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Abstract. In Graph Convolutional Networks (GCNs), a message-passing
scheme explicitly learns and reasons node representations via aggrega-
tion and propagation of neighboring information over the graph topol-
ogy. Most existing message-passing schemes are grounded in Laplacian
smoothing, which seeks to maintain the similarity of node representa-
tions in the hidden feature space (local smoothness) among neighboring
nodes, ensuring their labeling consistency (global smoothness). This of-
ten leads to Laplacian smoothing imposing strict penalization on distant
neighbors. Because some distant neighbors are inter-class or represent
some necessary intra-class patterns, strict penalization of distant neigh-
bors can fail to preserve local smoothness effectively as expected thus
introducing noise, mixing representations, and failing to capture valu-
able hidden patterns. Although recent research has introduced various
strategies, including graph filters, k-hop jumps, and bounded penalties
to tackle this issue, these methods often fall short of explicitly capturing
and preserving the local smoothness over the original topology. In this
paper, we present CauchyGCN, which enhances preserving local smooth-
ness in a more interpretable approach. CauchyGCN comprises two key
components: 1) a Cauchy smoothing message-passing scheme that ex-
plains and preserves local smoothness in each hidden layer, and 2) an
unsupervised clustering analysis that simultaneously improves the clas-
sifier’s capacity to learn both local and global smoothness. We conduct
comprehensive experiments using five benchmark datasets to assess the
performance of CauchyGCN in semi-supervised node classification tasks
compared to state-of-the-art GCNs.
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1 Introduction

Graph Convolutional Networks (GCNs) have gained increasing attention in study-
ing entities (nodes), and entities’ relationships (edges) in various graph-structured
large data networks, such as citation networks [27], social media networks [22],

and recommendation systems [6]. In GCNs, the layer-wise message-passing scheme
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performs learning and reasoning in node representations by aggregating and
propagating neighboring information over the graph topology. Recent studies [7,
10,12,25,26] have emphasized the importance of the layer-wise message-passing
scheme for node information denoising and topological information smoothing
to better enhance downstream task performance.

Despite the numerous advancements in message-passing schemes, most still
heavily rely on Laplacian smoothing [1,4]. Laplacian smoothing operates un-
der the assumption that neighboring nodes belong to the same class, and it
enforces strict penalization on distant neighbors intending to maintain the prox-
imity of representations among neighboring nodes (local smoothness) to ensure
labeling consistency (global smoothness). However, the strict penalization of
distant neighbors often results in Laplacian smoothing being less effective than
expected at preserving local smoothness. Several factors contribute to this in-
effectiveness. First, distant neighbors could belong to different classes [14]. For
instance, in widely used graph datasets like Cora [16] and CiteSeer [8], the inter-
class neighbors account for approximately 19% and 26%, respectively. Message
passing between inter-class neighbors introduces noise and leads to the mixing
of representations [3,11]. Second, some distant neighbors may represent critical
intra-class patterns in sparsely connected regions of the graph [12]. Excessive
penalization of these patterns fails to capture valuable hidden proximal patterns
in local smoothness. Designing a new message-passing scheme beyond Laplacian
smoothing is thus essential to solving these issues.

To tackle the abovementioned challenges in Laplacian smoothing-based GCNs,
we propose CauchyGCN which focuses on capturing and preserving local smooth-
ness in an interpretable approach. CauchyGCN achieves local smoothness preser-
vation from two key components in GCNs: the layer-wise message-passing scheme
and unsupervised clustering analysis. Specifically, we design Cauchy smoothing,
which leverages the desired properties of Cauchy distribution, to capture and
preserve the proximal patterns and similarity relationships over the underlying
graph topology. In contrast to the emphasis on the variant of the distant neigh-
bors in Laplacian smoothing, Cauchy smoothing emphasizes the variant of the
close neighbors. We further combine Cauchy smoothing and Laplacian smooth-
ing and strike a balance between them as a new message-passing scheme in
CauchyGCN. Our message-passing scheme reduces noise that might lead to the
mixing of inter-class node representations and mitigates the penalization of non-
smooth intra-class variations, while also enhancing the capture and preservation
of valuable local smoothness, encompassing both proximal patterns and similar-
ity relationships. Moreover, we introduce an end-to-end unsupervised clustering
analysis, which simultaneously enhances global smoothness and improves both
inter-cluster distinction and intra-cluster cohesion.

