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Abstract

In the system we study, 1’s and 0’s represent occupied and vacant sites in the
contact process with births at rate λ and deaths at rate 1. −1’s are sterile individuals
that do not reproduce but appear spontaneously on vacant sites at rate α and die at
rate θα. We show that the system (which is attractive but has no dual) dies out at
the critical value and has a nontrivial stationary distribution when it is supercritical.
Our most interesting results concern the asymptotics when α→ 0. In this regime the
process resembles the contact process in a random environment.

1 Introduction

The idea that populations of economically important insect species might be controlled,
managed or eradicated through genetic manipulation was conceived in the late 1930s by an
American entomologist, Dr Edward F. Knipling. The sterile insect control strategy is based
on releasing overwhelming numbers of sterile male insects into the wild. The sterile males
compete with normal males to mate with the females. Females that mate with a sterile male
produce no offspring, thus reducing the next generation’s population. Sterile insects are
not self-replicating and, therefore, cannot become established in the environment. Repeated
release of sterile males when the population density is low can further reduce and in some
cases eliminate pest populations. The technique has successfully been used in a large number
of situations. See the 2005 book by Klassen and Curtis [23] and the 2021 second edition of
Dyck, Hendricks, and Robinson [19].

Here, we will construct a simple stochastic spatial model for this system. Rather than
having male and female flies, the normal and sterile flies will compete for space, which we
model as the d-dimensional integer lattice Z

d. In our process ξt each site x ∈ Z
d can be in

state {1, 0,−1}, where state 1 = normal fly, 0 = empty site, and −1 = sterile fly. We use
this ordering of states so that the system will be attractive: if ξ0(x) ≤ ξ̄0(x) for all x ∈ Z

d

then the two processes can be constructed on the same space so that ξt(x) ≤ ξ̄t(x) for all
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x ∈ Z
d and all t ≥ 0. See, for example, (B12) and (B13) in Liggett’s book [26] for a formal

definition on attractiveness for interacting particle systems.
The 1’s and 0’s are an ordinary contact process. −1’s are sterile individuals that do not

reproduce but appear spontaneously on vacant sites at rate α and die at rate θα. Thus, if
N1 is the number of nearest neighbors occupied by 1’s, then the process has the following
transition rates:

0→ 1 at rate λN1

1→ 0 at rate 1

0→ −1 at rate α

−1→ 0 at rate θα.

The death rate of sterile flies is not the same as ordinary flies since they have been treated
with radiation or chemicals to make them sterile. We have chosen the last two rates so
that we can let α → 0 and consider a situation in which the sterile flies change on a much
slower time scale. This is probably not biologically realistic but, as the reader will see, it is
mathematically interesting.

After this paper was submitted we learned that in 2016 Kevin Kuoch [24] constructed a
stochastic spatial model for the sterile fly control strategy in which the evolution of the wild
population is governed by a contact process whose growth rate is slowed down in presence of
sterile individuals. Each site of Zd is either empty (state 0), occupied by wild individuals only
(state 1), by sterile individuals only (state 2), or by both wild and sterile individuals (state
3). The rate with which wild individuals give birth (to wild individuals) on neighboring sites
is λ1 at sites in state 1 and λ2 < λ1 in state 3. Deaths of each type of individual are at rate
1.

Kuoch’s paper and ours are part of a large literature on multitype contact process that
aims to understand what type of interactions allow for the two types to coexist. The first
result in this direction was obtained in 1992 by Neuhauser [28] for the competing contact
process in which sites are in state 0 (vacant), 1 or 2, which means they are occupied by one
particle of type 1 or type 2. Individually the particles of type i give birth at rate βi and die
at rate δi. It is conjectured (and partially proved) that if β1/δ1 > β2/δ2 and we start with
infinitely many 1’s then the 2’s become extinct. In ecology this is referred to as “Gause’s
Principle”, which states that the number of coexisting species is limited by the number of
resources. In this example of competing contact process there is one resource, space.

In 2008 Durrett gave Wald Lectures at the Bernoulli Society meeting in Singapore. The
associated paper [11] published in Annals of Applied Probability described results for a num-
ber of systems: grass-bushes-trees, colicin, multitype biased voter models, cyclic systems,
spatial Prisoner’s dilemma, etc. See the paper for details and references. More recent exam-
ples include host-pathogen systems [15], the Staver-Levin model of competition of savanna
and forest [18], and the symbiotic contact process [17]. These systems are challenging to
study because even if they are attractive they do not have a dual process.

Remenik [29] has earlier considered a system very similar to our sterile fly model. In his
system ηt : Z

d → {1, 0,−1}, where 1 = occupied, 0 = vacant, and −1 = uninhabitable. His
rates use different notation (βf1 instead of λN1, and δ instead of θ) but the major difference
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is that the third line above is changed to

1, 0→ −1 at rate α.

This may look like a minor change, but it greatly simplifies the analysis of the process. As
Remenik says in his introduction, “This version is simpler than the alternative in which only
0’s can turn into −1’s (mainly because our process satisfies a self-duality relationship).” To
explain this, we construct Remenik’s process in Section 2 from a graphical representation,
which allows us to define a dual process. Our process ξt can be constructed on that structure
so that if we have ξ0 ≥ η0 then ξt ≥ ηt for all t. We can also construct the contact process ζt
on the same space with the other two processes so that if ζ0 ≥ ξ0 then ζt ≥ ξt for all t ≥ 0.
Hence we have the following

Theorem 1. If Remenik’s process ηt survives then our process ξt does. If the ordinary
contact process ζt dies out then ξt does.

Combining this observation with Theorem 1 in Remenik’s paper [29] gives information
about the phase diagram drawn in Figure 1. To explain the left hand side of the picture,
we note that in Remenik’s model sites transition to −1 at rate α independent of whether
the state is 1 or 0, and back to 0 at rate αθ, so the fraction of time spent in state −1 is
1/(1+ θ). The intervals in which a site is in state −1 are exponential with rate αθ. If in the
complement of the union of these intervals there are no infinite paths that go up and jump
to nearest neighbors, then the system will die out for all λ. This occurs for small θ.

λcon

λ

∞

ξt dies out

0 θ ∞θc
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D
D
D
DD
B
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@
@

HHH

XXXX

ξt survives

Figure 1: Phase diagram when α = 1. λRem is the critical value for Remenik’s model, while
λcon is the critical value for the ordinary contact process.

