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Abstract. The purpose of this paper is to study the fractal phenomena in
large data sets and associated questions of dimension reduction. We examine

situations where the classical Principal Component Analysis is not effective

in identifying the salient underlying fractal features of the data set. Instead,
we employ the discrete energy, a technique borrowed from geometric mea-

sure theory, to limit the number of points of a given data set that lie near

a k-dimensional hyperplane or, more generally, near a set of a given upper
Minkowski dimension. Concrete motivations stemming from naturally arising

data sets are described, and future directions are outlined.

1. Introduction

One of the basic questions in data science, which is to determine the “effective”
dimension of a large data set. If a data set has 106 points in 1000-dimensional
space, it is extremely useful to be able to detect if a significant proportion of these
points live on a lower-dimensional plane, or a more complicated surface, reflecting
the hidden relationships between the features present in the data set. One of the
main tools in this area is Principal Component Analysis (PCA) (see e.g. [5]). This
method has been and will remain a fundamental tool in the study of dimensionality
of data sets. We propose to complement this method with a set of tools that capture
important dimensionality phenomena that PCA does not see.

As a simple synthetic example, let us use the stages of construction of a Cantor-
type subset of [0, 1] consisting of real numbers that have only 0s and 2s in their base
4 expansions. More precisely, divide [0, 1] in four equal segments, and remove the
segments (1/4, 1/2) and (3/4, 1]. We keep the endpoints of the remaining segments,
obtaining {0, 1/4, 1/2, 3/4}. Repeating the same procedure with the remaining two
intervals of length 1/4, we obtain 16 points at the next stage, and so on. Let C2k+1

denote the resulting set and note that it has 2k+1 points. Let n = 22(k+1) and define
Pn = C2k+1×C2k+1 . From the point of view of PCA, this set is two-dimensional, and
yet the fractal pattern that is present may be of considerable practical significance.
We are going to explore this idea from a numerical point of view below.

In order to illustrate the ubiquity of fractional dimension phenomena in large
data sets, let’s consider the following hypothetical example. Suppose that we have
a time series representing sales of a retail store going back 40 years. Suppose that
one wished to look at the times when the sales were in the top 5% of all sales
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in a given year, and it turned out that this happened every July, December and
April, and that during those months it happened during the first week, and during
that week it happened on Fridays and Saturdays, and that on those days, the sales
peaked in the mornings. As the reader can see, this structure is highly reminiscent
of the Cantor type construction from the previous paragraph. While this type of
phenomenon has been extensively studied in terms of seasonality, we believe that
a fractal perspective can be of considerable value in view of the fact that if the
specific months, weeks, days, and times in the hypothetical above change, while
their relative number remains roughly the same, the seasonality considerations no
longer apply, while the fractal dimension analysis, as we shall see, is still valid and
effective.

Another manifestation of the fractional dimensional phenomena in large data
sets comes from the stock price data (see, e.g., [11]). It has been noted by several
authors that fractional Brownian motion can be used to model stock price volatility.
The fractional Brownian path has the upper Minkowski dimension > 1, reflecting
the volatility of the data (see also [2]). Combined with the discussion in the previous
paragraph about the variants of seasonality, we arrive at a very interesting situation
where we have a set of effective dimensions < 1 on the time axis, combined with
the volatile data modeled by a function whose graph has dimension > 1. A proper
understanding of a situation of this type calls for advanced tools and perspectives
from geometric measure theory, frame theory and harmonic analysis.

The fractal phenomenon in data sets has been studied before. We have been
particularly influenced by the investigations by Smaller Jr., Turcotte and others in
[13], [14] and [15].

1.1. Structure of the paper. In order to describe our results, we need to set
up the notion of fractional dimension of finite points. In Section 2, we develop
the notion of Hausdorff dimension for families of finite point sets living in the d-

dimensional unit cube [0, 1]
d
, d ≥ 2. We place particular focus on point sets that

are given as graphs of a function from [0, 1]
d−1

to [0, 1], with the idea of modeling
real-life data sets where output, such as sales figures, is viewed as a function of the
inputs that may include, the date, location, inflation rate, and other figures.

Theoretical results: After developing the notion of Hausdorff dimension of point
sets by introducing the discrete s-energy

Is(Pn) = n−2
∑

p ̸=p′;p,p′∈Pn;|Pn|=n

|p− p′|−s
,

we show (Theorem 4) that if the discrete s-energy of a point set Pn is suitably
small, then Pn cannot contain too many points on k-dimensional surfaces, k < s,
thus showing that small s energy limits the extent to which an effective dimension
reduction can be implemented on a given data set. Note that |p−p′| above denotes
the Euclidean distance between p and p′, whereas |Pn| denotes the size of the finite
set Pn.

For a comprehensive treatment of discrete energy, see [3]. We also note that dis-
crete energy has previously been studied in the context of geometric combinatorics
and geometric measure theory. See, e.g. [8] and [9].
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Numerical experiments: In order to illustrate the utility of the ideas described
above, we apply the standard PCA (Principal Component Analysis) to a discretized
version of the Cartesian product of two Cantor sets and show that PCA does not
fundamentally distinguish between this sparse example and a scale integer grid. We
then show that the discrete dimensionality of the same set is quickly and efficiently
estimated using a Python implementation of the discrete energy function described
above. These results are described in Subsection 2.2 below and carried out later in
the paper.

Future directions: After identifying discrete energy as an effective tool for determin-
ing the concentration of points of a numerical data set, we shall turn our attention
towards understanding how the fractal nature of a data set can be exploited to
make accurate forecasts using neural network models. More precisely, we shall ask
how the architecture of a neural network should be influenced by the complexity of
the data set as measured by discrete energy and other analytic tools. These ideas
will be explored thoroughly in a sequel.

2. Discrete fractional dimension and concentration of data sets

2.1. Definitions and core results. In this subsection, we develop some basic
definitions of fractional dimension in a discrete setting and state some results that
will be proven later in the paper.