Our main contributions are as follows: 1) This is the first approach of lever-
aging Cauchy distribution to preserve local smoothness in GNNs through a new
design message-passing scheme. 2) We jointly learn node representations and
clustering analysis to improve both local and global smoothness. 3) Extensive
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experiments demonstrate that CauchyGCN achieves competitive performance in
semi-supervised node classification compared to existing methods.

2 Graph Notations and Related Work

We begin by providing the graph notations and a general graph convolutional
layer, then discuss the recent advancements in message-passing schemes in GCNs.

2.1 Graph Notations

Let G = (V, &) denotes an undirected graph that contains a node set V = {v; :
i=1,...,|V|}, and edge set (i,j) € £. We use | - | to denote the size of a set.
To represent G, there is a node matrix x = (21, ... ,Z)y|) with node v; has a
node representation z;, and an adjacency matrix A € RIVIXIVI represents edges,
where A;; = 1 denotes a neighboring node pair (v;,v;), @ # j. The adjacency
matrix with a self-loop effect is denoted as A = A + I, where I is an identity
matrix of size [V|. A diagonal degree matrix D = diag(d,, ...,dy) is based on
A, where d; = > j flij. Then the normalized Laplacian matrix that represents

the graph G is denoted as L=1I- 13;, where .& = D 2AD" 7 is the normalized
adjacency matrix.

2.2 Graph Convolutional Layer

Considering a node representation x,, a general graph convolutional layer in
GCNs involves projection and propagation layers [20],

) = 2z(-De® (Projection) ,

L+ 40 (xil)m(\l/)(v)) (Propagation) |

(1)

where [ € [1, L] stands for the layer index with L being the last layer. Here, the
projection layer updates node representation xg,l_l) € R%-1 from the previous

layer (I — 1) through a layer-wise trainable projection matrix O € R4-1x4 to
a new representation xq(f) € R%, where d;_; and d; are the hidden feature space
at layer [ — 1 and I, respectively. The propagation layer leverages a specified
message-passing scheme f(-), further updates 7V by incorporating neighboring
information xf\lf)(v) within the current hidden feature space, where A (v) denotes
the set of neighbor nodes of the central node v. The corresponding layer-wise

propagation rule [10],

. l
O = arg min 20D — 2|2 A FO (xt(,l), 175\/)(@))7 (2)
Ty —_— —_—
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Ly



4 Peiyu Liang, Hongchang Gao, and Xubin He

optimizes the network to capture significant graph relations within the current
hidden feature space. In Eq. (2), £ enforces the network to maintain label con-
sistency by controlling the distance between the node representation in the two
consecutive layers (layer [ and layer [ + 1), which can be beneficial for tasks like
node classification. L., with the hyperparameter A € [0,1] ensures that the
message-passing process adheres to certain smoothness patterns and denoising
constraints. In the forward pass, obtaining an optimal or sub-optimal solution
for xS,H_l) via L4 requires an appropriate optimization technique for node rep-
resentations z. For example, when F' is convex and differentiable, the message-
passing scheme can be represented as f(z) = ‘g—i. In the following sections, we
use x (equivalent to x(l)) to denote the input representation and h (equivalent
to X(l+1)> to denote the output representation in layer [.

