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Abstract

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today.
Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and
recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might
be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits
characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due
to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future
climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor
less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain,
especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were
relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we
expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic
resources, especially their extension to non-model species and the union of evolutionary experiments and “omics,” should also
enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will
reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

Keywords: global change, climate change, evolvability, prediction, adaptation, evolutionary rescue

Lay summary

Preventing biological impacts from climate change will require accurate predictions about which species and ecosystems are most
at risk and how best to protect them. Despite some progress, most predictive efforts still omit the potential for evolution to mediate
climate change impacts. Here, we evaluate what is predictable now, in the future, and likely never based on recent literature, a survey
of authors, and authors’ contributions to a special issue on climate change evolution. Evidence indicates a growing ability to predict
at least some components underlying evolutionary dynamics. For instance, the direct effects of climate change often alter natural
selection regimes that could elicit evolutionary responses assuming sufficient additive genetic variation. We found no evidence for an
increase or decrease in evolvability under future climate conditions, but we did find an overall moderate level of evolvability. However,
the specific genetics underlying potential adaptive changes are still a “black box” that remains difficult to predict. We not only dis-
cuss the opportunities afforded by new genomic techniques to elucidate these genetic black boxes but also caution that the costs
and limitations of such techniques for many species might not warrant their general practicality. We highlight further progress and
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challenges in predicting gene flow and population persistence, both of which can facilitate evolutionary rescue. We finish by listing
ten activities that are needed to accelerate future progress in predicting climate change evolution. Despite the many complexities, we
are relatively optimistic that evolutionary responses to climate change are becoming more accurate through time, especially assum-
ing a more focused effort to fill key knowledge gaps in the coming years.

Introduction

Climate change is already altering the distribution, abundance, and
traits of species and is expected to produce severe future impacts,
including extinctions, as the Earth warms further (Cahill et al., 2012;
Chen et al,, 2011; Maclean & Wilson, 2011; Parmesan, 2006; Urban,
2015). These biodiversity changes could profoundly affect ecosys-
tems and reduce services to humans (IPCC, 2014; Scheffers et al,,
2016; Steffen et al., 2015). Preventing the most damaging effects of
climate change requires accurate predictions of impacts so that
limited conservation resources can be marshaled to design effi-
cient ways to protect biodiversity (Gaitdn-Espitia & Hobday, 2021;
Parmesan, 2006; Rockstrém et al., 2009; Urban et al., 2016).

Adaptive evolution offers an important means for surviv-
ing climate change, especially for species with limited dispersal
ability or phenotypic plasticity (Gougherty et al., 2021; Merild &
Hendry, 2014; Nadeau & Urban, 2019; Scheffers et al., 2016; Sgro
et al., 2011). Some natural populations have adapted to climate
change (Bonnet et al., 2019; Franks et al., 2007; Geerts et al., 2015;
Moiron et al., 2023; Singer & Thomas, 1996), whereas others lack
the genetic variation needed to adapt fast enough to keep pace
with climate change (Fitzpatrick & Keller, 2015; Hoffmann et
al., 2003; 2021). Although fundamental for predicting biological
impacts from climate change, evolution remains one of the most
challenging biological dynamics to predict (Campbell et al., 2017).

Predicting if, when, and how populations can adapt to climate
change constitutes one of the greatest challenges in science today.
To understand the scope of the problem and its solutions, we
build upon insights from this special issue, a poll of its authors,
and recent literature to explore the limits and opportunities for
predicting adaptive responses to climate change. We review the
predictability of five core components of adaptive responses:
traits and plasticity, natural selection, genetic variation, evolu-
tionary responses to selection, and population dynamics (Table 1).
For each component, we develop a road map for what might be
currently predictable, predictable with future research, and what
might remain unpredictable despite our best efforts. We then
highlight ways to improve future predictions.

Traits and plasticity
Overview of challenges

According to our survey of contributors to this special issue,
determining which traits to study and their plasticity are among
the most important requirements for predicting climate-induced
evolution (Figure 1). Climate change affects not only commonly
studied traits such as physiology, body size, and life history,
but also less-studied traits such as competitive ability. Besides
understanding which traits are important, biologists also need
to understand when, where, and to what extent plasticity can
maintain fitness or evolve. Phenotypic plasticity can be adap-
tive or maladaptive (Chevin & Hoffmann, 2017), and its effects
can depend on both direct and indirect climate effects (Chevin &
Lande, 2015; Westneat et al., 2019).

