ways. It depends on many aspects, such as funding cycles, the
framework’s maintainability, an evangelist’s enthusiasm to sus-
tain a science gateway, and community buy-in [1]. For many
successful science gateways, there are also as many that have
been not successful [2]. Sustaining a gateway requires careful
planning, design, development, deployment, and maintenance,
as well as attention to the needs and expectations of the target
user community. The Science Gateways Community Institute
(SGCI) [3] and the Center of Excellence for Science Gateways
(SGX3) [4] aim to address topics such as sustainability and
assist the community in various tasks, ranging from using
to developing and providing science gateways. Established in
2016 under the National Science Foundation’s (NSF) software
sustainability institute program, SGCI’s funding concluded in
July 2023, though it continues to offer paid services to clients.

Identify applicable funding agency here. If none, delete this.

SGX3, funded in August 2022, is part of the NSF Center
of Excellence program. Both SGCI and SGX3 emphasize the
importance of usability [5] [6], reusability, and sustainability in
science gateways while focusing on community growth across
all research domains.

Over the past six years, it has become apparent that SGCI’s
community growth has been more significant in computer sci-
ence and engineering than in other research fields, highlighting
the need for increased attention to the user community for
continued growth. Consequently, SGX3 services have been
restructured based on lessons learned from SGCI. These
lessons are derived from various engagements with SGX3
activities, including demographics of conference attendees,
client interactions, post-event surveys, and website metrics.
Additionally, services have been reorganized to align with the
NSF Center of Excellence’s framework.

Below is the current list of SGX3 services:

1) Usability/User-experience (UX) evaluation and design
engagements lasting up to three calendar months

2) Technology evaluation and gap analysis
3) Science Gateway architecture design
4) Once annually Science Gateways Focus Week sustain-

ability sessions
5) Focus Week follow-on sustainability coaching
6) Summer Coding Institutes
7) Rising Stars program
8) Summer faculty and student internships
9) Science Gateway Hackathons

10) Gateways conference series
11) Gateways Central site for gateway listing, software list-

ing, and partnership formation
12) SGX3 On the Road outreach to scientific communities

where they meet
13) Blueprint Factory sessions to develop the future roadmap

for Science Gateways serving new domain science needs

Community growth has been identified as a major aspect of



the sustainability of a science gateway. Active engagement and
expansion of the user base elucidates the value of such science
gateways as workspaces for sharing simulations, data and
workflows that transform results into knowledge. Community
growth fosters a diverse and dynamic ecosystem of users
who contribute to developing, refining, and disseminating
the gateway’s resources. Collaborations contribute to creating
new ideas, feedback, and expertise, which are crucial for
maintaining the relevance and efficacy of the gateway.

Moreover, a thriving community enhances the gateway’s
resilience and adaptability. As more researchers adopt and
integrate the gateway into their workflows, they create a robust
support network that can collectively troubleshoot challenges
and innovate solutions. This collaborative environment accel-
erates scientific progress and builds a sense of investment
among users, encouraging sustained use and advocacy for the
gateway. Fostering community growth is not merely a strategy
for expanding user numbers but a fundamental necessity for
ensuring a science gateway’s long-term sustainability, rele-
vance, and impact.

In this panel, we will discuss which of SGCI’s and SGX3’s
services have contributed to the community growth in the
examples of QUBES [7], MyGeoHub [8], CHEESE [9], and
the Hawaii Behavioral Health Dashboard [10].

II. BACKGROUND

SGCI was structured to provide a variety of services,
training, and community engagement opportunities. SGCI
structure:

• Incubator - training and consulting services with regard to
financial and technological sustainability, cybersecurity,
and usability/user-experience.

• Extended Developer Support (EDS) - placement of a 0.25
full-time equivalent technologist from SGCI staff into
projects needing to solve difficult technical problems and
instill best practices.

• Workforce Development - training developers in Science
Gateway development skills, training faculty in incorpo-
rating Science Gateway development in curricula, student
hackathons, and summer- and semester-long internship
programs, all with a special focus on diversity.

• Scientific Software Collaborative - gathering of a compre-
hensive inventory of existing science gateways, software
used in science gateways, and Tech Summit activities 1

that bring together Science Gateway stakeholders to de-
velop software elements for the community.

• Community Engagement and Exchange - outwardly fo-
cusing on dissemination of SGCI results through an
annual conference, a vibrant website, webinars, blogs,
success stories, and a variety of other publications and
postings for public dissemination.

SGX3 aims to extend computing resource access to diverse
audiences with varying skill levels, expand the community of
science gateway developers and users, and promote sustainable

1https://sciencegateways.org/our-services/sgci-tech-summit

practices for science gateways. SGX3’s main work thrusts
include:

• Growing a Diverse Community
• Developing the Workforce
• Serving as Community Experts
• Envisioning the Future

To deliver on these four thrust goals, the following activities
will happen under SGX3:

• Blueprint Factories - collaborate to understand the cy-
berinfrastructure needs of research communities and
national-scale providers.

• Workforce Development - build a supportive
HPC/Gateways community for teaching faculty, and
provide training and support; offer opportunities for
students to enhance their HPC/science gateway skills
through coding institutes, hackathons, and internships.

• Consulting - provide expert advice on project lifecycle
sustainability, user interface and design improvements,
and develop technical roadmaps for science gateway
projects.

• Gateways Central - reimagine the science gateways cata-
log to serve as a central point for stakeholder interaction.

• Science Gateway Outreach - engage with science gate-
ways and domain scientists/scholars where they are
(SGX3 on the Road), collect community knowledge,
celebrate community achievements through the annual
Gateways conference, and share information via the Sci-
ence Gateways Community website and mailing list.

SGCI’s funded period ended in July 2023, but it will continue
to offer services on a paid basis. SGX3, operating under SGCI,
will be a funded activity, and community members who require
more intensive engagements can access these services through
SGCI on a paid basis.

III. SUCCESS STORIES

The teams behind the following successful science gateways
have experienced significant community growth, partly due to
the activities and services provided by SGCI/SGX3.

A. QUBES

The Quantitative Undergraduate Biology Education and
Synthesis (QUBES) gateway was originally funded by the
National Science Foundation from 2014 to 2022 and is
now sustained as a project of the BioQUEST Curriculum
Consortium. Since the inception of SGCI in 2016, QUBES
has utilized nearly all services, including hands-on consult-
ing services (software development and usability evaluation),
Gateways Focus Week training, inclusion in the Gateway
Catalog, the Gateways conference series, and the Workforce
Development program. QUBES participated in one of the
original sustainability training workshops, the SGCI Bootcamp
- now known as Focus Week, in April 2017, which was critical
in helping to create a vision and mission that extended beyond
the initial proposal and adopted a business model primed
for sustainability. The usability design guidance and software



development work measurably increased the publication, adop-
tion, and adaptation of open educational resources (OER).
QUBES now hosts nearly 3,000 OER, some of which interface
with computational and data tools hosted on the Gateway.
However, one of the most valuable SGX3 resources is the
annual Gateways conference, which has created a community
of practice around building, hosting, and sustaining Gateways.

B. MyGeoHub and CHEESE Gateways

During the development phase of the MyGeoHub geospa-
tial science gateway, the MyGeoHub team participated in a
Focus Week workshop where they specifically looked into the
sustainability of the gateway from more of a business perspec-
tive, i.e., identifying the unique value, potential strategies of
targeting different user groups with specific capabilities, and
business funding model and ways to stay vibrant in the longer
run. With a clear vision and plan, we secured a large grant that
funded the development of several key data-driven workflow
solutions. These capabilities enabled the team to expand part-
nerships, create new services, and provide research opportuni-
ties for our RSEs. MyGeoHub has been in operation for nearly
10 years and supports approximately 11,000 users annually,
ranging from K-12 students to multi-disciplinary scientists.
It continues to evolve to support emerging technologies and
host new projects. The team also used the usability consulting
service successfully. The CHEESE project (Cyber Human
Ecosystem of Engaged Security Education) sought to provide
hands-on experience with common cybersecurity issues and
mitigation strategies via a web-based demonstration platform.
Most of the users were K-12 students and undergraduates, so
usability was a key concern. The CHEESE team partnered
with the SGCI usability team to improve the usability of
the CHEESE website and demonstration applications. Six
usability tests were carried out which identified ten areas of
improvement in the visibility of actions, UI intuitiveness, and
a lack of instant feedback. The usability team also provided
a heuristic evaluation and a cognitive walkthrough to evaluate
the user-friendliness of common workflows on the website.
Three key areas of improvement were identified: consistency
and standards in user interface elements, improving a sense
of direction in multi-step workflows, and including vital in-
formation on the page. The CHEESE team implemented over
50% of these recommendations, which greatly benefited the
usability of the CHEESE gateway.

C. Hawaii Behavioral Health Dashboard

The State of Hawaii Behavioral Health Dashboard (HBHD)
[10], is an interactive online platform that provides data on
substance use, mental health, and crisis care in Hawaii. The
dashboard was developed as part of the Overdose Data to
Action (OD2A) project funded by the Centers for Disease
Control and Prevention (CDC). The OD2A project aims
to expand public health surveillance and use data to drive
prevention strategies for drug-related misuse and overdose
morbidity and mortality [11]. During the development of
the HBHD, the development team partnered with SGCI to

leverage usability and user-experience consulting services.
The SGCI usability team evaluated the initial beta release
of the HBHD throughout a three month engagement. The
usability team and the HBHD team engaged in 4 phases: Initial
questions & background about the dashboard, Competitive
analysis of similar dashboard, user-experience audit of the
existing dashboard and user-centered design recommendations
and mockups. The outcomes of the usability engagement were
the redesign of some of the dashboard navigation, interfaces
involved in query/filtering, and design templates for three
common patterns within the dashboard. The usability team
provided a summary report of their in-depth evaluation of
the HBHD and mockups and templates in Figma that the
HBHD team could use to refactor the dashboard. The HBHD
team incorporated the results of the usability analysis into
a final dashboard product with a friendly interactive user
interface that has served important substance use and overdose
information related to Hawaii for over 34,000+ visits since
October of 2022.

IV. SUMMARY

Sustainability of science gateways has many facets and
a healthy growth of the community of a science gateway
contributes to its sustainability. SGCI and SGX3 offer services
such UX consulting and sustainability training that can posi-
tively influence the community growth. Each of the panelists
representing one of the science gateways will give a short
introduction to their science gateways and the services they
received from SGCI and SGX3. The Co-PI of SGX3 will give
a brief overview on the services. Afterwards, we will discuss
questions in the panel such as

• How has UX consulting provided by SGCI/SGX3 im-
pacted user engagement and satisfaction within your
science gateway community?

• In what ways has sustainability consulting influenced the
long-term viability and growth of your science gateway’s
user base?

• Can you share specific examples of how improvements in
user experience (UX) have led to increased community
participation and collaboration?

• How have the consulting services on financial and tech-
nological sustainability helped in attracting and retaining
a diverse group of users for your science gateway?

• What experiences and feedback have you gathered from
your community that highlight the importance of UX
and sustainability consulting in their ongoing use of the
science gateway?

Questions from the audience for the panelists will be
prioritized. We expect a lively discussion about which factors
lead to community growth, lessons learned, impact of SGCI
and SGX3 services and good practices that can be applied to
other science gateways.

ACKNOWLEDGMENT

We would like to acknowledge NSF OAC 1547611 (SGCI),
NSF OAC 2231406 (SGX3), and NSF IUSE 1446258,



1446269, and 1446284 (QUBES).

REFERENCES

[1] S. Gesing, M. Zentner, J. Casavan, B. Hillery, M. Vorvoreanu, R. Hei-
land, S. Marru, M. Pierce, N. Mullinix, and N. Maron, “Science
gateways incubator: Software sustainability meets community needs,”
in 2017 IEEE 13th International Conference on e-Science (e-Science),
2017, pp. 477–485.

[2] P. Calyam, N. Wilkins-Diehr, M. Miller, E. H. Brookes, R. Arora,
A. Chourasia, D. M. Jennewein, V. Nandigam, M. Drew LaMar, S. B.
Cleveland, G. Newman, S. Wang, I. Zaslavsky, M. A. Cianfrocco,
K. Ellett, D. Tarboton, K. G. Jeffery, Z. Zhao, J. González-Aranda,
M. J. Perri, G. Tucker, L. Candela, T. Kiss, and S. Gesing, “Measuring
success for a future vision: Defining impact in science gateways/virtual
research environments,” Concurrency and Computation: Practice and
Experience, vol. 33, no. 19, p. e6099, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6099

[3] S. Gesing, N. Wilkins-Diehr, M. Dahan, K. Lawrence, M. Zentner,
M. Pierce, L. Hayden, and S. Marru, “Science gateways: The long road
to the birth of an institute,” in Proceedings of HICSS 2017, 01 2017.

[4] SGX3: Novel Concepts to Enhance Knowledge and Extend the
Community Around Science Gateways. Zenodo, Oct. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.10034892

[5] P. Parsons, S. Gesing, C. Stirm, and M. Zentner, “Sgci incubator
and its role in workforce development: Lessons learned from training,
consultancy, and building a community of community-builders for
science gateways,” in Practice and Experience in Advanced Research
Computing, 2020, pp. 491–494.

[6] P. Parsons, Y.-C. Chen, Y.-S. Ho, K. A. Groothuis, B. Dentler, C. Stirm,
S. Gesing, and M. Zentner, “Common usability problems and solutions
for science gateways,” 2020.

[7] S. S. Donovan, C. D. Eaton, T. Gower, K. Jenkins, D. LaMar, D. Poli,
B. Sheehy, and J. M. Wojdak, “Qubes: a community focused on
supporting teaching and learning in quantitative biology,” Jan 2018.
[Online]. Available: https://qubeshub.org/publications/226/1

[8] R. Kalyanam, L. Zhao, C. Song, L. Biehl, D. Kearney, I. L. Kim,
J. Shin, N. Villoria, and V. Merwade, “Mygeohub—a sustainable
and evolving geospatial science gateway,” Future Gener. Comput.
Syst., vol. 94, no. C, p. 820–832, may 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2018.02.005

[9] M. Lambert, R. Kalyanam, R. Kooper, and B. Yang,
“Securing cheesehub: A cloud-based, containerized cybersecurity
education platform,” in Practice and Experience in Advanced
Research Computing, ser. PEARC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3437359.3465584

[10] “State of hawaii behavioral health dashboard,” https://bh808.hawaii.gov/.
[11] “Overdose data to action,” https://www.cdc.gov/drugoverdose/od2a/index.html,

Centers for Disease Control Prevention.



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Geoweaver: A Science Gateway for Reproducible and 
Scalable Disease Prediction Research Using Deep 

Learning 
Sai Vivek Vangaveti, Jyoshmitha Reddy Paturi, Ziheng Sun* 

Department of Geography and Geoinformation Science, Center for Spatial Information Science and Systems 
George Mason University 

Fairfax, VA, USA 
svangave@gmu.edu; jpaturi@gmu.edu; zsun@gmu.edu (*) 

Abstract— The growing complexities of medical data require 
advanced analytical methods for accurately predicting diseases 
from symptoms and genetic information. Geoweaver, a web-
based workflow management system, facilitates the automation 
of developing and deploying disease prediction models by 
leveraging genetic data and deep learning techniques. We 
developed an AI pipeline for health data processing, model 
training, prediction, and evaluation using Geoweaver. This 
system is user-friendly and supports the execution and 
management of Python scripts at every stage of the workflow. 
Geoweaver enables the reproduction of previous AI experiments 
with minimal effort, significantly reducing the time and effort 
required for workflow creation. This allows researchers to focus 
on technical details and other inquiries. Our results demonstrate 
the effectiveness of Geoweaver in enhancing workflow 
reusability and reproducibility in health AI research.  