2.3 Laplacian smoothing-based GCNs

Laplacian smoothing [1,4] is designed to enhance the smoothness of node repre-
sentation over the graph topology:

tr(h” Lh) = % z”: z”: ;L'j(hi —h;)?, (3)

s
Il
_

<.
Il
_

where the magnitude of tr(hTf}h) is largely influenced by the differences be-
tween distant neighbors. When applied to GCNs, let £,., in Eq. (2) adheres to
Laplacian smoothing [10], such that,

Ocen = arg min |h—x|?+X-tr(h"Lh) . (4)

This encourages the local smoothness of node representations during the message-
passing process at each layer, with particular emphasis on the smoothness be-
tween distant neighbors (see Proposition 1). Eq. (4) corresponds to the propa-
gation rule in GCN [10], denoted as Ogcn, and stands as the fast and vanilla
benchmark in realm of GCNs.

Proposition 1. (Laplacian Smoothing [4]) Laplacian smoothing focuses on pre-
serving local smoothness between the node i and its distant neighbor j during gra-
dient descent. The update rule is given by: (h; — h;)* = (h; — h;) — 2nL(h; — hj),
where n s the learning rate. The correction term 2nl~}(hi — h;) penalizes the
difference between the node representations of node i and j. Consequently, the

strict penalization is imposed on the substantial difference between h; and h;.

The message-passing scheme corresponding to the propagation rule in Eq.
(4) can be obtained by performing a single gradient descent step at x [10],

W 90gceN |
GCN — n oh h=x
=2z —n(2(h—x)+2Lh) (5)

— (D~V2AD"V? 4 [ — 29L)x = Ax ,
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with a step size of n = % As Laplacian smoothing represents a smooth and con-
vex la-based regularization, the updated node representation h* can be obtained

as a closed-form solution.

2.4 Other Advancements

Because neighboring nodes can belong to different classes or be distantly em-
bedded, the fast and vanilla framework offered by GCN [10] introduces noise
and mixes representations during the message-passing process as it assumes the
constant importance of neighboring information. To tackle this issue, a line of
studies relax this extreme assumption and strive to preserve local smoothness
based on the original data’s locality from either spectral or spatial approaches.

Spectral approaches are theoretically based on graph signal processing, where
advancements delve into refining graph filter definitions to enhance the process-
ing of the graph’s frequency domain through graph Fourier transforms. PPNP/
APPNP [7] involves adjusting a node’s neighborhood through teleport proba-
bility using personalized PageRank [18] on the graph filter. GNN-LF/HF [2§]
further refine the graph filter in PPNP/APPNP into low-/high-pass filtering
kernels for k-hop neighborhoods, thereby enhancing its adaptability to accom-
modate arbitrary coefficients of polynomial filters by introducing more adjustable
factors.

Spatial approaches directly exploit the graph topology, where advancements
aim at improving the capture of connectivity among neighboring nodes. GAT [23]
leverages attention mechanisms to emphasize the importance between neigh-
bors. GraphSAGE [9] sampling on the neighbors and learns different local pat-
terns through different aggregation methods. JKNet [25] extends its reach be-
yond 1-hop neighborhoods using hierarchical neighborhood information. UGNN
[15] employs the node’s intra-class rate as a neighbor-information scalar. Elas-
ticGNN [12] introduces a smoothing strategy based on the [1-norm with a soft-
thresholding operator to restrict distant neighboring information.

Different from these advancements, CauchyGCN distinguishes itself by cap-
turing and preserving local smoothness of the nonlinearity but proximity pat-
tern among closely embedded and mutually connected neighbors, adhering to
the Cauchy distribution. We also introduce a weight factor following a Gaussian
distribution to explain which neighbors should preserve their local smoothness.

3 CauchyGCN

In this section, we begin by introducing Cauchy smoothing for capturing and
preserving local smoothness in an interpretable approach through a new message-
passing scheme. We then detail the new message-passing scheme, which involves
both Cauchy smoothing and Laplacian smoothing and strikes a balance be-
tween these two smoothing strategies. After that, we present an end-to-end un-
supervised clustering analysis aimed at further improving both global and local
smoothness. Lastly, we elucidate the optimization process of CauchyGCN.
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3.1 Cauchy Smoothing

While Laplacian smoothing prioritizes smoothness between distant neighbors, it
overlooks smoothness between closely embedded and more mutually connected
neighbors. We propose a complementary strategy to address this limitation and
enhance local smoothness.