Let Pn ⊂ [0, 1]
d
, d ≥ 2 be a finite set of size n. We consider a family of such

sets,
P = {Pn},

where n ranges over some subset of the positive integers. For s ∈ [0, d], define the
discrete s-energy of Pn as

(1) Is(Pn) = n−2
∑

p ̸=p′;p,p′∈Pn

|p− p′|−s
,

where here the sum is over pairs (p, p′) with p, p′ ∈ Pn and p ̸= p′.

Definition 1. Let P be as above. Define the discrete Hausdorff dimension of P as

dimH(P) = sup

{
s ∈ [0, d] : sup

n
Is(Pn) < ∞

}
.

We shall sometimes restrict our attention to point sets of the form

(2) Gn(f) =
{
(j/q, f(j/q)) : j ∈ Zd−1 ∩ [0, q)d−1

}
, n = qd−1,

for some f : [0, 1]
d−1 → [0, 1]. We shall refer to these as point set graphs. However,

whenever possible, we shall establish results for the more general point sets defined
above.

Before we start stating and proving our results, we describe the practical motiva-
tion for the point sets considered above. Suppose that a company X has d branches
around the country, and we wish to describe the sales total for each branch on each
of n dates. The resulting point set is a 2-dimensional array

{pk,i}1≤k≤n;1≤i≤d.

We can regard this point set in two equivalent ways. We can fix a branch, labeled
by i, and consider the time series array

(3) {p1i, p2i, . . . , pni}.
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We have d such time series, so in this way we may regard our point set as d vectors
in Rn. Alternatively, we may fix a date and consider a vector of sales figures at the
different branches on a given day:

(4) {pk1, pk2, . . . , pkd}.

In this way, we may regard the point set as a collection of n vectors in Rd, as we
have it set up above.

Each of the two perspectives described above has its practical advantages from
the point of view of the results described below. We are going to show that if
the discrete s-energy of a point set is suitably small, then the point set cannot be
too concentrated on a lower dimensional hyper-plane determining a certain linear
relationship between the data points. If we look at this from the point of view
of the time series in (3), the linear relationship signifies the possibility that sales
figures for different branches are strongly related to one another across the board in
an easy-to-describe fashion. From the point of view of (4), a concentration of data
on a hyper-plane would say that for a significant number of different dates, there
is a simple linear relationship between the sales figures for the various branches.

Since the number of dates is likely to be considerably larger than the number of
branches of a company, the analysis in each case is of a different nature, as we shall
see below.

We now turn our attention to the technical results. We begin with considering
n points in d-dimensional space, as we set up at the beginning of the section, but
we shall describe the “flipped” perspective afterward.

Lemma 2. Let P = {Gn} be a family of point set graphs as in (2) above. Then
dimH(P) ≥ d− 1.

We want to be able to describe the support of a family P = {Pn} of point sets
of a given discrete Hausdorff dimension. To do so, we introduce a little structure.
Take a compact set E ⊂ Rd and a positive number δ ≤ 1. We let NE(δ) denote the
minimal number of closed balls of radius δ needed to cover E. Recall

dimM(E) = lim inf
δ→0

log(NE(δ))

log(1/δ)
and dimM(E) = lim sup

δ→0

log(NE(δ))

log(1/δ)

are the lower and upper Minkowski dimension of E, respectively. When the lower
and the upper Minkowski dimensions agree, we call their common value the Minkowski
dimension of E.

We will typically assume that, for some dimension k (which need not be an
integer),

(5) NE(δ) ≤ max(CEδ
−k, 1) for δ > 0

for some constant CE . Here, CE depends on E, but also on k as well. If such a
constant exists, we must have dimM(E) ≤ k. Not only this, but E must have finite
k-dimensional upper Minkowski content. The condition (5) includes a wide range
of essential examples, such as planar regions, piecewise-smooth manifolds, and a
range of fractal sets including all of the Cantor sets we discuss in later sections.

We are ready for our core statement about the relationship between the dis-
crete Hausdorff dimension and the Minkowski dimension of the set on which it is
supported.
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Theorem 3. Let Pn be a point set of size n contained in a compact subset E ⊂ Rd

satisfying (5) with k > 0. If s > k, we have the lower bound

(6) Is(Pn) ≥
k

s− k
C

− s
k

E (n
s
k−1 − 1).

Consequently, if P = {Pn} is a family of point sets contained in E of upper
Minkowski dimension dimM(E) ≤ k, then dimH P ≤ k.

We now turn our attention to the question of dimension reduction. Suppose that
Pn is as above and dimH(P) = s. The question we ask is whether it is possible
that the points of P concentrate on k-dimensional hyper-planes or, more generally,
on smooth k-dimensional surfaces. Our next result says that the fractal dimension
places significant limitations on such possibilities.

Theorem 4. Let E be a compact subset of Rd satisfying (5), and let Pn be a point
set in Rd of size n. Then, for s > k,

(7) |Pn ∩ E| ≤
(
1 + C

s
k

E

( s
k
− 1
)
Is(Pn)

) 1
s
k

+1
n

2
s
k

+1 .

Moreover, the exponent 2
1+ s

k
is, in general, best possible.

Remark 5. Since Pn is finite, so is Is(Pn). Thus, in view of Theorem 4, it is
imperative to minimize the quantity(

1 + C
s
k

E

( s
k
− 1
)
Is(Pn)

) 1
s
k

+1
n

2
s
k

+1 .

To see the interplay between the various quantities above, we assume first that Pn

has a diameter not exceeding 1. Then, observe that for a fixed n, Is(Pn) is an
increasing function of s, as is (

s− k

k

) 1
1+ s

k

.

On the other hand, n
2

1+ s
k is a decreasing function of s (with k fixed). Ultimately,

an effective algorithm is needed to choose s given k and the point set Pn.

It is important, in practice, that we introduce a bit of “wiggle room” into The-
orems 3 and 4, and instead consider point sets that are in some ϵ-neighborhood of
E. Thankfully, both theorems have thickened versions with the same exponents.
This flexibility is quite important for potential applications.

