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There are urgent calls for new approaches to map the global urban conditions of complexity, diffuseness, diversity,
and connectivity. However, existing methods mostly focus on mapping urbanized areas as bio physical entities.
Here, based on the continuum of urbanity framework, we developed an approach for cross-scale urbanity map-
ping from town to city and urban megaregion with different spatial resolutions using the Google Earth Engine.
This approach was developed based on multi-source remote sensing data, Points of Interest — Open Street Map
(POIs-OSM) big data, and the random forest regression model. This approach is scale-independent and revealed
significant spatial variations in urbanity, underscoring differences in urbanization patterns across megaregions
and between urban and rural areas. Urbanity was observed transcending traditional urban boundaries, diffusing
into rural settlements within non-urban locales. The finding of urbanity in rural communities far from urban areas
challenges the gradient theory of urban-rural development and distribution. By mapping livelihoods, lifestyles,
and connectivity simultaneously, urbanity maps present a more comprehensive characterization of the complex-
ity, diffuseness, diversity, and connectivity of urbanized areas than that by land cover or population density
alone. It helps enhance the understanding of urbanization beyond biophysical form. This approach can provide
a multifaceted understanding of urbanization, and thereby insights on urban and regional sustainability.

1. Introduction

ized, affecting peri-urban, rural, and wilderness areas far from the urban
core (van Vliet, 2019). Simultaneously, urbanized areas are becoming

More than half of the world population now live in urban areas, with increasingly mixed and diffused due to rapid urbanization and the huge
more people expecting to move to cities (Reia et al., 2022; Wahba Tadros demand for infrastructures (Hutchings et al., 2022). These situations
et al., 2021). Over this process, landscapes became increasingly urban- greatly challenge the understanding and continued application of the
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existing urban-rural dichotomy system to urbanized areas (Serra et al.,
2014; Wang, 2022).

The urban-rural gradient (Mcdonnell and Pickett, 1990) or contin-
uum (McKenzie, 1930) offers an instrumental approach to analyze dif-
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fused urbanized areas. This approach deviates from the urban-rural di-
chotomy and acknowledges the varied degrees of urbanization and their
socio-ecological impacts in all regions (Halfacree, 2009; Padilla and
Sutherland, 2019). Urbanization typically follows a discernible pattern
of sequential changes along a gradient, including shifts in demograph-
ics, economic factors, administrative roles, and functions (Boone et al.,
2014; Marcotullio and Solecki, 2013). However, relying solely on these
gradient patterns may not capture the nuanced realities of contempo-
rary urbanized areas. Due to urban expansion, sprawl, and escalating
socio-economic infrastructural demands (Irwin and Bockstael, 2007;
Pandey et al., 2022), the demarcations between various urbanized re-
gions have blurred, showing complex, diffuse, diverse, and connected
characteristics (McHale et al., 2015). For example, urban megaregions,
which extend beyond traditional urban boundaries, consist of multiple
urbanized zones (Pickett and Zhou, 2017). These zones are intercon-
nected through extensive road networks facilitating material exchanges
and infrastructure hubs enabling information transmission (Seto et al.,
2012). Meanwhile, certain urban lifestyles are now emerging in rural
landscapes, even before their transition to urban settings (Lennon and
Berg, 2022; McGranahan et al., 2005). Urbanized areas no longer imply
that they must be understood and characterized as biological or physical
entities. Therefore, methods that map urbanized areas as biological or
physical entities cannot capture the contemporary global urban condi-
tions of complexity, diffuseness, connectivity, and diversity, which calls
for new approaches.

