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• This study developed an integrative ap- 
proach for continuum of urbanity map- 

ping. 
• Urbanity mapping discovers urbanized 

areas’ complexity, diffuseness, diversity, 

and connectivity. 
• Urbanity mapping captures the liveli- 

hoods, lifestyles, and connectivity. 
• Urbanity extends beyond urban areas 

and into rural areas. 
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a b s t r a c t 

There are urgent calls for new approaches to map the global urban conditions of complexity, diffuseness, diversity, 

and connectivity. However, existing methods mostly focus on mapping urbanized areas as bio physical entities. 

Here, based on the continuum of urbanity framework, we developed an approach for cross-scale urbanity map- 

ping from town to city and urban megaregion with different spatial resolutions using the Google Earth Engine. 

This approach was developed based on multi-source remote sensing data, Points of Interest – Open Street Map 

(POIs-OSM) big data, and the random forest regression model. This approach is scale-independent and revealed 

significant spatial variations in urbanity, underscoring differences in urbanization patterns across megaregions 

and between urban and rural areas. Urbanity was observed transcending traditional urban boundaries, diffusing 

into rural settlements within non-urban locales. The finding of urbanity in rural communities far from urban areas 

challenges the gradient theory of urban-rural development and distribution. By mapping livelihoods, lifestyles, 

and connectivity simultaneously, urbanity maps present a more comprehensive characterization of the complex- 

ity, diffuseness, diversity, and connectivity of urbanized areas than that by land cover or population density 

alone. It helps enhance the understanding of urbanization beyond biophysical form. This approach can provide 

a multifaceted understanding of urbanization, and thereby insights on urban and regional sustainability. 
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. Introduction 

More than half of the world population now live in urban areas, with

ore people expecting to move to cities ( Reia et al., 2022 ; Wahba Tadros

t al., 2021 ). Over this process, landscapes became increasingly urban-
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zed, affecting peri-urban, rural, and wilderness areas far from the urban

ore ( van Vliet, 2019 ). Simultaneously, urbanized areas are becoming

ncreasingly mixed and diffused due to rapid urbanization and the huge

emand for infrastructures ( Hutchings et al., 2022 ). These situations

reatly challenge the understanding and continued application of the

xisting urban-rural dichotomy system to urbanized areas ( Serra et al.,

014 ; Wang, 2022 ). 

The urban-rural gradient ( Mcdonnell and Pickett, 1990 ) or contin-

um ( McKenzie, 1930 ) offers an instrumental approach to analyze dif-
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used urbanized areas. This approach deviates from the urban-rural di-

hotomy and acknowledges the varied degrees of urbanization and their

ocio-ecological impacts in all regions ( Halfacree, 2009 ; Padilla and

utherland, 2019 ). Urbanization typically follows a discernible pattern

f sequential changes along a gradient, including shifts in demograph-

cs, economic factors, administrative roles, and functions ( Boone et al.,

014 ; Marcotullio and Solecki, 2013 ). However, relying solely on these

radient patterns may not capture the nuanced realities of contempo-

ary urbanized areas. Due to urban expansion, sprawl, and escalating

ocio-economic infrastructural demands ( Irwin and Bockstael, 2007 ;

andey et al., 2022 ), the demarcations between various urbanized re-

ions have blurred, showing complex, diffuse, diverse, and connected

haracteristics ( McHale et al., 2015 ). For example, urban megaregions,

hich extend beyond traditional urban boundaries, consist of multiple

rbanized zones ( Pickett and Zhou, 2017 ). These zones are intercon-

ected through extensive road networks facilitating material exchanges

nd infrastructure hubs enabling information transmission ( Seto et al.,

012 ). Meanwhile, certain urban lifestyles are now emerging in rural

andscapes, even before their transition to urban settings ( Lennon and

erg, 2022 ; McGranahan et al., 2005 ). Urbanized areas no longer imply

hat they must be understood and characterized as biological or physical

ntities. Therefore, methods that map urbanized areas as biological or

hysical entities cannot capture the contemporary global urban condi-

ions of complexity, diffuseness, connectivity, and diversity, which calls

or new approaches. 

The four characteristics of urbanized areas, namely complexity, dis-

ersion, connectivity and diversity, can be reflected in one concept, the

ontinuum of urbanity, a mixture of intersecting urban and rural ar-

as ( Boone et al., 2014 ). It is important to emphasize that the “con-

inuum ” is not a transect or linear gradient of change in real space.