State of current predictions

Thermal performance (Bennett et al,, 2021; Diamond, 2017; Sgro
et al., 2011), drought tolerance (Alberto et al., 2013; Hamann et

al., 2018), and traits historically associated with the evolution of
expanded range limits such as broader climatic tolerance, faster
reproductive rates, and higher dispersal are likely targets of selec-
tion from climate change (Dytham, 2009; Lancaster, 2022; Van
Bocxlaer et al.,, 2010). Populations that experienced past climatic
variability might retain ancestral phenotypic plasticity (Hallfors
et al.,, 2024, 89-100; Janzen, 1967; Leung et al., 2020; Sunday et
al., 2011), but it still might not be sufficient to overcome rapid
climate change (Duputié et al., 2015). Adaptive plasticity might
sometimes allow populations to persist long enough for adap-
tations to evolve (Anderson & Song, 2020), but it can also pre-
vent adaptive evolution by buffering selection until it is too late
(Robinson & Dukas, 1999; Whitlock, 1996), precluding any gen-
eral predictions. The relationship between plasticity and genetic
variation is also largely unknown. Some highly plastic organisms
have limited potential for adaptation (Charmantier et al., 2008;
Oostra et al., 2018), while others can adapt readily (Mékinen et al.,
2016; Schaum & Collins, 2014).

Enabling future predictions

Predicting whether and when plasticity facilitates or impedes
adaptive evolution requires identifying the relevant organismal
traits, their plasticity, and the relationship between genetic var-
iation and trait plasticity (Duputié et al.; Donelson et al., 2018;
Kingsolver & Buckley, 2017; Levis & Pfennig, 2016; Noble et al.,
2019; Sgro et al., 2016). Traits do not operate in isolation, however,
and more emphasis needs to be placed on understanding how
critical traits covary, how plasticity affects this covariation, and
how these relationships alter climate change responses.

Common garden or transplant experiments that replicate
future climates can reveal how plasticity varies within and
among populations and across multiple traits (Bestion et al.,
2023; Stamp & Hadfield, 2020). Performing these experiments
at periodic intervals on natural populations or collecting prop-
agules over time can reveal the relative roles of and links between
genetic adaptation and plasticity for traits under selection by cli-
mate change (Radersma et al.,, 2020). Improved electronic tags,
monitors, remote sensing, and remote camera and video track-
ing systems can permit researchers to track more traits, at finer
scales, and over longer periods (Cui et al., 2020).

Natural selection

Overview of challenges

Understanding the agents and strength of natural selection was
deemed highly important for predicting climate change adap-
tation in our poll (Figure 1). However, predicting the manifold
effects of climate change on fitness remains challenging. For
one, climate-driven selection includes both direct and indirect
effects. For example, climate change not only alters weather
but also reshuffles species distributions and consequently
alters biotic selection (Alexander et al., 2022). Moreover, selec-
tion from multiple climate variables often produces multidi-
mensional, nonlinear fitness surfaces (Phillips & Arnold, 1989),
and selection can also interact with selection driven by other
global changes (Fournier-Level et al., 2019). Climate varia-
bles are usually correlated, which could simplify analyses to
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How important are each of these factors
in limiting adaptive responses to climate change?

High gene flow ’ I
Low mutation rate - <
Phylogenetic constraints I ‘

Extensive pleiotropy ’
Small population size

Low standing genetic variation

Multi-dimensional selection

Rapid climate change

-75 -50 -25 0 25

Percent of responses [l not important low importance somewhat important important [ll very important

How important are each of these factors
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for accurately predicting adaptation to climate change?

Known genome . ’

High genetic variation <
Known genome-trait associations l

Rapid generation time

Large population sizes

Simple genetic architecture I

Model system

Simple directional selection

Traits under direct selection

Knowledge of natural history

-75 -50 -25 0 25 50 75 100

Percent of responses [l not important low importance somewhat important important [ll very important

How important are each of these tools or other factors for improving
our general ability to predict adaptations to climate change?
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Figure 1. Responses from 28 authors of this special issue on the importance of various limits and opportunities for predicting evolutionary responses
to climate change on a scale from 1 (Not important) to 5 (Very important). Responses are indicated by color and medians are indicated by diamonds.

fewer dimensions, but climate change can also modify these recognizing that even finer-scaled microhabitat variation can
correlations, thus increasing uncertainty (Evans et al., 2018). further modify these experiences (Lenoir et al., 2017; Nadeau
Climate change forecasts need to be downscaled to match the et al,, 2017; Ziter et al., 2019). The force and direction of nat-

spatiotemporal scales experienced by organisms, while also ural selection induced by climate often fluctuate, creating a
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moving target for evolution and increasing predictive uncer-
tainty (Grant & Grant, 2002; Schou et al., 2022; Siepielski et al.,
2017). Sexual and natural selection can interact, but little is
known about these interactions in natural populations (Baur et
al., 2024, 101-113; Gémez-Llano et al., 2024, 149-160; Pilakouta
& Alund, 2021). Lastly, estimating total lifetime fitness is dif-
ficult for most species, often requiring biologists to settle for
partial or indirect estimates.

