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Significance

 Many cities seek to alleviate 
extreme heat via planting trees. 
However, the cooling achieved by 
such programs is debated 
because previous analyses 
address scales much smaller 
than the whole-city scale on 
which planners operate. To fill 
this gap, we conducted a scaling 
analysis of cooling efficiency 
(CE)—the temperature reduction 
associated with 1% of increasing 
urban tree canopy (UTC)—to 
predict whole-city CE. Results 
show that CE increased with 
enlarging spatial scales in a 
convex power-law form. The 
power law was consistently 
found in multiple cities with 
different climate contexts and 
was also robust under different 
summer weather conditions 
within a city. Power-law scaling of 
CE can provide a tool for urban 
planners to set UTC goals for 
mitigating extreme heat.
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Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to 
human health and urban sustainability. Tree planting is one of the most widely employed 
nature-based heat mitigation methods worldwide. Therefore, city policy makers require 
knowledge of how much temperature will be reduced by increasing urban tree canopy 
(UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude 
of temperature reduction associated with a 1% increase in UTC, has been primarily 
investigated at smaller scales previously. However, such small-scale results cannot be used 
to develop policy at the whole-city scale. This study developed a method that reveals 
the scaling relations of CE so as to predict its effects at the city scale. CE was found to 
follow the form of a power law as spatial scale increased from the small analytical units 
through intermediate size units up to the extent of a whole city. The power law form 
appeared consistently across cities with different climate backgrounds during summer 
daylight hours. Furthermore, the power law form was robust within cities under dif-
ferent summer weather conditions. The power-law scaling approach can thus be used 
to predict CE at the whole-city scale, providing a useful tool for managers to set UTC 
goals to mitigate extreme urban heat.

urban heat island | cooling efficiency | urban tree canopy (UTC) | nature-based solution

 Cities worldwide are experiencing increased extreme heat due to the synergistic effects of 
global warming and the urban heat island (UHI) effect ( 1 ,  2 ). According to Tuholske et al. 
( 3 ), global exposure to daily maximum wet bulb temperature of 30 °C increased nearly 
200% from 1983 to 2016. Exposure to such extremes is expected to grow with continued 
global warming and growth of cities ( 4 ,  5 ). To address this challenge, expanding urban 
tree canopy (UTC) is increasingly used as a nature-based solution for heat mitigation 
because trees can provide significant cooling effects ( 6 ,  7 ). To set UTC goals, the foremost 
question managers and decision-makers have asked is, “How much UTC cover does 
our city need” ( 8       – 12 )? This question is crucial because cities typically have limited space 
for greening. Addressing the question is challenging as it must involve social, economic, 
political, and planning perspectives. Essential to meeting the challenge is rigorous sci-
entific evidence concerning UTC services. One critical gap is the need for managers 
and decision-makers to understand the magnitude of temperature reduction with dif-
ferent UTC goals at the whole-city scale ( 13 ,  14 ). However, analysis of UTC impacts 
has mostly been done using spatial units much smaller than a city, such as neighbor-
hoods, resulting in a scale-mismatch between the scientific understanding and that 
needed in planning practice. Our goal is to bridge this gap by providing planners a tool 
to quantify how much cooling results from a change in per unit UTC at the scale of 
entire cities ( Fig. 1 ) ( 15 ,  16 ).        

 Considerable research has investigated the cooling effects of change in UTC ( 17 ,  18 ). 
For example, studies have shown that as UTC within neighborhoods increases, temperature 
significantly decreases ( 19   – 21 ). With one percent of increase in UTC, temperature can 
decrease 0.04 to 0.57 degrees at these fine scales ( 22 ,  23 ). However, results from these 
studies cannot answer the question at the whole-city scale because they focused on much 
smaller scales. While findings at the neighborhood scale can guide planting trees to improve 
local thermal comfort and livability ( 19 ,  20 ), planners and decision-makers are often 
concerned about groups of neighborhoods, or larger districts, and ultimately the whole 
city scale. Whether or not finer-scale results can be extrapolated to the city scale remains 
unaddressed. Determining whether the cooling effects at the neighborhood scale can be 
extrapolated to the city scale is a necessary step to address the concern of city managers 
and planners ( 16 ).