Cauchy distribution has found applications in various domains [2,13] to align
objects that carry proximal representations,

o) = [ (6)

T | (x —x0)% + 72

Here, xq signifies the location factor, v > 0 is a scale parameter, and % is a con-
stant that is omitted in our proposed method. Inspired by its desirable nonlinear
properties and a crucial proposition (see Proposition 2), we introduce Cauchy
smoothing to preserve the local smoothness of the nonlinearity but proximity
pattern among closely embedded and mutually connected neighbors. Consider a
central node i and j as one of its neighboring nodes. Our objective is to maxi-
mize the magnitude of the Cauchy distribution, aiming to minimize the distance
between their representations (h; and h;),
g
By — )z 0
Proposition 2. (Cauchy Distribution) Let v represent a positive constant. In
the Cauchy distribution ¢, the mazimum occurs at ?17 when © = xg. The mag-
nitude of ¢ decreases as the difference between x and xq increases.

Additionally, we introduce a weight factor w;; to reason and determine which
neighbors should have their local smoothness preserved. This assessment takes
into account both the graph topology and the hidden topological pattern,

wij = Ajj - e~/ (3)

The term A;; reflects the connectivity of neighbors in the graph topology. d;; =
|h; — h;||? measures the distance between neighboring nodes under the hidden
topological pattern, adhering to a Gaussian distribution. Because the Gaussian
distribution decays more rapidly than the Cauchy distribution when their pa-
rameters v in Eq. (7) and o in Eq. (8) are identical, the weight factor compels
Cauchy smoothing to preserve local smoothness among closely embedded neigh-
bors following the Gaussian distribution but ensures proper strict penalizations
following the Cauchy distribution.
As a result, the Cauchy smoothing is defined as,
Wij -7 s —Wij -

om0 W o h 7 )
Proposition 3 illustrates the insights into preserving local smoothness among
closely embedded and mutually connected neighbors via Cauchy smoothing.
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Proposition 3. (Cauchy smoothing) Cauchy smoothing focuses on preserving
local smoothness between node i and its close neighbor j during gradient descent.
The update rule is given by: (h; — h;)* = (h; — h;) + QUM%, with n
representing the learning rate. The correction term 277&’_75% penalizes the
disparity between the node representations of node i and j only when there is a
sufficiently small difference between h; and h;, with the condition that the weight

factor 1 > w;; > 0 follows a Gaussian distribution.

3.2 Message-Passing Scheme in CauchyGCN

In terms of preserving local smoothness, Laplacian smoothing emphasizes the
variance among distant neighbors, while Cauchy smoothing emphasizes the vari-
ance among close neighbors. It is reasonable to incorporate both Laplacian
smoothing (Eq. (3)) and Cauchy smoothing (Eq. (7)) to capture local smooth-
ness from distinct perspectives while necessitating a balancing estimator to help
mitigate the strict penalization from either aspect. Therefore, the layer-wise
propagation rule in CauchyGCN is defined as:
- Wi -

O, = arg m}%n||h—x||2 + A1 - tr(h” Lh) —Agz:%:”m_gj'gw ' (10)
where A\; € [0,1] and Ay € [0, 1] are parameters that scale the penalties from
Laplacian smoothing and Cauchy smoothing, respectively.