Theorem 6. Let E be a compact subset of Rd satisfying (5) with k > 0. Let Pn

be a point set of size n such that each point is within a distance of ϵ > 0 from E.
Then, if s > k, we have the discrete energy bound

Is(Pn) ≥
k

s− k
C

− s
k

E

((
1− ϵAs,k

C
1
k

En− 1
k

)
n

s
k−1 − 1

)
with constant

As,k =
s(s+ 1)(s− k)

k(s− k + 1)
.

In particular

Is(Pn) ≥
k

s− k
C

− s
k

E

(
1

2
n

s
k−1 − 1

)
if ϵ ≤

C
1
k

E

2As,k
n− 1

k .
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Theorem 7. Let Pn be a point set in Rd and let E be a compact subset of Rd

satisfying (5). Then, if Eϵ is the ϵ-thickening of E with

ϵ =
C

1
k

E

2As,k
n− 1

k ,

then

|Pn ∩ Eϵ| ≤ 2
1

s
k

+1

(
1 + C

s
k

E

( s
k
− 1
)
Is(Pn)

) 1
s
k

+1
n

2
s
k

+1 .

We will turn our attention to the case where our family of point sets lies along
the graph of a function as above. To apply the results from above, we will need
to connect the regularity of the function to the dimension of its graph. Recall, we
say that f : [0, 1]d−1 → R is Hölder continuous of order α ∈ (0, 1] if there exists a
constant ρ > 0 such that

|f(x)− f(y)| ≤ ρ|x− y|α

for all x, y ∈ [0, 1]d−1.

Lemma 8. Let Gn be as above, and consider the corresponding P. Suppose that

f : [0, 1]
d−1 → [0, 1] is Hölder continuous of order α ∈ (0, 1]. Then

dimH(P) ≤ d− α.

Our last result of this section shows that every possible discrete dimension in
[d− 1, d] is possible for the point set Gn(f).

Theorem 9. For each s ∈ [d − 1, d] there exists f : [0, 1]
d−1 → [0, 1], such that if

P = {Gn(f)} (with Gn(f) defined as above), then dimH(P) = s.

2.2. Computational results and examples.

2.2.1. Discrete dimension of Cartesian products of Cantor-type sets. Start with
the interval [0, 1] and positive integers m,n ∈ Z+ s.t. m < n. Divide [0, 1] into n
subintervals of equal length, and choose m of those intervals. Let C1

m,n be the set
of endpoints of the intervals chosen. At the k-th step, split each of the remaining
intervals into n equal subintervals, choose m of those intervals, and let Ck

m,n be
the set of endpoints of the intervals chosen. At each step, we pick the same m
subintervals from the remaining intervals. Since the m subintervals we choose to
keep are arbitrary, the set Ck

m,n is not unique and merely denotes one set satisfying
these conditions.

Theorem 10. Let d ∈ Z+. Let Ck
m1,n1

, . . . , Ck
md,nd

be discrete Cantor sets. Set

Ak =
∏d

i=1 C
k
mi,ni

. Then

dimH(Ak) =
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

Now that we have this method for computing the dimension of discrete Cantor
set products, we can compute the discrete s-energy of the sets in these families to
better observe their behavior. For instance, if we compute the discrete s-energy
of the discrete Cantor set products from Figure 6 below and other Cantor-type
data distribution, where for each set, s is the dimension of that set computed by
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Figure 1. Discrete s-energy of Ck
2,4 for 1 ≤ k ≤ 15 with s = 1

2 .

Theorem 10, we can see in Figure 1, Figure 3, Figure 4 and 5 that the discrete
s-energy of the sets in each case increases slowly. This is what we would expect
given that for each family of sets, s is the critical value, and for any s′ < s, the
discrete s′-energy of the sets are all bounded by a single constant.

Meanwhile, if we compute the discrete 2-energy of a family of lattices in [0, 1]2,
then we can see from Figure 4 that the discrete 2-energy of the lattices increases
slowly as well, possibly suggesting that the family of lattices is 2-adaptable. This
would make sense intuitively because we would expect the family of lattices to be
2-dimensional, suggesting that this new notion of dimension may align with our
general notion of dimension.

2.2.2. PCA analysis of fractal and non-fractal objects. As we denote in the intro-
duction, the classical PCA method does not distinguish some key types of data
sets. For example, it is not great at distinguishing a grid from, say, a Cartesian
product of two Cantor sets, as we shall discuss below.

Recall the process of PCA: suppose there is a data set after preprocessing with
the mean subtraction and standardization: X = {x1, x2, x3, . . . , xn}, xi ∈ RD.
Mean subtraction will compute the mean of the dataset and subtract it from every
single data point. Standardization will divide the data points by the standard devi-
ation for every dimension [5]. To reduce set X’s dimension to a lower one without
losing too much information, find the data covariance matrix XXT , calculating
the m-th largest eigenvalues of that covariance matrix. Name the m eigenvectors
w1, w2, . . . , wm as m principle components, corresponding to the m largest eigen-
values. After generating a new matrix W = {w1, w2, w3, ....wm}, wi ∈ RD, the data
can be compressed to yi = WTxi for each xi. The dimension of the original data
set is reduced and represented as X ′ = {y1, y2, y3, ....yn}, yi ∈ RM , where M < D.

To illustrate some limitations of PCA, we test it with the grid and Cartesian
product of two Cantor sets. The PCA analysis described above shows that the co-
variance matrix of the grid and Cartesian product of two Cantor sets are diagonal,
and the eigenvalues for both data distributions are identical. Such results indicate
that the two corresponding eigenvectors explain the same weight of the variance
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Figure 2. Discrete s-energy of Ck
2,4 with 2k+1 points for 1 ≤ k ≤

15 with s=1.5.

Figure 3. Discrete s-energy of Ck
2,4 with 2k+1 points for 1 ≤ k ≤

15 with s=0.1.

of the data set, meaning that there is no need to remove any components or fur-
ther reduce the dimensions. Therefore, PCA regards the 2-dimensional lattice and
Cartesian product of two Cantor sets as 2-dimensional sets.

