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Abstract Temperature and water stress are important factors limiting the gross primary productivity (GPP)
in terrestrial ecosystems, yet the extent of their influence across ecosystems remains uncertain. This study
examines how surface air temperature, soil water availability (SWA) and vapor pressure deficit (VPD) influence
ecosystem light use efficiency (LUE), a critical metric for assessing GPP, across different ecosystems and
climatic zones at 80 flux tower sites based on in situ measurements and data assimilation products. Results
indicate that LUE increases with temperature in spring, with higher correlation coefficients in colder regions
(0.79–0.82) than in warmer regions (0.68–0.78). LUE reaches a plateau earlier in the season in warmer regions.
LUE variations in summer are mainly driven by SWA, exhibiting a positive correlation indicative of a water‐
limited regime. The relationship between the daily LUE and daytime temperature shows a clear seasonal
hysteresis at many sites, with a higher LUE in spring than in fall under the same temperature, likely resulting
from younger leaves being more efficient in photosynthesis. Drought stress influences LUE through SWA in all
ranges of water availability; VPD variation under moderate conditions does not have a clear influence on LUE,
but extremely high VPD (exceeding the threshold of 1.6 kPa, often observed during extreme drought‐heat
events) causes a dramatic reduction of LUE. Our findings provide insight into how ecosystem productivities
respond to climate variability and how they may change under the influence of more frequent and severe heat
and drought events projected for the future.

Plain Language Summary The terrestrial ecosystem assimilates carbon through photosynthesis, and
its ability to convert sunlight energy to primary production during photosynthesis is commonly measured by
light use efficiency (LUE). To understand how temperature, water in the soil, and atmospheric aridity impact
carbon assimilation through photosynthesis, we analyzed the drivers of LUE at 80 sites across different
ecosystems and different climate regimes in the United States. We found that temperature is the main factor
influencing LUE of grassland and forest in spring, and has a greater influence on LUE in colder regions than in
warmer regions. Under the same temperature, LUE in the spring is higher than in the autumn season, likely
because of new leaves. In summer, deep soil water availability is the primary driver of LUE variations. In
addition, extreme aridity of the atmosphere contributes to a dramatic decrease in LUE during compound heat‐
drought events. Our findings contribute to advancing our understanding of how climatic factors influence LUE
across different ecosystems in a changing climate.

1. Introduction
In the United States, the terrestrial ecosystem carbon sink amounts to 360 Tg C per year, offsetting ∼25% of fossil
fuel emissions and playing an essential role in climate change mitigation (Hayes et al., 2018). However, there is a
large range of uncertainty in land carbon uptake estimation and projection (Bodman et al., 2013). Furthermore, the
increasing occurrence of extreme events such as drought, heat, and extreme rainfall due to global warming has
disturbed the seasonal and interannual carbon dynamics, resulting in significant uncertainties in terrestrial carbon
uptake estimation (Turner et al., 2021; Wolf et al., 2016).

The effect of temperature on photosynthesis through physiological processes has been widely documented (Hu
et al., 2021; Kirschbaum, 2004). Temperature affects photosynthesis through two primary mechanisms: direct
biochemical effects and indirect stomatal effects (Lloyd & Farquhar, 2008). The direct effect is related to the
biochemical process of photosynthesis at the leaf level, which is usually described by two key kinetic variables,
the maximum rate of Rubisco carboxylation (Vcmax) and the maximum rate of electron transport (Jmax), both of
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which are sensitive to temperature (Bernacchi et al., 2001, 2003; Moore et al., 2021). With the rise of temperature,
the Vcmax and the Jmax increase, reaching their maximum level at the optimal temperature, which causes the
photosynthetic rate to peak (Pau et al., 2018). In addition, both optimal temperature and photosynthesis capacity
acclimate to growth temperatures (Crous et al., 2022). Additionally, an increase in air temperature with un-
changed relative humidity leads to an increase in the vapor pressure deficit (VPD), and excessive VPD may
induce stomatal closure thus reducing stomatal conductance, leading to a decrease in plant photosynthesis. This
indirect mechanism further exacerbates the negative effects of higher‐than‐optimal temperature on plant
photosynthesis (Dusenge et al., 2021). Some studies suggested that the stomatal conductance response to
increased temperature and moisture limitation, rather than the thermal acclimation of photosynthesis, dominates
the photosynthesis performance at the ecosystem level (Kullberg et al., 2023; Way & Yamori, 2014).

However, the effects of temperature on gross primary productivity (GPP) can vary significantly across different
ecosystems and environmental conditions. In certain ecosystems, especially those in colder regions, a rise in
temperature can result in a notable increase in GPP, as warmer temperatures enhance photosynthesis and prolong
the growing season. Conversely, in ecosystems located in hot regions, the opposite effect may occur (Choury
et al., 2022; Pau et al., 2018; Zhang et al., 2017). The optimal temperature in photosynthesis varies across locations
and ecosystems, generally lower in cool regions or high elevation and higher in warmer regions (Chen et al., 2021;
Niu et al., 2012). In some tropical regions, the optimal temperature is close to the growing season air temperature
(Huang et al., 2019).