 Here, we use the well-established cooling efficiency (CE) approach ( 20 ,  22 ) beyond 
the neighborhood scale. By quantifying the CE at different scales, which is defined as the 
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size of the analytical unit, we test whether there is a statistically 
robust scaling relationship of CE up to the whole city scale. In 
particular, we test whether or not the change in CE with the size 
of analytical unit follows a predictable power-law function. Our 
tests are inspired by the widely observed power-law scaling rela-
tionship in previous studies of biology, ecology, and urban science 
( 24       – 28 ). Our research aims to determine whether or not a power 
law function is useful for extrapolating to the whole city scale. In 
addition, we investigate the consistency and robustness of these 
scaling relations under different climate backgrounds and summer 
weather conditions. Exploring the scaling relationship that links 
CE and a range of scales is critical to understanding the temper-
ature reduction of urban tree planting and could be harnessed to 
advance cities’ UTC initiatives. 

Scaling of CE

 Scaling as a tool for revealing underlying patterns and processes has 
been instrumental in understanding issues across the entire scale of 
systems. Power-law scaling is widely observed in biology, ecology, 
and urban science studies ( 24       – 28 ). CE—the magnitude of the tem-
perature reduction resulting from the increase of 1% of UTC—can 
quantify the potential cooling capacity of urban tree planting ( 19 , 
 22 ). At each scale, defined as the size of the analytical unit, we meas-
ured CE using the absolute values of coefficients estimated from the 
regression analysis between the percent cover of UTC (Ptree) and 
land surface temperature (LST). In this study, we plotted the size of 
the analytical unit against CE and estimated the fit of this relationship 
to the power-law function, expressed as Eq.  1   ( 24         – 29 ),

﻿﻿
QS = kS� ,

  

  where  S  is the size of analytical units, QS  is the CE value,  k  is the 
normalization constant, and  �  is the scaling exponent which quan-
tifies the rate of scaling ( 28 ,  29 ).  

Results

CE of UTC Scales Following a Power Law. The CE of UTC in 
summer daytimes follows a power law relation with the size of 
the analytical unit S:

CE = (0.057 ± 0.047)S (0.165±0.106).

In particular, CE scaled sublinearly, with the scaling exponent 
being lower than 1, indicating that CE initially increased sharply 
with the increase of the size of the analytical unit S , but became 

relatively stable when the size of the analytical unit was large 
(Fig. 2 and SI Appendix, Fig. S1 and Table S1). The power law as 
a kind of function was consistent among the four cities, which 
represent different climatic conditions. Furthermore, it was robust 
to different summer daytime weather conditions within each city 
(Fig. 2). Therefore, the power law relationship between CE and the 
size of analytical units suggested that the CE quantified at smaller 
scales can be used to predict that at the city scale.

 The determination coefficient, R2  also tended to increase with 
the increase of the size of analytical units, suggesting that an 
increased proportion of the variations of LST was explained by 
UTC cover when scaling up. Similar to change in CE, the increas-
ing rate of R2  at larger scales would be smaller than that at smaller 
scales (SI Appendix, Fig. S2 and Table S2 ).  

The Power Law Scaling Is Affected by Climatic Conditions. 
Although the general pattern of scaling of CE in multiple cities 
and dates was similar, the parameter of the power law varied across 
cities and within-city across summer days. The scaling rate—as 
suggested by the scaling exponent in the power law—varied across 
the cities having different climatic conditions. CE scaled at low 
rates in arid cities (Fig. 2). For example, the scaling exponent in 
Sacramento was 0.066, significantly smaller than that of 0.102 in 
Baltimore (P < 0.01) (Fig. 2 A and B). As a result, CE increased 
by 0.03 °C in Sacramento, slower than the 0.06 °C in Baltimore, 
while shifting from the size of 120 m (i.e., a residential area scale) 
to the size of 2,760 m (i.e., a census unit scale) (SI Appendix, 
Table S3).

 Meanwhile, at the within-city scale, the scaling rate was affected 
by weather conditions significantly in Sacramento but insignifi-
cantly in other cities. In Sacramento, for example, the scaling 
exponent increased with air temperature significantly in a linear 
way (P  < 0.01) ( Table 1 ). Under the extreme day (e.g., mean 
temperature higher than 24 °C), the quadratic regression, rather 
than the power law, can produce an even better statistical fit 
(SI Appendix, Fig. S3 and Table S4 ).   