nstead, it is an urbanization characterized by a mix of livelihoods that

nable people to support themselves, diverse lifestyles that embody con-

umption, culture, and creativity, and connectivity that links dispersed

reas and is not confined by physical or administrative boundaries

 Pickett and Zhou, 2017 ). Thus, unlike the ‘visible’ urbanization features

e.g., built-up land, population), with the framework of continuum of

rbanity, urbanity is the ‘invisible’ and integrative urbanization feature

ncluding livelihoods, lifestyles, and connectivity ( Boone et al., 2014 ;

ontgomery, 1998 ). Therefore, urbanity defined here differs from that

sed in many previous studies portraying urbanity from the perspective

f physical structures and forms, such as street networks and urban land

se patterns, with the aim of revealing the diversity of inner-city spaces,

nhancing the social vitality of urban spaces, and serving spatial design

 Mohammed and Ukai, 2023 ; Yap et al., 2023 ; Ye et al., 2017 ). The

ontinuum of urbanity provides a powerful framework for understand-

ng contemporary global urbanization and is increasingly used in studies

f urbanization and its social and ecological impacts ( Nagendra et al.,

013 ; Seto and Reenberg, 2014 ; Zhou et al., 2021 ; Zhou et al., 2022 ).

owever, the application of continuum of urbanity has been hindered

y the lack of methods and products for spatial quantification. 

The integration of the increasingly available remotely sensed data

nd crowdsourcing big data provide opportunities to quantify the con-

inuum of urbanity in a spatially explicit way. Remotely sensed data

ave long been used to map urbanized areas ( Zhu et al., 2019 ), and

uantify urbanization related indicators such as population density, and

ocio-economic profile of urbanized areas ( Li et al., 2020 ; Wang et al.,

018 ; Zheng et al., 2023 ). Crowdsourcing big data has been increas-

ngly used to measure urbanization ( Cai et al., 2017 ; Herfort et al., 2023 ;

i et al., 2016 ; Xu et al., 2023 ). For instance, Points of Interest (POIs)

over a range of infrastructures and locations essential to livelihoods

nd lifestyles ( Wang et al., 2022 ). Data from Open Street Map (OSM)

bout transportation facilities can be used to assess varied commuting

atterns ( Barrington Leigh and Millard Ball, 2020 ; Weiss et al., 2018 ).

herefore, combining remote sensing and big data has great potential

o comprehensively portray urbanized regions and overcome data con-

traints in urbanization studies ( Uhl et al., 2023 ; Ye et al., 2019 ). 
358
Here, based on the continuum of urbanity framework, we developed

n approach for cross-scale urbanity mapping from towns to cities and

rban megaregions with different spatial resolutions using the Google

arth Engine. This approach was developed based on multi-source re-

ote sensing data, Points of Interest – Open Street Map (POIs-OSM)

ig data, and the random forest regression model. By explicitly quan-

ifying livelihoods, lifestyles, and connectivity, urbanity mapping helps

nhance the understanding of urbanization on its socioeconomic charac-

eristics, which is beyond the biophysical form. With the widely avail-

ble remote sensing and big data, this approach provides researchers

nd policymakers with a multi-faceted understanding of urbanization,

romoting urban sustainability, planning, and strategy development. 

. Materials and methods 

.1. Study areas and workflow 

We mapped livelihood, lifestyle and connectivity and the combined

haracterization of urbanity areas at 1,000 m, 30 m and 10 m for the

hree scales of urban megaregion, city, and town, respectively. Urban

egaregion is a large area formed by the intertwining of urban areas

nd their expanding suburbs, new urban settlements and new infras-

ructures, and it has been recognized as the primary urban form for the

uture of urbanization ( Fang and Yu, 2017 ). In this study, the urban

egaregion scale involves six regions, namely Beijing-Tianjin-Hebei

BTH), Yangtze River Delta (YRD), Wuhan (WH), Chengdu-Chongqing

CC), Changsha-Zhuzhou-Xiangtan (CZX), and Pearl River Delta (PRD)

 Fig. 1 (a)). These urban megaregions are the frontiers of China’s urban-

zation, as they contain the major urban lands, populations, economies,

nd infrastructures across the country ( Yu and Zhou, 2017 ). Second,

e selected Beijing as the city scale study area ( Fig. 1 (b)), which

erves as both the center of the BTH megaregion and China’s political

nd cultural center. In 2020, Beijing comprised 16 districts with 21.8

illion residents. It ranked second in GDP scale among major cities na-

ionwide, following Shanghai. The annual GDP growth rate for Beijing

as 1.2% ( https://www.qianzhan.com/analyst/detail/220/211122-

2607781.html ). Third, Yanqi town, a suburb of Beijing, was selected

s the town scale study area ( Fig. 1 (c)). Yanqi town spans the urban

oundary, with the southeastern side comprising flat urban areas.

n contrast, most of the northwestern side comprises valleys and

ountains, with many rural settlements nestled within the valleys.

he town has gradually transitioned from agricultural production to

on-agricultural tourism revenue generation. In the last decade, Yanqi

own has boasted 108 resorts, 4 folk tourism professional villages at

he municipal level, 485 folk households, and has received 1.58 million

ourists, generating a comprehensive tourism revenue of 190 million

NY ( http://www.bjhr.gov.cn/ ). 