State of current predictions

Predicting selection from climate change depends on understand-
ing how both abiotic and biotic variables affect organismal fitness.
For example, understanding how thermodynamic constraints
affect protein stability informs predictions for how rising tempera-
tures intensify selection on genomes and affect genetic load (Berger
et al., 2021). Generally, biologists can better predict selection from
climate change when it alters fitness directly and selection pres-
sures align in their effects across traits and life stages (Etterson &
Shaw, 2001; Fisher & McAdam, 2019; Marrot et al., 2017). Weather
extremes often cause stronger selection than gradual changes
(Campbell-Staton et al., 2017), especially when weather events
cross biological thresholds such as thermal limits (Van de Pol et al.,
2017). Also, a meta-analysis suggested that precipitation changes
induced stronger selection than temperature (Siepielski et al.,
2017), emphasizing the multi-dimensionality of climate impacts.

Climate-induced selection is likely more predictable in
species-poor systems with fewer indirect effects. For example,
selection from drought on beak shape in less-diverse island
assemblages of Darwin’s finches was predictable, even though
precipitation fluctuations were not (Grant & Grant, 2002). In
diverse systems, strong selection might still be predicted for top
consumers, for which fitness is often highly sensitive to climate
variation (Urban et al., 2017; Zarnetske et al., 2012). However, the
many direct and indirect effects of climate change on food web
structure and community composition often combine to generate
uncertainties that are difficult to resolve.

Enabling future predictions

Predicting natural selection requires moving beyond simple char-
acterizations of selection along a single axis like temperature
and unraveling its multidimensional effects. One way forward
is to modify different climate change effects experimentally and
estimate the multidimensional selection across traits. Although
often constrained to controlled laboratory experiments, manipu-
lating selection in realistic mesocosms or nature is also needed to
facilitate more realistic inferences (Bestion et al., 2023; Nadeau &
Urban, 2024, 43-55). Transplant experiments offer a particularly
appealing approach for estimating realistic shifts in selection
along current and future climate gradients (Nooten & Hughes,
2017), especially when situated to incorporate contrasting axes of
environmental change, including changing species interactions.
Gaps in understanding total fitness will require renewed efforts
to measure natural selection throughout the life cycle as well as
building demographic models that can account for antagonistic
selection across life stages and their potential tradeoffs. Sensor
arrays and new technology enable finer-scaled, longer-term data
on environmental change and traits under selection over larger
spatial and temporal scales (Shi et al., 2014). Overall, under-
standing selection from climate change in all its manifestations
requires an intimate understanding of natural history, which, not
surprisingly, was the most important factor for improving future
predictions in our poll (Figure 1).

Genetic variation

Overview of challenges

The surveyed authors highlighted low genetic variation as
another important constraint on climate change adaptation
(Figure 1). Even when genetic variation exists, it might not fuel
evolution that is rapid enough to keep pace with climate change
(Botero et al., 2015; Lynch & Lande, 1993). By genetic variation,
we refer to additive genetic variation or the multitrait variance-
covariance G-matrix, which predicts the adaptive response from
climate-induced selection (Sgro et al., 2011).

To understand adaptive potential, most researchers measure
and report heritability, the ratio of additive genetic variation to
phenotypic variation. However, heritability is most appropriately
applied to situations where selection acts on trait values rela-
tive to the distribution of traits in the population (soft selection;
Box 1). With climate change, however, selection is expected to
depend more on absolute trait values (hard selection), in which
case evolutionary responses are expected to depend on addi-
tive genetic variance, not heritability (see Box 1; (Gomulkiewicz
& Holt, 1995)). This additive genetic variation is usually stand-
ardized by the squared trait mean to obtain the scale-invariant
measure, evolvability (Hansen et al., 2011; Houle, 1992).

Genetic variances are typically estimated in the lab, but ubiqg-
uitous genotype-by-environment interactions compel meas-
urements across multiple natural environments. Quantitative
genetic studies conducted in nature have become more common
(Bonnet et al,, 2022), but they often measure just a few popu-
lations, in a few environments, and are taxonomically biased,
reducing the confidence that they apply generally. Even when
genetic variation exists, a trait might not evolve quickly if genetic
correlations among traits do not align with selection or if indirect
genetic effects such as maternal effects oppose responses (Baud
etal., 2022; Walsh & Blows, 2009).

Despite its importance, genetic variance is seldom incorpo-
rated into predictions about climate change risks. Only one of
131 studies that predicted extinction risks from climate change
evaluated genetic variance, and it relied on one heritability esti-
mate measured in the lab for one species (Sinervo et al., 2010;
Urban, 2015). Yet, when incorporated, evolutionary potential can
highlight unrecognized resilience to climate change. For example,
after accounting for evolutionary potential, fruit flies were pre-
dicted to lose 33% less of their range under future climate change
(Bush et al., 2016).

Besides quantitative genetic methods, emerging genomic
methods can elucidate genetic architecture and the potential for
gene flow or de novo mutations to promote adaptive responses
(Bay et al., 2018). Understanding rates of recombination, muta-
tion, gene loss, and phylogenetic constraints can also improve
evolutionary predictions. However, these measures are still diffi-
cult and costly to estimate for many non-model species and thus
were ranked of lower importance in our survey.