The four characteristics of urbanized areas, namely complexity, dis-
persion, connectivity and diversity, can be reflected in one concept, the
continuum of urbanity, a mixture of intersecting urban and rural ar-
eas (Boone et al., 2014). It is important to emphasize that the “con-
tinuum” is not a transect or linear gradient of change in real space.
Instead, it is an urbanization characterized by a mix of livelihoods that
enable people to support themselves, diverse lifestyles that embody con-
sumption, culture, and creativity, and connectivity that links dispersed
areas and is not confined by physical or administrative boundaries
(Pickett and Zhou, 2017). Thus, unlike the ‘visible’ urbanization features
(e.g., built-up land, population), with the framework of continuum of
urbanity, urbanity is the ‘invisible’ and integrative urbanization feature
including livelihoods, lifestyles, and connectivity (Boone et al., 2014;
Montgomery, 1998). Therefore, urbanity defined here differs from that
used in many previous studies portraying urbanity from the perspective
of physical structures and forms, such as street networks and urban land
use patterns, with the aim of revealing the diversity of inner-city spaces,
enhancing the social vitality of urban spaces, and serving spatial design
(Mohammed and Ukai, 2023; Yap et al., 2023; Ye et al., 2017). The
continuum of urbanity provides a powerful framework for understand-
ing contemporary global urbanization and is increasingly used in studies
of urbanization and its social and ecological impacts (Nagendra et al.,
2013; Seto and Reenberg, 2014; Zhou et al., 2021; Zhou et al., 2022).
However, the application of continuum of urbanity has been hindered
by the lack of methods and products for spatial quantification.

The integration of the increasingly available remotely sensed data
and crowdsourcing big data provide opportunities to quantify the con-
tinuum of urbanity in a spatially explicit way. Remotely sensed data
have long been used to map urbanized areas (Zhu et al., 2019), and
quantify urbanization related indicators such as population density, and
socio-economic profile of urbanized areas (Li et al., 2020; Wang et al.,
2018; Zheng et al., 2023). Crowdsourcing big data has been increas-
ingly used to measure urbanization (Cai et al., 2017; Herfort et al., 2023;
Li et al., 2016; Xu et al., 2023). For instance, Points of Interest (POIs)
cover a range of infrastructures and locations essential to livelihoods
and lifestyles (Wang et al., 2022). Data from Open Street Map (OSM)
about transportation facilities can be used to assess varied commuting
patterns (Barrington Leigh and Millard Ball, 2020; Weiss et al., 2018).
Therefore, combining remote sensing and big data has great potential
to comprehensively portray urbanized regions and overcome data con-
straints in urbanization studies (Uhl et al., 2023; Ye et al., 2019).
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Here, based on the continuum of urbanity framework, we developed
an approach for cross-scale urbanity mapping from towns to cities and
urban megaregions with different spatial resolutions using the Google
Earth Engine. This approach was developed based on multi-source re-
mote sensing data, Points of Interest — Open Street Map (POIs-OSM)
big data, and the random forest regression model. By explicitly quan-
tifying livelihoods, lifestyles, and connectivity, urbanity mapping helps
enhance the understanding of urbanization on its socioeconomic charac-
teristics, which is beyond the biophysical form. With the widely avail-
able remote sensing and big data, this approach provides researchers
and policymakers with a multi-faceted understanding of urbanization,
promoting urban sustainability, planning, and strategy development.

2. Materials and methods
2.1. Study areas and workflow

We mapped livelihood, lifestyle and connectivity and the combined
characterization of urbanity areas at 1,000 m, 30 m and 10 m for the
three scales of urban megaregion, city, and town, respectively. Urban
megaregion is a large area formed by the intertwining of urban areas
and their expanding suburbs, new urban settlements and new infras-
tructures, and it has been recognized as the primary urban form for the
future of urbanization (Fang and Yu, 2017). In this study, the urban
megaregion scale involves six regions, namely Beijing-Tianjin-Hebei
(BTH), Yangtze River Delta (YRD), Wuhan (WH), Chengdu-Chonggqing
(CC), Changsha-Zhuzhou-Xiangtan (CZX), and Pearl River Delta (PRD)
(Fig. 1(a)). These urban megaregions are the frontiers of China’s urban-
ization, as they contain the major urban lands, populations, economies,
and infrastructures across the country (Yu and Zhou, 2017). Second,
we selected Beijing as the city scale study area (Fig. 1(b)), which
serves as both the center of the BTH megaregion and China’s political
and cultural center. In 2020, Beijing comprised 16 districts with 21.8
million residents. It ranked second in GDP scale among major cities na-
tionwide, following Shanghai. The annual GDP growth rate for Beijing
was 1.2% (https://www.qianzhan.com/analyst/detail/220/211122-
b2607781.html). Third, Yanqi town, a suburb of Beijing, was selected
as the town scale study area (Fig. 1(c)). Yanqi town spans the urban
boundary, with the southeastern side comprising flat urban areas.
In contrast, most of the northwestern side comprises valleys and
mountains, with many rural settlements nestled within the valleys.
The town has gradually transitioned from agricultural production to
non-agricultural tourism revenue generation. In the last decade, Yanqi
town has boasted 108 resorts, 4 folk tourism professional villages at
the municipal level, 485 folk households, and has received 1.58 million
tourists, generating a comprehensive tourism revenue of 190 million
CNY (http://www.bjhr.gov.cn/).