Keywords— Geoweaver, Deep Learning, Workflow 
Management, Disease Prediction, Reproducibility 

I. INTRODUCTION 
The integration of machine learning techniques with 
healthcare data has demonstrated significant potential in 
enhancing medical diagnosis and treatment outcomes. The 
explosion of medical data from sources such as genetic 
sequencing [1], electronic health records (EHRs) [2], and 
wearable devices necessitates the use of advanced analytical 
tools like Geoweaver. These tools are essential for effectively 
extracting and analyzing meaningful information to support 
patient diagnosis and treatment. 

Disease prediction plays a critical role in early detection, 
prognosis, and personalized treatment planning. Traditional 
statistical methods often fall short when handling the 
complexity and high dimensionality of modern medical data. 
Deep learning, a subset of machine learning, has emerged as a 
powerful alternative, capable of identifying intricate patterns 
within vast datasets. By incorporating genetic data, deep 
learning models can provide insights into an individual's 
susceptibility to certain diseases, potentially revealing risks 
that conventional methods might miss. 

Ensuring reproducibility in research allows findings to be 
independently verified and validated, which is crucial for 
scientific integrity. Scalability, on the other hand, ensures that 

these machine learning models can be seamlessly integrated 
into clinical workflows, facilitating real-time decision-making 
in healthcare settings. 

Geoweaver is a new format of gateway, a decentralized 
portal designed to address the challenges associated with 
developing, deploying, and executing complex machine 
learning workflows [3]-[5]. It offers a user-friendly interface 
and automates repetitive tasks, enabling researchers to 
concentrate on scientific discovery rather than technical 
details. It supports the creation of reproducible, reusable, and 
tangible workflows, making it easier to share and replicate 
experiments across different research teams and institutions. 

This study aims to showcase the effectiveness of 
Geoweaver in replicating and automating disease prediction 
experiments using deep learning and genetic data. Researchers 
can build and refine predictive models with greater efficiency 
and accuracy. This platform facilitates the reusability of 
machine learning workflows, accelerating the development of 
innovative healthcare solutions and improving patient 
outcomes. 

II. BACKGROUND 

A. Motivation 
The complexity of medical data is continually increasing due 
to the integration of various data sources, including EHRs, 
genomic data, and data from wearable devices. EHRs, for 
instance, provide comprehensive patient histories, including 
medical diagnoses, prescriptions, and laboratory results. 
However, managing and analyzing such voluminous and 
diverse datasets require sophisticated tools and methodologies 
[6]. Accurate disease prediction is a critical component of 
modern healthcare. Predictive models can identify patients at 
risk of developing specific conditions, enabling early 
intervention and tailored treatment plans [7]. 

Deep learning has emerged as a powerful tool for 
processing and analyzing complex medical data. Techniques 
such as convolutional neural networks (CNNs) [8] and long 
short-term memory (LSTM) networks [9] are particularly 
effective in handling the multi-modal and sequential nature of 
medical data. Furthermore, the incorporation of genetic data 
into predictive models provides a deeper understanding of 

NASA ACCESS program (#80NSSC21M0028), National Science Foundation 
award EAR-1947875 and EAR-1947893, and OAC-2117834. 



disease mechanisms and potential therapeutic targets [7]. 

B. Challenges in Disease Prediction Modeling 
Ensuring model understandability and traceability is 
paramount for the adoption of predictive models in healthcare. 
Transparency in model development involves thorough 
documentation of algorithms, parameters, and the decision-
making processes involved in generating predictions. Such 
transparency not only builds trust among clinicians but also 
facilitates the accurate application of models in clinical 
settings. Effective visualization tools and user interfaces 
further aid in making models more accessible and easier to 
trace, allowing users to interact with and explore model 
outputs intuitively. 

Reproducibility is a fundamental aspect of predictive 
modeling in healthcare, ensuring that models produce 
consistent and reliable results across different datasets and 
environments. One of the main challenges to reproducibility 
is data variability, stemming from differences in data 
collection methods, preprocessing steps, and patient 
populations. Standardizing these processes is crucial to 
mitigate variability and enhance reproducibility. Regular 
validation and testing of models across diverse datasets further 
ensure that models maintain their performance and reliability 
in various settings  

Improving productivity and efficiency in model 
development is critical for advancing healthcare AI. By 
creating reusable elements, researchers can reduce the time 
and effort required to build new models, allowing them to 
focus on innovation and improvement rather than starting 
from scratch for each project. 

C. Introduction to Geoweaver 

 
Fig. 1. Geoweaver features 

Geoweaver is an open-source tool designed to manage and 
automate workflows in tangible, productive and less stressful 
way [10], [11], [12]. It provides a web-based interface that 

allows users to compose, execute, and share full-stack AI 
workflows seamlessly [13], [14]. Geoweaver supports Python 
and shell scripting, and it can run on Linux, Mac, and 
Windows platforms. One of its key features is the ability to 
record the history of each execution and change, ensuring 
reproducibility and traceability of AI experiments. 

The platform integrates various processes, including shell 
scripts, and built-in processes, making it accessible for users 
with varying levels of programming expertise. Geoweaver 
also supports the orchestration of workflows across distributed 
environments, leveraging high-performance computation 
platforms and online spatial data facilities. Users can export 
and import workflows as package files, which include the 
source code and execution history, facilitating easy sharing 
and collaboration. Geoweaver is useful in building healthcare 
AI models into workflows. It streamlines the entire workflow 
management process, from data preprocessing to model 
deployment, and helps ensure that AI models are reproducible 
and reusable. A comprehensive comparison of Geoweaver's 
features with other workflow systems is in Table 1 of [15]. 

III. EXPERIMENT 

A. Case Study: Disease Prediction 
To demonstrate the reproducibility and reusability, we 

have chosen a disease prediction model using a decision tree 
from an open source github project [16]. The project explores 
the use of machine learning algorithms to predict diseases 
from symptoms, leveraging Naive Bayes, Decision Tree, 
Random Forest, and Gradient Boosting algorithms. Two 
datasets are utilized: one from Kaggle, containing 133 
columns (132 symptoms and 1 prognosis), and another from 
Columbia University's Disease Symptom Knowledge Base, 
featuring columns for Disease, Count of Disease Occurrence, 
and Symptom. The project directory includes training and test 
data, pre-trained models, and scripts for loading, training, and 
saving models. The main.py script handles the Kaggle dataset, 
while a Jupyter notebook processes the Columbia dataset. 
Dependencies are managed via pip install -r requirements.txt. 
For demonstrations, an interactive demo can be run using 
Jupyter Notebook (demo.ipynb), and standalone inferences 
can be performed using infer.py. Note that this project is 
intended for demonstration purposes only and not for actual 
medical diagnosis. 

We conducted the following steps to replicate the whole 
workflow in Geoweaver: 
(1) Setting Up the Environment: The initial setup involves 
installing Geoweaver and configuring the host in Geoweaver 
and necessary environment. This includes using the 
requirements.yaml file, if provided in the project to install 
dependencies on the host machine. This file ensures that all 
required libraries and tools are correctly installed, 
streamlining the setup process. 
(2) Importing the GitHub Project: The process begins by 
downloading the github repository to local machine, providing 
with a complete copy of all project files and necessary data to 
start developing on Geoweaver.  
(3) Creating the Process: A process is a fundamental 



component of a workflow. Each module in the project can be 
considered a process. A basic understanding of the project is 
necessary to import it into Geoweaver as processes. Python 
scripts can be imported as Python processes, while shell 
scripts are imported as shell processes. Step by step, add all 
the necessary modules for the project into Geoweaver. Modify 
the code as needed, such as adjusting file paths and 
dependency libraries, and then save the processes. 
(4) Creating the Workflow: A workflow is created by 
integrating all the processes developed in the previous step, 
requiring a high-level overview of the model building to 
organize the processes into a coherent workflow for seamless 
execution. Geoweaver provides a workspace to create these 
workflows. Processes are added and arranged according to the 
model's architecture. Typically, the workflow follows a 
sequence of data collection, data preprocessing, model 
training, and model evaluation. Each relevant process is added 
to the workflow step by step. Once defined, the workflow is 
saved and executed in Geoweaver.  
Geoweaver's monitoring interface allows for real-time 
tracking of the workflow execution, enabling users to 
promptly identify and address any issues. After each 
workflow run, a checkpoint is created, which can be used for 
future restoration. The workflow can be exported and shared 
along with the results.  
The workflow is available for download as a zip file. This zip 
file contains a structured set of folders and essential files 
required for the workflow to function correctly. The primary 
files included in the zip file are: 
workflow.json: Defines the overall structure and sequence of 
tasks in the workflow. 
process.json: Contains details of each individual process 
Code files necessary to execute the processes defined in the 
workflow. 

B. Reproducibility and Reusability 

 
Figure 2. The final workflow in Geoweaver 

Once a workflow is created, it can be shared among 
researchers, who can seamlessly import these workflows into 
their Geoweaver environments. This capability allows them to 
view past results and the entire history of the model from its 
inception to the current version. By providing the same data, 
researchers can reproduce the same results on their systems 
and continue working on the workflow. 

 Each workflow execution creates checkpoints that can be 
restored at any point, facilitating easy reproduction without 
the need to rewrite everything from the current version to any 
previous version. This feature is particularly useful when 
testing different models and making slight modifications to 
the processes, saving considerable time. 
 The disease prediction model created using this workflow 
is ready for deployment and can be shared with any 
Geoweaver user. They can not only view but also run and 
work on the model on their machines quickly and efficiently. 
Workflows generated from any version of GeoWeaver are 
fully compatible with all other versions of the platform. This 
compatibility ensures that results can be consistently 
replicated by uploading the workflows into any version of 
GeoWeaver. However, we plan to include tool versioning in 
future releases to enhance this functionality further. 
 Once a workflow is created, it can serve as a template for 
new workflows. Existing workflows can be modified to create 
entirely new workflows within Geoweaver, significantly 
reducing the effort and time required to build a model from 
scratch. This feature underscores the reusability of 
Geoweaver-created workflows, making the process of model 
development more efficient and streamlined. 

C. Evaluation 
Table 1. Qualification of the impacts of Geoweaver 

Metric Geoweaver Without 

Reproduce Rate 90% 85% 
Reusability Rate 90% 80% 
Flexibility High Low 
Setup Time 2 hours 2 hours 
Tangibility 90% 80% 

The qualitative evaluation of using Geoweaver versus not 
using it for reproducing health AI work is based on our 
research estimates and team surveys (Table 1). Our research 
indicates that the reproduce rate with Geoweaver is 90%, 
compared to 85% without it, demonstrating a higher 
reliability in replicating results. Surveys conducted with our 
research team show that the reusability rate of workflows is 
90% with Geoweaver, while it drops to 80% without it, 
highlighting Geoweaver’s capability to efficiently reuse 
workflows and components. Geoweaver offers high 
flexibility according to our team, allowing for easy adaptation 
of workflows to new requirements, whereas the flexibility is 
rated low without the platform. Both setups require an 
average of 2 hours to configure, based on team feedback. The 
tangibility, or ease of understanding and interacting with the 
workflow, is rated at 90% with Geoweaver, compared to 80% 
without it. These metrics from our estimates and surveys 
underscore Geoweaver’s effectiveness in enhancing the 
reproducibility, reusability, and overall efficiency of health 
AI research workflows. 

IV. DISCUSSION 

A. Impact of Geoweaver on Disease Prediction Modeling 
These workflows encapsulate the entire process of data 
preprocessing, model training, and model evaluation. Once 

Identify applicable funding agency here. If none, delete this text box. 



established, these workflows can be easily shared among 
researchers along with their results, allowing for collaborative 
improvements and consistent execution of the model. 
Geoweaver provides a comprehensive log management 
system. Outputs and logs of each process within the workflow 
are meticulously recorded and can be viewed under the 
respective process history in the log section. This feature 
ensures transparency and traceability, enabling researchers to 
track the execution flow and debug any issues efficiently. The 
availability of detailed logs for each step simplifies the process 
of validation and verification. Using these features of the 
Geoweaver researchers can build models effectively and 
quickly. 

B. Limitation and Future Work 
For small to medium-sized disease prediction models, 
reproducing them into workflows using Geoweaver is 
straightforward and efficient. However, when dealing with 
larger projects, the process can become time-consuming and 
complex. The increased number of processes and 
dependencies in large projects can lead to intricate workflows 
that require significant effort to manage and maintain. This 
complexity can pose challenges in ensuring all elements are 
correctly integrated and function seamlessly within the 
workflow. 
Geoweaver does not support real-time collaboration yet, 
although workflows can be shared and exported for use by 
other researchers. This limitation can hinder the pace of 
teamwork and coordination, as researchers cannot collaborate 
on workflows simultaneously and must rely on asynchronous 
methods for sharing and integrating their work. 
Ensuring all necessary dependencies and environments are 
correctly set up in the host system can be difficult, which 
might affect reproducibility and consistency of results. While 
Geoweaver provides a flexible environment for creating 
workflows, there may be limitations in integrating other tools 
required for highly specialized research. 

V. CONCLUSION 
This paper presents an in-depth analysis of reproducing a 
disease prediction model using Geoweaver, an advanced AI 
workflow management tool. The study focuses on evaluating 
the performance and efficiency of workflow reproduction 
with Geoweaver compared to traditional methods. 

ACKNOWLEDGMENT 
Thanks Mr. Vishesh Saluja for helping with pre-filtering 
health AI projects on GitHub.  

REFERENCES 
[1] T. Starkweather, S. McDaniel, K. E. Mathias, L. D. 

Whitley, and C. Whitley, “A Comparison of Genetic 
Sequencing Operators.,” in ICGA, 1991, pp. 69–76. 

[2] R. S. Evans, “Electronic health records: then, now, and 
in the future,” Yearbook of medical informatics, vol. 25, 
no. S 01, pp. S48–S61, 2016. 

[3] “Geoweaver.” Accessed: Jun. 04, 2024. [Online]. 
Available: geoweaver.dev 

[4] “Geoweaver Online Demonstration Site.” Nov. 27, 
2023. [Online]. Available: 
https://geobrain.csiss.gmu.edu/Geoweaver/web/geowea
ver 

[5] Z. Sun, L. Di, A. Burgess, J. A. Tullis, and A. B. Magill, 
“Geoweaver: Advanced cyberinfrastructure for 
managing hybrid geoscientific AI workflows,” ISPRS 
International Journal of Geo-Information, vol. 9, no. 2, 
p. 119, 2020. 

[6] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, 
“Big data in healthcare: management, analysis and 
future prospects,” Journal of big data, vol. 6, no. 1, pp. 
1–25, 2019. 

[7] D. Zhang, C. Yin, J. Zeng, X. Yuan, and P. Zhang, 
“Combining structured and unstructured data for 
predictive models: a deep learning approach,” BMC 
medical informatics and decision making, vol. 20, pp. 1–
11, 2020. 

[8] Z. Sun, L. Di, H. Fang, and A. Burgess, “Deep learning 
classification for crop types in north dakota,” IEEE 
Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 13, pp. 2200–
2213, 2020. 