Drought influences GPP through both increased VPD and reduced soil moisture. VPD increases during drought,
resulting from both low levels of atmospheric/soil moisture and the often concurrent high temperature. High VPD
can accelerate transpiration and further exacerbates water stress in the soil (Grossiord et al., 2020; Sun &
Wang, 2022); excessive VPD also reduces stomatal opening or conductance thus slowing down photosynthesis.
Soil water deficit during drought can also limit photosynthesis and reduce plant carbon uptake through physio-
logical mechanisms. However, previous studies reached no consensus on the separate and joint effects of tem-
perature, VPD, and soil water stress on GPP across temporal and spatial scales. Some studies show stronger effects
of VPD on interannual variability of GPP than other environmental variables (He et al., 2022; Sulman et al., 2016),
while others highlight the dominant role of soil moisture in determining long‐term variability in GPP (Green
et al., 2019; Humphrey et al., 2021; Liu et al., 2020). The challenge lies in distinguishing the degree to which GPP is
affected by soil moisture and atmospheric aridity, because of the intricate interactions between the two and how
they vary across plant species, soil types, and climatic conditions (Wang et al., 2022).

Furthermore, surface soil moisture and air temperature exhibit a strong correlation in ecosystems that are water‐
limited, and their impact on GPP varies across different biomes and timescales. From previous studies, the
response of GPP to warming and water availability varies along climate gradients. Ecosystems in colder and
wetter regions demonstrate higher sensitivity to changes of temperature, while those in warmer and drier regions
are more sensitive to soil moisture changes (Higgins et al., 2023; Peñuelas et al., 2007, 2009). For ecosystems
where both temperature and water availability are important drivers of light‐use efficiency (LUE) variation, the
LUE relationship with either one of the variables is confounded by the other as the two are tightly coupled at the
process level. High temperature may accelerate the depletion of soil moisture through evaporation; low soil
moisture can increase temperature by limiting the evaporative cooling.

The plant physiological responses to environmental stressors are highly variable, depending on species and
background climate, among others (Fang et al., 2014; Von Buttlar et al., 2018). For example, plant species have
evolved in different ecological niches and adapted to varying environmental conditions (Gratani, 2014; Stubbs
et al., 2018; Turcotte et al., 2012). Some plant species have developed mechanisms to tolerate water stress, such as
deep root systems, drought‐resistant leaves, and the ability to close stomata to conserve water (Seleiman
et al., 2021). Under persistent changes of environmental conditions, vegetation grown at different temperatures
responds differently to temperature changes. For instance, plants living in cool environments, when adapting to
elevated temperatures, exhibit a rise in optimum temperature, with no concurrent alteration in their photosynthetic
capacity (Yamasaki et al., 2002). The response of GPP to water and heat stress also varies between vegetation
types. Grasses respond rapidly to heat and dryness, with a correspondingly rapid decrease in GPP; in contrast,
trees exhibit delayed responses to these stresses, which can be attributed to their more complex physiological
responses, including modifications to leaf structure and function, alterations in the expression of stress‐responsive
genes, and changes in the activity of enzymes involved in photosynthesis and respiration (Hu et al., 2022). Trees
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and grass differ in enzyme distribution and the response of rubisco activity to changes in temperature, light,
nitrogen deposition, and CO2 concentration (Lu et al., 2022). Furthermore, trees may adjust the allocation of
resources between different organs, such as roots and leaves, to optimize their ability to acquire and utilize water
and nutrients in response to environmental stresses (Rennenberg et al., 2006; Wolf et al., 2013). Thus, although
the response of photosynthetic capacity to short‐term temperature anomalies is clear, the mechanisms underlying
the plant photosynthesis response to environmental factors at the inter‐annual and longer time scales are complex
and difficult to discern based on observations.

This study aims to identify the dominant climatic drivers of the interannual variation of photosynthesis across
terrestrial ecosystems in the United States, and to assess how multiple factors may interact to shape the terrestrial
ecosystem response to compound heat‐drought events.