State of current predictions

Evolutionary rescue from climate change depends on initial pop-
ulation size and maladaptation. Large populations facing weaker
selection are likely to persist regardless of evolvability, while
extremely small populations facing strong selection are likely to
face extinction no matter what happens (Gomulkiewicz & Holt,
1995). Only the cases of moderate population size and selection
will require sophisticated evolutionary predictions that require
estimating additive genetic variance.
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Box 1. Measuring genetic variability in a changing world.

The evolvability of a population facing a changing environment depends on its genetic variation, but what is the most useful meas-
ure of this variation for predicting evolutionary rescue—a population’s additive genetic variance or its heritability?

The relationship between genetic variation and response to selection is well described by classic multilocus quantitative genetic
models (Lynch & Walsh, 1998). Famously, the evolutionary response to selection is written in two ways:

R=h’S )
or
Az =VAp @
In the first equation, S is the selection differential or the distance between the mean trait among individuals that survive and
reproduce relative to all individuals, h? is the heritability or the additive genetic variance V, divided by the phenotypic variance V,,
and R = Az is the response to selection.

The two equations are mathematically equivalent, but the second equation measures selection relative to the phenotypic vari-
ance (3 = S/Vp), where B represents the coefficient in a regression between fitness and phenotype. Equations 1 and 2 also differ in
whether h? or V, influences the response to selection. Which is more relevant to predicting how fast a natural population adapts
to climate change?

Animal breeders developed the breeder’s equation (Lush, 1945) to predict the change in trait values when selecting some fraction
of the population to survive and reproduce based on trait values. If these selected individuals have a mean trait value S above the
average for the population, heritability predicts the response to selection. Alternatively, if individuals with the most extreme traits
along a desirable trait axis are chosen to breed (truncation selection), the selection differential, S, equals the intensity of selection
(i, depending only on the selected fraction) multiplied by the phenotypic standard deviation [S = 1,/Vp; (Falconer & Mackay, 1996)].
Thus, the more variable the population, the more selected parents will differ from the population, causing stronger selection (S) and
a larger response (R). The breeder’s equation best describes the response to selection when the trait value of an individual relative
to the population determines fitness.

When considering selection induced by climate change, however, it is the absolute trait value of an individual, not its trait value
relative to the population, that typically determines fitness, as captured by the selection gradient, 8. For example, all individuals
with thermal tolerance curves that match a warming environment might survive, rather than the fraction of the population with
the best tolerance curves. In this case, the additive genetic variance, not heritability, determines evolutionary responses to changing
environments (Equation 2; Hansen et al,, 2011; Houle, 1992).

For example, consider a Gaussian-shaped fitness surface, with an optimal trait value, 6, that has shifted away from the mean
trait value, x (i.e., fitness is given by exp(f 02’ ) where w? measures the width of the fitness distribution, with larger values imply-

2 w?
ing weaker selection). The response to selection becomes:

Va
Vp + w? 3)
(Bulmer, 1980). Because the phenotypic distribution is rarely wider than the fitness distribution (Vp << w?), the response to selec-
tion becomes largely independent of phenotypic variance (R ~ %%’?)VA) and becomes proportional to the additive genetic variance
instead of heritability (Houle, 1992). Similarly, the chance that a population adapts fast enough to persist in the new environment
depends primarily on additive genetic variance (Gomulkiewicz & Holt, 1995).

However, if the fitness distribution shifts and narrows substantially such that only a small proportion of the population has
any appreciable fitness (Vp >> w?), Equation 3 approaches R &~ (§ — X)h?. This selection acts more like a breeder: selecting those
individuals with traits S = 6 — X above the mean, whereby heritability best predicts the response to selection. However, population
persistence is also less likely because most individuals have near-zero fitness.

R= (6-%)

The stressful conditions associated with future climate change
could reveal cryptic genetic variation for traits (Fisher, 1930) and
thereby enhance adaptive potential. Various studies have high-
lighted the divergent ways in which environmental change can
alter genetic variation (Berger et al., 2021; Charmantier & Garant,
2005), generating predictions of increased, decreased, or no
change in genetic variance (Hoffmann & Merild, 1999).

To explore how climate change might alter future genetic varia-
tion, we conducted a meta-analysis on measurements of additive
genetic variation under current and future (stressful) climates
(see Supplementary Material for details). We found 10 studies on
15 species that reported 284 evolvabilities and 37 studies on 35
species that reported 677 heritabilities (see Supplementary Table
S1 for a list of studies included in the meta-analysis). Although
evolvabilities frequently changed between climate treatments