[9] Z. Sun, L. Di, and H. Fang, “Using long short-term 
memory recurrent neural network in land cover 
classification on Landsat and Cropland data layer time 
series,” International journal of remote sensing, vol. 40, 
no. 2, pp. 593–614, 2019. 

[10] Z. Sun et al., “Making Machine Learning-based Snow 
Water Equivalent Forecasting Research Productive and 
Reusable by Geoweaver,” in AGU Fall Meeting 
Abstracts, 2022, pp. IN23A-04. 

[11] D. Liljestrand, R. Johnson, K. Jain, J. Halgren, C. Oroza, 
and S. J. Burian, “Interactive Deep-Learning Modeling 
of Snow Water Equivalent Through Application of The 
National Snow Model With Geoweaver.,” in AGU Fall 
Meeting Abstracts, 2022, pp. H32A-06. 

[12] “Geoweaver: a web system to allow users to 
automatically record history and manage complicated 
scientific workflows in web browsers involving the 
online spatial data facilities, high-performance 
computation platforms, and open-source libraries.” 
Accessed: Oct. 03, 2023. [Online]. Available: 
https://github.com/ESIPFed/Geoweaver 

[13] A. Alnuaim, Z. Sun, and D. Islam, “AI for improving 
ozone forecasting,” in Artificial Intelligence in Earth 
Science, Elsevier, 2023, pp. 247–269. 

[14] N. C. Cristea, Z. Sun, A. A. Arendt, S. T. Henderson, M. 
Denolle, and A. Burgess, “GeoSMART: Machine 
Learning Training and Curriculum Development for 
Earth Science Studies,” in AGU Fall Meeting Abstracts, 
2022, pp. ED22B-0550. 

[15] https://zenodo.org/records/10034694 
[16] A. Dutt, “Disease Prediction based on Symptoms.” 

Accessed: Jun. 04, 2024. [Online]. Available: 
https://github.com/anujdutt9/Disease-Prediction-from-
Symptoms/tree/master 



What is User Experience to Science Gateways?
Paul C. Parsons

Purdue University
West Lafayette, USA
parsonsp@purdue.edu

Soumya Krishnaraj
Purdue University

West Lafayette, USA
ssoumyak@purdue.edu

Max Berent-Spillson
Purdue University

West Lafayette, USA
mberents@purdue.edu

Jack Gerber
Purdue University

West Lafayette, USA
jogerber@purdue.edu

Abstract—User experience (UX) has become a central concept
in fields involving human-technology interactions. However, de-
spite its widespread recognition in other domains, UX has not
been widely adopted in the science gateway community, where the
narrower concept of usability remains the dominant focus. This
paper explores the potential value of integrating UX concepts
and methods into the design and evaluation of science gateways,
emphasizing the distinction between usability and UX. Through
an interview study conducted with gateways personnel, we inves-
tigate their perceptions of UX and its relevance to their work. Our
findings suggest that while usability is considered important, UX
offers additional benefits by encompassing affective, contextual,
and experiential factors that usability alone may overlook. By
incorporating UX concepts and methods, science gateways could
improve user satisfaction and engagement, and also enhance the
design and maintenance of gateway projects. We argue that a
broader adoption of UX can enhance the design process, aligning
gateways more closely with the diverse needs and experiences of
their users.

Index Terms—user experience, usability, science gateways,
cyberinfrastructure

I. INTRODUCTION

User experience (UX) is a core concept in fields that explore
interactions between humans and technology, such as human-
computer interaction (HCI), human factors engineering, and
human-centered design. Despite decades of academic attention
and its growing prominence in professional computing roles,
UX has not seen widespread adoption within cyberinfras-
tructure research and science gateways. While the gateways
community has increasingly focused on usability—a related
but distinct concept—the broader UX perspective remains
underexplored in this domain. Usability typically emphasizes
performance metrics, such as how efficiently and effectively
users can achieve specific goals within a system. UX, on the
other hand, extends these concerns by incorporating affective,
experiential, and contextual factors, offering new ways to think
about user-system relationships.

User experience (UX) is a core concept in several fields
dealing with interactions between humans and technology,
including human-computer interaction, human factors engi-
neering, and human-centered design. While the concept has
been around for several decades in the academic literature
[1], and has become increasingly popular as a professional
role in computing fields [2], it has not seen the same preva-
lence in cyberinfrastructure and science gateways research
and practice. The gateways community has seen increasing
focus on usability [3], [4], which is a related but distinct

concept. Compared to the performance focus that usability
has, the concept of UX includes an expansion on the concepts
and methods of usability, offering new ways to think about
relationships between users and computing systems. In this
paper, we present some findings from an interview study
with gateways personnel with the goal of understanding their
perceptions of UX and its value for gateways. We provide
a brief outline of the origins and development of UX, and
also comment on potential value of incorporating more UX
concepts and methods into the design and evaluation of science
gateways.

II. BACKGROUND

The Human-Computer Interaction literature, where usability
concepts and methods originated (e.g., [6]), has witnessed an
expansion beyond simply the instrumental value of artifacts
(i.e., their usability) to more focus on the experience of using
them [5]. This expansion has encouraged thinking about topics
like affect and meaning in addition to the traditional usability
concerns of learnability, efficiency, and errors. In parallel to
this expansion, there has also been an increasing emphasis on
the design of artifacts rather than just their use. Traditional
views of usability place little emphasis on the design process
and methods that are employed to create software, instead
focusing on the evaluation of software that is created [7].

Usability can be defined as “the extent to which a product
can be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a specified
context of use” [9]. Usability testing essentially tells us how
well users can perform tasks that are given to them, and
how confused, frustrated, or efficient they are. Focusing on
usability alone still leaves many critical details about a product
out—e.g., whether users actually want to use it, who the
target user group is, whether it fits an important need, and
how it should be designed. Other science communities have
taken notice of the value of adopting a UX lens—e.g., the
Pistoia alliance, a life sciences research organization, creating
a model of UX heuristics to be used by other life science
groups [8]. As evidenced by MacDonald et al. [10], UX
practices have brought significant value to the field of libraries
by revolutionizing how library services and resources are
designed, delivered, and experienced by users. While usability
is still a critical concept for gateways, adopting a broader set of
UX concepts, methods, and practices could provide significant
value for science gateways.



III. METHOD

We performed semi-structured interviews with gateways
teams that previously worked with us through the Science
Gateways Community Institute (SGCI) consulting services
(see [11], [12]). We aimed for a diverse sample of partic-
ipants from our population of 39 consulting engagements.
When looking across previous engagements, we focused on 3
characteristics to achieve diversity: (1) the disciplinary context
of the gateway; (2) the time of the consulting engagement;
and (3) the maturity of the gateway at the time of consulting.
We attempted to avoid selecting projects that were too similar
across one or more of these dimensions. After mapping the
projects across these dimensions, we identified a set of 25
projects that represented the best diversity from our popula-
tion. All 25 teams were invited to participate in our study via
email. Of the 25, 18 agreed to participate.

Once participants agreed to participate, they signed a study
consent form and then filled out a brief survey. The survey
collected basic information including the participant’s role in
the gateway, how long the participant has been involved in
the gateway, the maturity of the gateway, the funding situ-
ation for the gateway, and the current software development
support they have. Answers to these questions provided helpful
information for the interviews.

Interviews were carried out from July 2021 through October
2021. Interviews were semi-structured and conducted remotely
via videoconferencing. All interviews were recorded and then
transcribed using an automated service called Otter.ai [14].
The interview protocol was developed based on our experi-
ences with the consulting engagements, our understanding of
the current literature, and our knowledge of cyberinfrastructure
projects in general. The protocol consisted of three main
topics: perceptions of UX, implementation barriers, and team
factors. We started off by asking participants to provide a high-
level overview of their gateway, and then what led them to seek
out usability consulting services.

For the first topic, we asked questions about their knowledge
and perception of the value of UX: what their knowledge of
UX was prior to working with us, whether their knowledge
changed as a result, whether their perceptions of the value,
role, and importance of UX changed, and whether their future
grant proposal strategies would change to account more for
UX. For the second topic, we were primarily interested in how
UX recommendations were implemented—in other words,
what the “handoff” from us to the team looked like, and what
challenges might exist in implementing UX recommendations.
We asked participants to describe what happened during the
consulting engagement, after they received final reports from
the UX team, what their team discussions were like, how they
made decisions about what to prioritize, and what barriers
there were to taking action on recommendations that were
given.

A. Participants

Eighteen participants were interviewed as part of this study.
Table I provides details about each participant, including

the disciplinary alignment of their gateway, their team size,
gateway age, and when the consulting engagement took place.
We achieved a relatively diverse sample, with gateways com-
ing from several disciplines; a mix of smaller and larger
team sizes; and a range of gateway maturity, including new
gateways still in pre-release stage to gateways that have been
in operation for more than 10 years; and engagements across
the range of time in which we operated.

B. Analysis

Interviews lasted 55 minutes on average, with a range of 27
to 88 minutes. Collectively, the interviews were approximately
16 hours. All interviews were conducted by the lead author,
and student researchers participated as note-takers across a
range of the interviews. After transcription, transcripts were
examined and errors and fixed manually by the research team.
Once transcripts were corrected, they were loaded into a
qualitative data analysis platform called Dovetail [15]. Tran-
scripts were analyzed using hybrid thematic analysis [13],
incorporating both bottom-up and top-down approaches.

IV. FINDINGS

A. Understanding of UX

The majority of participants indicated a lack of familiarity
with the concepts and practices of UX and usability. One
participant described it as: “I think the concepts of UX are
unfamiliar to a lot of people who are not kind of in the field”,
then, when continuing the discussion, used the two concepts
as interchangeable: “I had learned a lot and that was my first
exposure to this whole usability field.” Another participant
stated: “I had no idea before what it’s [UX] for, and we learned
a lot in terms of how people gather information on the interface
is really critical to their learning process.” Another participant
described how PIs often do not have familiarity because they
are focused on the scientific aspects of the work: “Most of the
PIs on this have little or no experience doing this kind of user
interface, or user focus work. They’re really people who do,
you know, do science.”

Others described some awareness about what UX entails,
although still at a superficial level. For example, a participant
described their team’s understanding of UX as: “we did not
have an idea that it was super important beyond, you know,
make it colorblind friendly, or whatever. But we weren’t really
aware of any design principles we should be following other
than a vague idea of what we’ve seen on other websites, but not
really knowing explicitly what those elements were.” Others
indicated a little more understanding, going from ‘look and
feel’ to the importance of discoverability: “I think that we
primarily focused on the look and feel. And then, you know,
we’re always hearing that it’s difficult to find things on the
website. And so it kind of like, we need to make it easier for
people to find things. But we didn’t really know how to do that,
or what that really meant.” Similarly, a different participant
described it as “knowing our website didn’t look great, but
not really understanding what or how we could improve it.”



TABLE I
GATEWAY CHARACTERISTICS FOR THE 18 PARTICIPANTS IN OUR STUDY: DISCIPLINARY ALIGNMENT OR CONTEXT OF GATEWAY; SIZE OF GATEWAY
TEAM (PEOPLE); GATEWAY AGE (YEARS OF OPERATION); START DATE OF CONSULTING ENGAGEMENT. EACH ROW REPRESENTS ONE PARTICIPANT.

PARTICIPANT IDS REMOVED TO MAINTAIN ANONYMITY

Disciplinary Alignment Team Size Gateway Age Consulting Date
Oceanography/Geology 6-9 1-2 2021
Environmental/Ecological 6-9 6+ 2021
Psychology/Genetics 3-5 <1 2020
Hydrology 10+ 6+ 2020
Environmental Science/Resource Management 3-5 6+ 2020
Interdisciplinary Health 4-5 <1 2020
Microbiology/Data Science 10+ 1-2 2020
Agriculture/Data Science 6-9 3-5 2020
Interdisciplinary Oceanography 1-2 3-5 2018
Hydrology/Geophysics 1-2 3-5 2019
Geoscience 3-5 3-5 2019
Ecology/Sociology 3-5 6+ 2020
Ecology 1-2 1-2 2019
Ecology 3-5 6+ 2020
Atmosphere Science 3-5 <1 2020
Wildlife Ecology 10+ 6+ 2020
Plant Biology 3-5 <1 2020
Resource Management 3-5 <1 2020

B. Value of UX

When asked about the value they put on UX and usability
after working with our consulting team, one participant stated
“absolutely, I can’t overstate how important we feel usability
is.” Being shown the strategies and outcomes of UX work,
this participant came to understand the value that usability
and a design-oriented approach holds. Usability is not just a
factor to consider, but an important concept that is essential
to a platform’s success. This user also mentioned focusing
on usability-centered design going forward with their project,
and their projects should be usability-focused from the start:
“it [usability] has got to be centered in there from day one.”

This leads to the important idea of where usability and
UX fit into the planning and development process for science
gateways, as exemplified by another participant: “At that point
[during the design and development process], we know that
we need to create some sort of version of this interface. And
then we have to go and do some proper usability testing to
understand, you know, does the manner in which information
is being shown really, is that the way we want to go? Or
do we make some big changes in how we’re thinking about
how our end users will interact with the interactive platform?”
This highlights a fundamental aspect of UX that is often
misunderstood or oversimplified within gateway development.
While there is awareness of the importance of the user
experience, this awareness frequently manifests at a later stage
in the design process, after a gateway is already launched and
problems are noticed. This approach exemplifies a reactive
rather than proactive stance on UX, where it is considered a
subsequent checkpoint rather than an integral, ongoing com-
ponent of the design process. Another participant echoes this
sentiment, stating how gateways folks “may have thought that
this [UX] was kind of this add on.” Such a viewpoint can treat
UX as an optional enhancement—or even an afterthought—
rather than a critical component of the development process.

V. DISCUSSION

A. UX Knowledge

Many participants commented on how little they knew about
usability and UX before working with us. For participants that
did have familiarity with these concepts, it was often limited
to a focus on the ‘look and feel’ of product and the evaluation
of it via usability testing. In other words, it was limited
to usability, and even more limited on its evaluation late
in the development process (rather than a proactive, design-
oriented approach to user experience). Expanding conceptions
of what it means to do user-centered kind of work can allow
gateways creators to think more proactively about the value
their platforms can bring to their community—e.g., thinking
early on about who the target users are; what their goals and
needs are; what opportunities and challenge exist in meeting
those needs; what kinds of features might be useful, and how
they should be organized coherently. These concerns all go
beyond narrow conceptions of usability, and especially notions
of considering usability only after a product is developed.
We do not suggest that gateways PIs and developers need
to become experts on UX; simply recognizing the broad
range of concepts and methods—and the proactive, design-
first approach—can help them find the right people to include
in the planning and development of gateways projects.

B. Priorities

Several participants described having priorities other than
those related to the user experience. For example, one of
the participants described how their gateway has prioritized
functionality (‘does it work’) over the user experience: “I
would say we functioned a lot more on just does it work versus
would the user be able to understand how to use it without
detailed help guidance.” This kind of approach exemplifies
the so-called ‘system-centered design’ (vs. user-centered de-
sign) approach, where technical features and capabilities are



considered first, then the needs and preferences of users
and other stakeholders are considered later. This approach
is often accompanied by an expectation that users should
read a manual. There are historical examples of systems with
impressive technical capabilities that failed due to attending
to user experience concerns too late or as a second priority
(e.g., see Doug Engelbart’s “Mother of all demos” that was
eventually abandoned by ARPA).