Urbanization have been often characterized by confined biophysical
factors, such as a higher proportion of built-up lands, a dense popula-
tion distribution and a developed economy (Mahtta et al., 2022). How-
ever, urbanization is also a social process (Hahs, 2016; Murayama and
Estoque, 2020), represented by, e.g., less agrarian livelihoods, increas-
ing urban lifestyles, and increased connectivity. Such shifts can be at-
tributed to different types of infrastructures (Gebreyes et al., 2020;
Gutierrez-Velez et al., 2022; Hecht et al., 2015). Therefore, accord-
ing to the continuum of urbanity framework, we argue that urbanity
is an ‘invisible’ urbanization characteristic that synthetically describes
livelihoods, lifestyles, and levels of connectivity that include the urban
entity and its surrounding areas, which is more applicable to a holis-
tic portrayal of urbanization in any part of the world (McHale et al.,
2015). Furthermore, we argue that portraying urbanization anywhere
requires adapting to different data sources and spatial scales. Conse-
quently, we have developed a mapping workflow that adapts to three
types of data sources and spatial scales based on the Google Earth
Engine platform and a random forest model (Fig. 2). We referred to
Rosier et al. (2022) study and used a unified mapping methodology in
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Table 1
Data list.
Urban
Spatial Scales megaregion City Town Resources
Resolution 1000 m 30 m 10 m
Independent Proportion of http://www.globallandcover.com
variables built-up land
Population https://www.worldpop.org/datacatalog
density
Nighttime lights http://geodata.nnu.edu.cn
Elevation https://www.usgs.gov
Slope
Elevation
Slope
B2/B3/B4/B5/B6 Landsat 8 OLI SR
NDVI, MNDWI,
NDBI, IBI
B2/B3/B4/B8/B11 Sentinel MSI
NDVI, MNDWI,
NDBI, IBI
VV and VH Sentinel SAR
Dependent Livelihood: healthcare, financial institutions, businesses, factories, POIs from AMapTM and OSM
variables and scientific education.

Lifestyle: leisure and entertainment, shopping, and dining.
Connectivity: highways, primary, secondary, and tertiary roads,
railways, train stations, airports, telecommunications outlets, and

courier stations.

Note: B2, B3, B4, B5, B6, B8, B11 represents different band image of Landsat and Sentinel.

three spatial tests to show that our urbanity is not scale-dependent (See
appendix text S4 for details of the mapping flow). The complete code for
this study and the mapping data source are located in Google Earth En-
ginewith the link to view the mapping process and results: https://code.
earthengine.google.com/10b7b5af6ee8c1f9fd7d55d3a55db541

2.2. Materials

As shown in Table 1, at the urban megaregion scale, the urbanization
indicators used for urbanity mapping include the proportion of built-up
land, population density, nighttime lights, elevation, and slope. At the
city and town scales, we select the main bands and surface indices in
Landsat 8 and Sentinel MSI & SAR, respectively, as the independent
variable input data sources (See appendix text S1, Fig. S1 and Fig. S2
for image and band processing). The input data for the dependent vari-
able is the POIs-OSM data source). Furthermore, we used some existing
spatial data on urbanization as auxiliary data for analysis, comparison,
and validation (See appendix text S1, S2 and S3).

2.3. Methods

2.3.1. Kernel density estimation

The method employed in this study for kernel density estimation
(Diggle, 1985) involves the calculation of bandwidth using the Silver-
man empirical bandwidth method (Zhou et al., 2019). Kernel density
estimation is a statistical technique for estimating the probability den-
sity function. This method incorporates sample standard deviation, sam-
ple size, and dimensionality to estimate the bandwidth. By adapting to
the variability of the data, this method effectively determines the opti-
mal bandwidth, leading to more accurate results in kernel density esti-
mation. By employing the Silverman empirical bandwidth method, we
achieve a balance between smoothness and precision, resulting in reli-
able estimates of kernel density.