Urbanization have been often characterized by confined biophysical

actors, such as a higher proportion of built-up lands, a dense popula-

ion distribution and a developed economy ( Mahtta et al., 2022 ). How-

ver, urbanization is also a social process ( Hahs, 2016 ; Murayama and

stoque, 2020 ), represented by, e.g., less agrarian livelihoods, increas-

ng urban lifestyles, and increased connectivity. Such shifts can be at-

ributed to different types of infrastructures ( Gebreyes et al., 2020 ;

utierrez-Velez et al., 2022 ; Hecht et al., 2015 ). Therefore, accord-

ng to the continuum of urbanity framework, we argue that urbanity

s an ‘invisible’ urbanization characteristic that synthetically describes

ivelihoods, lifestyles, and levels of connectivity that include the urban

ntity and its surrounding areas, which is more applicable to a holis-

ic portrayal of urbanization in any part of the world ( McHale et al.,

015 ). Furthermore, we argue that portraying urbanization anywhere

equires adapting to different data sources and spatial scales. Conse-

uently, we have developed a mapping workflow that adapts to three

ypes of data sources and spatial scales based on the Google Earth

ngine platform and a random forest model ( Fig. 2 ). We referred to

osier et al. (2022) study and used a unified mapping methodology in

https://www.qianzhan.com/analyst/detail/220/211122-b2607781.html
http://www.bjhr.gov.cn/
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Fig. 1. Study areas: (a) six urban megaregions, (b) Beijing city, and (c) Yanqi town. 

Fig. 2. Basic model workflow for mapping multi-scale urbanity in Google Earth Engine. 
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Table 1 

Data list. 

Spatial Scales 

Urban 

megaregion City Town Resources 

Resolution 1000 m 30 m 10 m 

Independent 

variables 

Proportion of 

built-up land 

http://www.globallandcover.com 

Population 

density 

https://www.worldpop.org/datacatalog 

Nighttime lights http://geodata.nnu.edu.cn 

Elevation https://www.usgs.gov 

Slope 

Elevation 

Slope 

B2/B3/B4/B5/B6 Landsat 8 OLI SR 

NDVI, MNDWI, 

NDBI, IBI 

B2/B3/B4/B8/B11 Sentinel MSI 

NDVI, MNDWI, 

NDBI, IBI 

VV and VH Sentinel SAR 

Dependent 

variables 

Livelihood: healthcare, financial institutions, businesses, factories, 

and scientific education. 

POIs from AMapTM and OSM 

Lifestyle: leisure and entertainment, shopping, and dining. 

Connectivity: highways, primary, secondary, and tertiary roads, 

railways, train stations, airports, telecommunications outlets, and 

courier stations. 

Note: B2, B3, B4, B5, B6, B8, B11 represents different band image of Landsat and Sentinel. 
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hree spatial tests to show that our urbanity is not scale-dependent (See

ppendix text S4 for details of the mapping flow). The complete code for

his study and the mapping data source are located in Google Earth En-

inewith the link to view the mapping process and results: https://code.

arthengine.google.com/10b7b5af6ee8c1f9fd7d55d3a55db541 

.2. Materials 

As shown in Table 1 , at the urban megaregion scale, the urbanization

ndicators used for urbanity mapping include the proportion of built-up

and, population density, nighttime lights, elevation, and slope. At the

ity and town scales, we select the main bands and surface indices in

andsat 8 and Sentinel MSI & SAR, respectively, as the independent

ariable input data sources (See appendix text S1, Fig. S1 and Fig. S2

or image and band processing). The input data for the dependent vari-

ble is the POIs-OSM data source). Furthermore, we used some existing

patial data on urbanization as auxiliary data for analysis, comparison,

nd validation (See appendix text S1, S2 and S3). 

.3. Methods 

.3.1. Kernel density estimation 

The method employed in this study for kernel density estimation

 Diggle, 1985 ) involves the calculation of bandwidth using the Silver-

an empirical bandwidth method ( Zhou et al., 2019 ). Kernel density

stimation is a statistical technique for estimating the probability den-

ity function. This method incorporates sample standard deviation, sam-

le size, and dimensionality to estimate the bandwidth. By adapting to

he variability of the data, this method effectively determines the opti-

al bandwidth, leading to more accurate results in kernel density esti-

ation. By employing the Silverman empirical bandwidth method, we

chieve a balance between smoothness and precision, resulting in reli-

ble estimates of kernel density. 

.3.2. Random Forest regression 

We utilized the non-parametric Random Forest (RF) algorithm for

rbanity mapping. RF, an ensemble decision tree approach founded on

agging and random subspace, addresses the challenges associated with

igh-dimensional data and feature-instance ratios ( Breiman, 2001 ). In

tep 4 of Fig. 2 , we employed the spatial regression algorithm, specif-

cally designed for continuous variables, and inputted the independent
360
nd dependent variables into the RF model to determine the spatial

istribution of livelihood, lifestyle, and connectivity in three spatial

cales (the regression parameters are shown in Fig. S3). Continuous ad-

ustments were made to the hyperparameters and optimization was con-

ucted on the model to achieve optimal accuracy. Additionally, we used

0% of the data for regression and 30% for accuracy validation. 