Nevertheless, the discrete s-energy remains robust to identify the dimension of
a cantor set is, in fact, less than 1. For instance, our codes and output figures 1-3

show that if choosing s such that s < ln(2)
ln(4) , the discrete s-energy of Ck

2,4 converges

to a relatively small number as the number of points (depend on k) increases.
Otherwise, discrete s-energy diverges. The results are consistent with Theorem 10.
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Figure 4. Discrete s-energy of 2-dimensional lattice with (k+1)2

points for 1 ≤ k ≤ 110, s = 2.

Figure 5. Discrete s-energy of 2-dimensional lattice with (k+1)2

points for 1 ≤ k ≤ 110, s = 1.5.

Figure 6. The Cartesian product of two middle-half Cantor sets
(otherwise known as the Garnett set).
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3. Proof of results from Section 2

3.1. Proof of Lemma 2. We will show the s-discrete energy of Gn is uniformly
bounded if 0 ≤ s < d − 1. As usual, we let n = qd−1 for a positive integer q. Let
p = (j/q, f(j/q)) ∈ Gn, where here j ∈ Zd−1 ∩ [0, q)d−1. Note, for each such pair
p, p′,

|p− p′|−s ≤ |j/q − j′/q|−s = qs|j − j′|−s.

Hence, we have

Is(Pn) = n−2
∑
p ̸=p′

|p− p′|−s ≤ q−2(d−1)+s
∑
j ̸=j′

|j − j′|−s,

where here j and j′ range over Zd−1∩ [0, q)d−1. By a change of variables, the above
is bounded by

q−(d−1)+s
∑

j∈Zd−1∩(−q,q)d−1

j ̸=0

|j|−s ≤ Cq−(d−1)+sqd−1−s

by the integral test, where here C is a constant depending on d and s only. The
conclusion of Lemma 2 follows.

3.2. Proofs of Theorems 3 and 6. We start by only assuming that E is a
compact subset of [0, 1]d and Pn is any set of n points in E. We will not introduce
the regularity condition (5) until a bit later.

We write

|p− p′|−s = s

∫ ∞

0

1[0,∞)(r − |p− p′|)r−s−1 dr,

so that

Is(Pn) = n−2
∑
p ̸=p′

|p− p′|−s

= sn−2
∑
p ̸=p′

∫ ∞

0

1[0,∞)(r − |p− p′|)r−s−1 dr

= sn−2

∫ ∞

0

(|{(p, p′) : |p− p′| ≤ r}| − n) r−s−1 dr.

The subtracted n is here to eliminate the contribution to |{(p, p′) : |p − p′| ≤ r}|
of the pairs (p, p′) with p = p′. To estimate Is(Pn), we will need a lower bound on
the size of this set.

Lemma 11. Let E be a compact subset of Rd and let Pn ⊂ E be a point set in E
of size n. Then,

|{(p, p′) ∈ Pn × Pn : |p− p′| ≤ r}| ≥ n2

NE(r)
.

Proof. Take a minimal cover of E by NE(r) balls of radius r. Select a partition of
E into NE(r) pairwise disjoint sets

E = E1 ∪ · · · ∪ ENE(r)
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where each part Ei is contained in its respective ball in the cover. Note,

|{(p, p′) : |p− p′| ≤ r}| ≥
∑
j

|Ej ∩ Pn|2 ≥ 1

NE(r)

⎛⎝∑
j

|Ej ∩ Pn|

⎞⎠2

=
n2

NE(r)
,

where the second inequality is an application of Cauchy-Schwarz. This concludes
the proof of the lemma. □

Remark 12. The Cauchy-Schwarz inequality used above is optimal when |Ej ∩ Pn|
is constant across j, i.e. when Pn is well-distributed in E. If, say, Pn is contained
in a plane E in [0, 1]d, then the energy Is(Pn) is minimized (or nearly minimized)
if Pn is a lattice in E.

We now resume the proof of Theorem 3. Take δ to be any number with 0 < δ ≤ 1.
Then, the lemma gives

|{(p, p′) : |p− p′| ≤ r}| − n ≥

{
0 r < δ

NE(r)
−1n2 − n r ≥ δ.

It now follows that

Is(Pn) ≥ sn−2

∫ ∞

δ

(
NE(r)

−1n2 − n
)
r−s−1 dr.

After some minor calculations, it follows:

Lemma 13. Let E be a compact subset of [0, 1]d and Pn a set of n points in E.
Then,

Is(Pn) ≥ s

(∫ ∞

δ

NE(r)
−1r−s−1 dr

)
− n−1δ−s

where 0 < δ ≤ 1.

We are now ready to prove Theorem 3.

Theorem 3. We now can assume (5) from which we have

NE(r)
−1 ≥ min(C−1

E rk, 1).

Hence by the lemma, we have

Is(Pn) ≥ C−1
E s

∫ C
1
k
E

δ

rk−s−1 dr + s

∫ ∞

C
1
k
E

r−s−1 dr − n−1δ−s

=
C−1

E s

k − s

(
C

1− s
k

E − δk−s
)
+ C

− s
k

E − n−1δ−s.

Taking δ = (C−1
E n)−

1
k yields the bound, after some simplification. □

Theorem 6 is also now within easy reach.

Theorem 6. Let Eϵ denote the ϵ-thickening of E. Now, if E satisfies (5), then

NEϵ(r) ≤ NE(r − ϵ) ≤ max(CE(r − ϵ)−k, 1).
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By the lemma, we have

Is(Pn) ≥ s

∫ ∞

δ+ϵ

(NE(r − ϵ))−1r−s−1 dr − n−1(δ + ϵ)−s

≥ s

∫ ∞

δ

NE(r)
−1(r + ϵ)−s−1 dr − n−1δ−s.

Since r−s−1 is convex, we have

(r + ϵ)−s−1 ≥ r−s−1 − (s+ 1)ϵr−s−2 for r > 0.

Hence,

Is(Pn) ≥
(
s

∫ ∞

δ

NE(r)
−1r−s−1 dr − n−1δ−s

)
− s(s+ 1)ϵ

∫ ∞

δ

NE(r)
−1r−s−2 dr.