2.3.2. Random Forest regression

We utilized the non-parametric Random Forest (RF) algorithm for
urbanity mapping. RF, an ensemble decision tree approach founded on
bagging and random subspace, addresses the challenges associated with
high-dimensional data and feature-instance ratios (Breiman, 2001). In
step 4 of Fig. 2, we employed the spatial regression algorithm, specif-
ically designed for continuous variables, and inputted the independent
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and dependent variables into the RF model to determine the spatial
distribution of livelihood, lifestyle, and connectivity in three spatial
scales (the regression parameters are shown in Fig. S3). Continuous ad-
justments were made to the hyperparameters and optimization was con-
ducted on the model to achieve optimal accuracy. Additionally, we used
70% of the data for regression and 30% for accuracy validation.

2.3.3. Accuracy assessment

First, we used the Root Mean Square Error (RMSE) to test the
goodness-of-fit of the RF regression. The RMSE is a popularly used statis-
tical metric for assessing the accuracy of predictive models, especially in
the context of continuous variables (Chai and Draxler, 2014). It offers
an interpretable scale-based evaluation of a model’s prediction accu-
racy by computing the square root of the mean of the squares of all the
prediction errors. The prediction error is simply the difference between
the actual observed values and the values predicted by the model. A
lower RMSE value signifies better model performance, i.e., the model’s
predictions are closer to the observed data. Second, we evaluated the
accuracy of the RF regression model by quantifying the correlation be-
tween observed and predicted outcomes (Khuri, 2013). This measure,
known as the coefficient of determination (R?), assesses the proportion
of variance in the dependent variable explained by the model’s indepen-
dent variable(s). An R? value can range between 0 and 1, where values
approaching 1 signify a higher degree of model fit, demonstrating that
the model accounts for a larger proportion of the dependent variable’s
variance. Furthermore, we also compared the mapping results of urban-
ity with other remote sensing classification products for built-up land,
such as Global Human Settlement Layer (GHSL) (Schiavina et al., 2022),
Global Urban Boundary (GUB) (Li et al., 2020), ESA10 m land products
(Zanaga et al., 2022), Urban Rural Catchment (URC) (Cattaneoet al.,
2021), and Near real-time global 10 m land cover (Brown et al., 2022)
(See appendix text S3).

3. Results
3.1. Mapping urbanity at the urban megaregion scale

The spatial regression analysis was performed on the variables of
construction land proportion, population density, nighttime light inten-
sity, and topography, utilizing a resolution of 1,000 m. The resultant
R? values exceeded 0.85, and the RMSE of the training samples were
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Fig. 3. Spatial distribution of Urbanity in six urban megaregions. (a) Livelihood, (b) lifestyle, and (c) connectivity, and their sums are characterized as (d) urbanity.

Each histogram panel matches the distribution of 1,000 m pixels in space.

lower than those of the validation samples, which collectively attest to
the robustness of our model (Fig. S4). The distribution of urbanity across
urban megaregions exhibited a considerable degree of spatial variation
(Fig. 3). The histograms representing livelihood, lifestyle, and connec-
tivity demonstrate multiple peaks. More specifically, areas with better
livelihood conditions were coded with increasingly red colors, while
a greener color represented more diversity in lifestyle. Furthermore,
stronger external connections were symbolized by bluer colors. These
multiple peaks indicated a spatially intersecting distribution of areas
with high and low values (Fig. 3(a), (b), (c)).