.3.3. Accuracy assessment 

First, we used the Root Mean Square Error (RMSE) to test the

oodness-of-fit of the RF regression. The RMSE is a popularly used statis-

ical metric for assessing the accuracy of predictive models, especially in

he context of continuous variables ( Chai and Draxler, 2014 ). It offers

n interpretable scale-based evaluation of a model’s prediction accu-

acy by computing the square root of the mean of the squares of all the

rediction errors. The prediction error is simply the difference between

he actual observed values and the values predicted by the model. A

ower RMSE value signifies better model performance, i.e., the model’s

redictions are closer to the observed data. Second, we evaluated the

ccuracy of the RF regression model by quantifying the correlation be-

ween observed and predicted outcomes ( Khuri, 2013 ). This measure,

nown as the coefficient of determination ( R2 ), assesses the proportion

f variance in the dependent variable explained by the model’s indepen-

ent variable(s). An R2 value can range between 0 and 1, where values

pproaching 1 signify a higher degree of model fit, demonstrating that

he model accounts for a larger proportion of the dependent variable’s

ariance. Furthermore, we also compared the mapping results of urban-

ty with other remote sensing classification products for built-up land,

uch as Global Human Settlement Layer (GHSL) ( Schiavina et al., 2022 ),

lobal Urban Boundary (GUB) ( Li et al., 2020 ), ESA10 m land products

 Zanaga et al., 2022 ), Urban Rural Catchment (URC) ( Cattaneoet al.,

021 ), and Near real-time global 10 m land cover ( Brown et al., 2022 )

See appendix text S3). 

. Results 

.1. Mapping urbanity at the urban megaregion scale 

The spatial regression analysis was performed on the variables of

onstruction land proportion, population density, nighttime light inten-

ity, and topography, utilizing a resolution of 1,000 m. The resultant
2 values exceeded 0.85, and the RMSE of the training samples were

https://code.earthengine.google.com/10b7b5af6ee8c1f9fd7d55d3a55db541
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Fig. 3. Spatial distribution of Urbanity in six urban megaregions. (a) Livelihood, (b) lifestyle, and (c) connectivity, and their sums are characterized as (d) urbanity. 

Each histogram panel matches the distribution of 1,000 m pixels in space. 
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ower than those of the validation samples, which collectively attest to

he robustness of our model (Fig. S4). The distribution of urbanity across

rban megaregions exhibited a considerable degree of spatial variation

 Fig. 3 ). The histograms representing livelihood, lifestyle, and connec-

ivity demonstrate multiple peaks. More specifically, areas with better

ivelihood conditions were coded with increasingly red colors, while

 greener color represented more diversity in lifestyle. Furthermore,

tronger external connections were symbolized by bluer colors. These

ultiple peaks indicated a spatially intersecting distribution of areas

ith high and low values ( Fig. 3 (a), (b), (c)). 

The comprehensive representation of these three dimensions yielded

 clear delineation of urbanized areas - a measure we term urban-

ty. Areas exhibiting higher urbanity - depicted in deep green colors -

arked the physical urban boundaries and signaled superior livelihood,

ifestyle, and connectivity. Conversely, areas colored yellow or orange

orresponded to lower urbanity values, implying that while these lo-

ations may not be urbanized in a traditional sense, they still exhibit

arying degrees of livelihoods, lifestyles, and connectivity. Our analysis

f urbanity across various urban megaregions revealed substantial dif-

erences (Fig. S5). The YRD region demonstrated the highest median ur-

anity value (2.29), followed by the PRD region (2.12), WH (2.00), CZX

1.94), BTH (1.92), and CC (1.87). These urbanity rankings offer a com-

arative perspective on the degrees of urbanization across regions. Fur-

hermore, they elucidate variations in the spatial distribution of liveli-

ood, lifestyle, and connectivity among these six urban megaregions
361
Fig. S5). For instance, YRD and BTH regions show multiple consecu-

ive high peaks in the histograms, indicating heterogeneous spatial dis-

ributions. In contrast, the PRD region shows a smoother distribution in

igh-value areas, suggesting lower spatial heterogeneity. On the other

and, the urbanity distribution in WH, CC, and CZX revealed a singular

eak, implying a more uniform spatial distribution of urbanized areas. 