C. Proactive vs Reactive Approach to UX

The insights gathered from our interviews indicate that
while there is growing awareness of the importance of usability
and user experience (UX) in science gateway development,
there remains a need for a broader and more comprehensive
understanding of UX. Expanding beyond usability testing,
which is often conducted post-development, involves planning
ahead and considering various use cases to ensure the user
experience is an ongoing concern throughout the development
cycle. Effective UX design requires incorporating problem
framing and user research early in the process to gain a deep
understanding of the target audience’s needs and behaviors.
After consulting with us, one participant recognized the im-
portance of considering UX early, stating that it ”seems like the
most efficient thing, because I don’t want to have to go back
and fix problems. I would rather not build in the problems
in the first place.” This proactive, user-centered and design-
oriented approach contributes to the sustainability of science
gateways by ensuring that platforms are adaptable and resilient
to changing requirements and technological advancements.

VI. CONCLUSION

Our study aims to shed light on the current understanding
and perceptions of user experience (UX) among science gate-
way personnel. Despite the growing recognition of usability
concerns within the community, there exists a significant gap
in knowledge and awareness regarding the broader concepts
and practices of UX. Many participants expressed limited
familiarity with UX, highlighting the need for education and
awareness-building initiatives within the science gateways
community to leverage the full potential of UX in improving
gateway design and functionality.

Our findings emphasize the critical importance of integrat-
ing UX considerations early in the development process rather
than treating them as an afterthought. A proactive approach to
UX, encompassing thorough user research, problem framing,
and continuous feedback loops, is essential for creating effec-
tive and user-friendly science gateways. By prioritizing UX
from the outset, teams can ensure that user needs are addressed
comprehensively, leading to more sustainable projects.

We encourage science gateway personnel to recognize the
value of UX practices and incorporate them into project
planning stages. While they may not need to become UX
experts themselves, understanding the fundamentals of UX
enables them to make informed decisions about hiring the right
professionals and allocating resources effectively. By fostering
a culture of UX awareness and integration, science gateways

can enhance their overall quality and impact, ultimately ben-
efiting both users and stakeholders alike.

ACKNOWLEDGMENT

This work has been funded by NSF Awards ACI-1547611
and 2231406. Many thanks to our participants for volunteering
their time.

REFERENCES

[1] Lallemand, C., Gronier, G., and Koenig, V. (2015). User experience:
A concept without consensus? Exploring practitioners’ perspectives
through an international survey. Computers in human behavior, 43, 35-
48.

[2] Vorvoreanu, M., Gray, C. M., Parsons, P., and Rasche, N. (2017).
Advancing UX education: A model for integrated studio pedagogy.
In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (pp. 1441-1446).

[3] Lawrence, K. A., Zentner, M., Wilkins-Diehr, N., Wernert, J. A., Pierce,
M., Marru, S., and Michael, S. (2015). Science gateways today and
tomorrow: positive perspectives of nearly 5000 members of the research
community. Concurrency and Computation: Practice and Experience,
27(16), 4252-4268.

[4] Parsons, P., Chen, Y. C., Ho, Y. S., Groothuis, K. A., Dentler, B., Stirm,
C., ... and Zentner, M. (2020). Common usability problems and solutions
for science gateways. Gateways 2020.

[5] McCarthy, J., and Wright, P. (2004). Technology as experience. interac-
tions, 11(5), 42-43.

[6] Goodwin, N. C. (1987). Functionality and usability. Communications of
the ACM, 30(3), 229-233.

[7] Fallman, D. (2003). Design-oriented human-computer interaction. In
Proceedings of the SIGCHI conference on Human factors in computing
systems (pp. 225-232).

[8] Pistoia Alliance User Experience for Life Sciences.
https://www.pistoiaalliance.org/community/user-experience-for-life-
sciences/. Accessed September 6, 2024.

[9] ISO 9241-210:2019 Ergonomics of human-system interaction — Part
210: Human-centred design for interactive systems. International Orga-
nization for Standardization, Geneva, Switzerland.

[10] MacDonald, C. M. (2017). “It takes a village”: on UX librarianship and
building UX capacity in libraries. Journal of Library Administration,
57(2), 194-214.

[11] Gesing, S., Zentner, M., Casavan, J., Hillery, B., Vorvoreanu, M.,
Heiland, R., ... and Maron, N. (2017). Science gateways incubator:
Software sustainability meets community needs. In 2017 IEEE 13th
International Conference on e-Science (e-Science) (pp. 477-485). IEEE.

[12] Parsons, P., Gesing, S., Stirm, C., and Zentner, M. (2020). SGCI
Incubator and its Role in Workforce Development: Lessons Learned
from Training, Consultancy, and Building a Community of Community-
Builders for Science Gateways. In Practice and Experience in Advanced
Research Computing (pp. 491-494).

[13] Fereday, J., and Muir-Cochrane, E. (2006). Demonstrating rigor using
thematic analysis: A hybrid approach of inductive and deductive coding
and theme development. International journal of qualitative methods,
5(1), 80-92.

[14] Otter.ai. https://otter.ai. Accessed September 6, 2024.
[15] Dovetail. https://dovetail.com. Accessed September 6, 2024.



HelioCloud Overview

Shared Open Architecture 

● Instances are deployed at various institutions and are 
interlinked (green arrows), sharing resources. 

● Open source

● Common software environments 

● Data, service resources easily found & shared 

● Browser-based Service Components 

GSFC/NASA

 JHUAPL

Institution B

Institution A

Burstable Notebook 
environment which has 
GPU acceleration

Network of HelioCloud Instances deployed by 
institution which easily share resources. Currently 
GSFC, APL, TOPST-Helio, CU/Boulder (May 2024)

User Portal to create 
VMs in cloud (EC2)

Browser -based Service Components

High End
Computing 

Research
Collaboration 

Open Science 



Example: 2TB of SDO EUV data Science Use Case: One year of SDO 
94A EUV images from AIA is 129,758 
files, each 14MB, totalling 1.8 TB.

A simple irradiance for 1 year. If done on 
your laptop it would take 27 hours. 

HelioCloud takes 25 minutes to 
analyze the same data

About ~ 60x faster 
Data I/O faster than 8Gb/sec!
Minimal code changes (python)

…and others can repeat the same thing! 

Open source software & tutorials at 
heliocloud.org

Science Gateways Demo:
    We will have a heliocloud instance 
stood up for a hands-on demo, and are 
happy to talk about the tech stack.



Planning and Requirements Gathering
All team members participated in defining project 
goals and gathering user requirements. The team 
created a detailed project timeline and established key 
milestones.

Design Phase
The design team created wireframes based on user 
requirements, focusing on ensuring a user-friendly 
experience.

Front-End Development
Front-end developers converted the wireframes into 
HTML and CSS, implementing interactive elements 
and ensuring intuitive navigation. They also integrated 
the front-end with back-end services using APIs.

Back-End Development
The back-end team set up the server environment 
using Python and Django. They implemented APIs for 
CRUD operations (Create, Read, Update, Delete) and 
implemented user authentication and authorization 
using Globus.

Integration and Testing
The team integrated the front-end with back-end APIs. 
They performed comprehensive integration testing 
and conducted usability testing with a group of 
potential users, identifying and fixing bugs and 
performance issues.

Deployment
The project is not deployed anywhere, only stored in 
GitHub. Future plans include containerizing the 
application with Docker and adding it to the public 
repository of Docker images.

MORE INFORMATION → https://hackhpc.github.io/sgx3admi24 __

Many institutions struggle to effectively interact with 
their training resources. Currently, HPC-ED relies on a 
command-line interface (CLI) for adding and querying 
training materials in its database. This approach is 
neither user-friendly nor intuitive and many potential 
users lack the necessary CLI skills. Consequently, they 
are unable to access and benefit from the institution’s 
training resources. 

Moreover, when seeking information, most people 
turn to Google, which often yields an overwhelming 
number of results. This makes it difficult to discern the 
quality and relevance of sources, leading to 
inefficiencies and potential misinformation. 

Addressed Problem Target Science Gateway

1. User-Friendly Interface

Develop a web-based platform that simplifies the 
addition and querying of training materials without 
requiring CLI knowledge.

2. Database Integration 

Connect to a database on HPC-ED to store, retrieve, 
update, and delete training resources (CRUD) 

3. Downloadable Resources 

Implement functionality for users to download 
training materials in JSON format for offline access or 
further processing.

4. Search Capabilities 

Incorporate search algorithms to ensure relevant and 
high-quality search results, minimizing the need to sift 
through numerous irrelevant entries. 

5. User Authentication/Permissions 

Set up a user authentication system to manage access 
levels, ensuring that only authorized users can add 
and modify resources. 

Our Targeted Science Gateway is the HPC-ED Gateway. 
HPC-ED (High-Performance Computing - Education) is 
a project to create and share metadata for HPC 
educational materials, making it easier to discover, 
access, and publish these resources through a 
federated catalog system.

1. Web development tools: Front-end (HTML, CSS), 
Back-end Python(Django), Globus Search API

2. Authentication Providers: Globus, Google OAuth
3. Hosting/Deployment: GitHub, Docker
4. User Interface: Figma
5. Collaboration Tools: Slack, Zoom, Canva
6. Documentation Platforms: GitHub
7. Team: Frontend/Backend developers, UI/UX 

designers, documentation creators

Scenario 1: A graduate student new to HPC needs 
introductory resources to get started on her thesis 
project. She uses her university credentials via Globus 
Authentication to search for resources by inserting a 
text search. 

Scenario 2: An institutional librarian wants to organize 
and make a collection of training resources available 
on HPC for students and faculty. She uses the 
platform to upload new training materials, categorize 
them using the tagging system to ensure they are 
searchable by relevant keywords. 

Scenario 3: An IT staff Training Manager needs to 
provide his team with up-to-date resources on the 
latest HPC technologies. He uses the platform to find 
beginner and advanced training materials. 

Given more time, there are several ideas and 
expansions we had in mind to further enhance this 
project. These include:

1. Improved Search Capabilities:
Generate unique lists of filters based on the 
metadata in database entries, allowing users to 
refine their searches more effectively.

2. Enhanced Authentication:
While authentication through Globus has been 
implemented, adding Google authentication would 
provide an additional layer of security, making the 
platform more secure and versatile for users.

3. AI-Powered Resource Suggestions:
Integrate AI to provide resource suggestions based 
on user data and behavior. This would assist users 
in finding relevant training materials more 
efficiently, tailoring recommendations to their 
specific needs and interests.

4. Responsive Design:
Ensure the platform is fully responsive and 
accessible on various devices, including desktops, 
tablets, and smartphones. This will cater to a wider 
range of users, providing a seamless experience 
regardless of the device being used.

5. Community and Collaboration Features:
Add features such as discussion forums, resource 
sharing, and collaborative workspaces to foster a 
community of practice among users. These 
features will encourage collaboration, knowledge 
sharing, and peer support, enhancing the overall 
user experience.

By implementing these expansions, the platform can 
significantly improve the accessibility, usability, and 
effectiveness of training resources.

SGX3 award # 2231406

Enhancing Science Gateways: Improving Access to HPC-ED Training Resources 

Christian Johnson
Morehouse 
College/SGX3
christianlj27@gmail.co
m

Nole Stites
Southern Oregon 
University/
SGX3
nole.stites@gmail.com

Lisha Ramon
SUNY Oneonta/SGX3
lisharamontn@gmail.co
m

Chandler Campbell
Southern Oregon 
University/SGX3
r.chandler.campbell
@gmail.com

Methodology Possible Expansions

Goals

Resource Needs

Use Cases

Authors



The program is designed to gather, organize, and present HPC
information in a way that enhances learning within the field. It
collects content from various sources, ensuring a comprehensive
range of materials. Once gathered, the program stores this
information systematically, making it easily accessible and navigable.
By presenting these materials clearly and concisely, the initiative
aims to simplify complex HPC concepts and provide straightforward
access to educational resources. This approach supports skill
development and promotes effective use of computational
techniques in both academic and professional settings, fostering a
deeper understanding and practical application of HPC principles.

HPC-ED wants to
create a database to
ensure an easier
learning environment
for HPC 

DATA
DETECTIVES

GitHub
Python
Requests,
BeautifulSoup, Pandas
Jupyter Labs
Visual Studios

TECHNOLOGIES
USED

https://slack.com
https://hpc-ed.github.io
Grid Gain High
Performance Computing

RESOURCES

GOALS

IDENTIFIED
ISSUES

MISSION 

SGX3
TACC
SGCI
Omnibond

SUPPORTERS

TARGET
SCIENCE
GATEWAY

Our Targeted Science Gateway is the HPC-ED
Gateway (High-Performance Computing -
Education) which is an innovative project
dedicated to enhancing the accessibility and
dissemination of educational materials
related to high-performance computing
(HPC). The primary goal of this project is to
create and share comprehensive information
for HPC educational resources, thereby
facilitating easier discovery, access, and
publication of these valuable materials.

Goal 1: Create flask database to digest
information off websites
Task 1: Make new project in Eureka/Jupiter
Task 2: Develop flask app
Task 3: Identify which websites to use
Goal 2: Develop means to transfer
information from sites to the app
Task 1: Develop HTML file to connect to
websites
Task 2: Add validation to ensure data quality
Task 3: Establish the form submission
endpoint
Goal 3: Transfer information from app to
HPC-ED database
Task 1: Ensure the data is easily user readable
Task 2: Handle and store incoming form data
Task 3: Transmit stored data to the HPC
portal

FINDING SOLUTIONS TO EVERY PROBLEM!



Title: Wildland Fire Science Data Gateway 

Authors: Kelley C. Barsanti, NSF National Center for Atmospheric Research; Samiha Binte-
Shahid, University of California Riverside; Mona Wong-Barnum, San Diego Supercomputer 
Center 

Keywords: wildfires, emissions, data, flexible querying, science gateway, drupal 

Abstract:  In the dry forests of the western US, long-term policies of wildfire suppression and 
past harvesting have led to the accumulation of understory fuels in many forests. This decades-
long shift in forest structure, coupled with a warming climate, greatly increases the potential for 
destructive wildfires. Catastrophic wildfires across the western US and elsewhere have led to an 
increase in research aimed at elucidating linkages between fuels, combustion chemistry, fire 
emissions, plume chemistry, and plume rise with a goal of improving predictive smoke 
modeling. This has resulted in a large number of publications reporting relevant data, tools, and 
model advancements and applications. It is becoming increasingly difficult to maintain 
awareness of and make use of this rapidly expanding knowledge base. Here we present a 
prototype for a web-based resource that supports increasing the accessibility and utility of these 
resources. Examples of information that may be included are libraries of datasets and links to 
those datasets, software codes to facilitate data processing and use in model applications, links to 
relevant tutorials and trainings, and libraries of processed data and model inputs/outputs to 
facilitate use by air quality and smoke management communities. In the first phase of 
development, we have started with a collection of linked datasets providing emission factors 
(grams of pollutant/per kilogram of fuel burned) for globally-relevant fire and fuel types. The 
emission factors are stored in databases with varying levels of detail and data processing to allow 
flexible querying based on user needs. Our prototype Science Gateway facilitates data querying 
and data visualization, expanding the accessibility and utility of the data. It uses the Drupal 
framework hosted on the NSF-funded ACCESS cloud-based resource named Jetstream2. The 
current version enables user management, data management, and collaboration and includes a 
number of search features. Moving forward, we look forward to engagement with the Science 
Gateway community for further development, testing, marketing, and sustainability planning.   
 