The comprehensive representation of these three dimensions yielded
a clear delineation of urbanized areas - a measure we term urban-
ity. Areas exhibiting higher urbanity - depicted in deep green colors -
marked the physical urban boundaries and signaled superior livelihood,
lifestyle, and connectivity. Conversely, areas colored yellow or orange
corresponded to lower urbanity values, implying that while these lo-
cations may not be urbanized in a traditional sense, they still exhibit
varying degrees of livelihoods, lifestyles, and connectivity. Our analysis
of urbanity across various urban megaregions revealed substantial dif-
ferences (Fig. S5). The YRD region demonstrated the highest median ur-
banity value (2.29), followed by the PRD region (2.12), WH (2.00), CZX
(1.94), BTH (1.92), and CC (1.87). These urbanity rankings offer a com-
parative perspective on the degrees of urbanization across regions. Fur-
thermore, they elucidate variations in the spatial distribution of liveli-
hood, lifestyle, and connectivity among these six urban megaregions
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(Fig. S5). For instance, YRD and BTH regions show multiple consecu-
tive high peaks in the histograms, indicating heterogeneous spatial dis-
tributions. In contrast, the PRD region shows a smoother distribution in
high-value areas, suggesting lower spatial heterogeneity. On the other
hand, the urbanity distribution in WH, CC, and CZX revealed a singular
peak, implying a more uniform spatial distribution of urbanized areas.
In this study, we employed the urban-rural gradient tool from the
Global Human Settlement Layer (GHSL) dataset to evaluate urbanity
across various gradient type (Fig. 4). Our findings indicate a spread of
urbanity into traditionally deemed rural areas. The GHSL system clas-
sifies the urbanization level into seven categories based on the integra-
tion of built-up land and population density indicators, and considers
the urbanization level to be decreasing from the urban centre to very
low density rural (Fig. 4(a)). However, the urbanity in the urban-rural
gradient does not follow a linearly decreasing pattern of change; in-
stead, the urbanity level rises sharply when transitioning from inside to
outside of the urban area. The median values of urbanity are higher in
both suburban (2.20) and rural (1.98) than in semi dense urban clus-
ters (1.96). This suggests that while suburban and remote rural areas
are lower urbanized areas in the traditional urban-rural gradient, from
an urbanity perspective, suburban and rural areas not only share similar
livelihoods, lifestyles, and connectivity characteristics with urban areas,
but also have higher levels than urban areas. Moreover, the urbanity
histograms for the seven gradient types disclosed a blend of both high
and low values in rural locales, with dark green depicting high values
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and orange-yellow signifying low values. Despite the general decreasing
trend, urbanity within the seven gradient types still exhibited multiple
peak distributions, signaling its heterogeneity along the conventional
urban-rural gradient. This observation underscores the complexity and
diffuseness of urbanity even within the context of traditionally defined
urban-rural gradients.

3.2. Mapping urbanity at the city scale

We conducted a mapping of urbanity in Beijing at a 30-meter res-
olution for the year 2020, leveraging unclassified Landsat multispec-
tral satellite imagery (Fig. 5). The ensuing model fit results showcased
R? values exceeding 0.85, and RMSE for the training samples that was
lower than that of the validation samples, reflecting a robust perfor-
mance of the model overall (Fig. S6). This analysis drew a more distinct
spatial structuring of livelihood, lifestyle, and connectivity. Urbanity,
their combined representation, effectively outlined the extent of urban-
ization in Beijing, as evinced by the dark green areas. Drawing upon the
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urban and non-urban demarcations ascertained by the 2020 GUB, it was
observed that the median urbanity was higher in urban zones compared
to non-urban areas (2.39 versus 1.60) (Fig. 5(b) and (d)).

However, in the non-urban areas, a bimodal distribution was noted
in the histograms of urbanity, livelihood, lifestyle, and connectivity
(Fig. 5(b), (c), (d), (e)). These twin peaks corresponded to the orange-
yellow regions and dark green areas distributed in valleys. This pattern
implies that urbanity transcends the physical boundaries of traditional
urban areas, suggesting the presence of potential urbanized areas nested
within non-urban regions.

3.3. Mapping urbanity at the town scale

In the Yanqi town, the model demonstrated R? values of 0.92, 0.91,
and 0.92 for livelihood, lifestyle, and connectivity, respectively. Further-
more, the RMSE for the training samples was smaller than that of the
validation samples, denoting the model’s proficient fitting performance
(Fig. S7). Within Yanqi town, areas with high livelihood values were pre-
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Fig. 6. Urbanity Distribution in Yanqi town. (a) Livelihood, (b) lifestyle, (c) connectivity, and their sums are characterized as (d) urbanity. The upper and lower
panels are histograms of the three dimensions and urbanity. (e)-(j) Comparison of ESA 2020 10 m built-up land (Zanaga et al., 2022) with urbanity.