in individual studies (Figure 2; mean absolute change = +5.9),
the overall mean evolvability did not change, on average, under
future climates (Supplementary Tables S2 and S3; +4.1, 95% cred-
ible intervals [CIs| = —-17.1, 23.8). Heritabilities similarly changed
individually across climate treatments (Figure 2; mean absolute
change = +0.21), but the mean heritability did not change in
future climates (Supplementary Tables S4-S9; +0.02, 95% Cls =
-0.01, 0.06). Trait type (life history, morphology, physiology) and
climate treatment (acidity, drought, heat, hypoxia, salinity, pre-
cipitation) generally did not affect results, except for higher her-
itabilities of life-history traits during drought (+0.24, 95% CIs =
0.01, 0.49) and lower evolvabilities of morphology during drought
(-10.5, 95% ClIs = -18.2, -2.7). Another meta-analysis focused on
general stress responses and not focused on climate responses
(Rowinski & Rogell, 2017) likewise found no overall change in
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Figure 2. A meta-analysis of 284 estimates of (A) evolvability and (B) 677 estimates of trait heritability measured under current and future
environmental changes associated with climate change (heat, drought, acidity, wetness, hypoxia, salinity, carbon dioxide) revealed that individual
heritability estimates increased (blue) and decreased (red) in future environments, but overall did not significantly change (black line). We constrained

heritabilities to a maximum value of 1 and omitted incomplete data.

heritability in more stressful environments, but the study found
an increased additive genetic variance and phenotypic variance
for life-history traits. The difference between these results and
ours deserves further investigation to determine if climate stress
produces different responses than general stress.

Evolvabilities and heritabilities in our meta-analysis averaged
6.1 (95% ClIs = 1.2, 10.6) and 0.32 (0.14, 0.49), respectively, indicat-
ing an overall optimistic level of adaptability to future climate
change. Although these studies are skewed toward common and
tractable species, the results match larger reviews where herita-
bilities averaged 0.37 (Mousseau & Roff, 1987). Thus, we find rea-
sonable additive genetic variances that could frequently facilitate
adaptation to climate change. However, these genetic variances
often change unpredictably under future conditions, contributing
to high uncertainty.

Species with larger and more connected populations generally
should harbor greater genetic variation (Campbell et al., 2017),
although empirical results from natural populations are mixed
(Wood et al., 2016). Gene flow can facilitate adaptations to climate
change by supplying adaptive genes or producing new adaptive
combinations (Sexton et al., 2011)—the most important mecha-
nism facilitating adaptive responses according to our poll. Along
climate gradients, gene flow from interior populations could facil-
itate adaptations to changing climate conditions at range edges
(Kottler et al., 2021; Lee-Yaw et al., 2016), as recently demon-
strated experimentally (Aguilée et al., 2016; Bontrager & Angert,
2019). In contrast, gene flow from cooler regions could swamp
adaptations to warming temperatures along trailing range edges
(Nadeau & Urban, 2019).

Enabling future predictions

Ongoing work is needed to measure additive genetic variances
for more species, populations, and traits and connect these
estimates to climate gradients. These efforts will provide both
population-specific estimates and general insights about changes
in evolvability across traits, species, and climate gradients.
Meanwhile, genomic advances could provide alternative esti-
mates for predicting climate change adaptation. For example,
genotyping individuals can yield accurate estimates of additive
genetic variance in natural populations (Bérénos et al., 2014;
Stanton-Geddes et al., 2013; Yang et al, 2017), reducing the
current reliance on pedigrees or complex husbandry experi-
ments and facilitating measurements under natural conditions
(Gienapp et al., 2017). Genomic methods also can detect loci of
large effect underlying the genetic architecture of adaptation
in natural systems (Rodrigues et al., 2022), which could bet-
ter inform evolutionary predictions. Genomic approaches that
link selection to environmental variation (e.g., environmental
associations, genome scans) also can dissect past responses to
climatic variation and suggest the genetic changes needed for
future climates (Jones et al., 2012; Louis et al., 2021; Yeaman et
al., 2016). For traits characterized by simple genetic architectures,
genome-wide association studies can highlight alleles affecting
trait evolution, identify vulnerable populations that lack adap-
tive alleles, and inform which sources of gene flow might rescue
vulnerable populations (Bay et al., 2018; Exposito-Alonso et al.,
2018, 2019; Gougherty et al,, 2021; Ruegg et al., 2018). Because
the spatial distribution of adaptive alleles is likely heterogeneous,
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some populations will require large shifts in allele frequencies to
reduce maladaptation. Relating the adaptive genomic composi-
tion of populations to current and future climates can estimate
this adaptation lag.

Transcriptomic studies also can highlight loci expressed in
different environments and connect underlying genes-to-trait
variation, potentially indicating the genes under selection or con-
tributing to plasticity (Oomen & Hutchings, 2022). Target genes
could be manipulated through selective breeding, knock-outs,
or CRISPR to establish the genes-to-trait mapping with certainty,
although some of these manipulative practices remain controver-
sial (Gudmunds et al., 2022). Transcriptomics, however, provides
less direct information about evolvability than other approaches
and is most usefully applied to better-studied species. As insights
accumulate, these studies might eventually inform efforts to pre-
dict adaptability and the repeatability of evolutionary trajecto-
ries for understudied species, assuming conservatism of shared
genetic pathways.

We envision that future efforts will leverage complementary
resources from quantitative genetics, genomics, and transcrip-
tomics from experiments and observations to advance reliable
estimates of the evolutionary potential of natural populations
and predict responses to climate change. However, the large
sample sizes needed for accurate results, financial tradeoffs
with collecting other critical data or implementing conservation
measures, and remaining uncertainties caution against relying
solely on genomic tools for the near term.