In this study, we employed the urban-rural gradient tool from the

lobal Human Settlement Layer (GHSL) dataset to evaluate urbanity

cross various gradient type ( Fig. 4 ). Our findings indicate a spread of

rbanity into traditionally deemed rural areas. The GHSL system clas-

ifies the urbanization level into seven categories based on the integra-

ion of built-up land and population density indicators, and considers

he urbanization level to be decreasing from the urban centre to very

ow density rural ( Fig. 4 (a)). However, the urbanity in the urban-rural

radient does not follow a linearly decreasing pattern of change; in-

tead, the urbanity level rises sharply when transitioning from inside to

utside of the urban area. The median values of urbanity are higher in

oth suburban (2.20) and rural (1.98) than in semi dense urban clus-

ers (1.96). This suggests that while suburban and remote rural areas

re lower urbanized areas in the traditional urban-rural gradient, from

n urbanity perspective, suburban and rural areas not only share similar

ivelihoods, lifestyles, and connectivity characteristics with urban areas,

ut also have higher levels than urban areas. Moreover, the urbanity

istograms for the seven gradient types disclosed a blend of both high

nd low values in rural locales, with dark green depicting high values
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Fig. 4. Distribution of statistical urbanity in the urban-rural gradient of Global Human Settlement Layer (GHSL) ( Schiavina et al., 2022 ). (a) Box plot and (b) 

histogram distribution of urbanity along the urban-rural gradient of GHSL. Bottom left is an example map of GHSL in the Beijing area. Bottom right is a map of 

urbanity in Beijing. 

Fig. 5. Urbanity distribution in Beijing. (a1) Livelihood, (a2) lifestyle, (a3) connectivity, and their sums are characterized as (a4) urbanity. The red lines are derived 

from the Global Urban Boundary (GUB) in 2020 ( Li et al., 2020 ). Outside the red boundary are (b) urbanity and histograms of the (c) three dimensions in the 

non-urban area. Inside the red boundary are (d) urbanity and histograms of the (e) three dimensions in the urban area. 
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nd orange-yellow signifying low values. Despite the general decreasing

rend, urbanity within the seven gradient types still exhibited multiple

eak distributions, signaling its heterogeneity along the conventional

rban-rural gradient. This observation underscores the complexity and

iffuseness of urbanity even within the context of traditionally defined

rban-rural gradients. 

.2. Mapping urbanity at the city scale 

We conducted a mapping of urbanity in Beijing at a 30-meter res-

lution for the year 2020, leveraging unclassified Landsat multispec-

ral satellite imagery ( Fig. 5 ). The ensuing model fit results showcased
2 values exceeding 0.85, and RMSE for the training samples that was

ower than that of the validation samples, reflecting a robust perfor-

ance of the model overall (Fig. S6). This analysis drew a more distinct

patial structuring of livelihood, lifestyle, and connectivity. Urbanity,

heir combined representation, effectively outlined the extent of urban-

zation in Beijing, as evinced by the dark green areas. Drawing upon the
362
rban and non-urban demarcations ascertained by the 2020 GUB, it was

bserved that the median urbanity was higher in urban zones compared

o non-urban areas (2.39 versus 1.60) ( Fig. 5 (b) and (d)). 

However, in the non-urban areas, a bimodal distribution was noted

n the histograms of urbanity, livelihood, lifestyle, and connectivity

 Fig. 5 (b), (c), (d), (e)). These twin peaks corresponded to the orange-

ellow regions and dark green areas distributed in valleys. This pattern

mplies that urbanity transcends the physical boundaries of traditional

rban areas, suggesting the presence of potential urbanized areas nested

ithin non-urban regions. 

.3. Mapping urbanity at the town scale 

In the Yanqi town, the model demonstrated R2 values of 0.92, 0.91,

nd 0.92 for livelihood, lifestyle, and connectivity, respectively. Further-

ore, the RMSE for the training samples was smaller than that of the

alidation samples, denoting the model’s proficient fitting performance

Fig. S7). Within Yanqi town, areas with high livelihood values were pre-
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Fig. 6. Urbanity Distribution in Yanqi town. (a) Livelihood, (b) lifestyle, (c) connectivity, and their sums are characterized as (d) urbanity. The upper and lower 

panels are histograms of the three dimensions and urbanity. (e)-(j) Comparison of ESA 2020 10 m built-up land ( Zanaga et al., 2022 ) with urbanity. 
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a  
ominantly localized to the urban regions on the southeast side, while

ifestyle and connectivity were more extensively distributed ( Fig. 6 (a),

b), (c)). Urbanity effectively delineated the spatial structure of the ur-

anized areas ( Fig. 6 (d)). Compared to binary land cover classifications,

rbanity, with its continuous numerical values, revealed spatial hetero-

eneity in densely built-up land areas ( Fig. 6 (i) vs. (j)). The physical

rban areas manifested a blend of high and low urbanity traits. Con-

ersely, urbanity detected more nuanced potential urbanized regions

ithin the river valleys, which are traditionally classified as non-urban

reas. Conventional land cover classifications underestimated or even

ntirely overlooked these regions, leading to an under-extraction and

nder-detection of certain functional building zones ( Fig. 6 (e) vs. (f),

g) vs. (h)). Utilizing 80 m × 80 m sampling frames, we computed the

edian urbanity along the urban-rural distance gradient for six villages

Fig. S8). The analysis revealed that the remote villages in river valleys

id not exhibit a lower urbanity, despite their distance from urban cen-

ers, further emphasizing the compatibilities and mixture of urbanity in

rban and rural areas. 