dominantly localized to the urban regions on the southeast side, while
lifestyle and connectivity were more extensively distributed (Fig. 6(a),
(b), (c)). Urbanity effectively delineated the spatial structure of the ur-
banized areas (Fig. 6(d)). Compared to binary land cover classifications,
urbanity, with its continuous numerical values, revealed spatial hetero-
geneity in densely built-up land areas (Fig. 6(i) vs. (j)). The physical
urban areas manifested a blend of high and low urbanity traits. Con-
versely, urbanity detected more nuanced potential urbanized regions
within the river valleys, which are traditionally classified as non-urban
areas. Conventional land cover classifications underestimated or even
entirely overlooked these regions, leading to an under-extraction and
under-detection of certain functional building zones (Fig. 6(e) vs. (f),
(g) vs. (h)). Utilizing 80 m x 80 m sampling frames, we computed the
median urbanity along the urban-rural distance gradient for six villages
(Fig. S8). The analysis revealed that the remote villages in river valleys
did not exhibit a lower urbanity, despite their distance from urban cen-
ters, further emphasizing the compatibilities and mixture of urbanity in
urban and rural areas.

4. Discussion
4.1. Urbanity reaches beyond urban entities into rural areas

This study introduces the concept of ‘urbanity’ to define what consti-
tutes an urbanized area, framing it as both socio-economic and physical
characteristics—such as land, population, and nighttime light—as well
as a mixture of livelihoods, lifestyles, and connectivity. Our research
gains significant insights from incorporating the continuum of urbanity
theory. According to this framework, irrespective of traditional ‘urban’
or ‘rural’ classifications, urbanity considers urbanized areas to be com-
ponents of an integrated system (Fig. 7(e)).

Depicting urbanized regions depends on how urbanization is under-
stood. The urban-rural dichotomy simplifies the spatial structure of ur-
banized areas, especially through the urban-rural household registration
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dichotomy that facilitates the classification and management of urban
and rural populations (Bai et al., 2014) (Fig. 7 (a) and (b)). However,
such understanding is insufficient for exploring the heterogeneity of ur-
banized areas and issues of sustainable development (McGranahan and
Satterthwaite, 2014). The urban-rural gradient or continuum has made
an important contribution to this (Dewey, 1960; Mcdonnell and Pick-
ett, 1990), and many studies have argued that it is simpler and more
reliable to characterize the continuum or dispersal categories of intra-
urban and surrounding areas in terms of gradients (Fig. 7(c) and (d))
(Dawazhaxi et al., 2022; Kaminski et al., 2021). Nonetheless, the cur-
rent increasingly dispersed and mixed urbanized areas are hardly suf-
ficient for revealing spatial structure and specific features through gra-
dients. Moreover, urbanization varies greatly across different regions
of the globe, requiring the adoption of universal concepts to under-
stand complex, diffuse, diverse, and connected urbanization systems
(McHale et al., 2015).

The continuum of urbanity provides a new perspective on this. All
places are an intertwined collection of urban and rural areas, and urban-
ization extends beyond physical boundaries, dispersing and integrating
with surrounding areas (Fig. 7 (e) and (f)). Each place mixes different
levels of livelihoods, lifestyles, and connectivity, which adds diverse so-
cioeconomic attributes to the existing biophysical spatial structure. Fur-
thermore, each place is linked to each other by connectivity (e.g., roads,
delivery points) to compose an area of urbanity. Thus, urbanization in
some places is no longer on a downward trend from the inside to the out-
side of the city but rather a mix of different livelihoods, lifestyles, and
connectivity diffused anywhere (Fig. 8). For example, at the megaregion
scale, where both the suburban and rural categories have higher levels
of urbanity than the semi-dense urban clusters (Fig. 8 (a) and (b)). At
the city scale, inner-city residential community and urban village share
similar livelihoods, lifestyles and connectivity characteristics with rural
community located away from urban areas (Fig. 8 (c) and (d)). More-
over, at the town scale, although remote villages in the valley are farther
away from the down town, their degree of urbanity does not decline
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Fig. 9. (a) Comparison urbanity with the urban-rural
catchment map (Cattaneoet al., 2021) at the 1,000 m
resolution, in six urban megaregions. (b) Relation-
ship between urbanity and urban-rural catchment map.
Note: BTH, Beijing-Tianjin-Hebei; YRD, Yangtze River
Delta; PRD, Pearl River Delta; CC, Chengdu-Chongging;
WH, Wuhan; CZX, Changsha-Zhuzhou-Xiangtan.
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Fig. 10. Relationship between urbanity and dynamic built-up land at the 10 m
resolution (Brown et al., 2022), in the Yanqi town. The fitting method for the
curves is the Generalized Additive Model (GAM) (Hastie, 1990), which solves
the fitting problem when there is a highly nonlinear relationship between the
response variable and the explanatory variables, and has an outstanding ability
to fit non-monotonic relationships. In the area of low probability of built-up
land, the slope of the fitted curve is larger, indicating a higher urbanity.