Evolutionary responses
Overview of challenges

The few studies to date that have demonstrated evolutionary res-
cue during climate change can inform potential genetic pathways
and provide general insights (Franks et al., 2007; Gonzalez et al.,
2013; Hoffmann & Sgro, 2011; Hoffmann et al,, 2021). However,
most current insights come from lab-based or model systems and
thus might not apply broadly to natural populations. In natural
systems, the potential to adapt to climate change is often inferred
from observations during short-term weather fluctuations or from
existing adaptations to climate across landscapes (Hoffmann &
Sgro, 2011; Merild & Hendry, 2014; Urban et al., 2014). Yet, short-
term weather fluctuations might not simulate future climates
accurately, and adaptive gene flow across landscapes might not
rescue local populations fast enough. So far, predictions about
evolutionary responses in the wild have usually been inaccurate
(Pujol et al., 2018), highlighting the need to deepen our under-
standing of evolutionary mechanisms and improve the precision
of parameter estimates in natural populations.

State of current predictions

Species with large population sizes, short generation times, and
high additive genetic variation likely will adapt more quickly
to climate change (Franks et al., 2007; Geerts et al., 2015). Even
longer-lived species can adapt to climatic changes if selection is
strong and consistent enough, as observed for Darwin’s finches,
red deer, and common terns (Bonnet et al., 2019; Grant & Grant,
2002; Moiron et al., 2024, 8-17). However, other species, like the
Soay sheep, responded to climate variation primarily via plas-
tic, rather than genetic, responses despite evolutionary potential
(Ozgul et al., 2009). Overall, species that have already adapted
to climate variation across their range and that disperse well
enough to spread adaptive alleles are likely to adapt more easily
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to future climates, especially if those conditions were encoun-
tered in the past.

Ultimately, our ability to predict evolutionary responses relies
on understanding the tension between necessity and chance in
evolutionary biology (Gould, 1990). Accumulated evidence from
parallel evolution experiments and observations suggests that
over shorter periods and in response to strong selection analo-
gous with past selection, evolution often produces similar pheno-
types, but not always via the same genetic pathways (Abouheif &
Wray, 2002; Colosimo et al., 2005; Conte et al., 2012). Over longer
periods and in response to novel selection regimes, evolution is
less likely to operate in parallel and more likely to require de novo
mutations such that evolutionary trajectories become contingent
on the existing genetic architecture (Blount et al., 2008; Lenski,
2017; Whitehead et al., 2017). Therefore, we are more confident
about predicting evolutionary responses to climate change over
shorter periods in response to analog climates and less confident
about making longer-term evolutionary predictions under non-
analog conditions.

Enabling future predictions

We advocate for initiating and maintaining long-term studies and
periodic common garden or transplant experiments that record
changes in selection, fitness, traits, and genetics. We also advo-
cate for the collection and preservation of seeds or propagules at
regular intervals, such as being done in Project Baseline (Etterson
et al., 2016), that would support future resurrection experiments
that can detect adaptation over time (Etterson et al., 2016; Franks
et al., 2018; Geerts et al.,, 2015; Orsini et al., 2013). Also, experi-
mental evolution followed by genomic sequencing of ancestors
and evolved lineages holds promise for understanding the repeat-
ability of evolved climate change responses under natural con-
ditions (Bailey & Bataillon, 2016). Comparing ancient DNA from
specimens in museums and herbaria with current-day genomes
can also reveal adaptive genetic differences (Hofreiter et al., 2015;
Kreiner et al., 2022; Meineke et al,, 2018). In situ climate change
experiments in nature offer promising ways to evaluate evolu-
tionary responses under natural conditions, assuming that future
conditions can be simulated. Accumulated results would facili-
tate unified sets of predictions across systems and potentially
demonstrate common responses across organisms and ecosys-
tems that can inform understudied systems. Additionally, these
experiments will likely reveal when, where, and why some sys-
tems are predictable while others remain unpredictable despite
our best efforts.

Successfully employing these methods requires coordinated
efforts among a global community of researchers committed to
unifying analytical and predictive frameworks. Synthetic efforts
in other disciplines (e.g., climate change, subatomic physics) have
succeeded due to the commitment of extensive resources, the for-
mation of global institutions to organize efforts, and the develop-
ment of strong cultures of collaboration and sharing (Urban, 2019).
Facilitating and adopting these practices would similarly promote
predictions for climate change evolution. Limited resources are
likely the greatest current impediment, and therefore we need to
demonstrate and communicate how better evolutionary predictions
can directly improve people’s lives (Carroll et al., 2014).

