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Abstract: Cobalt-based catalysts are recognized as promising electrocatalysts for oxygen reduction
reactions (ORRs) in fuel cells that operate within acidic electrolytes. A synthesis process involving
a cobalt complex, nanocellulose, and dopamine, followed by pyrolysis at 500 °C under a nitrogen
atmosphere, was used to create a cobalt and nitrogen-doped carbonaceous material. Additionally,
urea was incorporated to enhance nitrogen doping in the carbonaceous material. The morphology
and structure of the material were examined using Scanning Electron Microscopy (SEM) and X-ray
Diffraction (XRD), where SEM unveiled dispersed metal oxides within the carbonaceous framework.
Energy Dispersive X-ray Spectroscopy (EDS) analysis showed an even distribution of elements across
the cobalt-doped carbonaceous material. X-ray Photoelectron Spectroscopy (XPS) analysis further
highlighted significant alterations in the elemental composition due to pyrolysis. The electrochemical
behavior of the cobalt-doped carbonaceous material, with respect to the oxygen reduction reaction
(ORR) in an acidic medium, was investigated via cyclic voltammetry (CV), revealing an ORR peak
at 0.30 V against a reversible hydrogen reference electrode, accompanied by a notably high current
density. The catalyst’s performance was evaluated across different pH levels and with various layers
deposited, showing enhanced effectiveness in acidic conditions and a more pronounced reduction
peak with uniformly applied electrode layers. Rotating disk electrode (RDE) studies corroborated the
mechanism of a four-electron reduction of oxygen to water, emphasizing the catalyst’s efficiency.

Keywords: cobalt catalyst; nanocellulose; polydopamine; electrochemistry; oxygen reduction reaction;
clean energy; fuel cell

1. Introduction

Fuel cells offer a viable alternative to the non-renewable energy sectors, such as
petroleum and natural gas, by harnessing catalysts to accelerate the oxygen reduction
reaction (ORR) crucial for their operation. Platinum (Pt) catalysts are favored for their
high ORR efficiency and minimal overpotential [1]. Nevertheless, Pt’s high cost poses
significant economic challenges for widespread commercial adoption [2]. The escalating
global demand for energy, driven by a growing population, higher living standards, and the
ubiquity of portable devices, has led to an increased reliance on fossil fuels, which account
for more than 85% of the energy used worldwide for stationary and automotive purposes [3].
This reliance on fossil fuels, which are depleting while also damaging the environment
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through contributions to global warming [4], highlights the urgent need for a shift toward
alternative and renewable energy sources [5]. Efforts to utilize geothermal, hydro, wind,
and solar power for energy production are underway, paralleled by research into batteries,
fuel cells, and electrochemical supercapacitors for efficient energy storage [6-8]. Fuel
cells stand out among alternative energy storage technologies, offering higher energy
density compared to both flow batteries and lithium-ion batteries [9]. Although lithium-ion
batteries boast portability, they are hindered by short lifespans, environmental pollution,
and reduced effectiveness in extreme temperatures [10].

The interest in alternative energy systems is on the rise, with Proton Exchange Mem-
brane Fuel Cells (PEMFCs) emerging as the leading technology in the field. PEMFCs are
distinguished among fuel cell technologies for their superior energy conversion efficiency
and power density, which ranges between 40% and 65% [11]. These fuel cells are also
valued for their rapid startup and warmup times, ability to operate at relatively low temper-
atures (60 to 80 °C) [12], and their lightweight, compact design [13]. In PEMFCs, electricity
is generated through an electrochemical reaction as protons move from the anode to the
cathode. This setup includes a bipolar plate (flow field plate), a gas diffusion layer (GDL),
and a catalyst layer (CL) at both the anode and cathode sides. At the anode, the hydrogen
oxidation reaction (HOR) occurs, where hydrogen molecules are absorbed onto the catalyst
layer, resulting in the detachment of electrons and the release of protons (H*). These elec-
trons then make their way to the cathode via an external circuit, whereas the protons move
through the membrane to reach the cathode. At this point, the oxygen reduction reaction
(ORR) occurs, facilitating the production of electricity. The reactions within PEMFCs can be
summarized as follows:

Anode (HOR): 2H, — 2H* + 4e™ E°=0.00 V vs. SHE
Cathode (ORR): O, +4H" +4e~ — 2H,0 E° =1.23 V vs. SHE
Overall reaction: 2H, + O, — 2H,0 SHE = Standard Hydrogen