 
 



1

• Browse datasets via Globus Search
• Discover, select data of interest
• Analyze selected data using Globus 
Compute

• Export, move, share analysis results 
via Globus Transfer

• Scale with Globus Flows
• Enable broad access

– Federated login and access control via 
Globus Auth

– Extensible, Django-based framework
– Template-driven search results and 
landing pages

https://github.com/globus/django-globus-portal-framework
https://sgportal.globusdemo.org

Globus Science Gateway Portal



● Project Goals:
○ Make existing HPC Training and 

Education materials more findable
○ Create a federated catalog that can 

be easily searched
○ Facilitate community use of project 

tools and provide feedback

● Project site: https://hpc-ed.github.io
● Documentation: https://github.com/HPC-ED/HPC-ED.github.io/wiki 

https://hpc-ed.github.io/
https://github.com/HPC-ED/HPC-ED.github.io/wiki


Building open education ecosystems to foster
FAIRification between computational and

data-centric tools and open educational resources
M. Drew LaMar

Department of Biology
William & Mary

Williamsburg, USA
https://orcid.org/0000-0002-4037-1848

Sam Donovan
BioQUEST Curriculum Consortium

Raymond, NH
https://orcid.org/0000-0003-4021-9878

Deborah L. Rook
BioQUEST Curriculum Consortium

Raymond, NH
https://orcid.org/0000-0002-3377-3638

The demand for, principles guiding, and productivity
promises of open science have been well documented [1].
Still, awareness and adoption of FAIR standards (Findability,
Accessibility, Interoperability, and Reusability) within research
communities has been limited at best [2]–[4]. Recognizing
common features across open science and open education,
the United Nations Educational, Scientific, and Cultural Or-
ganization (UNESCO) has recommended that standards for
open educational resources (OER) be embedded into policy
frameworks that cut across open access, open data, and open
source software [5]. SPARC [6] earlier described their “Open
Agenda” in an effort to create a comprehensive platform
for knowledge sharing and innovation by recognizing the
centrality of OER.

While both open education and open science face challenges
in making their resources accessible for reuse, it is the linkages
across science and education that hold the greatest potential
for innovation and broadening participation in science. The
products of open science (which extend well beyond data)
can be instrumental in the development of science skills
in undergraduate STEM learning settings [7]. Additionally,
the products of open education (which extend well beyond
OER) can accelerate scientific discovery [8], [9]. Faculty
must overcome barriers such as finding effective teaching
resources, evaluating the appropriateness of datasets for use
in their courses, and creating meaningful learning activities
in unfamiliar computational environments. Like the limited
uptake of FAIR and open practices in research communities,
the adoption of open practices in education communities is still
emerging and will require additional infrastructure support to
ensure equitable implementation [10].

Open environments require the use of FAIR standards to
operate at scale and maximize use by target communities
[11]. Scientific gateways are community-developed cyberin-
frastructure that use FAIR standards to describe open data,
tools, and other resources using federated relational databases,
and interoperability across platforms connecting users with

National Science Foundation Award #2418329.

open materials in the context of their professional work
[12]–[14]. In order to build systems allowing for the robust
integration of science and educational cyberinfrastructure there
must be shared standards for describing, finding, accessing,
and distributing open materials. Lowering barriers to resource
use and developing metadata standards that facilitate access
to educational and scientific products has the potential to
drive innovation in STEM education, address challenges in
the preparation of the technical workforce, and promote an
informed citizenry that is empowered to engage in data-driven
decision making.

In this poster, we will discuss the creation of a network
of diverse stakeholders to establish, incubate, and sustain
a set of Open Education Ecosystems (OEEs; see Fig. 1)
designed to address the complex landscape of accessibility
challenges faculty face when adopting computational and
data-centric technologies for teaching and learning biology.
Our network will be housed within the QUBES platform, a
science education gateway [14] designed to lower barriers to
faculty participation in STEM education reform. By working
across the scientific and education communities and gateway
cyberinfrastructures our network will leverage FAIR standards
to streamline access to scientific data and tools for use in
teaching and learning. We end with a call for participation
from the gateways community.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2418329. QUBES
would like to acknowledge NSF IUSE 1446258, 1446269, and
1446284, and the Hewlett Foundation.

REFERENCES

[1] National Science Foundation, “NSF’S PUBLIC ACCESS PLAN: To-
day’s Data, Tomorrow’s Discoveries Increasing Access to the Re-
sults of Research Funded by the National Science Foundation,” 2015,
https://www.nsf.gov/pubs/2015/nsf15052/nsf15052.pdf.

[2] J. Brock, “A love letter to your future self: what scientists
need to know about FAIR data,” Nature Index, 2019,
https://www.natureindex.com/news-blog/what-scientists-need-to-know-
about-fair-data.

https://www.nsf.gov/pubs/2015/nsf15052/nsf15052.pdf
https://www.natureindex.com/news-blog/what-scientists-need-to-know-about-fair-data
https://www.natureindex.com/news-blog/what-scientists-need-to-know-about-fair-data


Fig. 1. Matrix of Open Education Ecosystems and Cross-cutting Themes.
This figure provides examples of computational and data-centric use cases
in education (vertical columns) around which OEEs will be established. A
framework of shared cross-cutting themes highlights well established pinch
points currently limiting the impacts of these tools in undergraduate biology
education.

[3] B. Mons, E. Schultes, F. Liu, and A. Jacobsen, “The FAIR principles:
First generation implementation choices and challenges,” Data Intelli-
gence, 2(1-2), 2020, pp.1–9.

[4] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M.
Axton, A. Baak, N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E.
Bourne, and J. Bouwman, “The FAIR Guiding Principles for scientific
data management and stewardship,” Scientific data, 3(1), 2016, pp.1–9.

[5] UNESCO, “Recommendation on open educational resources (OER),”
Legal Instruments, 2019.

[6] H. Joseph, “We’ve made a few big changes at SPARC,” 2016,
https://sparcopen.org/news/2016/big-changes-at-sparc/.

[7] J.B. Labov, A.H. Reid, and K.R. Yamamoto, “Integrated biology and un-
dergraduate science education: a new biology education for the twenty-
first century?,” CBE—Life Sciences Education, 9(1), 2010, pp.10–16.

[8] D.I. Hanauer, M.J. Graham, L. Betancur, A. Bobrownicki, S.G. Cre-
sawn, R.A. Garlena, D. Jacobs-Sera, N. Kaufmann, W.H. Pope, and
D.A. Russell, “An inclusive Research Education Community (iREC):
Impact of the SEA-PHAGES program on research outcomes and student
learning,” Proceedings of the National Academy of Sciences, 114(51),
2017, pp.13531–13536.

[9] E.L. Dolan, “Course-based undergraduate research experiences: Current
knowledge and future directions,” Natl Res Counc Comm Pap, 1, 2016,
pp.1–34.

[10] M.D. LaMar and S. Donovan, “FAIR-OS for Learning: Integrating FAIR
principles and open practices to address shared societal challenges,”
Paper presented at the Mini-Gateways meeting (online) April 2022.

[11] L.D. Stein, “Towards a cyberinfrastructure for the biological sciences:
progress, visions and challenges,” Nature Reviews Genetics, 9(9), 2008,
pp.678–688.

[12] N. Wilkins-Diehr, M. Zentner, M. Pierce, M. Dahan, K. Lawrence, L.
Hayden, and N. Mullinix, “The science gateways community institute at
two years,” In Proceedings of the Practice and Experience on Advanced
Research Computing, 2018, pp.1–8.

[13] P. Calyam, N. Wilkins-Diehr, M. Miller, E.H. Brookes, R. Arora,
A. Chourasia, D.M. Jennewein, V. Nandigam, M. Drew LaMar, S.B.
Cleveland, and G. Newman, “Measuring success for a future vision:
Defining impact in science gateways/virtual research environments,”
Concurrency and Computation: Practice and Experience, 33(19), 2021,
p.e6099.

[14] S. Donovan and M.D. LaMar, “Using Science Education Gateways to
Improve Undergraduate STEM Education: The QUBES Platform as a

Case Study,” Computing in Science & Engineering, 25 (2), 2023, pp.20–
29. doi: 10.1109/MCSE.2023.3292313.

https://sparcopen.org/news/2016/big-changes-at-sparc/
https://dx.doi.org/10.1109/MCSE.2023.3292313


What is Galaxy?
- An open platform for accessible, reproducible, and 

transparent computational biomedical research
- Toolshed with 1,000s of tools ready to run
- Terabytes of the latest, curated reference data
- Full featured workflow functionality 
- Graphical interface for handling >1,000 samples
- Run Jupyter, RStudio, & Interactive Visualizations
- Extensive training tutorials and infrastructure
- Large international community of users and 

developers

All of this can be used on free public high 
performance infrastructure… or your institutional 

cluster… or the cloud… or your laptop… or a 
Raspberry Pi!



Bridging Computational Science and Clinical Workflows with
the ChRIS Research Integration System
Jennings Zhang, Rudolph Pienaar. — Boston Children’s Hospital

Gateways2024 “Bring Your Own Portal (BYOP)” Submission
Name ChRIS
URL https://app.chrisproject.org
Description The ChRIS Research Integration System is a platform for computational research and

medical innovation. It provides a hub for collaboration on data analyses and a
framework for creating medical applications. ChRIS itself is deployed on Kubernetes,
while interfacing with legacy services in the hospital such as DICOM PACS.

Abstract
Despite the rise of AI and ML in medical imaging research, infrastructural challenges stifle the
adoption of such technologies in clinical practice. To address this divide, we are developing ChRIS (a
recursive acronym for the ChRIS Research Integration System). ChRIS facilitates the integration of
computational research across various environments.

The IT of a typical hospital enterprise is a mixed bag: to accommodate big data, more and more
research departments are moving their operations to public clouds such as AWS and GCP. However,
existing solutions and legacy pipelines may only work on in-house high-performance computing
(HPC) environments. Furthermore, clinical services tend to rely on outdated technologies such as the
Digital Imaging and COmmunications in Medicine (DICOM) standard. The difference in IT between
research and clinic in hospital settings exacerbates the lag in technological advancement on the
clinical side. Thus, little of research innovation can go to directly impact patient care.

At its core, ChRIS is a platform for running computational workflows. It provides features for
collaboration and data provenance. While the backend services of ChRIS run on Kubernetes to
leverage cutting-edge features of the cloud-native ecosystem, ChRIS integrates with existing
cyberinfrastructure and legacy services such as HPC schedulers and DICOM Picture Archival and
Communication Systems (PACS). ChRIS is designed to support hybrid-cloud architectures to
optimize the economic use of both on-premise and public cloud resource.

Within our research center, the PACS Query and Retrieve feature of ChRIS is the starting point of all
of our neuroimaging research workflows. In the clinic, ChRIS is used to automate the execution of
AI/ML computer vision algorithms on data from the PACS, granting radiologists access to cutting-
edge tools for medical diagnosis. Across the world, ChRIS is used as the hub for scientific
collaboration between institutions, including the HEALthy Brain and Child Development Study
(HBCD). As MIT-licensed software, ChRIS is freely available for anyone to obtain and use.

https://app.chrisproject.org


ChRIS Research Integration System
ChRIS is a platform for medical compute.

ChRIS simplifies data 
retrieval from hospital
databases (PACS).

ChRIS runs containerized pipelines anywhere:
• edge/on-prem
• HPC
• public cloud

... using any container engine.

Red Hat
OpenShift



CyberFaces: a scalable and flexible online platform for web-based 
learning and workforce development for advanced cyberinfrastructure

Instructors and students
• Modular framework: Foundation, Expert, and Developer
• Curriculum delivery options

• Modules
• Courses
• Badges and certificates

• Interactive learning materials (Jupyter Notebook)

System Design
• Open-source software stacks (Halcyon, JH, CILogon)
• Integration with GitHub, ACCESS
• Deployment on composable system
• Scalability support

Usage
• 85 modules and 11 courses
• Two in person workshops



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Building a More Future Resilient Science Gateway 
*

Matthew Potter  
Johns Hopkins University 

Applied Physics Laboratory  

Laurel, Maryland 
Matthew.Potter@jhuapl.edu 

 
 
 

 
 

 
Abstract—Parker Solar Probe (PSP) nears the end of its nominal mission in 2025 and continues to produce ground-breaking scientific 

findings. In anticipation of an extended mission, the PSP Science Gateway was re-imagined for better maintainability, extensibility, and 
portability as a prototype for future missions. Originally built on a Drupal-based framework with heritage in the Van Allen Probes, the 
redesigned PSP science gateway relies on the REpresentation State Transfer (REST) approach for the backend architecture. The frontend 
user interface is managed using the React framework, providing an efficient and responsive user experience. User authorizatio n and 
authentication is managed by a standalone server independent from both frontend and backend components, which provides simple but 
powerful role-based access for everyone, from the general public to privileged science team members. Many of the legacy 
HTML/JavaScript widgets were incompatible with the new React-based interface, so a simple IFRAME-based escape hatch technique 
was developed and integrated into the new generic science gateway UI framework. This architecture and many of the new capabil ities of 
the PSP Science Gateway are presented and briefly discussed.   

 



TACC Core Experience Portal 
● A robust open-source platform for building custom science gateways 

without starting from scratch

● Aggregates systems, services, APIs, and storage into a single, unified 

interface for researchers

● Offers a dashboard for real-time data storage, application execution, 

and job monitoring

● Integrates user storage with TACC's high-performance systems, 

simplifying data management

● Facilitates rapid deployment of new gateway projects with shared, 

customizable features

https://cep.tacc.utexas.edu | https://github.com/TACC/Core-Portal

https://cep.tacc.utexas.edu
https://github.com/TACC/Core-Portal


Enhancing Tapis UI for ICICLE: Streamlined ETL Workflows and
Dynamic Deployments

Introduction: Tapis is a multi-tenant, RESTful API framework designed for
distributed computational research. It supports data management and code
execution across institutional boundaries, enabling users to create portable,
reproducible workflows. Tapis version 3, launched in September 2020,
builds on NSF investments into the Abaco, Agave, and CHORDs projects.
It supports over 80,000 users across 35 tenants and offers capabilities such
as streaming/sensor data, containerized workflows, and a decentralized
security kernel. Tapis UI is the user interface platform facilitating seamless
interactions with Tapis services.

Enhancement of Tapis Framework for ICICLE: The enhancement of the
Tapis Framework in support of the ICICLE project focuses on developing a
user interface within Tapis UI to facilitate the creation of IKLE-specific
Extract Transform Load (ETL) pipelines executed on Tapis Workflows. The
work involves several key components and tasks to improve functionality,
usability, and performance.

Primary Components and Tasks:

1. ETL Branch for Tapis UI:
○ Developed a specific deployment of Tapis UI in NGINX to

support dynamic single/multi-tenant UI deployments based on
configurations, ensuring flexibility and scalability for various
user needs.

2. Figma Planning:
○ Conducted collaborative planning sessions using Figma to

design a cohesive and user-friendly interface, ensuring that all
elements of the UI are intuitive and efficient.

3. DAG Library Implementation:
○ Evaluated various Directed Acyclic Graph (DAG) libraries, such

as d3, dag-builder-js, and reactflow, considering factors like



licensing, ease-of-use, and feature sets to choose the most
appropriate library.