with distance, but rather has the same level of urbanity as the down-
town (Fig. 8 (e) and (f)). Therefore, this mapping method is not scale-
dependent and reveals the common fact that urbanity reaches beyond
traditional urban entity areas and diffuses into rural areas at different
spatial scales. Although the urban-rural dichotomy and the urban-rural
gradient consider rural areas as “visible” non-urbanized areas, urbanity
demonstrates that rural areas can be also characterized by similar liveli-
hoods, lifestyles, and connectivity as urban areas. In addition, this study
provides the first visualization of the spatial distribution of continuum
of urbanity and supports sociologists’ view that “although cities are the
characteristic sites of urbanism, people’s lifestyles are not confined to
urban areas” (Pahl, 2008; Wirth, 1938). This ‘invisible’ character of ur-
banization tells us that the effects of urbanization should not be limited
to urban entities, but that their surrounding rural areas also benefit from
urbanization and contribute to sustainable development (McHale et al.,
2013).

The urbanity reveals complex, diffuse, diverse and connected urban-
ized areas. For example, in six urban megaregions, urbanity reflects dif-
ferent urbanization patterns and spatial heterogeneity (Fig. S5). In Bei-
jing city, while the physical extent of urbanization has been defined
by the city boundary (GUB), urbanity demonstrates that livelihoods,
lifestyles, and connectivity like those in urban areas still exist in the
valleys of non-urban areas. Furthermore, in Yanqi town, we paid closer
attention to the spatial structure of urbanized areas within the urban
area and each rural community (Fig. 6). Rural communities and settle-
ments in the valleys cover the low-rise brick or concrete structures and
two main roads. However, these simple buildings can provide places for
livelihoods (rural enterprises), diverse lifestyle locations (tourist shops),
and connectivity networks (roads leading to the urban area and courier
points for material exchange).

4.2. Comparison with other urbanized maps

Comparisons between our urbanity maps and other studies showed
the coexistence of consistency and variability. Within the six urban
megaregions, we have shown that rural areas also reflect urbanity
through the urban-rural gradient of (Schiavina et al., 2022), which we
also compare with the urban-rural catchment of (Cattaneoet al., 2021)
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(Fig. 9(a)). Although urbanity exhibited a linear decrease with urban-
rural catchment. Higher urbanity was, however, found in small towns
dispersed in the peri-urban area, as well as in places far from the city
(Fig. 9(b)). Additionally, in terms of the comparison of fine-scale maps,
the probability of built-up land mapped by Brown et al. (2022) presented
a linear relationship with urbanity in general (Fig. 10). However, locally,
places covered with a few built-up lands have a higher urbanity, indi-
cating that urbanity represents potentially urbanized areas. Comparison
with the built-up land product from Zanaga et al. (2022) also suggests
that urbanity can highlight more heterogeneous urbanized areas (Fig. 6
(e)-(§)). The three study cases, as well as the results of the comparisons
between maps, demonstrate the sensitivity of urbanity mapping to spa-
tial scales and multi-source remote sensing data. Therefore, the urbanity
mapping approach we developed can be used as an analytical study to
support urbanization within different spatial scales.

4.3. Mapping applications

For a long time, urbanization has been recognized as one of the pri-
mary drivers of social and environmental problems, thus posing a signif-
icant barrier to sustainable development (Pauleit et al., 2021). However,
urbanization can also present opportunities for achieving sustainability
(Childers et al., 2014; Pickett and Zhou, 2017; Seto et al., 2012). In this
regard, our mapping results can be linked to the established Sustain-
able Development Goals (SDGs). For instance, livelihood corresponds to
SDG 8.2, representing diversified employment, technology, and innova-
tion; lifestyle corresponds to SDG 8.4, representing patterns of material
consumption; connectivity corresponds to SDG 11.2, representing af-
fordable and sustainable transportation systems (Fig. 11(c)). These three
dimensions, as pathways to regional sustainability, aim to enhance well-
being and social equity for people in any location (Boone et al., 2014;
Pandey et al., 2022; Seto et al., 2017).