2. Data and Methodology
We selected a total of 84 observation sites that had at least four years of data during 2001–2020 from the Ameriflux
database (see Table S1). The selected sites included evergreen needle‐leaf forests (ENF), deciduous broadleaf
forests (DBF), mixed forests (MF), and grasslands (GRA). However, only 43 out of the 84 flux tower sites have
GPP_NT_VUT_REF data (GPP, which is derived from the nighttime respiration partitioning approach) published
in the Ameriflux database. Therefore, we utilized the GPP data from FLUXCOM, a gridded global carbon and
energy product derived by upscaling flux tower data using machine learning, and chose the grid cells where the 84
flux towers are located. These data are presumably more reliable than those in grid cells that contain no flux tower
site. While cross‐validation at the data production stage revealed that FLUXCOM effectively captures the GPP
inter‐site variability and seasonal patterns (Jung et al., 2019), here we conduct further validation and quality control.
Of the 43 flux tower sites with GPP_NT_VUT_REF data, only those with measured (QC = 0) or good‐quality gap‐
filled (QC = 1) data are chosen, which exclude four sites lacking good‐quality data during the study period.
Additionally, we also excluded three MF sites and four sites (US‐xML, US‐xSB, US‐Var, US‐ONA) with a lower‐
than‐0.8 correlation coefficient (r) between GPP from FLUXCOM and GPP_NT_VUT_REF (see Table S1). For
the remaining 32 sites, we calculated the LUE using the GPP_NT_VUT_REF and FLUXCOM GPP data
respectively, and compared their relationships with temperature in spring and soil water availability in summer
(Figures S2 and S3 in Supporting Information S1). The results reveal a striking similarity between the two sources
of data. FLUXCOM GPP data proves to be fit for purpose in this study. For soil moisture, data is unavailable for
many sites; among the sites where data is available, the soil measurement depth varies considerably from site to site.
We therefore took the soil moisture data from NLDAS Phase 2 (NLDAS2), which were simulated by the Mosaic
land‐surface model (NLDAS project, 2022; Xia et al., 2012). To assess the potential uncertainties related to soil
moisture data, we conducted a comparative analysis using measurements from 13 flux tower sites (chosen based on
data availability) that have consistent soil profiles and soil moisture measurements up to the depth of 2 m. We then
examined how the relationship between light use efficiency (LUE) and soil water content (SWC) differed when
using SWC data from NLDAS2 relative to field data at the 13 flux tower sites (see Figure S1 in Supporting In-
formation S1). Despite the fact that NLDAS2 tends to underestimate SWC, the relationship between LUE and
SWC, as well as the SWC variations, are similar when using the two sources of soil moisture data. It is therefore
reasonable to utilize NLDAS2 data when investigating the role of SWC in LUE variation at the interannual
timescale. Additionally, we use half‐hourly temperature and VPD data from the Ameriflux data set to derive their
daytime (between 7:00 a.m. and 17:00 p.m.), monthly, and seasonal values (see Table 1).

To better understand the impact of temperature and drought on the plant carbon uptake in various regions of the
United States and to exclude the impact of potential adaptation to background climate, we divided the study domain
into three sub‐regions based on gradients of temperature and water availability (Figure 1). Specifically, we divided
the domain into northern and southern regions considering the vast temperature contrast; we then further sub-
divided the southern region, as the southwest is drier than the southeast. Environmental factors influencing GPP
were highly region‐dependent and vegetation‐dependent. For example, vegetation in arid regions can adapt to
water shortage through physiological strategies, while vegetation in moist regions does not show a rapid response to
reduction in soil moisture, as the soil water availability is high to start with, providing some buffering zone (Sun
et al., 2021; Vicente‐Serrano et al., 2013). Furthermore, the GPP of grassland responds to drought more rapidly than
forests (Sun et al., 2021), and GPP response to temperature in different regions can even show opposite signs (Zhou
et al., 2017). Dividing the study domain into subregions allowed us to focus on the specific mechanisms underlying
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the response of plant carbon uptake to temperature, soil water stress and atmospheric aridity with minimal con-
founding effects from the contrasting climate regimes.

We use the LUE as an ecosystem performance metric. Conceptually, LUE reflects the ability of plants to convert
light energy into biomass (Monteith, 1972); in practice, multiple definitions exist in the literature (Gitelson &
Gamon, 2015), some based on incident PAR, some based on absorbed PAR (APAR), which is calculated as the
product of PAR and fraction of absorbed PAR, while others based on PAR absorbed by green vegetation only.
Which definition to use is often dictated by the purpose of a study. Assuming a constant vegetation structure (i.e.,
neglecting the inter‐annual variation of leaf area index in each season), a decrease of APAR caused by heat or
water stress may cause a proportional decrease of GPP, leading to a relatively stable GPP/APAR. To capture
physiological responses to environmental stress, in this study we define LUE as GPP/PAR. This lumps the direct
physiological response with the indirect impact of canopy structure response that results from the temporal
accumulation of physiological effects. For example, severe reduction of GPP would slow down canopy growth
and reduce leaf area index (LAI); this, when not accounted for, may lead to a slight overestimation of the
physiological sensitivity. Where appropriate, we also analyze LUE divided by LAI to eliminate the impact of
canopy structure changes.

LUE =
GPP

PAR Direct Flux + PAR Diffuse Flux
(1)

The total PAR, which is the sum of the direct and diffuse components of PAR from CERES SYN1Deg‐Month, is
used to compute the monthly and seasonal mean values of LUE for each site throughout the time period of data
availability.