Electrode

The primary challenge faced by Proton Exchange Membrane Fuel Cells (PEMFCs) is
the need for high loadings of noble metal catalysts, such as platinum (Pt) and its alloys,
at the cathode to accelerate the inherently slow ORR. These catalysts are essential for
both the hydrogen oxidation reaction (HOR) and the ORR, with Pt and its alloys currently
recognized as the most effective electrocatalysts due to their high catalytic activity, electronic
conductivity, low overpotential, and outstanding stability [14-16]. However, the high cost
of Pt significantly hinders the mass commercialization of PEMFCs [17,18]. This has led
to efforts to develop non-precious metal catalysts (NPMCs) aimed at replacing Pt-based
catalysts for the ORR, with recent research making considerable progress in improving
the ORR performance of NPMCs, particularly those based on iron and cobalt [19]. A
carbon-based bifunctional electrocatalyst offers a more efficient approach to constructing
superior electrocatalysts. This is likely achieved by combining specific heteroatom doping
and engineered carbon defects, which simultaneously have positive effects. To create
porous B and N co-doped nanocarbon (also known as B, N-carbon) materials that are
composed of interconnected cuboidal hollow nanocages with fine graphitization and ample
carbon defects, a convenient strategy for facile construction has been developed. The
resultant nanocarbon material, which combines carbon defects and B and N co-dopants, is
an extremely reactive and long-lasting electrocatalyst for the ORR and the oxygen evolution
reaction (OER) [20]. These advances have positioned NPMCs as viable alternatives to Pt
and its alloys.

Polydopamine (PDA) has emerged as a novel, bio-inspired material attracting signifi-
cant attention for its unique properties and applications in energy, the environment, and
catalysis [21]. PDA, a synthetic polymer, demonstrates a strong affinity for solid substrates
through chemical bonds and physical interactions, courtesy of its functional groups like
amines, imines, and catechol [22,23]. Its excellent biocompatibility and surprising prop-
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erties in terms of optics, electricity, and magnetism [21], along with similarities to mussel
proteins, have spurred interest in its application across various domains, including coatings,
environmental and catalytic applications, and energy storage and conversion [24-26]. The
synthesis of N-doped carbon materials typically involves direct reactions with nitrogen
precursors or the carbonization of nitrogen-containing polymers, with PDA polymerization
offering a straightforward method for creating carbonaceous nanostructures [27-29].

Cellulose, the most abundant natural polymer, presents an opportunity for the synthe-
sis of N-doped carbonaceous materials, including those containing metals [30]. Nanocellu-
lose (NC), derived from cellulose, is noted for its environmental friendliness and excellent
mechanical properties attributed to its nano-scale structure. This has led to its widespread
application in engineering and functional materials [31]. NC, with dimensions in the
nanometer range, is obtained from a variety of sources including plants, algae, and bacteria,
and is characterized by its high surface area, mechanical strength, and biodegradability,
making it suitable for high-performance energy devices [32]. The increasing demand for
renewable energy solutions has catalyzed research into NC-based conductive materials.
Despite the advancements, the stability of NPMCs remains a challenge, preventing them
from being considered direct replacements for Pt/C catalysts in PEMFCs [19].

In this manuscript, we discuss the synthesis and application of a cobalt and nitrogen-
doped carbonaceous catalyst. The catalyst is synthesized by pyrolyzing a mixture of cobalt
complex, NC, PDA, and urea at 500 °C under a nitrogen atmosphere, aiming to enhance
the oxygen reduction reaction (ORR) efficiency in acidic fuel cells. We hypothesize that
incorporating cobalt and nitrogen into the carbonaceous material matrix significantly boosts
the electrocatalytic activity for the ORR in acidic environments, a critical aspect for fuel cell
technology. The innovative aspect of our work lies in the synthesis strategy, which involves
a unique blend of a well-dispersed cobalt complex, nanocellulose, and polydopamine,
followed by pyrolysis with urea under an inert atmosphere. Characterization techniques
such as SEM, XRD, and EDS have confirmed the presence of uniformly dispersed metal
nanoparticles and an even elemental distribution. CV assessments demonstrated robust
ORR activity, evidenced by a significant peak at 0.30 V against a reversible hydrogen
electrode (RHE), particularly under acidic conditions and with uniformly layered electrodes.
RDE experiments have further validated the four-electron reduction pathway of oxygen to
water, highlighting the catalyst’s potential in improving fuel cell performance.