Let ξ0t be the process starting with a single 1 at the origin, and, with some abuse of
notation, let ξ0t also denote the set of 1’s in the process. For fixed α and θ let

λc(α, θ) = inf{λ : P (ξ0t 6= ∅ for all t) > 0},
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be the critical value for survival starting from a single occupied site. Using the classical block
construction for the contact process introduced in Bezuidenhout and Grimmett [2] (see also
Section 2, Part I of Liggett’s book [26]), it is straightforward to show Theorem 2. The block
construction is a general technique in the study of interacting particle systems where we look
at the macroscopic behavior of the process on a large space-time block of our choice, and
use that information to derive results on the process. This idea will also be applied in the
proof of other theorems in this paper.

Theorem 2. When λ = λc(α, θ), ξt dies out. When λ > λc(α, θ) there is a nontrivial
stationary distribution ξ1∞, which is the limiting distribution of the process ξt starting from
all 1’s.

Since our process is attractive, if we let ξ1t be the process starting from all 1’s then ξ1t
converges to a limit that we call ξ1∞ as time goes to infinity. For a contact process ζt, by
duality we have P (ζ1∞(x) = 1) = P (ζxt 6= ∅ for all t > 0) > 0 when λ > λcon. Hence the
existence of a nontrivial stationary distribution for the contact process is a straightforward
consequence of duality. However, our process does not have a dual so we need to show that
ξ1∞ is nontrivial for λ > λc(α, θ).

Remenik [29] proved this conclusion for his model. Since his process has a dual, a corollary
of the proof of Theorem 2 is the complete convergence theorem. We will state his result in
the next section after we have described the graphical representation.

The proofs of Theorems 1 and 2 are fairly routine. Things become more interesting when
we study the behavior when α is small. In this case the system behaves like a contact process
in a random environment where −1’s are obstacles that block the birth of 1’s. However, over
longer time scales the −1’s flip so the situation is different from the models of the contact
process in a static random environment that have been studied earlier. Our initial goal was
to find the asymptotics for the critical value when α → 0. As you will see, that has turned
out to be a very challenging problem.

1.1 Generic block construction

The proofs of Theorems 3, 4, and 5 which describe properties of the system with small α are
based on a thirty-year-old technique called the block construction. The first example was
[3]. Durrett’s 1993 St. Flour Notes [10] give a description of the theory and a number of
examples. Modifications of this technique are needed in the three proofs, so we begin with
a description of a generic application: proving that a system ξt : Z → {0, 1} has a positive
probability of not dying out.

Let L = {(m,n) ∈ Z
2 : m,n ≥ 0 and m+ n is even} be the renormalized lattice and turn

L into an oriented graph by adding edges (m,n)→ (m+1, n+1) and (m,n)→ (m−1, n+1).
The first coordinate is space while the second is time. For each (m,n) ∈ L we have a block

Bm,n = (2mL, nT ) + [−4L, 4L]× [0, T ].

The next picture should help explain the definitions.
We say that the point (m,n) ∈ L is wet if the configuration ξnT restricted to Im =

2mL + [−L,L] has a specified property H (for happy), e.g., there are at least K sites
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Figure 2: Picture of the generic block construction in d = 1. Points of L are marked by ?s.

in state 1 in Im at time nT . In most applications the process ξt is constructed from an
infinite collection of Poisson processes called a graphical representation, see Section 2. We
will construct good events Gm,n so that a wet site (m,n) can make both (m + 1, n + 1)
and (m − 1, n + 1) wet if Gm,n occurs. Usually Gm,n is chosen to have suitable translation
invariant properties.

The main step in the block construction is to show that given ε > 0 we can pick L and
T so that if (m,n) is wet then (m − 1, n + 1) and (m + 1, n + 1) are wet with probability
at least 1 − ε, and the good event Gm,n that guarantees this can be determined from the
Poisson points in Bm,n. Note that the box Bm,n intersects Bm−2,n and Bm+2,n but does not
intersect the interior of any other Bk,` with (k, `) ∈ L. This observation implies that the
events Gm,n have a finite range of dependence, M , so Theorem 4.1 in [10] guarantees that if
ε < εM for some εM depending on M and (0, 0) is wet then with probability at least 19/20
there is an infinite path of wet sites on L starting at (0, 0). If H has been defined suitably
then the existence of an infinite path implies that the process does not die out. A second
result in [10], Theorem 4.2, allows one, in most cases, to prove the existence of a nontrivial
stationary distribution.

1.2 Survival for small α in d = 2

Let psitec (Z2) denote the critical value of the site percolation in Z
2. We consider only the

two-dimensional case to make the percolation arguments simpler. In this case the theory is
developed by the use of “sponge crossings”, i.e., left-to-right or top-to-bottom crossings of
rectangles by open sites. See, for example, Kesten’s book [22]. In d = 3 a left-right crossing
of a cube need not intersect a top-to-bottom crossing, so the theory becomes much more
complicated, see Grimmett’s book [21].

Theorem 3. In d = 2 if θ/(1 + θ) > psitec (Z2) and λ > λcon(Z) the critical value for the
contact process on Z, then our process survives for small α.
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Figure 3: Picture of the rectangles in which crossings will occur

There are four main ingredients in the proof.

• Let T = ε0/α for some ε0 to be chosen later in Section 4.1. We say that a site x ∈ Z
2

is closed if it is in state −1 at some time in [0, 2T ], and open otherwise. Consider a
large square [−N,N ]2. Let η > 0 be small and define four rectangles by

Q1 = [−N/3−Nη,−N/3 +Nη]× [−N,N ],

Q2 = [−N,N ]× [N/3−Nη, N/3 +Nη], (1)

Q3 = [N/3−Nη, N/3 +Nη]× [−N,N ],

Q4 = [−N,N ]× [−N/3−Nη,−N/3 +Nη].

We use the word open crossings to refer to top-to-bottom crossings of Q1 and Q3 and
left-to-right crossings of Q2 and Q4 by paths of open sites. In Section 4.1 we use results
about site percolation in two dimensions to show that if sites are independent and open
with probability p > psitec (Z2) and N is large then with high probability there are open
crossings in all Q1, Q2, Q3, Q4.