The soil water availability for plants depends on soil moisture and soil hydraulic properties (Mohammadi Alagoz
et al., 2022; Pinno & Wilson, 2013). Accounting for the impact of porosity and wilting point (WP), we estimate

Figure 1. Flux tower distribution and ecosystem types employed in this study.
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the soil water availability (SWA) for the top 10 cm (SWAshallow) and top 200 cm (SWAdeep) separately using
Equations 2 and 3:

SWAshallow =
SM10cm − WP

Porosity10cm − WP
(2)

SWAdeep =
SM200cm − WP

Porosity200cm − WP
(3)

Here SM10cm and SM200cm represent soil moisture in the top 10 cm and top 200 cm of the soil, respectively,
Porosity10cm and Porosity200cm denote the corresponding porosity, and WP is the wilting point. In NLDAS2, the
soil moisture and porosity vary with depth while wilting point remains the same across all soil layers. The layer
thickness‐weighted average of soil moisture and porosity through the top 10 and 200 cm are used to calculate the
SWAshallow and SWAdeep, respectively. SWA ranges between 0 and 1, with values close to 1 indicating no water
stress and values close to 0 indicating severe water stress for plants.

To account for potential dependency on vegetation type, we categorized the sites according to land cover,
including ENF, DBF, MF, and GRA. This categorization allowed us to compare ecohydrological responses
across these diverse ecosystems. To account for potential seasonal dependency, we divided the data into spring
(MAM), summer (JJA), and autumn (SON). To identify the climatic drivers of LUE, we first examined the
relationship between LUE and daytime temperature at the daily timescale. The Pearson regression model was
then utilized to assess the LUE correlations with temperature and SWAdeep/SWAshallow for different seasons
and vegetation types separately. Furthermore, to comprehensively examine the roles played by temperature and
SWA, we binned the monthly LUE data according to the combination of temperature (with a bin size of 4°C)
and SWA (with a bin size of 0.1); for seasons and ecosystems where temperature is not a strong control, we
binned LUE according to the combination of VPD (with a bin size of 0.4 kPa) and either temperature (with a
bin size of 4°C) or SWA (with a bin size of 0.1) to analyze the role of VPD in the vegetation response to
drought.

3. Results
3.1. LUE‐Temperature Relationship at Daily Timescale

At the process level, LUE increases with temperature up to a certain value and decreases when temperature
exceeds an optimum that varies with vegetation type and background climate. Using six sites (US‐Vcm, US‐
Vcp, US‐xSP, US‐Cop, US‐Me2, and US‐Me6) as examples, Figure 2a shows at the daily timescale how LUE
varies with daytime mean temperature. The optimal daytime mean temperature for photosynthesis varies among
sites, ranging from 15°C to 25°C. Note that not all sites experienced a decrease in LUE at high temperatures.
The sites where temperature can reach the optimum are mainly ENF and GRA ecosystems in the arid and semi‐
arid regions of the western United States. Other than temperature, another factor that may contribute to a
decrease of LUE is light saturation. Radiation is a confounding factor for the LUE‐temperature relation since
radiation is in the denominator for LUE while high radiation and high temperature may coincide. To assess the
potential role of light saturation, we analyzed the variability of GPP across different combinations of tem-
perature and PAR in spring and summer for six sites experiencing a decrease of daily LUE with temperature
(Figure S4 in Supporting Information S1). In spring for all sites, the results indicate no heat stress and no PAR
saturation. In summer, GPP decreases on high‐temperature days regardless of PAR values at all six sites, and
continues to increase with PAR through the full range of PAR variation at four of the six sites. At the remaining
two sites (US‐Vcm and US‐Vcp) in summer, while the largest GPP decrease is associated with high tem-
perature, GPP indeed shows some degree of light saturation when PAR exceeds 150 W/m2. This indicates that
the compound effect of light saturation and heat stress drives the decrease in LUE during summer at US‐Vcm
and US‐Vcp, while for the other four sites, the decrease in LUE is driven by high temperatures alone. Notably,
the apparent threshold of PAR value (150 W/m2) is close to the summertime daily‐average clear‐sky PAR of
∼160 W/m2 over the continental U.S. (Frouin & Pinker, 1995).

At any given temperature, there is an enormous range of day‐to‐day LUE variability that reflects the impact of
weather‐related noises in factors other than temperature. To extract a systematic signal of influence, we examined

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008168

CHEN ET AL. 6 of 17

 21698961, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008168 by V
irginia Polytechnic Institute, W

iley O
nline Library on [28/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



the temperature dependency of LUE based on the 20‐year mean climatology of the daily LUE data and compared
different sites of the same ecosystem type within the same region (Figure 2b). Taking the multi‐year averaging for
each Julian day led to a well‐defined relationship linking LUE with temperature at each site, with a relatively
small spread at each given temperature. However, the multi‐year averaging also eliminated the segment of the

Figure 2. (a) The relationship between LUE and daytime temperature during March to November at six sites, including US‐Vcm, US‐Vcp, US‐xSP, US‐Cop, US‐Me2,
and US‐Me6, where each data point represents a daily value; (b) the relationship between the daily climatological LUE and daytime temperature during March to
November, where different flux tower sites are distinguished by color.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008168

CHEN ET AL. 7 of 17

 21698961, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008168 by V
irginia Polytechnic Institute, W

iley O
nline Library on [28/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



relationship that featured a negative impact of high temperature on LUE, which suggests that the decrease at high
temperature shown in Figure 2a only occurred during days or months of extreme temperature anomalies (which
may become more frequent in a warmer climate) and does not reflect the climatological norm. Instead, at most
sites under normal conditions, LUE increases with temperature in the spring, plateaus as temperature reaches the
optimal in summer, and decreases in the fall season as temperature cools. Generally, LUE reaches the plateau at
temperatures between 25°C and 30°C across all ecosystems, but at an earlier time at southern sites (spring) than at
northern sites (summer) (Figure S5 in Supporting Information S1).