2. Results and Discussions
2.1. Synthesis

The PPhy* salt of the cobalt complex and nanocellulose were mixed together in the
presence of dopamine (hydrochloride salt), which was allowed to polymerize under an
oxidative environment at a slightly elevated pH. The reaction mixture turned black, and a
composite material precipitated, which is supposed to contain the cobalt complex along
with nanocellulose coated with polydopamine. PDA plays a dual role: it is involved in
the synthesis of the nanocellulose and cobalt complex nanocomposite, and it contains
nitrogen atoms. Upon pyrolysis, these nitrogen atoms can dope the carbonaceous material,
altering its structure and properties. After collecting the nanocomposite material post-
polydopamine reaction, we added urea so that during pyrolysis, the carbonaceous material
could be further doped with nitrogen atoms, which in turn can synergistically enhance ORR
(oxygen reduction reaction) activities. NC contains several hydroxyl groups (-OH), which
allow well dispersion and possible binding of the cobalt complex on its surface to enable
uniform distribution of the catalytic site. NC also acts as a source of carbon when the catalyst
is synthesized under pyrolysis. This unique synthesis route aims to achieve a homogeneous
distribution of cobalt nanoparticles and nitrogen doping within the carbonaceous material
matrix, hypothesized to synergistically improve the ORR performance by facilitating a
more efficient four-electron reduction pathway of oxygen to water.
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Figure 1. SEM images of cobalt-doped carbonaceous ORR catalytic material at (a) 50k magnifica-
tion and (b) 1k magnification. (c) EDS spectra showing element mapping image of elements of
carbonaceous material.

2.2.2. XRD

X-ray Diffraction (XRD) characterization was conducted to investigate the phase,
structure, and crystallinity of the pyrolyzed material. The XRD patterns reveal the presence
of cobalt oxides. The XRD pattern, depicted in Figure 2, confirms the crystalline nature
of the sample. The diffraction peaks corresponding to Co304 were observed at 26 values
of 27.33°, 31.66°, 45.43°, 56.45°, 66.23°, and 75.32°, which correspond to the (111), (220),
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2.2.3. XPS Study

X-ray Photoelectron Spectroscopy (XPS) analysis was performed on the pyrolyzed
carbonaceous material to determine its surface elemental composition and the chemical
states of carbon and cobalt (Co), which are crucial for its electrocatalytic activity. Initially,
a survey scan of the material revealed the presence of major elements including C, N, O,
and Co. During this survey, peaks were observed for both nitrogen and oxygen atoms. An
oxygen peak was noted at approximately 532.6 eV, suggesting the presence of carbonyl
oxygen in the sample [38]. A nitrogen peak was detected at 400.3 eV, indicating nitrogen
doping in the carbonaceous material [39]. Nitrogen doping can enhance the material’s
properties, potentially altering its electronic structure, improving conductivity, or enhanc-
ing its catalytic properties. These modifications can be tailored for specific applications,
such as energy storage devices, catalysis, sensors, and electronic devices. The Cls XPS
peaks shown in Figure 3b reveal the chemical composition and bonding present in the
carbonaceous material. The Cls spectrum exhibits distinct peaks at binding energies of
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284.8 eV, 286.0 eV, and 288.5 eV, corresponding to various carbon functional groups in the
material [40]. The primary peak at 284.8 eV represents carbon atoms in sp3-hybridized
structures prevalent in the sample. The peak at 286.0 eV is attributed to carbon atoms
involved in C-O (carbon-oxygen) bonds, indicating the presence of oxygen-containing
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5, and 7) of a 0.1 M H2SOx electrolyte solution, within a potential range of 0.0 V to 1.1 V
(vs. RHE), under both Oz- and Argon (Ar)-saturated conditions, as illustrated in Figure
4a,b. The results from the pH studies indicated that the catalyst displayed a sharper re-
duction peak in the electrolyte with a pH of 3 (Figure 4a), noting a significant reduction
in the current at 0.30 V (vs. RHE) and 0.35 V (vs. RHE) at scan rates of 100 mV/s and 10
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non-pyrolyzed complexes showed peak positions akin to those reported here [50], albeit
identified in the Co(III) oxidation state. The presence of deprotonated amide peaks com-
plicates the assignment further, as deprotonated amides significantly donate electrons to
the metal. Despite the sample being subjected to a pyrolysis temperature of 500 °C, which
typically leads to the decomposition of such complexes into metal oxides, it is conceivable
that some original complex structures were retained, especially when polydopamine was
involved. Pyrolysis is expected to break down the complex, as indicated by previous XRD
and Raman analyses, potentially reducing Co(IIl) to Co(II) through the production of reduc-
ing gases during the process. The pyrolysis of our sample, enriched with nitrogen doping
from dopamine, the amidomacrocyclic ligand, and urea, fundamentally altered the original
complex structure. This transformation decomposed the metal complex and integrated
metal and nitrogen into the matrix, potentially enhancing the material’s oxygen reduction
reaction (ORR) activities. This enhancement could be attributed to a synergistic interaction,
with the metal or the nitrogen dopants serving as active sites for the ORR, illustrating the
intricate relationship between material composition and electrocatalytic performance.