• Our next step is to introduce the block construction. Writing NE for north-east we
define

LNE = {(m,n,m+ n) ∈ Z
3 : m,n ≥ 0}

and draw an oriented edges from (m,n,m + n) to (m + 1, n,m + n + 1) and from
(m,n,m+ n) to (m,n+ 1,m+ n+ 1). A site (m,n,m+ n) ∈ LNE has an associated
box

Bm,n = ((mN,nN) + [−N,N ]2)× [(m+ n− 1)+T, (m+ n+ 1)T ].
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The notation (·)+ means max{0, ·}, and it only has an effect when m = n = 0.

The somewhat unusual geometry of LNE is forced on us by the fact that the influence
of the initial configuration of −1’s persists for time 1/α in expectation which is 1/ε0
levels in the construction. Hence, if we pick ε0 small then the range of dependence in
the block construction is large. By moving north or east on each step we can guarantee
a finite range of dependence independent of ε0.

B0,0

B1,0

B2,0

B3,0

wet open

wet open

wet open

wet

Figure 4: Block construction viewed from the x-axis.

• We say that (m,n,m+n) ∈ LNE with m+n > 0 is open if there are open crossings of
(mN,nN)+Qi for all 1 ≤ i ≤ 4 that stay open through [(m+n−1)+T, (m+n+1)T ].
The block B0,0 is excluded here, see Figure 4. An open crossing of Qi is a self-avoiding
path and hence isomorphic to an interval [0, `] on Z where 2N ≤ ` ≤ 4N1+η. By the
definition of openness for a site there are no −1’s on the crossing during [(m + n −
1)+T, (m+ n+ 1)T ].

We say an open crossing of length ` ≥ 2N is ε-good if when we map the configuration
of 1’s and 0’s to the interval [0, `] on Z and put 0’s outside [εN, ` − εN ], the contact
process survives with probability at least 1− ε. We say that (m,n,m+n) ∈ LNE with
m+ n ≥ 0 is wet if, in addition to (m,n,m+ n) being open, the open crossings in Q2

and Q3 are ε-good at time (m + n)T . In Lemma 11 in Section 4.3 we will show that
if (m,n,m + n) is wet and (m + 1, n,m + n + 1) is open then with high probability
(m + 1, n,m + n + 1) will become wet. By symmetry the same conclusion holds with
(m+ 1, n,m+ n+ 1) replaced by (m,n+ 1,m+ n+ 1).

• The final detail is to specify the initial condition. Let p0 ∈ (psitec (Z2), θ/(θ + 1)) and
let ξpr0 (x) be independent with P (ξpr0 (x) = 0) = p0 and P (ξpr0 (x) = −1) = 1 − p0. If
there are no 1’s in the initial configuration then the process is doomed to die out, so
we will manually create some 1’s by flipping coins with a small probability of heads
for the sites in B0,0. The state of a site with a head in the coin flip will be replaced by
“1”. The resulting initial configuration will be denoted by ξ0.
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When m + n = 1 the condition at time (m + n − 1)T = 0 is a product measure so
Corollary 1 in Section 4.1 shows that with high probability these sites are open. To
check that (m,n,m + n) ∈ LNE is open for m + n > 1 we note that if the initial
condition ξprt (x) is 0 with probability p0 and −1 with probability 1 − p0, then the
expected fraction of 0’s at time t/α, denoted by f(t), satisfies

f ′(t) = −f(t) + θ(1− f(t)), f(0) = p0.

It is easy to see that as t increases from 0 to ∞, f(t) increases from p0 to θ/(θ+1). If
we introduce 1’s into the initial configuration ξpr0 to produce ξ0 then ξ0 ≥ ξpr0 and we
have ξt ≥ ξprt for all t ≥ 0 and then (m,n,m+ n) is open with high probability.

Combining the observations above and using the block construction we conclude that if
α is small then with positive probability we have

Ω∞ = {there is an infinite sequence of wet sites in the oriented percolation on LNE}.

Since boxes corresponding to wet sites have at least one occupied site, it follows that when
Ω∞ occurs our process does not die out.

1.3 Extinction for small α in d = 1

In the other direction one might hope to prove the following

Naive Conjecture. If θ/(1+ θ) < psitec (Z2) then for any fixed λ the contact process will die
out for small α.

If the random environment was static this would be easy. The contact process evolving on a
finite cluster will quickly die out. However, the flipping of sites from −1 to 0 will allow the
process to move between different finite clusters.

The next result shows that this guess is correct in d = 1 where psitec (Z) = 1.

Theorem 4. In d = 1 if λ, θ are fixed then the process dies out almost surely for small α.

The idea behind the proof, which again is a block construction, can best be conveyed by
drawing a picture, see Figure 5. Since our process is attractive, we can suppose that the
system starts in the state of all 1’s at time 0, since this is the worst case scenario if we want
the process to die out. There are three phases in time.

• Phase 1: [0, t0/α]. When an occupied site becomes vacant, there is a small chance
of it changing to −1 before it gets occupied again. When this happens the site will
stay in state −1 for time Ω(1/θα). If t0 is large enough, then at time t0/α we have
space divided into small intervals by −1’s. To make sure the space remains a collection
of small intervals we employ only the −1’s that will not turn back to 0 during time
interval [t0/α, (t0 + β)/α].

• Phase 2: [t0/α, (t0 + β)/α]. Once [−2K, 2K] is broken into a large number of small
pieces by −1’s, results for the contact process on a finite interval imply that all the 1’s
in [−2K, 2K] will die in this time interval.
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−2K −K 0 K 2K
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T = (t0 + β)/α

3T

vacant

Figure 5: Picture of the block construction in d = 1. Dark lines are locations of −1 barriers.

• Phase 3: [T, 3T ]. To kill off the process using a block construction we want to have
[−K,K] remain vacant during time [T, 3T ] where T = (t0+β)/α. In d = 1 it is enough
to build two walls of −1’s to protect the middle region from being populated again.
Using a comparison with oriented percolation, the vacant regions combine to make
strips of width 2K in which there are no 1’s. As Figure 7 shows the vacant regions
associated with (m,n) and (m+ 1, n+ 1) overlap nicely.