Interestingly, at most sites, the LUE ‐ temperature relationship shows a hysteresis loop. Under the same
temperature, LUE in the fall season is lower than in the spring, and the magnitude of the hysteresis loop is site‐
dependent. The hysteresis behavior could result from seasonal differences in radiation, leaf area index, and soil
water content. However, defining LUE as GPP divided by PAR removes most of the solar radiation effects
already, which eliminates solar radiation difference as a possible cause; when normalizing LUE by LAI, the
spring‐fall contrast remains or gets even more evident, which eliminates LAI difference as a possible cause
(Figure S6 in Supporting Information S1). The hysteresis behavior in the LUE‐temperature relationship is likely
because younger leaves are less prone to photoinhibition than older leaves (Bielczynski et al., 2017), making
the spring leaves more effective at carbon uptake. Another potential cause for this seasonal disparity is the
impact of other environmental factors such as water stress difference between spring and fall (Liu et al., 2023;
Niu et al., 2011). Given the seasonal dependence of LUE sensitivity, we will use monthly data for the
remainder of our analysis and separate the analysis by season to assess the impact of climate‐related variability
and extremes.

3.2. Climatic Drivers of LUE Variability

We employed the LUE‐Temperature and LUE‐SWA analyses to identify the environmental factors that drive
the variation in LUE across different ecosystems during spring and summer respectively. SWAdeep is used for
forest sites; for grassland sites, SWAshallow is used in wet regions, and SWAdeep is used in dry regions.

DBF sites are prevalent in the eastern United States, characterized by a humid climate and strong temperature
seasonality. Figure 3 shows a clear temperature‐driven LUE response during spring and summer, without strong
limitation by SWA. In spring during the transition from the cold winter to warm summer, LUE increased from
nearly 0 to ∼0.6 g C/MJ as temperature rose from 3°C to 17°C in the northern region and from 8°C to 20°C in
the south. The correlation of LUE with temperature is stronger in the north (with a correlation coefficient of
0.88) than in the south (r = 0.68), as temperature sets a stronger constraint for growth in the colder climate.

Figure 3. The relationship between seasonal mean LUE and seasonal mean temperature and SWAdeep in DBFs during spring and summer in the Southern US (a)–(d) and
Northern US (e)–(h), where different flux tower sites are distinguished by color. The values in panels are for the Pearson correlation coefficient (r) and its significance
level (p).
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During summer, southern DBFs experience heat stress when seasonal mean temperatures exceed 20°C, which
leads to a decrease in LUE. However, DBFs in the north, with temperatures between 15°C and 27°C, do not
show a consistent, unambiguous response to temperature and SWA. Instead, LUE is rather high, ranging from
0.65 to 0.95 g C/MJ, which can be explained by the humid and wet climate in the northern DBF sites during
summer. Located in the Midwest and Northeast, these sites have a relatively humid continental climate with
considerable precipitation year‐round, with precipitation in summer ranging from 2.73 to 3.79 mm/day and
VPD from 0.73 to 1.09 kPa. As a result, LUE remains high in summer, and shows little interannual variability
at each site.

In contrast to DBFs, ENF sites are distributed across most of the US other than the Midwest, with 22 sites in the
south and 9 in the north. As expected, temperature exerted a stronger constraint on LUE in the colder climate in
the north (r = 0.82) compared to the warmer climate in the south (r = 0.78) (Figure 4). Among them, 10 of the 22
southern sites are in the southwest, and all of them are at high elevations (2,015–3,050 m) with rather low
temperature. In spring, the LUE increased with rising temperature at these cooler sites when it was below 10°C,
reaching 0.3 g C/MJ in the southwest and 0.7 g C/MJ in the north (Figure 4). However, at the warmer and wetter
ENFs in the southeast, the correlation between the LUE and temperature or SWA was insignificant in spring. In
summer, it is clear that SWAdeep drives LUE variations in both the north and south. Meanwhile, the rising
temperature no longer positively affects LUE. Instead, elevated temperature hinders plant LUE at most sites.
Interestingly, the spatial variation of summer LUE across most ENF sites differs substantially from the inter-
annual variation in their relationship with temperature. Specifically, while the ENFs in the warm and humid
Eastern US (with temperature above 20°C and SWAdeep above 0.4) have higher LUE than in the cooler, drier
Western US (with temperature below 20°C and SWAdeep below 0.4), at a given site higher temperatures corre-
spond with lower LUE. This seeming discrepancy between spatial and temporal variability may have resulted
from the confounding effect of cross‐site differences in LAI and water availability.

This study also compared six MF sites distributed across the United States, including Northeast, Midwest,
Southern California, and Alabama locations. However, no clear pattern of LUE response to temperature and SWA
was found, and the results were inconclusive due to the limited data available and the vast variability in climate
and terrain conditions across the various sites.