Population dynamics

Overview of challenges

A population must persist to adapt to climate change, and there-
fore, population dynamics should be included in any serious
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discussion of adaptive evolution in response to climate change.
Models of evolutionary rescue suggest that sufficient genetic
variation can support population recovery through adaptation
(Carlson et al., 2014; Gomulkiewicz & Holt, 1995; Gonzalez et
al., 2013). However, small populations could limit this potential.
Besides outright persistence, small populations are also expected
to maintain less genetic variation and respond less efficiently to
selection, but see (Wood et al., 2016) for contrasting empirical
examples.

Predicting population persistence requires understanding pop-
ulation sizes, their underlying demographic processes, and how
future climates might affect them. Thus, predicting future pop-
ulation trajectories poses many of the same challenges as pre-
dicting evolutionary change: The need to understand correlated,
nonlinear, and indirect effects on fitness. Unfortunately, many
of the demographic parameters needed to project population
dynamics are missing or incomplete for all but the most common
species (Urban et al., 2016). Vital rates, such as survival, fecun-
dity, and development rate, are often highly plastic and therefore
should be measured as functions of climate rather than static
means. When available, vital rates are commonly measured on
one population even though local adaptation highlights the need
for population- and environment-specific estimates (Hoffmann
et al.,, 2021). Vital rates are also often density- and/or frequency-
dependent, which can jointly affect population and evolutionary
responses (Engen et al., 2020). Demographic responses could also
be nonlinear or involve thresholds that are not easily extrapo-
lated based on past or current responses. Population persistence
often depends on immigration and emigration, yet dispersal rates
and the dynamic regional context of other populations might
often be unknown (Urban et al., 2013).

State of current predictions

Demographic models for making population predictions are
well-developed and often accurate if parameterized with
high-quality data and not extrapolated into non-analog climate
conditions (Crone et al., 2013; Doak et al.,, 2021). Meanwhile,
newer, more flexible integral projection models have expanded
these models’ usefulness by incorporating individual trait varia-
tion, plasticity, and genetic variation (Buckley et al., 2010; Enquist
et al., 2015; Hanski et al., 2017). However, predicting long-term
population dynamics remains challenging due to inaccurate
parameters and a lack of information on density dependence,
interspecific interactions, and overall evolutionary dynamics.
Initially, large populations or many populations linked by
dispersal into metapopulations might be resilient unless they
decline substantially (Hanski & Gaggiotti, 2004; Massot et al.,
2008; Wright, 1978). High dispersal can allow populations to
track their climate niche across elevations or latitudes (Chen
et al., 2011). Besides adding genetic variation, dispersal can also
promote evolutionary rescue by bolstering declining population
abundances (Carlson et al., 2014) although these effects might
sometimes be transitory (Lotsander et al., 2021). Small popula-
tions with limited dispersal are likely to become isolated and
face increasing levels of demographic stochasticity that can limit
the potential for persistence and adaptive evolution (Nadeau &
Urban, 2019). Additionally, species with low population growth
rates and long generation times will be less likely to overcome
acute stress from climate change because their numbers cannot
rebound fast enough (Pearson et al., 2014). Overall, anything that
buffers population declines, including plasticity and dispersal,
could provide the time and raw supply of individuals needed to
facilitate evolutionary rescue (Gémez-Llano et al., 2024, 149-160).

Enabling future predictions

With growing evidence for feedback between demography and
evolution, eco-evolutionary dynamics models are likely needed to
predict joint demographic-evolutionary responses (Pelletier et al.,
2007; Walsh & Reznick, 2010). These models can quickly become
quite complex and analytically intractable. However, simulations
might provide insights until analytical approximations become
available. Ultimately, modeling should be thought of as an itera-
tive process that cycles between prediction, validation, and model
revision (Dietze et al., 2018).

More detailed and realistic demographic models will require
better information on demographic parameters (Urban et al,
2016). Biologists and amateur naturalists increasingly collabo-
rate to record population abundances and traits. GEO-BON is now
standardizing and aggregating monitoring data to streamline
data collection and make them available for modeling (Pereira et
al., 2013). To this end, smaller and more effective transmitters can
collect finely resolved demographic data such as survival and dis-
persal rates. The next step is to evaluate how certain traits, such
as physiological stress or body size, might provide early warnings
of impending population collapse (Clements et al., 2019; Huey
et al., 2012). Aggregating demographic trait data into searcha-
ble databases like COMPADRE will facilitate access to and use of
these data (Salguero-Gémez et al., 2016). Combining these exist-
ing data with phylogenetic and life-history information can fill
gaps for less-studied species (Santini et al., 2016). Concurrently,
metapopulation studies are uncovering how multiple populations
vary in key demographic traits, and this variation can enable pre-
dictions across larger and more relevant spatial scales (Buckley,
2008; Hanski & Saccheri, 2006; Hanski et al., 2017).

Ten actions to predict evolutionary
responses to climate change

Based on our review, we advocate for the following 10 actions to
improve the understanding of when and how organisms might
adapt genetically to climate change.

1 Expand your knowledge of the natural history of the spe-
cies and system with which you work. Then develop col-
laborations with local scientists and community members
(Haelewaters et al.,, 2021) to expand knowledge in under-
studied systems and strive for a more global representa-
tion of species and ecosystems.