4. UI as Configurations:
○ Developed new deployer configurations for Tapis UI, allowing

the customization of services, icons, and OAuth settings,
enhancing the adaptability of the UI.

5. ICICLE Tapis UI Extension NPM Package:
○ Created an NPM package to extend Tapis UI, integrating OAuth

configurations, Tapis client ID, base URL, and client key
settings, streamlining the authentication process.

6. Templated Tasks for DAG View:
○ Implemented template tasks for IKLE ETL, enabling users to

quickly add and edit nodes in the DAG view. This feature allows
for rapid development and testing of ETL pipelines.

7. Repository and Functions Files:
○ Established a repository and created necessary function files to

support the development and deployment of the new features.
8. Sidebar with Templates:

○ Developed a sidebar that allows users to click and add template
nodes to the graph, with options for quick code edits and
viewing stdout/stderr outputs, enhancing the user experience
and simplifying workflow management.

Tapis System and Workflows: A Tapis system abstracts a host or cluster
identified by name or IP address and is used for storing and retrieving files
and data, running jobs (including staging files, executing jobs, and
archiving results on remote systems). Tapis Workflows is an API and
workflow engine that constructs and runs research computing workflows
reproducibly within the Tapis ecosystem. The primary components of Tapis
Workflows include:

● Pipelines: Collections of tasks performed during workflow execution.
● Tasks: Units of work, such as image builds, running arbitrary code,

Tapis jobs, executing actors, sending HTTP requests, and running
containerized applications.



● Groups: Collections of users that own workflow resources.
● Archives: Permanent storage for workflow results.

Significance of Tapis: Tapis offers programmable access to advanced
resources, facilitating:

● Conducting analyses on cloud/high-throughput and HPC resources
using a common API.

● Reproducing analyses with recorded inputs, outputs, and parameters.
● Sharing data, workflows, applications, and computational resources

with collaborators, enabled by access controls within Tapis, without
requiring the installation or support of a complicated technology
stack.

The advancements in the Tapis Framework provide robust tools for the
scientific community to conduct, reproduce, and share complex analyses
efficiently.



Orchestrating End-to-End AI-Model Development
using TAPIS and Smart Scheduler

1st Swathi Vallabhajosyula
Computer Science and Engineering

The Ohio State University
Columbus, Ohio, USA

vallabhajosyula.2@buckeyemail.osu.edu

2nd Nathan Freeman
Texas Advanced Computing Center

The University of Texas at Austin
Austin, Texas, USA

nfreeman@tacc.utexas.edu

3rd Christian Garcia
Texas Advanced Computing Center

The University of Texas at Austin
Austin, Texas, USA

cgarcia@tacc.utexas.edu

4th Joe Stubbs
Texas Advanced Computing Center

The University of Texas at Austin
Austin, Texas, USA

jstubbs@tacc.utexas.edu

5th Rajiv Ramnath
Computer Science and Engineering

The Ohio State University
Columbus, Ohio, USA

ramnath.6@osu.edu

ABSTRACT

With the increasing adoption of Machine Learning (ML)
and Artificial Intelligence (AI), these technologies are being
integrated into conventional sciences to analyze complex data,
reveal patterns, and make precise predictions, thus enhancing
research efficiency and discovery. Accurate AI model develop-
ment requires capturing and labeling substantial data to create
practical training datasets. Scientists must interact effectively
with HPC systems like TACC1 or OSC2 to efficiently execute
ML/AI workflows. Accurate resource estimation is vital for
job scheduling and shared HPC resource management, yet
users often face challenges that lead to job interruptions and
inefficiencies. Despite existing guidelines, optimizing resource
allocation for DNN workloads remains complex. AI-based
resource estimation models, such as TPUGraphs [1] and Esti-
mating GPUMemory [2], aim to address this but are difficult
for end-users to utilize. Frameworks like TAPIS [3] and
iScheduler [4] can streamline job scheduling on HPC systems.
We have developed new TAPIS-UI components to facilitate
efficient data labeling for conventional scientists, aiding in cre-
ating training datasets. This poster demonstrates an end-to-end
use case by combining existing and new components to de-
velop an AI-driven solution for detecting human intrusion us-
ing images captured by edge devices like camera traps. TAPIS,
developed by TACC, offers APIs for managing scientific
workflows, data, and computational resources. It automates
tasks such as job submission, data transfer, and workflow
orchestration across HPC resources and cloud environments.
The iScheduler framework integrates AI-based resource esti-
mators, validating predictions against a pre-cyberinfrastructure
policy database before creating an execution plan. This plan
is executed by an Intelligence Plane Server that handles job
submission, monitoring, and rescheduling until completion.

1https://tacc.utexas.edu/
2https://www.osc.edu/

The poster outlines the following components for end-to-end
AI model development using TAPIS and Smart Scheduler:

1) Data Labeler: A TAPIS-UI component that enables
users to select and label datasets using an auto-labeling
feature. The auto-labeler submits a pre-configured ap-
plication based on the selected model as a TAPIS job
and executes it on the user-chosen dataset to auto-label
the images with animal, human, or vehicle tags. Once
the auto-labeling job is executed, users can view and
approve or adjust the labels using the Data Labeler to
establish ground truth for training or fine-tuning an AI
model.

2) iScheduler Helper Notebook: Provides APIs for inter-
acting with the Smart Scheduler Framework, querying
cyberinfrastructures like TACC and OSC, and facilitat-
ing job submissions based on system feasibility and wait
time. The notebook accesses the pre-SLURM Cyberin-
frastructure database, which contains information about
available systems, configurations, and execution costs. It
helps users estimate execution time and costs with vari-
ous configurations and resources without submitting the
jobs. This information allows users to manually submit
a job or offload execution to the Smart Scheduler. The
notebook can also submit jobs to the Smart Scheduler
(a backend Intelligence Plane Server), which selects an
appropriate system based on feasibility and wait time.
The backend server uses TAPIS APIs to submit and
monitor jobs, including callback hooks for tracking.

3) View Smart Scheduler Jobs using TAPIS-UI: Allows
users to view and monitor jobs executed by the Smart
Scheduler via TAPIS-UI.

Keywords: auto-labelling. generating training data, AI,
ML, job scheduling, TAPIS, resource estimations, walltime
predictions



ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation’s - AI Institute for Intelligent Cyberinfrastructure with
Computational Learning in the Environment(ICICLE), Project
Tapis: Next Generation Software for Distributed Research and
SGX3 A Center of Excellence to Extend Access, Expand the
Community, and Exemplify Good Practices for CI Through
Science Gateways under grant agreements OAC-2112606,
OAC-1931439 and OAC-2231406.

REFERENCES

[1] Phothilimthana, M., Abu-El-Haija, S., Cao, K., Fatemi, B., Burrows,
M., Mendis, C., & Perozzi, B. (2024). Tpugraphs: A performance
prediction dataset on large tensor computational graphs. Advances in
Neural Information Processing Systems, 36.

[2] Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., & Yang, M. (2020,
November). Estimating GPU memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (pp. 1342-1352).

[3] Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., & Yang, M. (2020,
November). Estimating GPU memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (pp. 1342-1352).

[4] Vallabhajosyula, M. S., Budhya, S. S., & Ramnath, R. (2024). Reference
Implementation of Smart Scheduler: A CI-Aware, AI-Driven Scheduling
Framework for HPC Workloads. In Practice and Experience in Advanced
Research Computing 2024: Human Powered Computing (pp. 1-4).



Center
TAPIS UI

UserUpload to Cloud

1. AUTO Label  Images and Establish Ground Truth
2. Define Model architecture - development
3. Finetune Models (MegaDetector) with New Images

OSC Clusters TACC Clusters
TAPIS-Systems

TAPIS-Apps
Version 1: Model-Inferencing
Version 2: Model-Finetuning

……..

Edge - 
• Capture Images
• +/- Inferencing 

Capture Training Data

Edge

MegaDetector  
(a)

MegaDetector  
(b)

Portal Uses

Data Labeling with TAPIS-UI: Establishing Ground Truth and Fine-Tuning the MegaDetector AI Model

1. Data 
Preparation

2. Model 
Development

3. Model 
Training/Tuning

4. Model 
Deployment

5. Model 
Monitoring and 
Maintenance

AI
Life Cycle

1-2-3 are part of the portal!

One-stop solution for data preparation, 
model development, training, and 

deployment using TAPIS-UI



1. Label Images 
• Auto-labeling using Model 

Inferencing (Using inference 
version of models registered as 
Apps (Version1))

• Human in the loop Ground 
Truth establishment after fine-
tuning the auto-assigned 
labels (Using TAPIS UI).

Data Labeling with TAPIS-UI: Establishing Ground Truth and Fine-Tuning the MegaDetector AI Model

2. & 3 Auto-Schedule a fine-tuning HPC 
Job (Version 2 of Apps)
a. Submit Jobs for Fine-tuning – PODs 

Notebook – Smart Scheduler Interface
- APIs to interact with the Smart 

Scheduler Framework to fetch the 
resource needs and submit a job via the 
Intelligence Plane.

- Invoked during the model development 
phase to make informed decisions 

b. View Using Tapis UI – Progress of 
training jobs. 



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2024 IEEE 

A Retrieval Augmented Generation Tool for Research 
Groups 

Chandler Campbell 
Department of Computer Science 

Southern Oregon University 
Ashland, OR 

r.chandler.campbell@gmail.com 
 
 

Bernie Boscoe 
Department of Computer Science 

Southern Oregon University 
Ashland, OR 

boscoeb@sou.edu 
 
 

Tuan Do 
Physics and Astronomy Department 

University of California, Los Angeles 
Los Angeles, CA 

tdo@astro.ucla.edu

 

Abstract—Large language model (LLM) pipelines 
incorporating retrieval augmented generation (RAG) show great 
promise for indexing and querying large corpora of knowledge for 
scholarly research groups. However, the complexity and 
proprietary nature of most RAG-LLM applications presents a 
barrier to adoption for many research groups. In this poster, we 
present our ongoing work on AquiLLM, a web application built 
around a RAG-LLM pipeline that allows research groups to 
leverage the power of emerging artificial intelligence technologies 
to store and query knowledge. AquiLLM achieves this by 
augmenting existing commercial and open source LLMs with 
groups’ knowledge bases. AquiLLM is independent of proprietary 
services and suitable for deployment on science gateways such as 
Jetstream2. AquiLLM uses a simple architecture, and 
incorporates mature, open-source technologies wherever possible 
to minimize risk and ease deployment. AquiLLM can be 
configured to give user groups complete custody of their data 
should they require it. We are currently rolling out AquiLLM to 
an astronomy research group as a proof-of-concept.  

Keywords—Retrieval Augmented Generation, LLM, science 
gateway, Jetstream2 

I. INTERFACE 
AquiLLM can be deployed on a science gateway, and served 

to research group members as a website. AquiLLM presents two 
main workflows for users: ingestion and querying. AquiLLM 
can automatically ingest documents from arXiv and Zotero, 
allowing users to import and query existing knowledge bases. 
AquiLLM also supports ingesting LaTeX, PDF, ODF, Word, 
and raw text files manually. AquiLLM allows users to create 
collections of documents, and has a permissions model to 
restrict access to collections to specific users as desired by 
collection managers. Querying is through a familiar chat 
interface, similar to chatGPT and its competitors.  

 

II. ARCHITECTURE 
At the core of most RAG pipelines is a vector database. 

Vector databases are used to store and retrieve latent space 
embeddings associated with pieces of text, where pieces of text 
which are close in meaning are near each other in the latent 
space. AquiLLM uses pgvector, an extension adding latent 

space embedding support to the decades old, open source 
PostgreSQL database, which many research groups will already 
be familiar with, and which can easily be deployed to Jetstream2 
or another science gateway [1].  Latent space embeddings are 
generated using text embedding models. AquiLLM can be 
configured to use either commercial embedding models via an 
API, or open-source models run in a science gateway, depending 
on research groups’ needs with respect to cost, as well as privacy 
considerations. AquiLLM manages the relationship between 
LLM and vector database internally, which avoids the 
complexity of integrating an external dependency such as 
Llamaindex or Langchain, and does so in an LLM-agnostic 
fashion [2]. This allows AquiLLM to be configured to use a 
variety of LLMs, both commercial and open source. Running an 
open source LLM in a science gateway allows users to keep 
custody of their data, making AquiLLM suitable for use with 
sensitive information. Every component of AquiLLM can be 
deployed on virtual machines in science gateways such as 
Jetstream2 [3]. 

Figure 1: Workflow of RAG-LLM file processing and 
queries  

REFERENCES 
[1] R. Aperdannier, M. Koeppel, T. Unger, S. Schacht, and S. K. 

Barkur, “Systematic Evaluation of Different Approaches 
on Embedding Search,” in Advances in Information and 
Communication, K. Arai, Ed., Cham: Springer Nature 
Switzerland, 2024, pp. 526–536. doi: 10.1007/978-3-031-
53963-3_36. 

 



[2] W. Fan et al., “A Survey on RAG Meeting LLMs: Towards 
Retrieval-Augmented Large Language Models,” Jun. 17, 2024, 
arXiv: arXiv:2405.06211. Accessed: Jul. 06, 2024. [Online]. 
Available: http://arxiv.org/abs/2405.06211 

[3] D. Y. Hancock et al., “Jetstream2: Accelerating cloud 
computing via Jetstream,” in Practice and Experience in 
Advanced Research Computing, Boston MA USA: ACM, Jul. 
2021, pp. 1–8. doi: 10.1145/3437359.3465565. 

 
 



Enhancing the Machine Learning Hub on Tapis:

Designing and Deploying Models and Datasets Overview

Rahil Ashtari Mahini
Texas Advanced Computing Center

University of Texas at Austin
Rahil.AshtariMahini@austin.utexas.edu

Nathan Freeman
Texas Advanced Computing Center

University of Texas at Austin
nfreeman@tacc.utexas.edu

Dhanny Indrakusma
Texas Advanced Computing Center

University of Texas at Austin
dhannywi@utexas.edu

Gilbert Curbelo III
Texas Advanced Computing Center

University of Texas at Austin
gcurbelo@tacc.utexas.edu

Alexander Fields
Texas Advanced Computing Center

University of Texas at Austin
afields@tacc.utexas.edu

Joe Stubbs
Texas Advanced Computing Center

University of Texas at Austin
jstubbs@tacc.utexas.edu

Abstract The integration of machine learning (ML)
into research has become increasingly essential for
extracting valuable insights from complex datasets.
However, the complexity of ML models can pose sig-
nificant challenges for non-technical users. To address
these issues, we have developed new features for the
Machine Learning Hub (ML Hub) [1] in the Tapis UI
[2], [3], aimed at simplifying ML model interaction and
data management.

Working within the Texas Advanced Computing
Center (TACC) and in collaboration with the Intelli-
gent Cyberinfrastructure with Computational Learn-
ing in the Environment (ICICLE) AI Institute, we
have developed and enhanced ML Hub to better sup-
port researchers and developers. Hugging Face’s API
[4] has been integrated into ML Hub, offering open-
source pre-trained machine learning models. The Ma-
chine Learning Hub APIs [1], built with REST ar-
chitecture and implemented in Python Flask, enables
seamless access to these data.