Now, we need to solve the layer-wise propagation rule in Eq. (10) to il-
lustrate the message-passing scheme of CauchyGCN. However, the difficulty is
introduced since the two smoothing strategies are coupled by the components
of h. To address this issue, we find inspiration in splitting methods [19], par-
ticularly those designed for solving optimization problems of the form f(z) =
I(x) + u(x) + ¢(Ax). This problem is equivalent to the one presented in Eq.
(10). By reformulating the problem, we convert it from a three-function problem
to a more manageable two-function form, expressed as f(x) = L(x) + ep(z),
where L(z) = I(z) + u(z) and € € [0,1] is a scalar. Following the splitting
method, Eq. (10) is reformulated to: £(h) = ||h — x||> + Aytr(h” Lh) and
ph) = X375 m, aiming to find an optimal solution of h. This
allows us to approach the optimization step-by-step. First, we solve the opti-
mization problem in £(h), which intriguingly aligns with solving the Laplacian
smoothing problem outlined in Eq. (5). The one gradient descent step at x is:

. _ L) .
f"=x-— U8T|h =x
=x—nALx (11)
Al 2 )\2
= AX + X .
(A1 +A2) (()\1 + A2)
where the step size n = m The optimal solution f* obtained through

A1-scaled Laplacian smoothing is subsequently utilized to solve the second func-
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tion, ¢(f*). Before delving into the search for the optimal solution of Cauchy
smoothing, it is prudent to calculate the derivative of ¢(f*) with respect to f*.

(£ wz] ) f*)

(S B , (12)
where w;; has d;; = [|f7 — £||%. Finally, let us take another gradient descent on
f* for Cauchy smoothing,

d(f)
h* _ f* _ _ f* _ *
e 56" nez
* 13)
S wl . f ) (
=MAx+(1-2) X—GZZ !
(1€ — £ ||2 +7?)°

where the step size n = e € [0,1] is a scalar from the splitting method,

and h* denotes the output node representation at the current layer.

Let A\ = /\1)_“_1)\2, we introduce a more scalable parameter A to enhance the
equilibrium between the two smoothing strategies. For special cases, when Ay = 0
leads a fully Laplacian smoothing as A = 1. Conversely, when A\; = 0 leads a
complete Cauchy smoothing as A = 0. Furthermore, it is important to note that
all node representations in this context are normalized by the square root of
the degree matrix (D). We denote the dlstance matrix of all neighboring nodes

as AH, as such AH = )", H _ B The graph convolution process in
| 5 Vi~ i

CauchyGCN follows the general framework of graph convolution outlined in Eq.
(1), and a concise process is provided in Algorithm 1.

3.3 Clustering Analysis

We introduce a clustering analysis at the output layer to smooth both inter-
class clustering and intra-class clustering, simultaneously enhancing the learning
of local and global smoothness. Specifically, we employ the unsupervised deep
clustering techniques in [24], which utilize the KL divergence to compare the
clustering distribution (Q) with an auxiliary self-training target distribution (P).
The KL divergence is calculated as follows:

N C
LPIQ) =Y pic- log% (14)

=1 c=1

where ¢ € [1, C] denotes a class, with C' being the number of classes in the dataset,
and ¢ € [1,|V]] denotes a node.

The clustering distribution (@) captures the similarity between the node rep-
resentation XEL) and cluster centroid {u.}<_;. Since the node representations are
partially learned from the Cauchy distribution, we utilize the Cauchy distribu-

tion to compute the clustering distribution, enabling it to also capture heavy
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Algorithm 1: Graph Convolution in CauchyGCN

Input: Node Representation x; Adjacency Matrix A; Layer-specific trainable
weight matrix ©; Activation Function o(.); Hyper-parameters
A€ 0,1],v>0, and € € [0,1]
Output: Output Node Representation H
Initialize x© « x, k+ 1, O + 9 ;
1: for [ € [1,L] do
2: Projection layer: x « xt-VeW®
3: if A #0 then
‘ Laplacian smoothing: F) «+ AAx" + (1 — X)x®
else
| PO x®
end
4: if A\ # 1 then
AF® r
FU R T T
w® A~ AF"/°

. w® AR
Cauchy smoothing: Z(*) « 2 @ ar®

else
[ Q|
end
Message-passing: H® +— AAx® + (1- )\)(x(l) — eZ(l))
: Activation + Dropout layer: HY « dropout(o(H"))
7: Update | < [+ 1
end

tails. The probability ¢;. of assigning node i to cluster ¢ is computed as follows:

-1
(1+ I — pell?)
Gic =

_
S (14 B - pel?)