. Discussion 

.1. Urbanity reaches beyond urban entities into rural areas 

This study introduces the concept of ‘urbanity’ to define what consti-

utes an urbanized area, framing it as both socio-economic and physical

haracteristics —such as land, population, and nighttime light —as well

s a mixture of livelihoods, lifestyles, and connectivity. Our research

ains significant insights from incorporating the continuum of urbanity

heory. According to this framework, irrespective of traditional ‘urban’

r ‘rural’ classifications, urbanity considers urbanized areas to be com-

onents of an integrated system ( Fig. 7 (e)). 

Depicting urbanized regions depends on how urbanization is under-

tood. The urban-rural dichotomy simplifies the spatial structure of ur-

anized areas, especially through the urban-rural household registration
363
ichotomy that facilitates the classification and management of urban

nd rural populations ( Bai et al., 2014 ) ( Fig. 7 (a) and (b)). However,

uch understanding is insufficient for exploring the heterogeneity of ur-

anized areas and issues of sustainable development ( McGranahan and

atterthwaite, 2014 ). The urban-rural gradient or continuum has made

n important contribution to this ( Dewey, 1960 ; Mcdonnell and Pick-

tt, 1990 ), and many studies have argued that it is simpler and more

eliable to characterize the continuum or dispersal categories of intra-

rban and surrounding areas in terms of gradients ( Fig. 7 (c) and (d))

 Dawazhaxi et al., 2022 ; Kaminski et al., 2021 ). Nonetheless, the cur-

ent increasingly dispersed and mixed urbanized areas are hardly suf-

cient for revealing spatial structure and specific features through gra-

ients. Moreover, urbanization varies greatly across different regions

f the globe, requiring the adoption of universal concepts to under-

tand complex, diffuse, diverse, and connected urbanization systems

 McHale et al., 2015 ). 

The continuum of urbanity provides a new perspective on this. All

laces are an intertwined collection of urban and rural areas, and urban-

zation extends beyond physical boundaries, dispersing and integrating

ith surrounding areas ( Fig. 7 (e) and (f)). Each place mixes different

evels of livelihoods, lifestyles, and connectivity, which adds diverse so-

ioeconomic attributes to the existing biophysical spatial structure. Fur-

hermore, each place is linked to each other by connectivity (e.g., roads,

elivery points) to compose an area of urbanity. Thus, urbanization in

ome places is no longer on a downward trend from the inside to the out-

ide of the city but rather a mix of different livelihoods, lifestyles, and

onnectivity diffused anywhere ( Fig. 8 ). For example, at the megaregion

cale, where both the suburban and rural categories have higher levels

f urbanity than the semi-dense urban clusters ( Fig. 8 (a) and (b)). At

he city scale, inner-city residential community and urban village share

imilar livelihoods, lifestyles and connectivity characteristics with rural

ommunity located away from urban areas ( Fig. 8 (c) and (d)). More-

ver, at the town scale, although remote villages in the valley are farther

way from the down town, their degree of urbanity does not decline
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Fig. 7. Understanding the three patterns of urbanized areas. (a) The urban-rural dichotomy separates (b) the urban and rural area. (c) The urban-rural gradient or 

continuum shapes (d) a decreasing degree of urbanization from the urban interior to the exterior. (e) The continuum of urbanity represents a complexity, diffuseness, 

connectivity, and diversity urbanized area. (f) Places distant from urban areas have similar and mixed livelihoods, lifestyles, and connectivity as those close to urban 

areas. 

Fig. 8. Distribution characteristics of livelihoods, lifestyles, and connectivity with increasing distance from urban areas at three scales (a) and (b) are distributed 

characteristics of livelihoods, lifestyles, and connectivity across the urban-rural gradient at the urban megaregion scale; (c) and (d) are livelihoods, lifestyles, and 

connectivity characteristics of the three urban and rural communities at the city scale. No. 1 represents an inner-city community (Zi-zhu-yuan), No. 2 represents 

an urban village (Lan-ge-zhuang) and No. 3 represents a rural community in the suburbs (Pang-ge-zhuang). (e) and (f) are livelihoods, lifestyles, and connectivity 

characteristics of urban and rural communities at the town scale. No. 1 to No. 6 represent communities that are gradually moving away from the urban area. 

364



D. Zhaxi, W. Zhou, S.T. A. Pickett et al. Geography and Sustainability 5 (2024) 357–369

Fig. 9. (a) Comparison urbanity with the urban-rural 

catchment map ( Cattaneoet al., 2021 ) at the 1,000 m 

resolution, in six urban megaregions. (b) Relation- 

ship between urbanity and urban-rural catchment map. 