2.3. Cyclic Voltammetry (CV)

Electrochemical tests were conducted to evaluate the carbonaceous material’s capa-
bility to electrochemically reduce oxygen in the oxygen reduction reaction (ORR). The
most common method for efficiently evaluating the performance of a catalyst is to mea-
sure its half-wave potential (E; ;). Assessing the ORR performance of a catalyst entails
benchmarking against the ORR performance of a cutting-edge commercial Pt/C catalyst,
typically featuring 20% Pt loading. The established average E;,, value of 0.84 £ 0.03 V (vs.
RHE) serves as the “Golden reference” for commercial Pt/C (with Pt 20 wt%), facilitating
the assessment of other ORR catalysts in both acidic and alkaline electrolytes [51]. The
electrocatalytic activity of the cobalt-doped carbonaceous material toward the ORR was
initially examined using cyclic voltammetry (CV). CV measurements were taken at various
scan rates (100 mV /s, 50 mV/s, 25 mV/s, and 10 mV/s) across different pH levels (1, 3, 5,
and 7) of a 0.1 M H,SOy electrolyte solution, within a potential range of 0.0 V to 1.1 V (vs.
RHE), under both O,- and Argon (Ar)-saturated conditions, as illustrated in Figure 4a,b.
The results from the pH studies indicated that the catalyst displayed a sharper reduction
peak in the electrolyte with a pH of 3 (Figure 4a), noting a significant reduction in the
current at 0.30 V (vs. RHE) and 0.35 V (vs. RHE) at scan rates of 100 mV /s and 10 mV /s,
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2.3.1. Electrocatalyst Layer Studies

The oxygen reduction reaction (ORR) studies utilized different numbers of deposited
layers (1, 3, 5, 7) on glassy carbon electrodes to investigate variations in the peak potential
position and/or current density. Cyclic voltammetry tests were extended to seven layers,