(15)

where we assume the scale hyper-parameter v = 1 for the Cauchy distribution.
Recall, h®) is the node representation from the last layer.

The target distribution P is designed to enhance the performance of the
classifier and correct centroids. The distribution P is defined as follows:

p' _ q’?c/f(’
ic —
Zc’ q'?c’/fcl

where f. =", gic represents the soft cluster frequencies.

The challenge lies in determining the initial values for centroids p and up-
dating them throughout each training epoch in CauchyGCN. The initialization
strategy of centroids, as outlined in [24], assumes a high accuracy of the classifier

(16)
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during the initial training epoch. However, this assumption presents a challenge
for CauchyGCN, given that the classifier’s accuracy at the first epoch is typically
quite low. Moreover, while the K-means clustering method seems intuitive, its
lack of differentiability complicates the optimization problem during backpropa-
gation. To circumvent the challenges, we compute the centroids p. by averaging
the node representations associated with high confidence in each class label c.
At the first training epoch, we initialize centroids p. as follows:

1 &
L

pe =+ > _hiE) . (17)
€ i=1

In this approach, N, denotes the number of nodes in cluster c¢. The condition
i € ¢! for node representation h’ indicates that node i is assigned to class ¢ due
to having the highest confidence in this class among all potential classes. The
optimization of u. will be discussed in Section 3.4.

3.4 Optimization of CauchyGCN

The objective function of CauchyGCN in the output layer is jointly optimizing
the performance of semi-supervised node classification and unsupervised clus-
tering analysis,

F
Occen = — > > YignH}; + kKL(P|Q) (18)

l€Viaber f=1 clustering analysis

semi-supervised node classification

where Viaper is the set of ground truth labels of the labeled nodes and & € [0, 1] is

a hyper-parameter that control the effect of K L(P||Q). The gradient of Ocgon
(L)

)

00caenN
TEL) =2 E(Pic — Gic)

with respect to h;™’ is computed as:

h"

— He
. (19)
1+ [0 — )2

This is then passed down to the backpropagation to optimize the projection
matrix O, i.e., 00cqen/06. The gradient of Ocgon with respect to cluster
centroid p. is computed as:

90cGenN h" — g
G — 2 (pie — i) —— 1 . (20)
Ot Z- N LA L
We manually update p,. to the next training epoch as:
90ccon
e — fEEEN 21
fe < He — B o (21)

B € [0,1] denotes the gradient step. This process is not involved in the back-
propagation process that optimizes the projection matrix 6.
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4 Experiments and Results

4.1 Datasets

We validate our CauchyGCN on semi-supervised node classification tasks using
the following real-world citation networks, Wikipedia-based article networks,
and co-authorship networks: 1) Cora, CiteSeer, and PubMed [27] are citation
networks widely used in node classification literature, where nodes are bag-of-
words representations of documents and edges are citation links. 2) Wiki-CS
[17] is a Wikipedia-based article network in the field of Computer Science, where
nodes are word embeddings of the articles, edges are hyperlinks, and classes are
assigned to 10 relative fields. 3) Coauthor-CS [21] is a co-authorship network
based on the Microsoft Academic Graph, where nodes are paper keywords for
each author’s papers, edges depict co-authorship, and classes are assigned to
the 15 most active fields. We conduct 10 runs on all datasets with the splitting
method in [12] for training.