Note : BTH, Beijing-Tianjin-Hebei; YRD, Yangtze River 

Delta; PRD, Pearl River Delta; CC, Chengdu-Chongqing; 

WH, Wuhan; CZX, Changsha-Zhuzhou-Xiangtan. 
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Fig. 10. Relationship between urbanity and dynamic built-up land at the 10 m 

resolution ( Brown et al., 2022 ), in the Yanqi town. The fitting method for the 

curves is the Generalized Additive Model (GAM) ( Hastie, 1990 ), which solves 

the fitting problem when there is a highly nonlinear relationship between the 

response variable and the explanatory variables, and has an outstanding ability 

to fit non-monotonic relationships. In the area of low probability of built-up 

land, the slope of the fitted curve is larger, indicating a higher urbanity. 
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ith distance, but rather has the same level of urbanity as the down-

own ( Fig. 8 (e) and (f)). Therefore, this mapping method is not scale-

ependent and reveals the common fact that urbanity reaches beyond

raditional urban entity areas and diffuses into rural areas at different

patial scales. Although the urban-rural dichotomy and the urban-rural

radient consider rural areas as “visible ” non-urbanized areas, urbanity

emonstrates that rural areas can be also characterized by similar liveli-

oods, lifestyles, and connectivity as urban areas. In addition, this study

rovides the first visualization of the spatial distribution of continuum

f urbanity and supports sociologists’ view that “although cities are the

haracteristic sites of urbanism, people’s lifestyles are not confined to

rban areas ” ( Pahl, 2008 ; Wirth, 1938 ). This ‘invisible’ character of ur-

anization tells us that the effects of urbanization should not be limited

o urban entities, but that their surrounding rural areas also benefit from

rbanization and contribute to sustainable development ( McHale et al.,

013 ). 

The urbanity reveals complex, diffuse, diverse and connected urban-

zed areas. For example, in six urban megaregions, urbanity reflects dif-

erent urbanization patterns and spatial heterogeneity (Fig. S5). In Bei-

ing city, while the physical extent of urbanization has been defined

y the city boundary (GUB), urbanity demonstrates that livelihoods,

ifestyles, and connectivity like those in urban areas still exist in the

alleys of non-urban areas. Furthermore, in Yanqi town, we paid closer

ttention to the spatial structure of urbanized areas within the urban

rea and each rural community ( Fig. 6 ). Rural communities and settle-

ents in the valleys cover the low-rise brick or concrete structures and

wo main roads. However, these simple buildings can provide places for

ivelihoods (rural enterprises), diverse lifestyle locations (tourist shops),

nd connectivity networks (roads leading to the urban area and courier

oints for material exchange). 

.2. Comparison with other urbanized maps 

Comparisons between our urbanity maps and other studies showed

he coexistence of consistency and variability. Within the six urban

egaregions, we have shown that rural areas also reflect urbanity

hrough the urban-rural gradient of ( Schiavina et al., 2022 ), which we

lso compare with the urban-rural catchment of ( Cattaneoet al., 2021 )
366
 Fig. 9 (a)). Although urbanity exhibited a linear decrease with urban-

ural catchment. Higher urbanity was, however, found in small towns

ispersed in the peri-urban area, as well as in places far from the city

 Fig. 9 (b)). Additionally, in terms of the comparison of fine-scale maps,

he probability of built-up land mapped by Brown et al. (2022) presented

 linear relationship with urbanity in general ( Fig. 10 ). However, locally,

laces covered with a few built-up lands have a higher urbanity, indi-

ating that urbanity represents potentially urbanized areas. Comparison

ith the built-up land product from Zanaga et al. (2022) also suggests

hat urbanity can highlight more heterogeneous urbanized areas ( Fig. 6

e)-(j)). The three study cases, as well as the results of the comparisons

etween maps, demonstrate the sensitivity of urbanity mapping to spa-

ial scales and multi-source remote sensing data. Therefore, the urbanity

apping approach we developed can be used as an analytical study to

upport urbanization within different spatial scales. 

.3. Mapping applications 

For a long time, urbanization has been recognized as one of the pri-

ary drivers of social and environmental problems, thus posing a signif-

cant barrier to sustainable development ( Pauleit et al., 2021 ). However,

rbanization can also present opportunities for achieving sustainability

 Childers et al., 2014 ; Pickett and Zhou, 2017 ; Seto et al., 2012 ). In this

egard, our mapping results can be linked to the established Sustain-

ble Development Goals (SDGs). For instance, livelihood corresponds to

DG 8.2, representing diversified employment, technology, and innova-

ion; lifestyle corresponds to SDG 8.4, representing patterns of material

onsumption; connectivity corresponds to SDG 11.2, representing af-

ordable and sustainable transportation systems ( Fig. 11 (c)). These three

imensions, as pathways to regional sustainability, aim to enhance well-

eing and social equity for people in any location ( Boone et al., 2014 ;

andey et al., 2022 ; Seto et al., 2017 ). 