Catalysts 2024, 14, 613

8 of 16

2.3.1. Electrocatalyst Layer Studies

The oxygen reduction reaction (ORR) studies utilized different numbers of deposited
layers (1, 3, 5, 7) on glassy carbon electrodes to investigate variations in the peak poten-
tial position and/or current density. Cyclic voltammetry tests were extended to seven
layers, revealing that electrodes with a greater number of uniform layers displayed a
more pronounced reduction peak (Figure 5) in an oxygen-saturated solution. Notably, a
distinct peak was recorded at 0.31 V (vs. RHE) for the electrode with seven layers in an
Os-saturated electrolyte solution at a scan rate of 100 mV /s. Incrementally adding layers of
the carbonaceous material on the electrode surface resulted in a rise in current density [50],
suggesting enhanced ORR activity. In comparison, the electrolyte solution saturated with
argon exhibited a significantly weaker reduction peak across all layers relative to the O,-
saturated 0.1 M electrolyte solution. The peak’s potential progressively shifted to lower
values and its intensity decreased with a lesser number of layers. Adding layers potentially
increases both the active sites and the electrical conductivity of the electrode, as more
carbonaceous material enhances the overall ORR efficiency, leading to a higher current
and shifts toward more positive potentials. The sample with seven layers showcased a
sharper reduction peak, a result of the additional layers increasing the number of active
sites and improving the electrical conductivity, thereby expanding the surface area. This
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again, no peak was detected from pH 7 upwards. The absence of significant activity in the
Ar-saturated tests across all pH levels emphasizes the catalyst’s specificity for the oxygen
reduction reaction in acidic media, highlighting its potential application in environments
where efficient ORR activity is critical. The electrochemical stability study aims to examine
the stability of the carbonaceous material through cyclic voltammetry (CV) measurements.
The stability of the catalyst is an important requirement for its operation. It has been recently
discovered that ensuring the long-term stability of the Membrane/Electrode Assembly
(MEA) is crucial for commercializing fuel cells. An investigation through XPS data has
revealed that the amount of fluorine atoms in the fuel cell gradually decreases over time
due to the degradation of Nafion [52]. In this study, we investigated the chemical stability
of our material up to 500 cycles at pH 3 under an oxygen (O;)-saturated environment at a
scan rate of 100 mV /s with a voltage window from 0.0 V to 1.1 V (vs. RHE). During the
500 cycles, drop-cast working electrode materials experienced a significant loss during the
experiment, and it resulted in a consequential decrease in the reduction peak (Figure 6¢).
This degradation of active materials on the electrode surface may have resulted from
irreversible reactions in the electrolyte. The effect of binders can be another factor for
this kind of decrease in reduction peak. We used Nafion as a binder due to its high ionic
conductivity and chemical stability. However, Nafion tends to swell in certain electrolytes or
solvent environments, which can compromise the stability and electrocatalytic performance
of the material over time. Although Nafion is chemically stable, its hydrophobic nature may
impede the wetting of electrode surfaces, affecting electrochemical reactions and leading
to reduced performance, particularly in aqueous environments. We have planned to
experiment with different electrolytes and binders to improve the stability of the pyrolyzed
cobalt-doped carbonaceous material.

2.3.3. Rotating Disk Electrode (RDE)

RDE studies were conducted on the carbonaceous material to determine the number
of electrons involved in the ORR. In acidic conditions, oxygen can be reduced to water
in a four-electron process. However, sometimes, oxygen can be reduced to hydrogen
peroxide through a two-electron exchange process. Even though the reduction of oxygen to
hydrogen peroxide is also an ORR process, generating peroxide is undesirable since it has
an oxidative character that degrades the catalyst, which decreases its ORR activity. RDE
tests were performed by rotating a drop-cast glassy carbon electrode at different rotation
speeds (w = 400 to 2500 rpm) with a 10 mV/s scan rate in Op-saturated 0.1 M HpSO,
(Figure 7a).

To calculate the number of electrons involved in an electrochemical process, the
convective movement between the analyte solution and the electrode surface is related
using the Koutecky-Levich equation. The Levich current (Jjy) is calculated using the
equation Jje, = 0.620nFCD?/3w1/2y~1/6  where n is the number of electrons transferred,
F is the Faraday constant, C is the molar concentration of the analyte, D is the diffusion
coefficient of O, w is the angular rotation rate of the electrode, and v is the kinematic
viscosity of the solution. The kinetic current (J) and the observed limiting current (Jjin,)
from the experimental RDE data are used to construct the Koutecky-Levich equation. The
slope of Jjy is obtained by plotting the graph between Jj;,, * and w=1/2.

1/]lim = 1/]lev + l/]k

where Jjip, is the limiting current density, Jje, is the Levich current, and Jy is the kinetic
current.

From the slope of the K-L plot, the number of electrons involved in the oxygen
reduction mechanism is determined using the equations mentioned above. According to
the calculated results, the catalyst performs the ORR through a 3.58 electron process at pH
3, which matches the theoretical n = 4 value (Figure 7b).
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- effectiveness of these active sites for the ORR process. Interestingly, during the ORR, the Co
center temporarily reaches a higher oxidation state when it first binds with an O, molecule.
The reaction ends with the reduction of O, to water, which interestingly brings the Co
center back to its original oxidation state, either II or III, thus completing the catalytic cycle
in the challenging environment of acidic conditions. This reversible oxidation-reduction
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The cobalt complex of the amidomacrocyclic ligand was synthesized using a previ-
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3.3. Electrochemical Studies

A potentiostat facilitated the cyclic voltammetry (CV) experiments. For these tests, a
glassy carbon electrode from BASi Research Product (Lafayette, IN, USA) served as the
working electrode. The reference electrode, Ag/AgCl, and the counter electrode, a plati-
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3.3. Electrochemical Studies