4.2 Settings and Baselines

To ensure fair comparisons, all methods are fixed under the following settings:
the same data splitting method; 16 hidden feature size; 0.1 learning rate; 5e-4
weight decay rate; 0.5 dropout rate; 300 training epochs; and all performance
is reported as the mean and standard variance of 10 runs in terms of semi-
supervised node classification accuracy (%). The propagation depth, which refers
to the number of graph convolutional layers, varies depending on the methods
used. PPNP [2] and GNN-HF-closed [28] have a propagation depth of one. Cheb-
Net [5], GCN [10], GAT [23], APPNP [7], GNN-HF-iter [28], ElasticGNN [12],
and CauchyGCN have a propagation depth of two. All compared methods were
implemented using the hyperparameters specified in the respective literature. In
the case of CauchyGCN, the layer-wise message-passing scheme has the balanc-
ing parameter A in the range of [0.2,0.7], the scale v in Cauchy distribution is
set to 1, the scalar of KL divergence in the optimization problem k is chosen
to be less than 0.1, and gradient step of centroids p is selected from the range
0<B<05.

4.3 Analysis of Classification Performance

The results of semi-supervised node classification are in Table 1. Here are some
notable observations:

— Importance of recognizing the closely embedded neighbors: GAT demonstrates
superior performance over GCN and ChebNet in Cora, CiteSeer, and Wiki-
CS, suggesting the crucial importance of paying more attention to informa-
tion aggregated and propagated from closely embedded neighbors. PPNP,
APPNP, GNN-HF-closed, and GNN-HF-iter outperform GCN across most
datasets, indicating that filtering out less frequently related neighboring in-
formation can effectively denoise the aggregated information at the center
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node. These findings emphasize the significance of utilizing the underlying
topology to assess the importance of neighbors, a concept incorporated into
CauchyGCN through the modeling of the weight factor wj;.

— Importance of letting the data represent itself: In contrast, ElasticGNN,
the closest contender, also introduces an additional smoothing strategy to
preserve local smoothness. However, CauchyGCN consistently outperforms

ElasticGNN, particularly on Wiki-CS, a dataset characterized by high-frequency

edges between nodes. While ElasticGNN relies on the /; norm and a soft-
thresholding operator to preserve closely embedded neighbors, CauchyGCN
distinguishes itself by allowing the data itself to determine the preservation
of local smoothness through a Cauchy distribution.

It is worth noting that GNN-HF-closed outperforms CauchyGCN on Cora and
CiteSeer by 0.3% and 0.1%, respectively. As discussed earlier, GNN-HF improves
upon GCN from the spectral aspect by filtering information via a refined graph
filter. On the other hand, CauchyGCN improves GCN by introducing a novel
smoothing strategy from the spatial perspective. These two perspectives are
independent and can be examined for potential integration to further improve
the performance of GCNs.

Method ‘ Cora Citeseer Pubmed Wiki-CS Coauthor-CS
ChebNet [5] 79.6 £ 1.7 69.1 £23 T769+19 682+46 91.3+04
GCN [10] 80.3 £ 1.6 69.7+ 1.5 77.3+18 746 +26 90.9+ 0.6
PPNP [7] 815+ 1.1 706 £15 786+ 1.8 752+22 889+ 14
APPNP [7] 80.4 +1.8 70.0+ 1.5 77.7+21 752+27 91.6+0.5

GNN-HF-closed [28]| 82.0 + 1.2 71.6 + 1.279.3 £ 2.2 70.7+3.2 91.0+05
GNN-HF-iter [28] 804+ 15 70.7+18 77.7£23 724£31 91.9%05

GAT [23] 80.7 £ 1.7 70.6 £ 1.5 oom 747 £ 2.6 oom
ElasticGNN [12] 81.3 £15 70.8+£15 784 +21 439+13.1 91.5+04
CauchyGCN 82.2 + 0.8 71.3+15 79.2+17 757+ 2.7 92.0+ 0.5

Table 1. Semi-supervised node classification results (%). Bold is used to show the best
results. *oom means out of memory.