Discussion

The Mechanism of Power-Law Scaling of CE. This study is the 
first to document scale-dependence of the cooling effect of urban 
trees in the form of a power-law. CE refers to the temperature 
reduction achieved by increasing UTC by 1%, replacing other 
surfaces. Increasing UTC will change surface properties and affect 

[1]

[2]

Fig. 1.   The knowledge gap between scientific understanding of mitigation effects (A), and that needed for UTC practice (B) can be potentially addressed by the 
scaling law.
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local temperature. The mechanisms include changing albedo, 
which affects solar radiation; changing surface roughness, which 
affects heat advection; and increasing evapotranspiration, which 
reduces local temperature. We argue that the change in albedo, 
which is related to the species composition and canopy structure 
of UTC, and surface roughness, which is related to the structure 
of UTC and its interaction with other 3D structures, would be 
scale-independent. However, the change in evapotranspiration 
may be scale-dependent because it is significantly related to 
the size of tree patches (30, 31). As the patch size increases, the 
evapotranspiration rate first increases and then becomes relatively 
stable after reaching a certain size of urban tree patch in summer 
daytime (30–32). Therefore, changes in CE with the change in 
size of analytical unit is likely related to the scale-dependency of 
evapotranspiration. However, this warrants further research.

 While the power-law distribution has a similar form across 
different cities, the scaling rate was lower in Sacramento. This 
phenomenon can be attributed to the fragmented nature of the 
landscape and very dry summers of the mediterranean climate in 
Sacramento. Sacramento is characterized by small-sized UTC 
patches, instead of large forest patches found in the other cities 
( 19 ). We would expect these small-sized patches in Sacramento 
to be particularly sensitive to boundary layer effects. This could 
potentially lead to the relatively small increase in the CE with the 
increase in size of the analytical unit. This is a topic for future 
research. Additionally, because the spatial configuration of UTC 
can affect the cooling effect ( 19 ), considering spatial configuration 
and its scaling also warrants future research.

 The variation in LST explained by percent cover of tree canopy 
(i.e., R2 ) increases with the size of analytical unit. This result is 
consistent with previous studies ( 33 ,  34 ), which show that 

bivariate relationships tend to be stronger with the increase of the 
size of the analytical unit or the decreasing spatial resolution of 
areal data. The increase in R2  is likely due to the statistical “smooth-
ing effect” with the increase of the size of the analytical unit ( 35 ). 
Additionally, the increase in R2  might be also related to the 
scale-dependency of evapotranspiration described above, which 
warrants further research.  

The Implications of Scaling Relations of CE. Power-law 
relationships could help to predict the cooing benefit, i.e., the 
mitigation magnitude provided by a given amount of new UTC 
planted at the whole-city scale. Predicting cooling benefits 
is essential for policy making, for example, setting urban heat 
mitigation goals and milestones for increasing UTC. We take 
Baltimore as an example. Our research predicted that a LST 
reduction of 0.23 °C (0.21 to 0.27) could be achieved if 1% of 
UTC were added to the city, implying that a goal of increasing 
UTC by 6.39% (5.62% to 7.21%) could achieve 1.5 °C of 
temperature reduction (Fig. 2 and SI Appendix, Table S1). This 
prediction is based on the consistent and robust power-law scaling 
relations of CE found here.

 The power law relationships just discussed are found for Beijing, 
Shenzhen, and Baltimore for all the summer days sampled. Thus, 
the power law is a general pattern in all cities for all days in the three 
cities. Even in the arid city of Sacramento, the power law describes 
the CE relationship on most days with a mean temperature less than 
24 °C (SI Appendix, Table S1 ). Adding the extreme day with the 
highest mean temperature to the analysis, we found the quadratic 
regression to produce a better statistical fit (SI Appendix, Table S4 ). 
We expect that this is due to the fundamental physiological 

Fig. 2.   The power-law of CE with increasing the size of the analytical unit in Sacramento (A), Baltimore (B), Beijing (C), and Shenzhen (D). The color of solid lines 
indicates the change in air temperature and that of points indicates the change in vapor pressure deficit (VPD) on those summer sample days. The gray shades 
of 90% denote 95% CI of the power-law fittings. The solid black lines, shown as insets in the Upper-Left corner of each panel, represent the averaged power-law 
fittings for each city, and the gray shades of 50% denote 95% CI of the fittings.D
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limitation of evapotranspiration of trees under extreme heat and 
drought.

 Due to general global warming and drying ( 36 ), the air temper-
ature and VPD in urban areas would rise in the future, especially in 
already hot and dry cities, like Sacramento. Consequently, small 
values of CE were predicted at the whole city scale on extreme hot 
days. Thus, the temperature reduction achieved while reaching UTC 
goals today would be much higher than in a hypothetical but prob-
able hotter and drier future ( 22 ,  37 ). That is, achieving 7.5% increase 
in UTC- goals in Sacramento could meet 1.5 °C of temperature 
reduction today ( Fig. 2  and SI Appendix, Table S1 ), but larger UTC 
increases would be required to achieve the same target under future 
conditions (SI Appendix, Fig. S3 and Table S4 ). This implies that 
with global climate change, the cooling capacity of UTC will be 
challenged, and so will mitigation policies.