Taking δ = C
1
k

En− 1
k and repeating the argument in the proof of Theorem 3 yields

Is(Pn) ≥
k

s− k
C

− s
k

E (n
s
k−1 − 1)

− ϵs(s+ 1)

⎛⎝C−1
E

∫ C
1
k
E

C
1
k
E n− 1

k

rk−s−2 dr +

∫ ∞

C
1
k
E

r−s−2 dr

⎞⎠ .

By change of variables, we have

C−1
E

∫ C
1
k
E

C
1
k
E n− 1

k

rk−s−2 dr =
C

− s+1
k

E

s− k + 1

(
n−1+ s+1

k − 1
)

and ∫ ∞

C
1
k
E

r−s−2 dr =
C

− s+1
k

E

s+ 1
.

Their sum is then bounded above by
C

− s+1
k

E

s−k+1 n
−1+ s+1

k , and hence we have the lower
bound

Is(Pn) ≥
k

s− k
C

− s
k

E (n
s
k−1 − 1)− ϵ

C
1
k

En− 1
k

C
− s

k

E s(s+ 1)

s− k + 1
n

s
k−1.

The bound in the theorem follows. □

3.3. Proofs of Theorems 4 and 7.

Theorem 4. For fixed n, let m = |Pn∩E| and P ′
m = Pn∩E. On one hand, we have

an upper bound

Is(P
′
m) = m−2

∑
p̸=p′

p,p′∈Pm′

|p− p′|−s ≤ m−2
∑

p ̸=p′;p,p′∈Pn

|p− p′|−s = m−2n2Is(Pn)

on Is(P
′
m). At the same time, since P ′

m ⊂ E, (6) gives us a lower bound

Is(P
′
m) ≥ k

s− k
C

− s
k

E (m
s
k−1 − 1).

By comparing the upper and lower bounds, we obtain

(m
s
k−1 − 1)m2 ≤ C

s
k

E

( s
k
− 1
)
Is(Pn)n

2.
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The left side is bounded below by m
s
k+1 − n2, and hence we have

m
s
k+1 ≤

(
1 + C

s
k

E

( s
k
− 1
)
Is(Pn)

)
n2.

The bound in the theorem follows.
Theorem 4 is, in general, best possible. To see this, we start with a family P of

lattices

Pn =

{
j

n
1
d

: j ∈ Zd, 0 ≤ ji ≤ n
1
d , 1 ≤ i ≤ d

}
.

It is not difficult to check that Is(Pn) ≤ C independently of n if s < d, from which

we have dimH P = d. Now let us modify Pn by replacing the n
k
d points in the

plane x1 = · · · = xk = 0 with a lattice Z := m−1/kZk ∩ [0,m1/k)k of m points. We

will take m ≫ n
k
d , which effectively increases the number of points on the plane.

However, we will not add so many as to disturb the bounds on the s-energy of P.
To this end, we require that if s < k, there is a constant C for which

Is(Pn) ≤ C for each n.

The left side reads as a bounded term plus

n−2
∑

u,u′∈Z
u̸=u′

⏐⏐⏐⏐u− u′

m
1
k

⏐⏐⏐⏐−s

≈ n−2m
s
k+1

∑
w∈Z

|w|−s ≈ n−2m
s
k+1,

and hence the desired bounds hold if and only if m
s
k+1 ≤ Cn2, i.e. m ≤ Cn

2
1+ s

k .
Here and throughout, X ≈ Y means that there exists a uniform constant C such
that C−1Y ≤ X ≤ CY . □

Next, we proceed with the proof of Theorem 7, the thickened version of Theorem
4.

Theorem 7. We follow the proof of Theorem 4 above, except we take P ′
m = Pn∩Eϵ

where here

ϵ =
C

1
k

E

2As,k
n− 1

k ≤
C

1
k

E

2As,k
m− 1

k

with notation as in Theorem 6. The same theorem then tells us

Is(P
′
m) ≥ k

s− k
C

− s
k

E

(
1

2
m

s
k−1 − 1

)
.

We similarly have an upper bound

Is(P
′
m) ≤ m−2n2Is(Pn).

Proceeding as before, we obtain

1

2
m

s
k+1 − n2 ≤ 1

2
m

s
k+1 −m2 ≤ C

s
k

E

( s
k
− 1
)
Is(Pn)n

2.

It follows

m ≤ 2
1

s
k

+1

(
1 + C

s
k

E

( s
k
− 1
)
Is(Pn)

) 1
s
k

+1
n

2
s
k

+1

as needed. □
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3.4. Proof of Lemma 8. We claim the graph of f satisfies (5) for k = d − α;
afterward, Theorem 3 completes the proof. We do this instead by covering the
graph of f with cubes of length δ. Passing from cubes to balls will only affect the
constant in (5).

For fixed q, let Qj denote the cube
∏d−1

i=1 [
ji
q ,

ji+1
q ] where here j ranges over

Zd−1 ∩ [0, q)d−1. Since f is Hölder continuous of order α, f(Qj) has diameter at

most ρ(
√
d− 1q−1)α. Hence, we can cover the graph of f over Qj by ρ

√
d− 1q1−α

d-dimensional cubes of side length q−1. Repeating for each of the qd−1 cubes Qj , we

cover the whole graph of f by qd−1 · ρ
√
d− 1q1−α = ρ

√
d− 1qd−α cubes of length

q−1, and our claim is proved after taking δ = q−1.

4. Proof of Theorem 9

4.1. 2-dimensional case.

Proof. In order to prove the case for d = 2, the construction used by B.Hunt is
followed [17]. In such construction, we consider Weierstrass functions fθ : [0, 1] →
[0, 1] with random phases of the form:

(8) fθ(x) =

∞∑
n=0

ancos (2π(bnx+ θn))

where 0 < a < 1 < b, ab < 1, and θ = (θ1, θ2, . . . ) ∈ [0, 1]∞ = H is randomly chosen
by sampling each of its entries according to the uniform distribution on [0, 1].