A potentiostat facilitated the cyclic voltammetry (CV) experiments. For these tests, a
glassy carbon electrode from BASi Research Product (Lafayette, IN, USA) served as the
working electrode. The reference electrode, Ag/AgCl, and the counter electrode, a platinum
wire, were sourced from Pine Instruments and BASi Research Product, respectively. The
setup included a 100 mL glass vial as the electrochemical cell, sealed with a three-holed
stopper. Concentrated sulfuric acid was diluted to a 0.1 M H,SO; solution, yielding a
predicted pH of 1.0. CV measurements spanned potential ranges from 0.0 V to 1.1 V
(vs. RHE) at various scan rates. These electrochemical studies were conducted at an
ambient temperature (25 °C) using a freshly prepared 0.1 M HySOy electrolyte solution.
An Oy-saturated environment was established for the experiments by bubbling oxygen
gas through the electrolyte solution for at least one hour prior to testing, a condition
that was maintained during the experiments. To evaluate the activity of the synthesized
carbonaceous material, the electrolyte solution was deoxygenated with argon (Ar) gas.
Throughout this study, all potential values are reported relative to the reversible hydrogen
electrode (RHE), as per the specified expression.

ERHE = Eag/agcl + E° ag/agcl + 0.059pH

ERryg is the potential versus RHE in this equation. The potential measured against the
Ag/ AgCl reference electrode is denoted by Eag/agc1- The standard electrode potential of
the Ag/AgCl reference electrode in 0.1 M HySOy4 is E° og/ g1

Layer and pH studies were carried out by performing CV tests at different scan rates
ranging from 0.0 V to 1.1 V (vs. RHE) in both O,- and Ar-saturated 0.1 M H,SOy or buffered
electrolytes.

3.4. Electrode Preparation

A homogeneous catalyst suspension was prepared by dissolving 5 mg of the catalyst
in 5 mL of methanol, achieving a 1:1 weight/volume (w/v) ratio. To ensure uniformity, the
mixture was sonicated for 10 min. Subsequently, after sonication, 40 uL of Nafion solution
(5 wt.%) was added to the homogeneous suspension. The surface of the glassy carbon
electrode was initially polished with a 0.05 um alumina slurry and then thoroughly rinsed
with deionized water. Following this, 20 pL of the catalyst suspension was drop-cast onto
the polished glassy carbon electrode surface and allowed to dry under vacuum. For the
electrocatalyst layer studies, the procedure was similar to that used for cyclic voltammetry
(CV) testing; however, 10 uL of the catalyst suspension was drop-cast onto the glassy
carbon surface for each layer, with each application followed by drying under vacuum.

4. Conclusions

A cobalt complex along with nanocellulose, polydopamine, and urea composite mate-
rial was synthesized for use as a cathode catalyst in fuel cell applications. Characterizations
of the metal-doped carbonaceous material were conducted using SEM, EDS, XRD, and
XPS. SEM analysis revealed the morphology and nanostructure of the material, with some
agglomeration observed. EDS confirmed the uniform distribution of elements within the
carbonaceous material, while XRD identified the crystalline structures of Co30, and CoO.
The electrocatalytic behavior of the cobalt-doped carbonaceous material toward the oxygen
reduction reaction (ORR) in acidic media was investigated through cyclic voltammetry (CV)
and rotating disk electrode (RDE) techniques. CV analysis demonstrated the ORR activity
of the Co-doped carbonaceous material across different pH levels, with a pronounced peak
at pH 3, showing a peak potential of 0.30 V (vs. RHE) in an oxygen-saturated 0.1 M H,SO4
electrolyte solution at a scan rate of 100 mV/s. This indicates the material’s capability
for ORRs. Further pH and layering studies were conducted using the CV system. RDE
measurements determined that the cobalt complex catalyzes the ORR via a four-electron
pathway. These findings offer new insights that could be beneficial for various applica-
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tions, including acidic fuel cells, electrocatalytic reduction processes, batteries, biosensors,
and supercapacitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/catal14090613/s1, Figure S1: Raman spectrum of pyrolyzed
cobalt-doped carbonaceous ORR catalytic material. References [56-58] are cited in the Supplemen-
tary Materials.
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