Block construction. We use the generic renormalized lattice

L = {(mK,nT ) : m,n ∈ Z,m+ n is even}.
A block at (m,n) ∈ {(i, j) ∈ Z

2 : i+ j is even} is
Bm,n = (mK,nT ) + ([−2K, 2K]× [0, 3T ]).

The block at (0,0) is good if when we start our process ξt with all 1’s on [−2K, 2K] at
time 0, there are no 1’s in [−K,K]× [T, 3T ]. This definition is extended to other blocks by
translation. A site (m,n) is said to be open if the corresponding block is good, otherwise it
is said to be closed. The block events have a finite range of dependence M . We will show in
Section 4 that when α is sufficiently small, we can choose K and T so that a site (m,n) is
open with probability > 1− εM .

Define wet sites on level n by W 0
n = {y : (0, 0) → (y, n)}, where “→” means there is a

path of open sites connecting the two sites. Let `0n = minW 0
n and r0n = maxW 0

n . Classical
oriented percolation results show that (see e.g., Section 3 in [8]) there is v > 0 so that

`0n/n→ −v, r0n/n→ v a.s. on Ω0 ≡ {W 0
n 6= ∅ for all n}.
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T
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4T

Figure 6: Picture of the overlap of the (0,0), (1,1) and (−1, 1) boxes. The rectangles with
thick lines are vacant if these boxes are good.

It is customary to use α for the “edge speed.” However α is one of the parameters of the
model so instead we use v (for velocity).

There is a path of open sites from (0, 0) to (`0n, n) and to (r0n, n). Due to our construction,
these paths of open sites are associated with a collection of 2K×2T rectangles that are known
to be vacant. We call the union of these rectangles associated with one of the two paths a
wall. There cannot be any 1’s in between the two walls, since if there were its ancestors must
have traveled through the vacant rectangles, which is impossible because the walls contain
no 1’s. The existence of this growing “dead zone” implies that our process ξt dies out on the
event Ω0, which by the block construction occurs with a positive probability ρ.

To show that the 1’s die out we have to upgrade “with positive probability” to “with
probability 1”. To do this we will follow the motto “If at first you don’t succeed, then try
again.” Let τ = min{n : W 0

n = ∅}. The sites on levels ≥ τ +M + 1 are independent of the
failure of the first attempt. So we try the construction again starting at site m = 0 if the
time τ +M +1 is even or m = 1 if the time is odd. The second attempt has an independent
probability ρ of success. Eventually we will have a success which kills off the 1’s and the
proof is complete.

1.4 Extinction for small α in d = 2

A major problem that prevents us from proving a converse to Theorem 3 is that when 1’s
are present the density of −1’s that we can guarantee is much smaller than 1/(1+ θ), which
is the density we can guarantee when there are only −1’s and 0’s. In two dimensions our
model has the following rates
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dead zone

Figure 7: Picture of the walls and the resulting dead zone, which includes the rectangles
that make up the walls.

1→ 0 at rate 1 0→ −1 at rate α
0→ 1 at rate ≤ 4λ −1→ 0 at rate θα

Turning the “≤ 4λ” into “= 4λ” we have a three state birth and death process in which
the equilibrium frequencies, which satisfy detailed balance, are

π(1) =
4λθ

1 + θ + 4λθ
, π(0) =

θ

1 + θ + 4λθ
, π(−1) = 1

1 + θ + 4λθ
. (2)

Let psitec (Z2) be the critical value for the site percolation in Z
2 and let χ(p) denote the

mean cluster size when the probability for a site to be open is p.

Theorem 5. Let p0 < psitec (Z2) be the constant such that

−4χ(p0)2 log((1− e−1)e−4λ) = 1.

If 1− π(−1) < p0 then our process in d = 2 dies out for small α.

The proof again uses a block construction argument. The ideas are similar to the proof of
Theorem 4 (compare with the previous bullet list) but some of the details are much different.

• Phase 1: [0, t0/α]. If t0 is large enough, −1’s produce giant component. To avoid
having −1’s turn into 0’s we employ only −1’s that will not turn back to 0 during time
interval [t0/α, (t0 + β)/α].

• Phase 2: [t0/α, (t0 + β)/α]. If the giant component is sufficiently dense, results for
the contact process on a finite set imply that all the 1’s in [−2K, 2K]2 will die in this
time interval.
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• Phase 3: [T, 3T ]. In d = 1 it was sufficient to have a two long-lived −1’s to prevent
the vacant region we create before time T from being reinvaded during [T, 3T ]. In
d = 2, to prevent reinvasion we make the vacant region that we create so large that it
is very unlikely for individuals outside [−2K, 2K]2 to reach [−K,K]2 in time 2T .

Block construction. Space is two-dimensional so the renormalized lattice is

L3 = {(m,n, k) ∈ Z
3 : m+ n is even , k ≥ 0}

A block at (m,n, k) is

Bm,n,k = (mK,nK, kT ) + ([−2K, 2K]2 × [0, 3T ])

The block at (0,0,0) is good if starting with all 1’s in [−2K, 2K]2 at time 0 there are no
1’s in the space-time box [−K,K]2 × [T, 3T ]. This definition is extended to other blocks by
translation. A site (m,n, k) is said to be open if the corresponding block is good, otherwise
it is said to be closed.

Define wet sites on level n by

W 0
n = {(x, y) : (0, 0, 0)→ (x, y, n)}

where “→” means there is a path of open sites connecting the two sites. For comparison we
define the process starting with all sites wet at time 0,

W̄n = {(x, y) : (x0, y0, 0)→ (x, y, n) for some (x0, y0) ∈ Z
2}.

In d = 1 the fact that the left edge of the wet region `0n/n→ −v and the right edge r0n/n→
v creates a linearly growing “dead zone” that in combination with a block construction
guarantees that the process dies out.

To extend this result to d = 2 we use Lemma 5.2 from [5] which holds for anM -dependent
percolation with ε < εM .

Theorem 6 (Shape theorem). There is a convex set D so that on the event Ω∞ = {W 0
n 6=

∅ for all n}, for any η > 0,

(i) There exists some n0(η) ∈ N so that W 0
n ⊆ (1 + η)nD for all n ≥ n0(η).

(ii) On W 0
n ∩ (1− η)nD the process W 0

n is equal to W̄n with high probability.