Figure 7. Graph of f(x) with a = 0.5 and b = 3 and θn = 0 for
any n [17].
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Note that, for any θ ∈ H, fθ is an Holder continuous function with exponent

α = − log(a)
log(b) . In fact, for any x, y ∈ [0, 1], substituting a = b−α:

|fθ(x)− fθ(y)| =

⏐⏐⏐⏐⏐
∞∑

n=0

b−nα cos(2π(bnx+ θn))−
∞∑

n=0

b−nα cos(2π(bny + θn))

⏐⏐⏐⏐⏐
≤

∞∑
n=0

b−nα min(2, 2πbn |x− y|)

≤
m−1∑
n=0

2πbn(1−α) |x− y|+
∞∑

n=m

2b−nα

= 2π
b(1−α)m − 1

b(1−α) − 1
|x− y|+ 2

b−αm

1− b−α

for any integer m > 0. The first inequality followed, thanks to the fact that the
cosine function is Lipschitz (an immediate consequence of the mean value theorem).
Setm to be the positive integer such that b−m < |x− y| ≤ b−(m−1). Then, resuming
the estimate:

|fθ(x)− fθ(y)| ≤ 2π

(
b

|x−y|

)(1−α)

b(1−α) − 1
|x− y|+ 2

|x− y|α

1− b−α

≤
(

2πb(1−α)

b(1−α) − 1
+

2

1− b−α

)
|x− y|α .

(9)

Thus, combining (9) and Lemma 8, we have that dimH(P) ≥ 2− α. To prove the
other inequality, the random phases are very useful as they allow us to estimate
the energy integral indirectly. In fact, the key point of the proof is to show that,
for any s < 2 − α, EH(Is(Gn)) < ∞ independently of n (i.e., independently of q).
Consequently, this implies that for almost every random sequence of phases θ ∈ H,
fθ satisfies dimH(P) ≤ 2 − α (completing the proof for d = 2). To perform the
estimate by linearity of expectation:

EH(Is(Gn)) = q−2
∑
j ̸=j′

j,j′∈[0,q)∩Z

EH

(⏐⏐⏐⏐( j

q
, fθ

(
j

q

))
−
(
j′

q
, fθ

(
j′

q

))⏐⏐⏐⏐−s
)
.

Next, the following lemma (proved by B.Hunt [17]) provides an upper bound for

the expectations inside the sum when j
q and j

q are close enough.

Proposition 14. For any x, y and any such that |x− y| < 1/2b2:

(10) EH

(
|(x, fθ(x))− (y, fθ(y))|−s

)
≤ C |x− y|(1−α−s)

for any s ∈ (1, 2− α)

Then, resuming the proof, we can decompose the sum into two terms:

EH(Is(Gn)) = I + II,
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where

I = q−2
∑
j ̸=j′

j,j′∈[0,q)∩Z
|j−j′|≤ q

2b2

EH

(⏐⏐⏐⏐( j

q
, fθ

(
j

q

))
−
(
j′

q
, fθ

(
j′

q

))⏐⏐⏐⏐−s
)
,

II = q−2
∑
j ̸=j′

j,j′∈[0,q)∩Z
|j−j′|> q

2b2

EH

(⏐⏐⏐⏐( j

q
, fθ

(
j

q

))
−
(
j′

q
, fθ

(
j′

q

))⏐⏐⏐⏐−s
)
.

The second term is easy to be bounded as:

II ≤ q−2
∑
j ̸=j′

j,j′∈[0,q)∩Z
|j−j′|> q

2b2

⏐⏐⏐⏐ jq − j′

q

⏐⏐⏐⏐−s

≤ q−2q2(2b2)s = (2b2)s.

For the first term, using proposition (14):

I ≲ q−2
∑
j ̸=j′

j,j′∈[0,q)∩Z
|j−j′|≤ q

2b2

⏐⏐⏐⏐ jq − j′

q

⏐⏐⏐⏐1−α−s

≲ q−3+α+s
∑
j ̸=j′

j,j′∈[0,q)∩Z

|j − j′|1−α−s

≲ q−2+α+s
∑

j∈(−q,q)∩Z
j ̸=0

|j|1−α−s ≲ q−2+α+sq2−α−s ≲ 1.

completing the proof. Note that the third and fourth inequality are, respectively,
due to the change of variable j − j′ to j and due to the integral test (where the
integral converges for values of s strictly smaller than 2 − α, as desired). The 2-
dimensional case is fully proved since for any given value x ∈ (0, 1], we can find

values of a and b such that α = x. This is a consequence of the fact that α = − log(a)
log b

and 0 < a < 1 < b with ab ≥ 1. In fact, fixing a positive a < 1, b = 1
ax ≥ 1

a for any
value of x ∈ (0, 1] and α = x. □

4.2. Higher dimensional case for d ≥ 3.

Proof. To generalize to higher dimensions (i.e. d ≥ 3), we consider the following
functions gθ : [0, 1]d−1 → [0, 1] of the form:

(11) gθ(x) = gθ(x1, . . . , xd−1) = fθ(x1)

where the functions fθ are defined as in (8).
For any θ ∈ H, gθ is again Holder continuous with exponent α. This is because,

using (9) and (11), for any x, y ∈ [0, 1]d−1:

|gθ(x)− gθ(y)| = |fθ(x1)− fθ(y1)| ≤
(

2πb(1−α)

b(1−α) − 1
+

2

1− b−α

)
|x1 − y1|α

≤
(

2πb(1−α)

b(1−α) − 1
+

2

1− b−α

)
|x− y|α .