A major challenge is that while urban entity areas are considered
representative of urbanization and are widely noted for the ecolog-
ical effects that exist, but potentially urbanized areas beyond urban
entities also have many ecological impacts as well (Hubacek et al.,
2009; Hutchings et al., 2022; van Vliet, 2019; Wang et al., 2012;
Yang et al., 2024). These places are gradually becoming dominated
by non-agricultural production as they develop socio-economically and
may have the same livelihoods, lifestyles, and connectivity as the
physical urban areas, thus having an impact on the local ecosystem
(Dawazhaxi et al., 2023). Therefore, portraying livelihoods, lifestyles,
and connectivity in rural areas is the primary objective, which in turn
explores the impact of urbanity in rural areas on the ecological envi-
ronment (Fig. 11(d)). For example, urbanization provides a protective
role for vegetation and alleviates damage to ecosystems from human
activities by improving people’s life quality and commute conditions
(Lietal., 2017; Wang et al., 2012; Zhang et al., 2022a; Zhou et al., 2022).
This will be one of the prospects for the application of this research
and data.

4.4. Research gaps and prospects

Our work has thus far built upon the continuum of urbanity frame-
work, fostering a comprehensive understanding of urbanized areas, and
developing a multi-spatial scale adaptable methodology for urbanity
mapping. Nevertheless, this study has some limitations. (1) Our data
sources present an area of challenge. The POIs delineating livelihoods,
lifestyles, and connectivity were chosen based on reference materials
and a priori knowledge, introducing a substantial degree of subjectivity
into our study. This can potentially influence the scientific legitimacy
of characterizing specific lifestyles or livelihoods. (2) On the mapping
methodology front, the third step in our workflow entails using each cell
from each type of kernel density raster as a sampling point, as opposed
to using the actual POIs’ locations. This choice could affect the precision
of our random forest spatial regression. However, it also circumvents the
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Fig. 11. Prospects for the application of urbanity mapping. (a) Based on the continuum of urbanity theory to (b) mapping the three dimensions of urbanity. (c)
Converting the three dimensions of urbanity into SDGs for a holistic assessment of sustainable urbanity. (d) Exploring the indirect impacts of urbanization on ecosystem
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Thus, spatial data on the three dimensions of urbanity can support this by portraying the livelihoods, lifestyles, and connectivity of each place, thus exploring the

indirect effects at fine scales.

data leakage issue associated with numerous real POIs, thereby reinforc-
ing the spatial privacy protection for geographic big data. (3) This study
employs the principle of distance decay in the kernel density method to
measure the urbanization characteristics represented by the POI, which
is challenging to directly validate the accuracy of the measurements.
Therefore, in addition to making comparisons with similar products,
there is a need to further develop methods that can enhance the ro-
bustness of the analysis. (4) The computational memory constraints of
Google Earth Engine posed another limitation. As a result, we had to
streamline our data sampling parameters during the regression results
calculation and default the tilescale to a range between 5 and 8. This
has implications for the final regression results and their validation ac-
curacy. (5) Our study suffered from a lack of time series data related to
POIs. As such, we were unable to track the temporal pattern of urban-
ity. Moving forward, we anticipate addressing these gaps. Our focus is
to extend the urbanity maps to global scales and long time series and
to explore their variation in different socio-economic and physical geo-
graphic contexts. Additionally, we will use urbanity maps as one of the
drivers of vegetation change to explore the effects of urbanization on
ecosystems in non-urban areas.

5. Conclusions

Combining remote sensing and POIs-OSM big data, we have devel-
oped urbanity mapping methods that can be adapted to multi-spatial
scales. Our study shows that urbanity extends beyond physical urban
boundaries and spreads into surrounding towns and rural areas. In ad-
dition, urbanity mapping elucidates the variability of urbanization pat-
terns, revealing complexity, diffuseness, diversity, and connectivity ur-
banized areas in terms of livelihoods, lifestyles, and connectivity. More-
over, we do not disprove the products of other urban-rural gradients;
rather, we hope to integrate these data into a tool for a holistic under-
standing of urbanized areas and their characteristics. As escalating ur-
banization, gaining insight into the essence of urbanization becomes im-
perative in steering sustainable development and equitable urban plan-
ning and policymaking. Our research provides academics and policy-
makers with an extensive dataset, in conjunction with a multifaceted
comprehension of urbanization, which empowers evidence-based deci-
sion making and strategic planning.
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