Here and throughout the paper “with high probability” means with a probability that tends
to 1 as n→∞.

As we will explain in Section 6.2 arguments in Chapter 5 of [5] can be used to show that
if ε is small enough then the density of wet sites is large enough. Thus with high probability
there will be no particles in the set n(1 − 2η)D and we will have a linearly growing dead
zone. Once this is established the proof can be completed as in d = 1.
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1.5 Organization of the paper

The remainder of the paper is devoted to proofs. In Section 2 we describe the graphical
representation of Remenik’s model, the resulting duality, and prove Theorem 1. In Section
3 we prove Theorem 2 by using Liggett’s version of the Bezuidenhout-Grimmett argument.
In Sections 4, 5, and 6 we prove Theorems 3, 4, and 5. The block constructions have been
described in the introduction so it only remains to show that the parameters can be chosen
so that the block events occur with high probability.

2 Graphical representation

The graphical representation allows us to construct our process from a collection of inde-
pendent Poisson processes in a way that processes with different parameters can be coupled
together through their graphical representations. It is a very useful tool in the study of
interacting particle systems. For details the reader is referred to Section III.6 of [26]. We
state our construction as following:

• For each ordered pair (x, y) of nearest neighbors in Z
d, let {T x,y

n , n ≥ 1} be a Poisson
process with rate λ. At each arrival we draw an arrow from x to y to indicate that y
will change to 1 if x is in state 1 and y is state 0.

• For every x, let {T x
n , n ≥ 1} be a Poisson process with rate 1. At each arrival we write

a •1 to indicate that a 1 at the site will turn to 0.

• For every x, let {T α,x
n , n ≥ 1} be a Poisson process with rate α. At each arrival we

place a •−1 symbol to indicate that the site will become −1 if the current state is 0.

• For every x, let {T θ,x
n , n ≥ 1} be a Poisson process with rate αθ. At each arrival we

place a ∗−1 symbol to indicate that if the state is −1 it will return to state 0.

The same graphical representation can be used to construct Remenik’s process if we change
the third rule to: •−1 indicates that the site will change to state −1 in spite of its current
state. The contact process can be constructed on the same space by ignoring the last two
collections of Poisson processes.

2.1 Duality for Remenik’s model

Recall that Remenik’s process ηt has the following transition rates

0→ 1 at rate λN1

1→ 0 at rate 1

1, 0→ −1 at rate α

−1→ 0 at rate θα

On each interval between a •−1 and a ∗−1, we know that the system is in state −1. At all
other times the state is 1 or 0. To identify sites occupied by 1’s we say there is an active path
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up from (x, s) to (y, t) if there is a path that only moves up, crosses arrows in the direction
of their orientation and avoids •1’s and sites that have been set equal to −1. Let At = {y :
there is an active path up from (x, 0) → (y, t) for some x ∈ A0} where A0 is the set of 1’s
at time 0. In the same way that we defined active paths up then we can define active paths
down. They only move down, cross arrows and the direction opposite their orientation and
avoids •1’s and sites that have been set equal to −1. Let µρ be the product measure of 0’s
and −1’s, in which −1’s have probability ρ = 1/(1 + θ). Let Bt = {x : ηt(x) = −1} and set
the initial distribution of B0 to be µρ in order to have a useful duality. Observe that µρ is
the equilibrium for Bt.

The dual process (η̂ts)0≤s≤t = (Ât
s, B̂

t
s)0≤s≤t is constructed using the same graphical rep-

resentation we used for constructing ηt. To state the duality let C ⊆ Z
d, and define the

probability measure νC as following: −1’s are first chosen according to the equilibrium µρ,
and then for every site in C that is not −1 we set its state to be 1. The dual process started
with νC will be denoted by (η̂νC ,t

s )0≤s≤t.
Fix t > 0 and we have the environment process (Bs)0≤s≤t. The dual environment is given

by B̂t
s = Bt−s for 0 ≤ s ≤ t. Placing a 1 at time t at every site in C\B̂t

0 gives the initial
condition ÂνC ,t

0 . We define the dual process by

ÂνC ,t
s = {y : there is an active path from (y, t− s)→ (x, t) for some x ∈ ÂνC ,t

0 }

Let A,C,D be finite subsets of Zd. Proposition 2.2 in [29] gives

P νA(At ∩ C 6= ∅, Bt ∩D 6= ∅) = P νC (Ât
t ∩ A 6= ∅, B̂t

0 ∩D 6= ∅), (3)

which is the natural generalization of the duality relationship of additive processes

P (ξAt ∩B 6= ∅) = P (ξ̃Bt ∩ A 6= ∅)

to processes where the state is described by two sets. In (3) the two sets are equal due
to the construction on the graphical representation. However, this immediately implies the
following self-duality relation which does not depend on the construction: if A or C is finite,
then

P νA(At ∩ C 6= ∅, Bt ∩D 6= ∅) = P νC (At ∩ A 6= ∅, B0 ∩D 6= ∅). (4)

Let ν∅ be the distribution corresponding to having the −1’s at equilibrium and no 1’s.
Let η1∞ be the limiting distribution when we start the process ηt from all 1’s. Using duality
Remenik was able to prove

Complete convergence theorem. Denote by τ(η) = inf{t : {x : ηt(x) = 1} = ∅} the
extinction time of the process. Then for every initial distribution µ

ηµt ⇒ P µ(τ(η) <∞)ν∅ + P µ(τ(η) =∞)η1∞.

14



2.2 Properties for our model

Attractiveness. As stated in Section 1 our process ξt is attractive in the sense that if
ξ0 ≤ ξ̄0 in terms of the partial order −1 ≤ 0 ≤ 1 then ξt ≤ ξ̄t for all t ≥ 0.

Positive correlations. We state a version of positive correlation for our process ξt. Let χA

denote the probability measure that assigns mass 1 to the configuration ξ with ξ|A ≡ 1, ξ|Ac ≡
−1. Let f, g be increasing real-valued functions depending on finitely many coordinates.
Then

EχAfg ≥ EχAf · EχAg (5)

Since f and g depend on finitely many coordinates and every jump in our process is
between states which are comparable in the partial order −1 ≤ 0 ≤ 1, (5) follows from a
result of Harris (see Theorem II.2.14 in Liggett [25]).