(12)

Thus, combining (12) and Lemma 8, dimH(P) ≥ d− α.
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To prove the other inequality, looking at the expectation over all random phases
as in the case d = 2, we can perform the following decomposition:

EH(Is(Gn)) = q−2(d−1) EH

⎛⎜⎜⎜⎝ ∑
j ̸=j′

j,j′∈[0,q)d−1∩Zd−1

⏐⏐⏐⏐( j

q
, gθ

(
j

q

))
−
(
j′

q
, gθ

(
j′

q

))⏐⏐⏐⏐−s

⎞⎟⎟⎟⎠

= q−2(d−1) EH

⎛⎜⎜⎜⎝ ∑
j ̸=j′

j,j′∈[0,q)d−1∩Zd−1

⏐⏐⏐⏐( j

q
, fθ

(
j1
q

))
−
(
j′

q
, fθ

(
j′1
q

))⏐⏐⏐⏐−s

⎞⎟⎟⎟⎠
= I + II

where

I = q−2(d−1)
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

EH

⎛⎝ ∑
j̄,j̄′∈[0,q)d−2∩Zd−2

(⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐2 + ⏐⏐⏐⏐fθ (j1
q

)
− fθ

(
j′1
q

)⏐⏐⏐⏐2 + ⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

⎞⎠

II = q−2(d−1)
∑
j1=j′1

j1,j
′
1∈[0,q)∩Z

EH

⎛⎜⎜⎜⎝ ∑
j̄ ̸=j̄′

j̄,j̄′∈[0,q)d−2∩Zd−2

(⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐2 + ⏐⏐⏐⏐fθ (j1
q

)
− fθ

(
j′1
q

)⏐⏐⏐⏐2 + ⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

⎞⎟⎟⎟⎠
where j̄ = (j2, ..., jd−1). We just need to worry about bounding term I since it is
greater than term II. To see this, note that any addend in the inner sum of II is
comparable to an addend of the inner sum of II but, at the same time, the outer
sum of I contains way more terms than the outer sum of II (due to the difference
between the conditions j1 = j′1 and j1 ̸= j′1). To bound the first term, we can
further decompose it into two pieces I = III + IV , where

III = q−2(d−1)
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1−j′1|≤ q

2b2

EH

⎛⎝ ∑
j̄,j̄′∈[0,q)d−2∩Zd−2

(⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐2 + ⏐⏐⏐⏐fθ (j1
q

)
− fθ

(
j′1
q

)⏐⏐⏐⏐2 + ⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

⎞⎠

IV = q−2(d−1)
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1−j′1|> q

2b2

EH

⎛⎝ ∑
j̄,j̄′∈[0,q)d−2∩Zd−2

(⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐2 + ⏐⏐⏐⏐fθ (j1
q

)
− fθ

(
j′1
q

)⏐⏐⏐⏐2 + ⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

⎞⎠

The last term is bounded as follows:

IV ≤ q−2(d−1)
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1−j′1|> q

2b2

∑
j̄,j̄′∈[0,q)d−2∩Zd−2

⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐−s

≤ q−2(d−1)q2q2(d−2)(2b2)s = (2b2)s.
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In the inner sum of III, the quantity
⏐⏐⏐ j1q − j′1

q

⏐⏐⏐2 +
⏐⏐⏐fθ( j1q )− fθ(

j′1
q )
⏐⏐⏐2 is constant

(i.e. does not depend on j̄, j̄′). For the sake of clarity, set β2 =
⏐⏐⏐ j1q − j′1

q

⏐⏐⏐2 +⏐⏐⏐fθ( j1q )− fθ(
j′1
q )
⏐⏐⏐2. We can then find an upper bound for such inner sum:

∑
j̄,j̄′∈[0,q)d−2∩Zd−2

(
β2 +

⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

= qd−2β−s +
∑
j̄ ̸=j̄′

j̄,j̄′∈[0,q)d−2∩Zd−2

(
β2 +

⏐⏐⏐⏐ j̄q − j̄′

q

⏐⏐⏐⏐2
)− s

2

≤ qd−2β−s + qd−2+s
∑
j̄ ̸=j̄′

j̄∈(−q,q)d−2∩Zd−2

(
(qβ)2 + |j̄|2

)− s
2

≲ qd−2β−s + qd−2+s

∫
x∈[0,q)d−2

(
(qβ)2 + |x|2

)− s
2

dx

≲ qd−2β−s + qd−2+s(qβ)d−2−s

∫
x∈Rd−2

(
1 + |x|2

)− s
2

dx

≲ qd−2β−s + qd−2+s(qβ)d−2−s

≲ q2(d−2)βd−2−s.

(13)

In evaluating the integral, the change of variable x to (qβ)x is performed. Note
that the above integral is convergent for any value s > d− 2 (which is fine since we
consider s such that d− 1 < s < d− α). The first inequality follows by the change
of variable j̄ − j̄′ to j̄ and the second one by integral test. Additionally, since we
consider j1 ̸= j′1 and then β2 ≥ q−2, the last inequality follows because

qd−2+s(qβ)d−2−s = β−sqd−2+s(q)d−2−s(β)d−2

= β−sq2(d−2)(β)d−2 ≥ β−sq2(d−2)(q−1)d−2

= β−sq(d−2)

for d ≥ 2.
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Consequently, using (13) and by substituting back for β:

III ≲ q−2(d−1)q2(d−2)
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1−j′1|≤ q

2b2

EH

⎛⎝(⏐⏐⏐⏐j1q − j′1
q

⏐⏐⏐⏐2 + ⏐⏐⏐⏐fθ (j1
q

)
− fθ

(
j′1
q

)⏐⏐⏐⏐2
) d−2−s

2

⎞⎠

= q−2
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1−j′1|≤ q

2b2

EH

(⏐⏐⏐⏐(j1
q
, fθ

(
j1
q

))
−
(
j′1
q
, fθ

(
j′1
q

))⏐⏐⏐⏐d−2−s
)