The 10 northern GRA sites spread across the West and Midwest. During spring in the northern US, the variation in
LUE is driven by both temperature and SWAdeep, and has a correlation coefficient of 0.79 with temperature and
0.87 with SWAdeep (Figure 5). Multi‐variate linear regression between LUE and the two predictors produced an
R2 of 0.84, indicating that ∼84% of the LUE variance can be explained by the joint effects of temperature and
SWAdeep. During summer, the variation in temperatures is small and has negligible impact on LUE, while

Figure 4. The relationship between seasonal mean LUE and seasonal mean temperature and SWAdeep in ENFs during spring and summer in the Southern US (a)–(d) and
Northern US (e)–(h), where different flux tower sites are distinguished by color. The values in panels are for the Pearson correlation coefficient (r) and its significance
level (p).
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SWAdeep varied widely between sites and dominated the spatial variation in LUE, with higher productivity at
wetter sites. An exception is observed at US‐Bkg, where grassland maintains a high LUE at low SWAdeep. This
might be due to the presence of C4 grass in US‐Bkg. Vegetation at US‐Bkg consists of a mixture of C3 and C4,
and C4 plants have stronger heat and water stress adaptability, leading to high water use efficiency and production
potential even under the influence of severe drought.

In the southwest, a hot and dry region, there is no consistent relationship between grass LUE and temperature during
spring or summer (Figure 6). Located on diverse terrains including mountains, canyons, plateaus, and deserts, the
southwestern sites exhibit significant variations in temperature and precipitation, which create distinct climatic
niches. For example, at US‐NR3, at a high elevation with below‐freezing winter, temperature is the primary driver
of LUE during the spring and summer. For the rest of the Southwest GRAs, temperature variations were small in
spring, ranging from 13°C to 20°C, and did not have a major impact on LUE. However, SWAdeep varied widely
between sites, and this dominated the LUE spatial variations in spring. In arid regions, LUE in both spring and
summer is typically lower than at wetter sites. In summer, LUE variations at relatively wet sites were driven by
higher temperatures and reduced soil water availability. Despite the significant temperature differences among the
southwestern GRAs sites (ranging from 10°C to 28°C), they exhibited similar LUEs. This may have to do with the
differences in heat adaptability, as some are better adapted to hotter or cooler temperatures than others. For
instance, at a site in California (US‐SCg), the onset of heat stress occurs at 13°C, while at a site in Arizona (US‐
SRG), heat stress starts at 25°C.

In the southeast, a warm and humid region, the correlation between grass LUE variation and temperature or
SWAshallow was weak or insignificant in spring (Figure 6). In summer, a negative effect of rising temperature on
LUE was observed, with a correlation coefficient of −0.78; LUE was also constrained by SWAshallow, with a
correlation coefficient of 0.83. According to the multivariate regression, temperature and SWAshallow together
explained 80% of the LUE variance, with generally higher LUE at wetter and cooler sites.

For ecosystems where both temperature and water availability are important drivers of LUE variation, the LUE
relationship with either one of the variables cannot exclude the impact of the other. For a clear visualization of the
separate effects of temperature and SWA on LUE, we analyzed the LUE variability across different combinations
of temperature and SWA. Figure 7 shows the results for SWAdeep as an example. In spring, the lowest LUE
consistently occurred under rather extreme conditions: temperatures below zero for ENFs and below 4–8°C for
other vegetation types, or soil water availability below 0.1 for grass. Above these thresholds, LUE increased with
temperature for all three vegetation types and also increased with water availability for grass. The LUE variation at

Figure 5. The relationship between seasonal mean LUE and seasonal mean temperature and SWAdeep in GRAs during spring (a)–(b) and summer (c)–(d) in the Northern
US, where different flux tower sites are distinguished by color; the relationship between the predicted value of the multivariate regression and the true value of LUE (e)–
(f). The values in panels are for the Pearson correlation coefficient (r), its significance level (p), and the coefficient of determination (R2).
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GRA sites was clearly driven by both temperature and SWAdeep. At both the ENF and DBF sites, LUE showed little
variation with SWAdeep, which is consistent with the results in Figures 3 and 4.

In summer, LUE variation at both the ENF sites and GRA sites was primarily driven by SWAdeep, and showed
little temperature dependence. GRAs also encountered frequent compound heat‐drought extremes when high
temperatures coincided with low SWAdeep, resulting in very low LUE values; in contrast, such compound ex-
tremes are rare for ENF and DBF sites. Instead, DBF sites experienced apparent heat stress, with lower LUE
values at high temperatures and no clear dependence on SWA. Additionally, the number of data points under
extremely high temperatures with low SWAdeep is very small, which may cause uncertainty and potential biases.