3 Proof of Theorem 2

The proof of Theorem 2 follows from a classical block construction argument developed in
[2], which is also covered in great detail in Section 2, Part I of Liggett’s book [26]. Here
we present our proof closely following the same organization as that in [26]. Once we have
established the lemmas proved in [26], the conclusion then follows from the same argument
as in Theorem 2.23 [26].

To avoid repetition, we will focus on the proofs that are different from [26] due to the
fact that our process has states {−1, 0, 1} while omitting the analogous ones.

The boundary of a big box has many infected sites. The following lemma is an
analogue of Proposition I.2.1 in [26]. However, the proof is much different and hence is
given here. Recall that χA is the measure that assigns mass 1 to the configuration ξ with
ξ|A ≡ 1, ξ|Ac ≡ −1. Let ξt denote our process.

Lemma 1. Suppose under our choice of λ, θ and α, the process ξt survives. Then

lim
n→∞

P χ
[−n,n]d (ξt 6= ∅ ∀t ≥ 0) = 1.

Proof. For x ∈ Z
d, define the shift transformation Tx by

(Txη)(y) = η(y − x)

where η ∈ {−1, 0, 1}Zd

. We start by showing Tx is ergodic. Let S be the set of events
depending only on the Poisson processes on a finite number of sites and edges. Set

A = {A ∈ F : inf
B∈S

P (A∆B) = 0}

where F is the σ-algebra generated by the Poisson processes on all sites and edges on Z
d.

We can easily check that A is a σ-algebra. As S ⊆ A, it follows that F = σ(S) ⊆ A.
Hence A = F . Let A ∈ F be an event that is invariant under transformation Tx, i.e.,
A = T−1

x A. Since A ∈ A, for any ε > 0 there exists some Aε ∈ S such that P (A∆Aε) ≤ ε. As
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Aε depends on a finite number of sites and edges, there exists a positive number Mε such that
Aε ∈ FMε

= σ(T x,y, T x, T α,x, T θ,x : x, y ∈ [−Mε,Mε]
d, x ∼ y). For any C,D,C ′, D′ ⊆ Z

d,
observe that (C ∩D)∆(C ′ ∩D′) ⊆ (C∆C ′) ∪ (D∆D′). Hence we have

|P (A)2 − P (A)| = |P (A)P ((T−1
x )mA)− P (A ∩ (T−1

x )mA)|
≤ |P (Aε)P ((T−1

x )mAε)− P (Aε ∩ (T−1
x )mAε)|+ 4ε.

When m is sufficiently large, the first term on the right hand side is 0. Hence P (A)2 = P (A),
which implies P (A) ∈ {0, 1}. Therefore for every x ∈ Z

d, Tx is an ergodic transformation.
Consider Te1 and let Yx be the indicator of the event {ξχx

t 6= ∅ ∀t ≥ 0}, where x ∈ Z
d.

Birkhoff’s ergodic theorem gives

1

(2n+ 1)

∑

x∈[−n,n]×{0}d−1

Yx =
1

(2n+ 1)

n
∑

k=−n

(Te1)
kY0 → EY0 a.s. as n→∞.

It follows from attractiveness that

P χ
[−n,n]d (ξt 6= ∅ ∀t ≥ 0) ≥ P (

∑

x∈[−n,n]×{0}d−1

Yx ≥ 1)

= P





1

(2n+ 1)

∑

x∈[−n,n]×{0}d−1

Yx ≥
1

2n+ 1



→ 1 as n→∞.

For L ≥ 1, let Lξt be the truncated process of ξt where no births are allowed outside
of (−L,L)d and let |ξt| = |{x : ξt(x) = 1}|. The following Lemma is a straightforward
adaptation of Proposition I.2.2 of Liggett [26]. To be self-contained and succinct, we present
a sketch of the proof here. Note that although our process has states {−1, 0, 1} instead of
{0, 1}, the proof remains basically the same. The reader is referred to Proposition I.2.2 of
Liggett [26] for a complete argument.

Lemma 2. For every finite set A and every N ≥ 1

lim
t→∞

lim
L→∞

P χA(|Lξt| ≥ N) = P χA(ξt 6= ∅ ∀t ≥ 0).

Proof. Since limL→∞ P χA(|Lξt| ≥ N) = P χA(|ξt| ≥ N), it suffices to show

lim
t→∞
|ξt| =∞ a.s. on {ξs 6= ∅ ∀s ≥ 0}.

Observe that given the current configuration, our process ξt will die our if all the sites at
state 1 flip to 0 before they give birth to any neighbor. Hence,

P (ξt = ∅ for some t|Fs) ≥
(

1

1 + 2dλ|ξs|

)|ξs|

since each individual has at most 2d vacant neighboring sites. By the martingale convergence
theorem,

P (ξt = ∅ for some t|Fs)→ 1{ξt=∅ for some t} a.s.

as s→∞, which implies the desired result.
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Let
S(L, T ) = {(x, s) ∈ Z

d × [0, T ] : max
i
|xi| = L}

and let N(L, T ) be the maximal number of points in a subset of S(L, T ) ∩ Lξ with the
property that any two points (x, s1) and (x, s2) in this set satisfy |s1−s2| ≥ 1. The following
lemma relates the quantity N(L, T ) to |LξT | using the positive correlations property of our
process. The proof of Lemma 3 is essentially the same as that of Proposition I.2.8 in [26]
and hence is omitted here.

Lemma 3. Suppose Lj ↑ ∞ and Tj ↑ ∞. For any M,N and any finite A ⊂ Z
d,

lim sup
j→∞

P χA(N(Lj, Tj) ≤M)P χA(|Lj
ξTj
| ≤ N) ≤ P χA(ξt = ∅ for some t).

Define N+(L, T ) to be the maximal number of space-time points in

S+(L, T ) = {(x, s) ∈ {L} × [0, L)d−1 × [0, T ] : x ∈ Lξs}

such that each pair of these points having the same spatial coordinate have their time
coordinates at distance at least 1. We have the following by the positive correlation stated
in (5):

Lemma 4.