2 Design long-term monitoring programs for characterizing
population demography, natural selection, and phenotypic
and genetic variation through standardized observations,
sample collections, and genomic assays across wild popu-
lations along climate gradients and as climate changes.

3 Develop experimental assays estimating the relative
importance of within- and among-generation plasticity
relative to adaptive evolution across varying periods and
determining the limits for phenotypic plasticity, when it
evolves, and when it interferes with evolution. Link the
relative contributions of plasticity versus adaptation in
response to climate change to organisms’ ecology and his-
torical exposure to climate variation.

4 Implement and coordinate the systemic deployment of
common garden/transplant experiments, resurrection
experiments, and evolutionary resurveys across climate
gradients to evaluate how climate change alters evolu-
tionary responses and develop the infrastructure to record
changes.
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How well do you think we will be able to predict adaptive responses to climate change?
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Figure 3. Responses from 28 authors of this special issue to the question, “How well do you think we will be able to predict adaptive responses to
climate change right now or as we gain more knowledge in the next 20 years?” on a scale from 1 (Not at all) to 5 (Very well). Responses are indicated

by color and medians are indicated by diamonds.

5 Estimate gene flow across populations and climate gradi-
ents, its contributions to adaptive potential, and its impact
on hybrid individuals under future conditions.

6 Contribute data on selection, traits, genetics, evolutionary
rates, and population demography to searchable publica-
tions and databases to make it available to others. These
data, together with phylogenetic information, can later be
synthesized to enable generalizations that apply to species
and systems with limited information.

7 Perform research aimed at understanding the level of
detailed genetic information needed to make accurate pre-
dictions about evolutionary responses to climate change.
Specifically, answer the question: When do we need meas-
ures from quantitative genetics versus genomic sequence
data to predict the evolutionary potential of traits under
selection?

8 Build and test mechanistic eco-evolutionary models that
can incorporate varying levels of genetic detail. These mod-
els should be flexible enough to apply to different species,
systems, and questions and incorporate levels of genetic
specificity from individual loci to quantitative genetics.

9 Understand if and when evolution matters for different
traits, populations, species, ecosystems, and questions.
The answer is likely context-dependent, but we cannot
know the answer until we test models of varying com-
plexity across various systems and assess how well they
predict out-of-sample observations. Important questions
to answer include: What evolutionary mechanisms are
required to make accurate predictions, and when are demo-
graphic models without evolution sufficient? Alternatively,
is it reasonably accurate to assume a moderate level of
evolvability or heritability (e.g., 6 and 0.3, respectively, in
our meta-analysis) for all traits in the absence of detailed
information?

10 Identify and prioritize (triage) the species and regions
that are in greatest need of evolutionary rescue. Decisions
should be based on their threat and their importance to
ecosystem function (Urban et al., 2017; Zarnetske et al,,
2012). Efforts to estimate the potential for evolutionary res-
cue should be conducted across the phylogenetic spectrum

so that we can interpolate insights into closely related
species or species with similar traits (Santini et al., 2016).
Apply general models and emerging cross-system insights
to develop broader management guidelines that promote
future resilience, such as conserving or augmenting exist-
ing genetic variation, improving connectivity among popu-
lations, and increasing population size by maintaining or
restoring habitat.

Conclusions

Despite the many uncertainties associated with predicting evo-
lutionary responses to climate change, the immediate goal is to
make better predictions. Therefore, we should not let perfection
become the enemy of good. However, we must also be humble.
Our predictions will only be as good as data quality and uncer-
tainty dictate. That means estimating all forms of uncertainty,
including parameters, model choice, and future climate change,
and openly discussing this uncertainty. We will eventually need to
test predictions against future data to see when we were right or
wrong. Even if wrong, we will have learned much and can use this
information to improve future models. As we learn how to make
better predictions, we should treat early predictions with caution
and simultaneously promote both the specific mitigation actions
suggested by models and more universal mitigation actions that
broadly maintain natural ecological and evolutionary processes
and thereby lend restorative powers during and (hopefully) after
climate change.

The potential for evolutionary rescue offers a reason for opti-
mism in the face of changing climates. Although we still know
little about when evolution might rescue populations, progress
is being made. Sometimes we can predict evolution better than
commonly thought given improved data availability and infor-
mation about which traits and gene complexes might evolve.
Based on this growing body of evidence, we conclude that pre-
dictions about future evolutionary responses to climate change
are becoming more certain, especially for well-studied ecosys-
tems with direct climate change impacts, populations with traits
predictably mapped to genetics, and species for which climate
change more directly affects fitness.
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Inspiring hope for the future, many authors in this special
issue were optimistic about the ability to predict future adaptive
responses to climate change (Figure 3). Overall, authors rated
this ability as moderate now (median = 3 of 5, where 5 means
very well) and even better (median = 4) in 20 years. Hence, even a
group of careful and skeptical evolutionary biologists think that
better predictions of evolutionary responses to climate change
are possible now and will become even better in the future.
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