We aim to develop a frontend to fetch and display
models, and datasets’ information from the integrated
API. Machine learning hub also facilitates model train-
ing and model inference on the TACC Hyper perfor-
mance computing (HPC) cluster. Currently, the ML
Hub offers a comprehensive suite of features designed
for non-technical users to easily access and utilize ma-

chine learning resources. These include:

1. Models Overview and Download: Users can
explore and download a variety of machine learn-
ing models through a single, user-friendly inter-
face. This includes model inference availability
and detailed model cards.

2. Datasets Overview and Download: Similarly,
users can browse and download datasets, with de-
tailed dataset cards providing essential informa-
tion.

These functionalities collectively provide a central-
ized access point for users to explore and download ma-
chine learning models and datasets, making advanced
AI capabilities more accessible.

Our ongoing efforts include further enhancing the
user experience by integrating training engines and
inference clients, ensuring smooth operation within
TACC’s high-performance computing environment.
By providing intuitive tools and interfaces, we aim to
democratize access to advanced ML models and foster
innovative research.

Keywords machine learning, Tapis, open-source,
high-performance computing, user-friendly interface,
science gateway, national science foundation.



Acknowledgements

This work was supported by the National Science
Foundation’s - Project Tapis: Next Generation Soft-
ware for Distributed Research and SGX3 A Center of
Excellence to Extend Access, Expand the Community,
and Exemplify Good Practices for CI Through Science
Gateways under grant agreements OAC-1931439 and
OAC-2231406.

References

[1] Indrakusuma D, Freeman N, Stubbs J. Machine
Learning Hub for Tapis; 2023.

[2] Stubbs J, Cardone R, Packard M, Jamthe A,
Padhy S, Terry S, et al. Tapis: An API platform for
reproducible, distributed computational research.
In: Advances in Information and Communication:
Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Volume
1. Springer; 2021. p. 878-900.

[3] Chuah JY, Rosenberg J, Strmiska K, Stubbs J,
Cleveland S, McLean J. Tapis UI - A Rapid De-
ployment Serverless Science Gateway Built on the
Tapis API; 2021. Accessed: July 29, 2024.

[4] Delangue C. Hugging Face: Hub client li-
brary; 2016. Accessed: July 29, 2024.
Available from: https://huggingface.co/docs/

huggingface_hub/index.



Presentation 
Title

NSF awards

1547611

2231406

Integrating OpenTopography API into Design Safe Recon Portal 
for Enhanced Geospatial Data Analysis

• Web and Mobile Applications team at TACC
• SGX3 Interns: Beulah Karrolla, Sajith Alapati
• Mentors: Nathan Franklin, Frank Netscher
• Manager: Tracy Brown

Goal: Collaborating to enhance the Design Safe Recon 
Portal's capabilities  & Dedicated to advancing natural 
hazard research



About Me
Exploring the integration of topographic data, including LIDAR point clouds and 
Digital Elevation Models, sourced from the OpenTopography API to enhance the 
portal's capabilities, providing a more comprehensive understanding of natural 

hazard events and their impacts. 

Recon Portal Enhancements

• OpenTopography Integration: High-resolution topographic data for detailed 
spatial analysis and modeling

• Center points data: Availability of topography data indicated on the 
world map

• Multi polygons data: Detailed boundary definitions of geospatial areas

• UI Enhancements: Intuitive and visually informative map interface with color-
coded event markers

• Advanced Filtering: Precise search refinement options for OpenTopography 
data

• Author, title, keyword, description, location search, and date ranges

• Secure File Retrieval: Tapipy-enabled secure file fetching for data integrity and 
privacy

• Modernized Web Portal: Upgraded application framework for improved 
performance, scalability, and maintainability

• Faster rendering and more responsive interactions

• Efficient and modular codebase for developer productivity



DesignSafe Recon Portal: Integrating
OpenTopography Data for Enhanced Natural Hazard

Analysis
Sajith Alapati, Beulah Karrolla

SGX3 Interns
Texas Advanced Computing Center, University of Texas at Austin

Austin, TX, USA
salapat@iu.edu, beulah.karrolla@austin.utexas.edu

Abstract—The DesignSafe Recon Portal is an interactive world
map of natural hazard events grouped by their geographical loca-
tions, enabling researchers to log, view, and analyze data related
to these events. This paper discusses the recent enhancements
made to the portal, including the integration of topographic
data such as LIDAR point clouds and Digital Elevation Models
(DEMs) from OpenTopography. These enhancements provide
researchers with comprehensive topographical data and context,
offering new insights and improving the overall research capa-
bilities. The transition from AngularJS to React with TypeScript
further improves user experience and performance, enabling the
addition of new features and interactive elements.

Index Terms—DesignSafe, Recon Portal, OpenTopography,
natural hazards, LIDAR, Digital Elevation Models, geospatial
data

I. INTRODUCTION

The DesignSafe Recon Portal serves as an interactive tool
for researchers studying natural hazards. It groups natural
hazard publications together by their geographical locations,
allowing for detailed analysis and visualization. Recent en-
hancements have significantly improved the portal’s capabil-
ities by integrating additional geospatial data from OpenTo-
pography [1]. This integration aims to provide comprehensive
topographical data and context, assisting researchers in their
analysis and understanding of natural hazards.

II. ENHANCEMENTS AND FEATURES

The integration of OpenTopography data into the Design-
Safe Recon Portal introduces several key features and im-
provements. Combining existing DesignSafe data with Open-
Topography datasets offers detailed topographical insights
into geographical regions. Researchers can use this data to
determine how topography may have changed before and after
natural disasters, but more importantly, it provides additional
data and context to the geographic area.

Some of the notable enhancements include:

This work was supported by the National Science Foundation’s Project
Tapis: Next Generation Software for Distributed Research and SGX3 A Center
of Excellence to Extend Access, Expand the Community, and Exemplify Good
Practices for CI Through Science Gateways under grant agreements OAC-
1931439 and OAC-2231406.

A. Interactive UI Enhancements

The portal now includes several interactive features to
enhance user experience:

• Polygon Mapping: Users can view and interact with
detailed polygon mappings of datasets, providing a vi-
sual representation of data points and their geographical
extents. Polygons are turned on and off at certain map
scales to improve clarity and performance [2].

• Color-Coded Markers: Markers on the map are color-
coded based on the type of event and data source, making
it easier to identify and differentiate between various
events at a glance.

• Advanced Filters: New filtering capabilities allow re-
searchers to narrow down their search based on specific
criteria, enhancing the efficiency and effectiveness of data
navigation and exploration.

B. Improved User Experience

The transition from legacy AngularJS to a modern React
with TypeScript framework has several advantages [3] [4]:

• Enhanced Performance: The new framework ensures a
dynamic and up-to-date user interface that leverages
the latest technologies, providing a more seamless and
responsive user experience.

• Improved Testing and Maintenance: The adoption of
TypeScript improves the ease of testing and maintaining
the codebase, ensuring long-term reliability and extensi-
bility.

III. IMPLEMENTATION DETAILS

The integration of OpenTopography data and migration to
React with TypeScript involved several key steps.

A. Data Integration

Extensive research on OpenTopography APIs identified the
Geoserver API as the best option for accessing comprehensive
metadata and polygon coordinates. Scripts were developed
to fetch, preprocess, and integrate this data into the portal’s
backend using Django. This included automating data fetching



and preprocessing at regular intervals to ensure up-to-date
information [5].

B. UI Enhancements

The transition to React with TypeScript facilitated the
implementation of several new interactive features:

• Polygon Mapping and Marker Implementation: De-
tailed polygon mappings visualize geographical data ex-
tents, enabled at specific map scales for clarity. Color-
coded markers based on event types and data sources
enhance visual differentiation.

• Advanced Filters and Layer Controls: Advanced fil-
tering capabilities allow researchers to toggle data vis-
ibility on the map based on data sources and event
types. Enhanced user interactions through a responsive
UI dynamically update based on filter inputs.

C. Backend Optimization

Significant backend optimizations supported the new data
integration and UI features. Implementing a caching solution
using Django’s cache framework with Memcached reduced
data fetching times, improving overall performance.

D. Migration to React with TypeScript

Migrating the portal from AngularJS to React with Type-
Script involved defining TanStack queries for data fetching
and state management, developing base components to render
the Leaflet map with new data integrations, and ensuring
feature parity with the existing portal while leveraging React’s
capabilities for future extensibility [2] [3] [4].

IV. CHALLENGES AND SOLUTIONS

Several challenges were encountered during the integration:

A. API Limitations

Initial APIs lacked necessary data, requiring multiple inte-
grations and feedback loops with the OpenTopography team.
Iterative development was employed to address these issues
and ensure that the integration met all requirements [1].

B. Iterative Development

Frequent changes and feedback necessitated multiple rein-
tegrations. Efficient version control and collaboration were
key to managing these iterations and ensuring successful
integration.

V. CONCLUSION

The enhancements to the DesignSafe Recon Portal have
significantly improved its utility for researchers studying nat-
ural hazards. By integrating OpenTopography data and transi-
tioning to a modern web framework, the portal now offers
more detailed insights, better user experience, and greater
potential for future enhancements. The project has laid a
strong foundation for further development and integration of
additional datasets and features.

ACKNOWLEDGMENTS

Special thanks to Nathan Franklin, Frank Netscher, Tracy
Brown, the entire WMA team, and the OpenTopography team
for their guidance and support.

REFERENCES

[1] OpenTopography, “Opentopography,” https://opentopography.org, 2024.
[2] Leaflet, “Leaflet - an open-source javascript library for interactive maps,”

https://leafletjs.com, 2024.
[3] React, “React - a javascript library for building user interfaces,”

https://reactjs.org, 2024.
[4] TypeScript, “Typescript - javascript that scales,”

https://www.typescriptlang.org, 2024.
[5] Tapis Project, “Tapis: Next generation software for distributed research,”

https://tapis-project.org, 2024.



Machine Learning Edge for Tapis
Sowbaranika Balasubramaniam
Texas Advanced Computing Center

The Ohio State University
Austin, TX, USA

sowbaranika1302@gmail.com

Joe Stubbs
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX, USA

jstubbs@tacc.utexas.edu

Richard Cardone
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX, USA

rcardone@tacc.utexas.edu

Samuel Khuvis
Ohio Supercomputer Center
The Ohio State University

Columbus, OH, USA
skhuvis@osc.edu

Nathan Freeman
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX, USA

nfreeman@tacc.utexas.edu

Tanya Berger-Wolf
Computer Science and Engineering

The Ohio State University
Columbus, OH, USA
berger-wolf.1@osu.edu

Abstract— Edge computing enables devices to deploy
Machine Learning (ML) models at the ”edge” and process
data in near real-time, significantly enhancing response times
and detection of sensitive information. However, deploying
these models presents several challenges such as the demand
for substantial processing power, extensive battery life, and
considerable storage and memory capacity. To address these
multifaceted challenges, ranging from hardware constraints to
data management and complexities of growing ML models, we
introduce Machine Learning Edge (MLEdge), which includes
the Tapis framework and a robust simulation environment. This
environment enables comprehensive testing and optimization
of models and deployment strategies, effectively mitigating
real-world issues and improving the efficiency and reliability
of edge deployments, particularly in camera traps.

MLEdge is a dynamic platform integrated with the Tapis
framework, designed to provide a seamless interface for run-
ning ML models on edge devices. It facilitates the comparative
analysis of various models, datasets, and hardware, optimizing
their deployment and performance in resource-constrained
environments. MLEdge is developed in collaboration with the
Intelligent Cyberinfrastructure with Computational Learning
in the Environment (ICICLE) [1] and the Texas Advanced
Computing Center (TACC).

Key functionalities of MLEdge include,

1) User Dashboard: Users interact with ML Edge Dash-
board on Tapis [2] to upload datasets and models, select
hardware, configure advanced parameters, and initiate
analyses. This process creates a job in Tapis Jobs with
specified inputs, which then instantiates the systems
controller to communicate with the event engine.

2) Simulation Environment: The simulation environment
processes images in a manner similar to an edge device.
It includes an event engine that employs a publish-
subscribe pattern, primarily built with Rust and Python.

Plugins are modular components of the application that
can generate and consume events. The engine uses
ZeroMQ, an open-source messaging library, to manage
the delivery of event messages between publishers and
subscribers. Input images are processed by the image-
generating plugin, which sends the images in binary
format to the image-receiving plugin. The images are
then passed to the image scoring plugin, where a ma-
chine learning model performs detections. Based on
a user-specified threshold, the image is either stored
or deleted by the Image Store/Delete plugin. All logs
are monitored through the Oracle plugin. Real-time
monitoring data is transmitted from the edge to the cloud
using Cyberinfrastructure Knowledge Network (CKN)
Daemon [3] and displayed on an analytics dashboard.
Additionally, the power and storage consumption of each
plugin are measured.

3) Reports: Once execution is complete, the Reports UI
provides detailed visualizations of resource utilization
and performance metrics, such as accuracy, power con-
sumed, I/O, memory, CPU/GPU usage, and throughput.
This allows users to compare the performance of models
in different hardware.

MLEdge offers a robust solution to the challenges of de-
ploying ML models on edge devices. MLEdge provides a
comprehensive platform for testing, optimizing, and deploying
models, enhancing the efficiency and reliability of camera trap
deployments in wildlife monitoring and conservation efforts.

Keywords: Edge computing, Machine Learning, Smart
Camera Traps, TAPIS, Remote sensors, Simulation Envi-
ronment, Wildlife monitoring

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation’s - AI Institute for Intelligent Cyberinfrastructure with
Computational Learning in the Environment(ICICLE), Project
Tapis: Next Generation Software for Distributed Research and



SGX3 A Center of Excellence to Extend Access, Expand the
Community, and Exemplify Good Practices for CI Through
Science Gateways under grant agreements OAC-2112606,
OAC-1931439 and OAC-2231406.

REFERENCES

[1] D. K. Panda, V. Chaudhary, E. Fosler-Lussier, R. Machiraju, A. Ma-
jumdar, B. Plale, R. Ramnath, P. Sadayappan, N. Savardekar, and K.
Tomko, “Creating intelligent cyberinfrastructure for democratizing AI,”
AI Mag., vol. 45, no. 1, pp. 22–28, Mar. 2024, doi: 10.1002/aaai.12166.

[2] J. Stubbs, R. Cardone, M. Packard, A. Jamthe, S. Padhy, S. Terry, J.
Looney, J. Meiring, S. Black, M. Dahan, and S. Cleveland, “Tapis: An
API Platform for Reproducible, Distributed Computational Research,” in
Advances in Information and Communication, vol. 1363, K. Arai, Ed.,
in Advances in Intelligent Systems and Computing, vol. 1363. , Cham:
Springer International Publishing, 2021, pp. 878–900. doi: 10.1007/978/-
3-030-73100-7 61.

[3] S. Withana and B. Plale, “CKN: An Edge AI Distributed Frame-
work,” in 2023 IEEE 19th International Conference on e-Science (e-
Science), Limassol, Cyprus: IEEE, Oct. 2023, pp. 1–10. doi: 10.1109/e-
Science58273.2023.10254827.