4.4 Ablation Study

This section analyzes the performance of CauchyGCN with different configura-
tions, this includes parameters: A (the balancing factor in Eq. (9)) and e (in
Eq. (13)) in the message-passing scheme, as well as § (in Eq. (21)) and & (in
Eq. (18)) in clustering analysis. We use a heat map in Fig. 1 to illustrate the
average classification accuracy of 10 runs across all possible configurations of A;
and Ay, representing the balancing factor in the first and second graph convo-
lutional layers, respectively. These results are conducted under a fixed value of
€, B, and k, which are tuned for the best performance of CauchyGCN shown
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Fig. 1. CauchyGCN ablation study on balancing parameters A in Eq. (9). Specifically,
A1 and A2 are the balancing factors in the first and second graph convolutional layers,
respectively. All colored cubes denote performance equal to or higher than that of the
fully Laplacian smoothing (GCN) method, where [A1, A2] = [1, 1], with darker colors
indicating superior performance.

GCN -4 ElasticGNN CauchyGCN GCN -4 ElasticGNN CauchyGCN GCN -4 ElasticGNN CauchyGCN GCN -4 ElasticGNN CauchyGCN
& 75 8.5

f S

3

S0

\J

=)

»
o
©
8

g 3 ws s,
. g

=
&

5
3 800
8
<

Accuracy (%)
8

R
Ty

Accuracy (%)
2] 3
e
Accuracy (%)

I
3

s

~
=]

b K}
0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 0% 15% 20%
Perturbation Rate Perturbation Rate Perturbation Rate Perturbation Rate

(a) Cora (b) CiteSeer (c) PubMed (d) Polblogs

Fig. 2. Sensitivity analysis under adversarial graph attack.

in Table 1. Observing Fig. 1: 1) The value of (1 — \) represents the proportion
of Cauchy smoothing employed in CauchyGCN, whereas A denotes the per-
centage of Laplacian smoothing. Generally, the presence of more colored cubes
compared to uncolored ones suggests that CauchyGCN is readily adjustable for
superior performance over GCN. Notably, the best performance of CauchyGCN
emerges when [A1, A\z] being [0.5,0.4] on Cora, [0.3,0.4] on CiteSeer, [0.3,0.6]
on PubMed, [0.3,0.7] on Wiki-CS, and [0.3,0.7] on Coauthor-CS, illustrating a
significant reliance and need for Cauchy smoothing in preserving local smooth-
ness. 2) All experiments have a Cauchy-based clustering analysis since the tuned
value of § and k are greater than 0. GCN with clustering analysis, the special
case wherein [A1, A2] = [1, 1], underperformed CauchyGCN but outperformed or
equal to GCN without clustering analysis. This observation underscores the ef-
fectiveness of both the Cauchy-based message-passing scheme and the clustering
analysis in CauchyGCN.

4.5 Robustness under Graph Attack

We assess the robustness of CauchyGCN under adversarial attacks [29] on graph
structure with varying perturbation ratios. The experimental results, as illus-
trated in Fig. 2, encompass different methods evaluated under perturbation rates
of 0%/5%/10%/15%/20%. Note that the outcomes for the 0% perturbation rate
are not directly comparable to those in Table 1 due to differing data split-
ting techniques. For this study, nodes are randomly split as 10%/10%/80% for
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training, validation, and testing [12]. The findings from Fig. 2 indicate the su-
perior performance of CauchyGCN over GCN and ElasticGNN, attributed to
the Cauchy smoothing. It efficiently identifies proximal neighbors and preserves
local smoothness, even when confronted with noisy and irregular neighboring
information.

5 Conclusion

This paper introduces CauchyGCN with a Cauchy-smoothing message-passing
scheme and Cauchy-based unsupervised clustering analysis. The scheme lever-
ages the underlying topology to explain and preserve smoothness within closely
embedded and mutually connected neighborhoods, alleviating strict penalization
of distant neighbors seen in Laplacian smoothing. The Cauchy-based unsuper-
vised clustering analysis enhances intra-class smoothness in the output layer,
thereby simultaneously improving the classifier’s ability to learn both local and
global smoothness. Extensive experiments on node classifications showcase the
effectiveness of CauchyGCN, highlighting the importance of preserving local
smoothness.
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