P χ
[−n,n]d (|LξT ∩ [0, L)d| ≤ N) ≤ [P χ

[−n,n]d (|LξT | ≤ 2dN)]2
−d

and
P χ

−[n,n]d (N+(L, T ) ≤M) ≤ [P χ
[−n,n]d (N(L, T ) ≤ d2dM)]2

−d/d.

The reader is referred to Proposition 2.6 and Proposition 2.11 in [26] for analogues of
Lemma 4. The proof of the following theorem is similar to that of Theorem 2.12 in [26]. To
avoid repetition we will present the major steps here and refer the reader to [26] for details
of the proof.

The finite space-time condition.

Theorem 7. If ξt survives, then it satisfies the following condition:
For every ε > 0 there are choices of n, L, T so that

P χ
[−n,n]d

(

L+2nξT+1 ⊃ x+ [−n, n]d for some x ∈ [0, L)d
)

> 1− ε (6)

and

P χ
[−n,n]d

(

L+2nξt+1 ⊃x+ [−n, n]d for some 0 ≤ t ≤ T,

and for some x ∈ {L+ n} × [0, L)d−1
)

> 1− ε. (7)

Proof. Given δ > 0, by Lemma 1 we can choose a large enough n such that

P χ
[−n,n]d (ξt 6= ∅ ∀t ≥ 0) > 1− δ2. (8)

Next, Lemma 2 allows us to choose Lj ↑ ∞ and Tj ↑ ∞ so that

P χ
[−n,n]d (|Lj

ξTj
| > 2dN) = 1− δ (9)
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for each j ≥ 1. Applying Lemma 3 with M and N replaced by Md2d and N2d respectively,
and combined with (8) and (9), there exists some j so that

P χ
[−n,n]d (N(Lj, Tj) > Md2d) > 1− δ.

Let L = Lj and T = Tj for this choice of j. By Lemma 4 we have

P χ
[−n,n]d (|LξT ∩ [0, L)d| ≤ N) ≤ [P χ

[−n,n]d (|LξT | ≤ 2dN)]2
−d ≤ δ2

−d

and
P χ

[−n,n]d (N+(L, T ) ≤M) ≤ [P χ
[−n,n]d (N(L, T ) ≤ d2dM)]2

−d/d ≤ δ2
−d/d.

Choose N so large that any N points in Z
d will contain a subset of at least N ′ points,

each pair of which is separated by an L∞ distance of at least 2n+ 1, where N ′ is chosen so
large that

(

1− P χ0(nξ1 ⊇ [−n, n]d)
)N ′

≤ δ.

Note that P χ0(nξ1 ⊇ [−n, n]d) is positive because the event that all sites in [−n, n]d\{0} first
flip to 0 and then become infected involves only finitely many sites. Hence

P χ
[−n,n]d

(

L+2nξT+1 ⊇ x+ [−n, n]d for some x ∈ [0, L)d
)

≥ (1− δ2
−d

)(1− δ).

Choosing δ sufficiently small with respect to ε gives (6). To show (7), we choose M in a
similar fashion so that any M points in Z

d contain a subset of at least M ′, which is chosen
so large that

(

1− P χ0(nξ1 ⊇ [0, 2n]× [−n, n]d−1)
)M ′

≤ δ.

Proof of Theorem 2. Theorem 7 implies that if our process ξt survives then it dominates a
supercritical two dimensional oriented site percolation in which sites are open with probabil-
ity 1− ε, with sites that can be reached from the origin implying the existence of occupied
copies of [−n, n]d in corresponding regions in space time Zd × [0,∞). See Theorem I.2.23 in
[26] for a detailed argument on establishing the comparison.

The facts that (i) our process dies out at λc(α, θ) and (ii) there is a nontrivial stationary
distribution when λ > λc(α, θ) are both consequences of this comparison with oriented
percolation (see page 54-56 in [26] for reference). Since ε is arbitrarily small, this shows that
if our process survives for a parameter λ then there is a λ′ < λ for which the process survives,
so if survival occurred at the critical value then we would have a contradiction, proving the
first part of Theorem 2. The comparison with supercritical oriented percolation also implies
the existence of a nontrivial stationary distribution, i.e., P (ξ1∞(0) = 1) > 0. See [10] for
many applications of this idea. So the second statement in Theorem 2 follows as well.

4 Proof of Theorem 3

4.1 Four crossings

In the site percolation we use a crossing to refer to a path made of open sites. In (1) we
defined four thin rectangles Q1, . . . , Q4 in [−N,N ]2. Our goal is to show
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Lemma 5. Consider site percolation in which sites are open with probability p > psitec (Z2).
If N is large then with high probability there are top-to-bottom crossings of Q1 and Q3 and
left-to-right crossings of Q2 and Q4.

In order to do this we need some results on site percolation. We use Grimmett’s book
[21] for our main reference. Consider the site percolation on L = Z

2 where each site is open
independently with probability p. Let C0 denote the cluster of open sites containing the
origin and psitec := sup{p ∈ [0, 1] : Ep(|C0|) <∞}. We follow Sykes and Essam [31] to define
L
∗, the matching lattice of L, to be Z

2 with all diagonally adjacent vertices connected. For
detailed description of matching lattices and percolation results, see Chapter 3 in Grimmett
[21].
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Figure 8: Picture of the matching lattice L
∗

They obtained the relation

psitec (L) + psitec (L∗) = 1, (10)

which was later rigorously proved by Van den Berg [32]. See also Chapter 3 of Kesten’s 1982
book on percolation, [22].

The matching pair L and L
∗ share the same set of vertices. A vertex v ∈ L is paired with

the same vertex v∗ ∈ L
∗. If v is open (resp. closed), then v∗ is closed (resp. open). Thus

a dual percolation is defined on L
∗ where each site is open with probability 1 − p. When

p > psitec (L), according to (10) the dual percolation on L
∗ is subcritical. We use P ∗

1−p to
denote the law of the dual percolation.

It is well known that for subcritical percolation on Z
2, the size of the cluster C0 has an

exponential tail (see for example Section 6.3 in [21]). Theorem 3 in Antunović and Veselić
[1] proves this result for quasi-transitive graphs. A graph G is called quasi-transitive, if there
exists a finite set of vertices F such that for any vertex x ∈ G there is a y ∈ F and graph
automorphism ϕ ∈ Aut(G) such that ϕ(y) = x.
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Lemma 6 (Theorem 3 [1]). Let G be a quasi-transitive graph and let p < psitec (G) = sup{p ∈
[0, 1] : Ep(|C0|) < ∞}. There is a constant γp > 0 such that for any positive integer n we
have

Pp(|C0| ≥ n) ≤ exp(−γpn).