≲ q−2q−1+α−d+2+s
∑
j1 ̸=j′1

j1,j
′
1∈[0,q)∩Z

|j1 − j′1|
1−α+d−2−s

≲ q−1+α−d+sq
∑

j1∈[0,q)∩Z

|j1|α+d−1−s ≲ q−d+α+sqd−α−s ≲ 1

completing the proof also for the case d ≥ 3. The second inequality follows thanks
to Proposition 14, the third one by the change of variable j1 − j′1 to j1 and the
fourth one by integral test (where the integral converges for values s strictly smaller
than d − α, as desired). Note that we could use proposition 14 successfully since
1 = −d+ (d− 1) + 2 < −d+ s+ 2 < −d+ (d− α) + 2 = 2 − α. Again, the proof
is complete since for any given value x ∈ (0, 1], we can find values of a and b such

that α = x. This is a consequence of the fact that α = − log(a)
log b and 0 < a < 1 < b

with ab ≥ 1. In fact, fixing a positive a < 1, b = 1
ax ≥ 1

a for any value of x ∈ (0, 1]
and α = x. □

4.3. Proof of Theorem 10. We will proceed by approximating the sum |Ak|−2
∑

a̸=a′ |a−
a′|−s by using sets centered at each a′ ∈ Ak such that for each point a in a given

set, |ai − a′i| ≈ n−ji
i for all i, where j1, . . . , jd all range from 1 to k. In this case,

|ai − a′i| ≈ ni
−ji means that ni

−ji−1 < |ai − a′i| ≤ ni
−ji . We do not need to

consider side lengths with dimensions n−ji
i for ji > k because by construction, the

i-th discrete Cantor set Ck
mi,ni

does not have any distinct points whose distance is

less than n−k
i . Approximating the sum this way gives us

|Ak|−2
∑
a̸=a′

|a− a′|−s ≈ |Ak|−2
k∑

j1,...,jd=1

∑
a ̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

|a− a′|−s.(14)

Next, note that for any a ̸= a′,

|a− a′|−s ≈ (|a1 − a′1|+ · · ·+ |ad − a′d|)−s ≤ max
1≤i≤n

{|ai − a′i|}−s.(15)
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Putting (14) and (15) together, we get

|Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

|a− a′|−s

≈ |Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{|ai − a′i|}−s

= |Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{n−ji
i }−s.

(16)

Temporarily fix a′ ∈ Ak. For any i, the number of elements ai ∈ Ck
mi,ni

such that

|ai − a′i| ≈ n−ji
i is approximately

|Ck
mi,ni

|

m
ji
i

. Therefore, it follows that the number of

a ∈ Ak such that |ai − a′i| ≈ n−ji
i for all i is

|Ck
m1,n1

|
mj1

1

· · ·
|Ck

md,nd
|

mjd
d

=
|Ak|

mj1
1 · · ·mjd

d

.

Finally, since there are |Ak| possible choices for a′, we can see that

|Ak|−2
k∑

j1,...,jd=1

∑
a̸=a′

+|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

max
1≤i≤n

{n−ji
i }−s

= |Ak|−2
k∑

j1,...,jd=1

max
1≤i≤n

{n−ji
i }−s

∑
a̸=a′

+|a1−a′
1|≈n

−j1
1

...
|ad−a′

d|≈n
−jd
d

1

≈ |Ak|−2|Ak||Ak|
k∑

j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s

=

k∑
j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s

(17)
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Now, consider the case where max1≤i≤n{n−ji
i } = n−j1

1 . This would mean that for
all i,

n−j1
1 ≥ n−ji

i =⇒ nj1
1 ≤ nji

i =⇒ j1
ln(n1)

ln(ni)
≤ ji.

Note that the inequalities in (17) also hold for n−ji
i when it is maximal. Therefore,

we can further split the inner sum in (16) by considering the different cases in which

each n−ji
i is maximal to get

k∑
j1,...,jd=1

m−j1
1 · · ·m−jd

d max
1≤i≤n

{n−ji
i }−s =

∑
j1

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 + · · ·

+
∑

jd
ln(nd)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
d .

We restrict our focus to the first term of the above sum in order to determine for
which s the sum converges. For 2 ≤ i ≤ n, the term n−ji

i in the sum is a geometric

series starting at j1
ln(n1)
ln(ni)

, so we can approximate each of these terms by m
j1

ln(n1)

ln(ni)

i .

This gives us that∑
j1

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 ≈

n∑
j1=1

m−j1
1 · · ·m

−j1
ln(n1)

ln(nd)

d nj1s
1 =

n∑
j1=1

(
m−1

1 · · ·m
− ln(n1)

ln(nd)

d ns
1

)j1

.

Now we have a geometric series, so we know that for this series to converge as
n → ∞, we must have that

m−1
1 · · ·m

− ln(n1)

ln(nd)

d ns
1 < 1 ⇐⇒ −

(
ln(m1) + ln(m2)

ln(n1)

ln(n2)
+ · · ·+ ln(md)

ln(n1)

ln(nd)

)
+ s ln(n1) < 0

⇐⇒ s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

We can use an identical argument to show that all of the other sums∑
jl

ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d njls
l

also converge exactly when

s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.

Furthermore, since

Is(Ak) = |Ak|−2
∑
a ̸=a′

|a−a′|−s ≈
∑

j1
ln(n1)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
1 +· · ·+

∑
jd

ln(nd)

ln(ni)
≤ji≤k

m−j1
1 · · ·m−jd

d nj1s
d ,

this implies that {Is(Ak)}k≥1 converges exactly when

s <
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)
.
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Hence, {Ak}k≥1 is s-adaptable for exactly these values of s, so by definition, we
may conclude that

scritical =
ln(m1)

ln(n1)
+ · · ·+ ln(md)

ln(nd)

as desired.
With this result, if we revisit the discrete Cantor set products from before, then

we get that the dimension of {Ck
2,3×Ck

2,3}k≥1 is ln(2)
ln(3) +

ln(2)
ln(3) = 2 ln(2)

ln(3) , the dimension

of {Ck
2,4×Ck

2,4}k≥1 is
ln(2)
ln(4)+

ln(2)
ln(4) = 1 and the dimension of {Ck

2,4×Ck
2,3×Ck

2,3}k≥1 is
ln(2)
ln(4) +

ln(2)
ln(3) +

ln(2)
ln(3) =

1
2 +2 ln(2)

ln(3) , which makes sense given how sparse these sets are.

This demonstrates that our alternate notion of dimension is better at capturing the
dimensionality of discrete Cantor set products than PCA.
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