A major challenge is that while urban entity areas are considered

epresentative of urbanization and are widely noted for the ecolog-

cal effects that exist, but potentially urbanized areas beyond urban

ntities also have many ecological impacts as well ( Hubacek et al.,

009 ; Hutchings et al., 2022 ; van Vliet, 2019 ; Wang et al., 2012 ;

ang et al., 2024 ). These places are gradually becoming dominated

y non-agricultural production as they develop socio-economically and

ay have the same livelihoods, lifestyles, and connectivity as the

hysical urban areas, thus having an impact on the local ecosystem

 Dawazhaxi et al., 2023 ). Therefore, portraying livelihoods, lifestyles,

nd connectivity in rural areas is the primary objective, which in turn

xplores the impact of urbanity in rural areas on the ecological envi-

onment ( Fig. 11 (d)). For example, urbanization provides a protective

ole for vegetation and alleviates damage to ecosystems from human

ctivities by improving people’s life quality and commute conditions

 Li et al., 2017 ; Wang et al., 2012 ; Zhang et al., 2022a ; Zhou et al., 2022 ).

his will be one of the prospects for the application of this research

nd data. 

.4. Research gaps and prospects 

Our work has thus far built upon the continuum of urbanity frame-

ork, fostering a comprehensive understanding of urbanized areas, and

eveloping a multi-spatial scale adaptable methodology for urbanity

apping. Nevertheless, this study has some limitations. (1) Our data

ources present an area of challenge. The POIs delineating livelihoods,

ifestyles, and connectivity were chosen based on reference materials

nd a priori knowledge, introducing a substantial degree of subjectivity

nto our study. This can potentially influence the scientific legitimacy

f characterizing specific lifestyles or livelihoods. (2) On the mapping

ethodology front, the third step in our workflow entails using each cell

rom each type of kernel density raster as a sampling point, as opposed

o using the actual POIs’ locations. This choice could affect the precision

f our random forest spatial regression. However, it also circumvents the
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Fig. 11. Prospects for the application of urbanity mapping. (a) Based on the continuum of urbanity theory to (b) mapping the three dimensions of urbanity. (c) 

Converting the three dimensions of urbanity into SDGs for a holistic assessment of sustainable urbanity. (d) Exploring the indirect impacts of urbanization on ecosystem 

change in rural areas. Many studies have investigated the direct impacts of urban expansion, economic development and population movement on vegetation based 

on macroscopic data, but the indirect impacts remain unclear, especially the mechanisms of effects at the microscopic level ( van Vliet, 2019 ; Zhang et al., 2022b ). 

Thus, spatial data on the three dimensions of urbanity can support this by portraying the livelihoods, lifestyles, and connectivity of each place, thus exploring the 

indirect effects at fine scales. 
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ata leakage issue associated with numerous real POIs, thereby reinforc-

ng the spatial privacy protection for geographic big data. (3) This study

mploys the principle of distance decay in the kernel density method to

easure the urbanization characteristics represented by the POI, which

s challenging to directly validate the accuracy of the measurements.

herefore, in addition to making comparisons with similar products,

here is a need to further develop methods that can enhance the ro-

ustness of the analysis. (4) The computational memory constraints of

oogle Earth Engine posed another limitation. As a result, we had to

treamline our data sampling parameters during the regression results

alculation and default the tilescale to a range between 5 and 8. This

as implications for the final regression results and their validation ac-

uracy. (5) Our study suffered from a lack of time series data related to

OIs. As such, we were unable to track the temporal pattern of urban-

ty. Moving forward, we anticipate addressing these gaps. Our focus is

o extend the urbanity maps to global scales and long time series and

o explore their variation in different socio-economic and physical geo-

raphic contexts. Additionally, we will use urbanity maps as one of the

rivers of vegetation change to explore the effects of urbanization on

cosystems in non-urban areas. 

. Conclusions 

Combining remote sensing and POIs-OSM big data, we have devel-

ped urbanity mapping methods that can be adapted to multi-spatial

cales. Our study shows that urbanity extends beyond physical urban

oundaries and spreads into surrounding towns and rural areas. In ad-

ition, urbanity mapping elucidates the variability of urbanization pat-

erns, revealing complexity, diffuseness, diversity, and connectivity ur-

anized areas in terms of livelihoods, lifestyles, and connectivity. More-

ver, we do not disprove the products of other urban-rural gradients;

ather, we hope to integrate these data into a tool for a holistic under-

tanding of urbanized areas and their characteristics. As escalating ur-

anization, gaining insight into the essence of urbanization becomes im-

erative in steering sustainable development and equitable urban plan-

ing and policymaking. Our research provides academics and policy-

akers with an extensive dataset, in conjunction with a multifaceted

omprehension of urbanization, which empowers evidence-based deci-

ion making and strategic planning. 
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