Tapis User Interface for Machine learning Edge

Images are transferred 
to the datacenter

Edge Data Center

• Computing power
• Memory
• Battery
• Storage

• Network bandwidth to 
send data to center

• Delay of data analysis



Tapis User Interface for Machine learning Edge
User

Users can inititalize a new analysis by,
1. Selection existing ML models (like 
MegaDetector)
2. Choosing a dataset available/upload 
their own
3. Choose the hardware in which they 
want to execute
4. Add advanced configuration, if any

Creates Job request



Tapis User Interface for Machine learning Edge

Deploy ML models 
on the Edge device

Resource utilization

Model Optimization

Memory
Storage
Power consumption
Bandwidth



Tapis Streams - Supporting Real-Time Climate Data
Monitoring

Abstract—Tapis Streams is a production level service, provid-
ing REST support for storing, processing, and analyzing real-
time streaming data. This poster introduces the newest features
of the Tapis Streams service. The latest version of Tapis 1.3
Streams API adopts the latest version of InfluxDB, InfluxDB 2.x,
which has built-in security features and supports next generation
data analytics and data-event driven processing. This poster also
introduces new data Channel Alert actions and archive support.
Lastly, we present a Streams service reference user interface
as part of Tapis UI, a lightweight browser only, serverless
client application that allows interactive access to Stream data
supporting a climate monitoring project in Hawaii.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The proliferation of inexpensive devices in the Internet
of Things (IoT) as well as the number of instruments and
sensors to observe and measure everything has led to a
demands for systems that support storing, processing, and
analyzing time-series data. Many scientific use cases based
on monitoring require ongoing data processing or special
processing/modeling and notification of anomalous or special
events that can be identified by processing and computing the
data as it arrives. Systems that have been designed for sensors
are often aimed at industry, and are either too complex to
deploy and maintain or, if hosted, are expensive. This leaves
a gap for hosted academic streaming data solutions capable
of supporting data event-driven computational workflows. To
help address this gap in research cyberinfrastructure, the Texas
Advanced Computing Center (TACC) and the University of
Hawaii (UH) have developed an open-source, unified middle-
ware API infrastructure platform, Tapis [1], with collaborative
features to fill gaps in the existing streaming time-series data
landscape, the Streams services [2]. Tapis and the Streams
service is currently leveraged in the a Climate Data Portal for
the state of Hawaii and the Hawaii Mesonet cyberinfrastructure
to support climate science and monitoring..

In this paper, we present the latest architecture of the
Tapis Streams services along with new features including: data
Channel evaluation methods, Alert actions and reference user
interface.

II. BACKGROUND

This section describes the key concepts involved in the
implementation of Tapis Streams API and the API itself.

This work is supported by the National Science Foundation

A. InfluxDB

InfluxDB is a time series database designed to handle high
write and query loads. InfluxDB is used in many applications
involving large amounts of timestamped data, including De-
vOps monitoring, application metrics, IoT sensor data, and
real-time analytics. The Tapis Streams project has leveraged
the InfluxDB and its ecosystem of services, like Kapaictor
a real-time stream processing engine, as the time series in-
frastructure for processing and storing time-series data. The
InfluxDB 1.x version is what was leveraged to implement
the original Tapis 1.0 Streams APIs. The latest release of
the Tapis Streams API has migrated to InfluxDB 2.x which
has resulted in some significant implementation changes for
the better. Three major changes include moving the once
separate real-time processing service into InfluxDB, adopting
Flux as the supported scripting language for queries and tasks,
and making the Influx database into bucket or name-spaced
structures. These changes are discussed in more detail in the
Implementation Section.

B. Tapis v3 Streams

Tapis version 3 (v3) provides an enriched set of open-
source, hosted Application Program Interface (API) platform
for distributed computation that enables researchers to manage
data and execute codes on a wide range of remote systems,
from high-speed storage and high-performance computing
systems to commodity servers.

The Tapis Streams API has been developed to support real-
time streaming data workflows with storage, retrieval, and
analysis of temporal sensor data. The Streams API is built
using the Python Flask web framework and interacts with other
Tapis Services such as Actors, Jobs, Security Kernel, Meta,
Tenants, and Tokens services as shown in Figure 1. Streams
resources are hierarchical and based on the Cloud Hosted
Real-time Data Services(CHORDS) [3] resource model, for
example, Project is at the top level in the hierarchy which
contains important information such as project description,
principal investigator, owner, metadata about the project. Next
in the hierarchy is a Site. A site is a geographical location with
spatial coordinates such as latitude, longitude, and elevation,
where the physical hardware for remote sensing is located. A
project can have multiple sites and the geo-spatial coordinates
associated with the sites can be used to search data related
to that site. The physical hardware where multiple sensing
devices are embedded is next in the hierarchy and is known
as an instrument. Each site can host multiple instruments
and they can be identified with their unique ids. Individual



Fig. 1. Tapis Streams API Architecture and New Channels Action Integrations (Slack, Discord, 3rd Party Web-hooks, Jobs) indicated with dotted lines.
Orange boxes are other Tapis API services leveraged by Streams. Streams specific infrastructure dependencies are shown in purple.

sensors are referred to as variables, which sense physical
parameters such as temperature, humidity, rainfall, etc., and
these measurements are stored in the InfluxDB time-series
database. All the resources can be accessed only by authorized
users and individual user roles.

The Streams API is deployed on an on-premise Kubernetes
cluster (Fig 1.) hosted at TACC along with other production-
grade Tapis services. The Streams API deployment consists
of four primary components: the Python API, the CHORDS
server, and two databases: InfluxDB for time-series measure-
ments and MySQL which CHORDS uses. CHORDS and
InfluxDB services are also deployed as individual services in
the same cluster. Kubernetes ConfigMaps and secrets objects
are used to configure the deployments. A Tapis deployer tool,
developed at TACC is used to automate the creation of Con-
figMaps and secrets, persistent volume claims, and to start the
entire Streams API stack. Every user request to access Streams
resources first goes through the Tapis Security Kernel for
authorization and authentication check to ensure that the user
has the necessary role to perform the requested action on the
specified Streams resource. Tokens service provides a signed
service JWT, which lets the Security Kernel and Metadata
service know that request is coming from an authentic source,
i.e., Streams service. Metadata service provides a backend
MongoDB for the Streams API, which stores all the metadata
associated with the Streams resources.

C. Tapis UI

To facilitate the usage of the Tapis APIs, Python and
TypeScript packages were developed. These packages provide
wrapper functions for submitting requests to Tapis. Addition-
ally, an online portal for interacting with Tapis via a user
interface, Tapis UI, was developed. This interface was created
using React, an open-source JavaScript framework for creating
web applications, and leverages the Tapis TypeScript library
for dispatching user actions to the Tapis APIs. A component
for interacting with the Tapis Streams API was included in
this portal. More details on Tapis UI are discussed in the later
sections.

III. TAPIS UI FOR THE STREAMS API

The Tapis UI Streams interface allows users to view data
stored by the Streams API. Projects, Sites, and Instruments are
listed in a hierarchical interface. Users are initially presented
with a list of projects. Clicking on a project will list the sites
associated with that project, and clicking on a site will list the
instruments associated with that site. Once a site is selected
the measurements for each variable tracked by that instrument
are displayed.

The displayed measurement data is grouped by variable
name. Each group provides a listing of the measurement values
and a timestamp for when the measurement was taken. Ad-
ditionally, a graph representing a time series of the measured
values is provided (Figure 2). Large numbers of values are
collapsed by default, displaying only the first and last two



Fig. 2. Tapis UI view for the Streams API. Displaying a set of measurements for rainfall and temperature over a 24-hour period.

measurements. This can be expanded by clicking on the block
of values.

The set of returned measurements can also be limited using
a set of filters displayed at the top of the measurements
panel. The available parameters are start date, end date,
limit, and offset. Setting a start or end date will limit the
returned measurements to the specified range based on their
timestamp. The limit field specifies a maximum number of
values to be returned. The offset field specifies the first value
to be returned. For example, an offset of 5 will skip the
first four measurements and return values starting at the fifth
measurement.

This portal provides a simple pre-developed dashboard for
users to view data being pushed into the Streams API. This can
limit the need for additional developer overhead for generating
basic visuals or monitor and validate data streams.

IV. CONCLUSION

In conclusion this paper has presented the updates to
the Tapis Streams design and implementation that enhanced
security, utility and access while maintaining the integrity
of the specifications. These new enhancements allow the
Tapis Streams API to better serve researchers through en-
hanced notifications, integrations and basic data access and
visualization of Stream’s data. The Tapis Streams API will
continue to evolve with additional actions to include advanced
search capabiites, share-able pre-authenticated data links and
ontology support for rich metadata.

V. SOFTWARE AVAILABILITY

The source code for the Tapis Streams API is avail-
able on GitHub at https://github.com/tapis-project/streams-api.
Source code for the Tapis-UI with streams can be found
https://github.com/tapis-project/tapis-ui

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
Office of Advanced CyberInfrastructure - Tapis Framework
[#1931439, #1931575] and the RII Track-1: Change Hawaii:
Harnessing the Data Revolution for Island Resilience NSF
OIA #2149133.

REFERENCES

[1] J. Stubbs et al., “Tapis: An api platform for reproducible, distributed
computational research,” Future Generation Computer Systems, 2021,
accepted.

[2] S. B. Cleveland, A. Jamthe, S. Padhy, J. Stubbs, S. Terry, J. Looney,
R. Cardone, M. Packard, M. Dahan, and G. A. Jacobs, “Tapis v3
streams api: Time-series and data-driven event support in science gateway
infrastructure,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 19, p. e6103, 2021.

[3] B. Kerkez et al., “Cloud hosted real-time data services for the geosciences
(chords).” Geoscience Data Journal, 2016, pp. 2–4.



What is the Hawaiʻi Climate Data Portal (HCDP)            
● A Place to get climate data and information

● A Tool that a allows us to explore the past, 
monitor the present, and project the future

● A Portal to other places and data sources

● An Opportunity to learn, to education, to 
network, and to share

https://hawaii.edu/hcdp

NSF #OIA-2149133



● s

Customize a 
Map

Download map 

Get Station Meta 
Data

Adjustable time series 
plots
Daily or monthly



Gateway Poster 

Text Mining and Sentiment Analysis of YouTube Videos: New Analytics Features for the “Social Media 

Macroscope” Science Gateway 

 

Abstract: 

This poster proposes a computational approach that supports social media analytics that can be included 

in the science gateway, Social Media Macroscope (Wang et al., 2023; Yun et al., 2019). This research 

applies text mining and sentiment analysis on historical and current opinions from YouTube videos 

regarding cryptocurrencies to construct a bidirectional Recurrent Neural Network model. The model 

predicts whether sentiments are positive or negative, aiming to assist and support investment decisions 

in cryptocurrencies. This analytics feature can be incorporated into the science gateway, Social Media 

Macroscope. Why is this feature important? Currently, cryptocurrencies are regarded as highly potent 

and popular assets with volatile market prices driven by market mechanisms, lacking central authority or 

intermediary. They facilitate direct transfer of value or data across the internet, recording all transactions 

in an immutable manner, ensuring flexibility, high security, and increasing accessibility and interest. 

However, the vast variety and high market volatility of cryptocurrencies are influenced by market 

demand, real-world applications, regulatory frameworks, competition, and news. This high investment 

risk complicates decision-making for investors on when and which cryptocurrencies to invest in. Overall, 

this poster contributes to the knowledge on science gateways by expanding research and capability of 

science gateways for the social sciences in general, and social media analytics specifically. 

 

Keywords: text mining, sentiment analysis, social media macroscope, cryptocurrency, social media 

analytics 

 

References 

Wang, C., Kim, Y. W., Kooper, R., & Yun, J. (2023, October 30). SMILE: A User-Friendly Science Gateway for 

Social Media Research and Collaboration. Science Gateways 2023 (SG23), Pittsburgh, PA. 

https://doi.org/10.5281/zenodo.10028454 

Yun, J. T., Vance, N., Wang, C., Marini, L., Troy, J., Donelson, C., Chin, C. L., Henderson, M. D. (2019). The 

Social Media Macroscope: A science gateway for research using social media data. Future Generation 

Computer Systems. doi:10.1016/j.future.2019.10.029 


	Gateways2024_paper_1.pdf
	Abstract
	References


	Gateways2024_paper_2.pdf
	I. Introduction (Heading 1)
	References


	Gateways2024_paper_3.pdf
	Tutorial Specifications
	Serverless Research Data Repository Model
	SRDR Architecture
	Tutorial Goals
	Prerequisites
	Tutorial Agenda
	Tutorial Content
	Introduction on SRDR
	The Datasets and Collection
	The Catalog

	Instructors
	References

	Gateways2024_paper_4.pdf
	Gateways2024_paper_5.pdf
	Gateways2024_paper_6.pdf
	Gateways2024_paper_10.pdf
	Gateways2024_paper_11.pdf
	Gateways2024_paper_12.pdf
	Introduction
	System Design
	Hub: Models and Datasets Discovery
	Models Hub
	Datasets Hub

	Inference Server
	Persistent Data Storage
	User Interface

	Target Users
	Session
	References

	Gateways2024_paper_13.pdf
	Gateways2024_paper_14.pdf
	
	Introduction
	LROSE Background
	Why LROSE in a Science Gateway?

	Methodology
	Results and Discussion
	Education Applications
	Challenges

	Conclusion and Future Work
	Acknowledgments
	References

	Gateways2024_paper_15.pdf
	Introduction
	Background
	Implementation
	Reader Class
	Decoder Class
	Driver

	Results
	HCDP Interface Integration
	Future Work
	References

	Gateways2024_paper_16.pdf
	Gateways2024_paper_17.pdf
	Introduction
	Security Tools and Methodologies
	Scientific applications
	The Einstein Toolkit
	Octo-Tiger

	Implementation and Testing
	The Einstein Toolkit
	Octo-Tiger
	Generic Science Codes

	Configuration
	Runtime measurements
	Conclusion
	Appendix A: Supplementary materials
	References

	Gateways2024_paper_18.pdf
	Gateways2024_paper_19.pdf
	Gateways2024_paper_20.pdf
	Gateways2024_paper_21.pdf
	Gateways2024_paper_22.pdf
	Gateways2024_paper_23.pdf
	Introduction
	Methods
	Requirement Analysis
	Tool Selection
	Custom Service Development
	Approach and Deployment
	Performance Benchmarking
	Additional Development Considerations


	Discussion
	Acknowledgments
	References

	Gateways2024_paper_26.pdf
	Gateways2024_paper_27.pdf
	Gateways2024_paper_29.pdf
	Gateways2024_paper_31.pdf
	HelioCloud Overview
	Slide 2

	Gateways2024_paper_32.pdf
	Slide 1

	Gateways2024_paper_33.pdf
	Gateways2024_paper_35.pdf
	Gateways2024_paper_36.pdf
	Gateways2024_paper_37.pdf
	Gateways2024_paper_39.pdf
	References

	Gateways2024_paper_40.pdf
	Gateways2024_paper_41.pdf
	Gateways2024_paper_42.pdf
	Gateways2024_paper_44.pdf
	Gateways2024_paper_45.pdf
	Gateways2024_paper_47.pdf
	Gateways2024_paper_48.pdf
	Gateways2024_paper_50.pdf
	Gateways2024_paper_51.pdf
	Gateways2024_paper_52.pdf
	Gateways2024_paper_53.pdf
	Slide 1
	Slide 2: About Me

	Gateways2024_paper_54.pdf
	Gateways2024_paper_55.pdf
	Gateways2024_paper_56.pdf
	Slide 1: Tapis User Interface for Machine learning Edge 
	Slide 2: Tapis User Interface for Machine learning Edge 
	Slide 3: Tapis User Interface for Machine learning Edge 

	Gateways2024_paper_57.pdf
	Gateways2024_paper_58.pdf
	Gateways2024_paper_60.pdf