3.3. The Role of Atmospheric Dryness

In addition to SWAdeep, atmospheric aridity is another drought factor influencing plant physiological processes.
However, high VPD often coincides with low soil moisture and high temperature, and the three are tightly

Figure 6. The relationship between seasonal mean LUE and seasonal mean temperature and SWA (at top 200 cm in the Southwestern US (a)–(d), at top 10 cm in the
Southeastern US (e)–(h)) in GRAs during spring and summer, where different flux tower sites are distinguished by color; the relationship between the predicted value of
the multivariate regression and the true value of LUE (i)–(l). The values in panels are for the Pearson correlation coefficient (r), its significance level (p), and the
coefficient of determination (R2).
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Figure 7. The variation in LUE (in gC/MJ) across different temperature and SWAdeep ranges in spring (a)–(c) and summer (d)–(f). The integer within each box represents
the count of data points within each bivariate bin, and the color scale represents the GPP/PAR values averaged within each bin.

Figure 8. The variation of summer LUE (in gC/MJ) across different VPD and SWAdeep ranges (a)–(c) and across different VPD and temperature ranges (d)–(f). The
integer within each box represents the count of data points within each bivariate bin, and the color scale represents the GPP/PAR values averaged within each bin.
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coupled through evapotranspiration. It is not clear how SWA, temperature, and VPD may interact to influence
plant photosynthesis (Zhou et al., 2019). Here we attempted to assess the role of VPD by separating its effects
from those of SWAdeep or temperature (Figure 8), focusing on the summer season when the impact of water
stress or aridity is the strongest. Not surprisingly, for all three vegetation types, the highest LUEs coincided
with high SWAdeep and low VPD, while the lowest LUEs coincided with low SWAdeep and high VPD. The
impact of SWAdeep appeared to dominate over the impact of VPD, especially at the ENF sites and for moderate
aridity conditions at the GRA sites. However, under extreme drought conditions (low SWAdeep) at the GRA
sites, atmospheric aridity was the dominant driver of LUE response, with a threshold of approximately 1.6 kPa;
when VPD exceeded this threshold, LUE dropped significantly. The high VPD at the GRA sites also coincided
with high temperature; however, as evident from Figure 8 (f), the impact of high VPD dominates over heat
stress, causing extremely low LUE during compound heat‐drought events. Specifically, under low VPD
(<1.6 kPa) conditions, the impacts of soil water stress and heat stress were evident, with LUE increasing with
SWA and temperature until the optimal temperature and then decreasing due to heat stress; under high VPD
(>1.6 kPa) conditions, LUE showed little variation along the SWA gradient or temperature gradient
(Figures 8c–8f). In contrast, except for the saturation conditions (VPD < 0.4 kPa), increasing VPD caused LUE
to decrease regardless of the SWA and temperature conditions (Figures 8c–8f). At the forest sites (i.e., ENFs
and DBFs), compound heat‐drought conditions are rare so the results may not be robust due to the small sample
size of LUE when VPD is high.

4. Conclusions
In this study, we examined the role of SWA, temperature, and atmospheric aridity in driving GPP variations of
different vegetation types (ENF, DBF, and GRA) during the spring and summer in the United States, and used
LUE as a standardized metric of GPP to enable comparison across different locations. Our analysis identified
temperature as the dominant driver in spring, and SWA and VPD as the primary drivers in summer. During
mild conditions of atmospheric aridity, the impact of drought on vegetation was dominated by soil water
availability; under more severe aridity conditions at the GRA sites, VPD dominates the LUE response and is the
primary cause for the loss of photosynthesis during extreme heat‐drought compound events. All vegetation
types are subjected to heat stress in the southern region. Temperature and soil water availability can explain a
large fraction of the LUE variances in some ecosystems and some seasons or regions, but fail in others. More
robust approaches such as machine learning may be necessary to better explore the predictive power of the
different environmental factors.

In most years, ecosystems' transition from spring to summer resulted in a shift in the seasonal drivers of LUE
variations from temperature dominance to SWA dominance. During spring, when the water supply is high,
rising temperature positively affects LUE. However, during the summer season, the impact of rising temper-
ature on LUE may vary in both the direction and the magnitude across different ecosystems, likely due to their
thermal optimum differences. Ecosystems in the north reach or approach the optimal temperature with minimal
LUE variations in summer, while ecosystems in the south may experience temperatures exceeding their thermal
optimum and light saturation, consequently leading to a drop in LUE. As global warming continues to intensify,
it is anticipated that the negative correlation between temperatures and LUE will become more pronounced in
summer. Additionally, high temperatures in summer are often accompanied by high VPD, which may accel-
erate evapotranspiration and therefore soil moisture depletion thus limiting LUE; in addition, excessive VPD
might induce stomatal closure thus severely limiting LUE. Therefore, the correspondence between low LUE
and high temperature may not necessarily reflect the presence of heat stress. On the other hand, in the wet‐to‐
dry transition region or seasons, increased VPD would initially reduce stomatal conductance to transpiration
thus enhancing water use efficiency, slowing down the photosynthesis response to aridity (Xu et al., 2023a,
2023b; Zhang et al., 2019).