 Here, we used LST to investigate the scaling law of CE to UTC. 
Although air temperature is the factor that humans directly per-
ceive, and it is the stated concern in urban heat mitigation initi-
atives ( 38 ,  39 ), LST is a valuable parameter. LST has been widely 
used as a proxy for urban temperature due to its high spatial 
resolution and strong correlation with air temperature ( 40 ,  41 ), 
as well as with health risks ( 42 ). Therefore, future research using 
air temperature to investigate scaling is highly desirable, as it could 
shed light on the scaling of CE when there are sufficient air tem-
perature data. In this study, we demonstrated that the power law 
provides a robust relationship for the scaling of CE. Urban plan-
ners and policymakers can use this relationship to establish UTC 
goals for heat mitigation and adaptation.   

Materials and Methods

Summary. The research employed three main methodological steps (SI Appendix, 
Fig. S4): 1) We first defined different scales by creating regular grids with different 
sizes as units of analysis, ranging from 1 × 1 pixel (120 m × 120 m), 3 × 3 pixels 
(360 m × 360 m), 5 × 5 pixels (600 m × 600 m), to a maximum of 23 × 23 pixels 
(2,760 m × 2,760 m) for Baltimore and Sacramento, and a maximum of 37 × 
37 pixels (4,440 m × 4,440 m) for Beijing and Shenzhen. The largest analytical 
units depended on the sizes of the cities (19, 43). We extracted the percent cover 
of UTC (Ptree) from high-resolution remote sensing images and averaged LST 

from Landsat thermal bands for each analytical unit of all the different scales 
(SI Appendix, Fig. S4 A and B). We noted that the scaling approach defined here 
is different from the one widely used in previous studies (e.g., ref. 44), which 
increases the size of the spatial extent but with a fixed size of analytical unit 
(SI Appendix, Fig. S5). 2) We then calculated the CE by running the ordinary least 
squares (OLS) regression model of LST and Ptree for each size of analytical unit 
(SI Appendix, Fig. S4C). 3) We finally investigated the relationship between CE and 
the size of the analytical unit using a power-law function to reveal the scaling of 
CE (SI Appendix, Fig. S4D). We employed other fitting techniques (i.e., quadratic 
regression model) with higher fitness if the power function fit is insignificant 
(P > 0.01). In addition, we investigated the consistency and robustness of this 
scaling relation under different climate backgrounds and weather conditions.

Study Areas. We investigated four cities: Beijing and Shenzhen in China and 
Baltimore and Sacramento in the United States. Those four cities, located in very 
different biomes, have different climate contexts. Specifically, Shenzhen, built in 
a biome dominated by tropical and subtropical moist broadleaf forests, has hot 
and rainy summers (Köppen: Cwa), while Sacramento, located in the grassland 
biome, has hot and dry summers (Köppen: Csa). Beijing and Baltimore, belonging 
to the biome dominated by temperate broadleaf and mixed forests, have hot and 
humid summers (Köppen: Dwa, and Cfa, respectively). The four cities are located 
in typical biomes (45) and climate types (46), which makes them representative 
of diverse urban conditions. We focused on the areas within the city limit for 
Baltimore and Sacramento, that is 239 km2 and 259 km2, respectively, and the 
main urban areas for Beijing and Shenzhen that cover 666 km2 and 968 km2, 
respectively (47, 48).

Data. We mapped the UTC based on high-resolution imagery using an object-
based classification approach (49, 50). The high-resolution image data included 
the 1 m resolution NAIP (National Agricultural Inventory Program) 4-band color-
infrared aerial imagery acquired in 2007 for Baltimore and 2010 for Sacramento, 
and the 1.5 m Pleiades imagery acquired in 2015 for Beijing and 2016 for 
Shenzhen.

We derived LST from the thermal infrared (TIR) bands of Landsat images that 
were collected on clear, sunny summer days (SI Appendix, Table S1). To increase 
sufficient sample days to calculate CE, we collected Landsat images 2 y before and 
after the year the high-resolution imagery was obtained because we assumed that 
UTC would not change significantly in the short term. LST data were calculated 
following the methods detailed in Zhou et al. (19).

Data, Materials, and Software Availability. Original data have been depos-
ited in Figshare (51) (https://doi.org/10.6084/m9.figshare.25020404). All other 
data are included in the manuscript and/or SI Appendix.
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