The variations observed in LUE response to temperature and SWA are site‐ and ecosystem‐specific, show non‐
linearity in many cases, and depend on background climate as well. Different regions and vegetation types
possess distinct climatic niches, vegetation hydraulic properties, and heat tolerance, which influence the factors
driving LUE variation. For example, at high altitudes, LUE is limited by spring snow cover and surface soil
moisture. From the results in ENFs, DBFs and GRAs, temperature has a stronger constraint on LUE variations
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in the cooler northern region than in the warmer southern region in spring. In summer, LUE in ENFs varies
along the temperature gradient, with higher LUE at warmer sites. Our study shows that there is substantial
spatial variability in the sensitivity of LUE to temperature across widely distributed ENFs in the United States.
Further research is needed to understand how ENFs in different biota respond to climate change (Wagle
et al., 2016a, 2016b). Additionally, the relevant depth of available soil water for plants varies across different
regions. Apart from the northern grasslands, LUE in other ecosystems (including forests and southern grass-
land) is constrained by SWAdeep. This supports and supplements the recent finding of Xu et al. (2023a, 2023b)
that using surface‐layer soil moisture alone underestimates the soil moisture effects for deep‐rooted plants.

5. Discussion
Further investigation is needed to understand the reasons behind the variations in LUE in certain ecosystems, such
as southeastern ENFs, northern DBFs, and southeastern GRAs. One possible reason for the insignificant cor-
relation between LUE and climate factors in these ecosystems may be their differential responses to major climate
variables due to the substantial differences in forest age, land use history, topography, edaphic and climatic
conditions, and species composition. For example, ENFs in the southeast are warmer than in the southwest.
Within the same vegetation types, we observed a large spatial variability in SWA among southeastern ENF sites
in spring, ranging from 0.1 to 0.8. Those distinct hydroclimatological conditions lead to large differences in
response to climates in southeastern ENFs, and generalized vegetation types cannot capture the differences in
sensitivity of different species to climate (Wagle et al., 2016a, 2016b). In northern DBFs, summer LUE is
maintained at a high level with small variation, despite the clear variability of the climatic drivers examined in this
study. It is unclear what may be responsible for this high degree of stability.

In addition, analyses based on the monthly and seasonal mean data smooth out the maximal GPP values, espe-
cially in DBFs and GRAs, which have high seasonal variability of LAI, leading to an underestimation of peak
productivity and obscuring important ecological dynamics (see Figure S7 in Supporting Information S1).
Focusing on the roles of climatic drivers in the spatiotemporal variability of GPP for different vegetation types,
our study did not account for the impact of plant species, ages, or disturbances caused by pests, fire, or extreme
storm events. Another limitation of this study is the data uncertainty. The FLUXCOM GPP data and NLDAS2
soil moisture data are both gridded products resulting from combining observations with models, and cannot
account for the strong spatial heterogeneity expected of site‐level data. Compared to GPP from the Ameriflux data
set, FLUXCOM underestimated the peak productivity, especially in southern regions (see Figures S2 and S3 in
Supporting Information S1). Soil moisture data at the flux tower sites are very limited, and vary in sensor type and
measuring depth, hindering comparison across sites. Among the AmeriFlux sites, only the NEON sites offer
consistent vertical profiles of soil moisture measurements, but NEON has been in operation for a short period and
cannot provide adequate samples for interannual variation yet. Consistent measurements of soil moisture are
critical for multi‐site comparisons. Also important are high quality data for soil properties at the flux tower sites
such as wilting point, porosity, and field capacity.

Due to the short operating time of most flux tower sites, our result did not reflect the effect of climate change.
Warming is causing an increasing trend for heat stress and a decreasing trend of SWA over most of the globe.
As climate change continues, photosynthesis in some terrestrial ecosystems is increasingly limited by soil water
availability even in seasons and regions that historically experienced no water stress. Ecosystems with tem-
perature‐dominated variations in LUE may transition to being dominated by combined heat and drought
conditions. Low soil moisture and high temperature will further increase atmospheric aridity, an already strong
limiting factor for photosynthesis in grassland ecosystems. These changes may lead to tighter coupling between
the terrestrial carbon and water cycles, even as GPP acclimates to warming, ultimately altering GPP variations
among seasons and diminishing the capacity of the terrestrial ecosystem as a carbon sink.

Data Availability Statement
The FLUXCOM GPP data (Jung, 2020) is available via https://www.bgc-jena.mpg.de/geodb/. The system re-
quires registration, and the download link is sent to the registered email address only. The Ameriflux FLUXNET
Network Dataset is available via ameriflux.lbl.gov. The CERES Photosynthetic Active Radiation data (Doelling
et al., 2016) is available via https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGMONTH_L3.004A.
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The North American Land Data Assimilation System Soil Moisture dataset (NLDAS project, 2022) is available
via https://doi.org/10.5067/NOXZSD0Z6JGD. The North American Land Data Assimilation System Mosaic Soil
Hydraulic Properties Datasets (Mitchell et al., 2004) are available via https://ldas.gsfc.nasa.gov/nldas. The
AVHRR LAI data (Vermote & NOAA CDR Program, 2019) is available via https://doi.org/10.7289/V53776Z4.
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