Clearly L
∗ is quasi-transitive, so this conclusion holds for percolation on L

∗. For the dual
percolation on L

∗ if p > psitec (L) there is a γ∗
p that depends on p such that

P ∗
1−p(|C0| ≥ n) ≤ exp(−γ∗

pn). (11)

Proof of Lemma 5. There is no top-to-bottom crossing of Q1 on L if (and only if) there
is a left-to-right dual crossing of Q1 on L

∗. There are 2N + 1 possible starting points for
left-to-right dual crossings of Q1 on L

∗. Since a left-to-right dual crossing has path length
at least 2Nη, by (11) the probability of having no top-to-bottom crossing of Q1 on L is at
most (2N + 1) exp(−2γ∗

pN
η).

Repeating the same argument for Q2, Q3, Q4 and using a union bound shows the proba-
bility that there are top-to-bottom crossings of Q1 and Q3 and left-to-right crossings of Q2

and Q4 is at least 1− 4(2N + 1) exp(−2γ∗
pN

η)).

Turning back to our process ξt, recall that a site is open if it never became −1 during
[0, 2T ], where T = ε0/α. Let p0 ∈ (psitec (Z2), θ/(θ + 1)) and let ξpr0 (x) be independent
with P (ξpr0 (x) = 0) = p0 and P (ξpr0 (x) = −1) = 1 − p0. If there are no 1’s in the initial
configuration then the process is doomed to die out, so we flip coins with a small probability
of heads to replace a positive fraction of the 0’s in B0,0 by 1’s. We will show that for a
suitably chosen ε0, the site (0, 0, 0) is open with high probability. Consequently, by the
discussion in Section 1.2 the sites (m,n,m+ n) for m,n ≥ 0 are open with high probability
too.

Corollary 1. Suppose θ/(1 + θ) > psitec (Z2). Let p0 ∈ (psitec (Z2), θ/(θ + 1)) and T = ε0/α
where ε0 is a small constant such that p0 − psitec (Z2) > 1 − e−2ε0. Starting with the product
measure ξpr0 , the site (0, 0, 0) ∈ LNE is open with arbitrarily large probability when N is
sufficiently large.

Proof. A site is closed either if it is initially in state −1 or if it flips to −1 within time 2T .
Given that we start with a product measure where a site is −1 with probability 1− p0, the
probability that a site is closed is at most q = 1− p0+1− e−2ε0 . By the choice of ε0 we have
p = 1− q > psitec (Z2) and applying Lemma 5 completes the proof.

4.2 Contact process on a finite set

By definition, the sites on our four crossings never become −1 during time [0, 2T ], so our
model restricted to a crossing behaves exactly like a contact process. Since the crossings are
self-avoiding paths they are isomorphic to an interval on Z. This leads us naturally to study
the behavior of the contact process on a finite set. To do this we will use a construction
introduced in Section 9 of [8] to study oriented percolation, which is essentially the contact
process in discrete time.
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The first step in doing this is to go back to Durrett’s 1980 paper on the one dimensional
contact process, [7], which defined an edge speed for this process. Let ζAt denote the contact
process on Z starting from the set A being occupied and let

lAt = inf{y : ζAt (y) = 1}, rAt = sup{y : ζAt (y) = 1}

denote the left and right edge of the process, with the convention that sup ∅ = −∞ and
inf ∅ = +∞.

Lemma 7. If λ > λcon(Z) then there is a velocity v(λ) > 0 so that as t→∞,

r
(−∞,0]
t /t→ v(λ) almost surely.

Theorem 4 in [14] gives a large deviations result. This and most of the other results we
cite here are proved for oriented percolation in [8] and can be generalized to the contact
process with similar arguments. For this one see Section 11 of [8].

Lemma 8. If λ > λcon(Z) then for any a < v(λ) < b and t ≥ 0,

P (r
(−∞,0]
t ≤ at) ≤ C0e

−γ0t,

P (r
(−∞,0]
t ≥ bt) ≤ C1e

−γ1t.

where C0, γ0 depend on a and C1, γ1 depend on b.

The final ingredient is

Lemma 9. Let τA = inf{t : ζAt ≡ 0}. If λ > λcon(Z) there is a γ2 > 0 so that

P (τA <∞) ≤ exp(−γ2|A|).

See Section 10 of [8] for a proof for oriented percolation. The construction in Section 9 of [8]
compares the contact process with M -dependent oriented site percolation on L. See Figure
7 in the paper.

For the contact process we say there exists an open path from (x, s) to (y, t), i.e., (x, s)→
(y, t), if there is a path in the graphical representation leading from (x, s) to (y, t) that only
moves up, crosses arrows in the direction of their orientation and avoids •1’s. The first step
is to prove that we can get open paths in long thin parallelograms where the sides have slope
1/v(λ). To do this we will follow the approach in Cristali, Junge, and Durrett [6] who studied
an inhomogeneous oriented percolation. The parallelogram Γ (see Figure 9) has vertices

u0 = (−1.5δL, 0), u1 = ((1 + 1.5δ)L, (1 + 3δ)L/v(λ)),

v0 = (−0.5δL, 0), v1 = ((1 + 2.5δ)L, (1 + 3δ)L/v(λ)).

In addition we have two intervals [x0, y0] and [x1, y1] where

x0 = (−1.1δL, 0), x1 = ((1 + 1.75δ)L, (1 + 3δ)L/v(λ)),

y0 = (−0.9δL, 0), y1 = ((1 + 2.25δ)L, (1 + 3δ)L/v(λ)).
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Figure 9: The parallelogram Γ.

Lemma 10. Suppose λ > λcon(Z) and δ > 0 is a small constant. There exist finite constants
γ3, C3 > 0 so that the probability that there is an open path from [x0, y0] × {0} to [x1, y1] ×
{(1 + 3δ)L/v(λ)} that lies in Γ in the contact process is at least 1− C3 exp(−γ3L).
Proof. By Lemma 9 we have

P (τ [x0,y0] <∞) ≤ exp(−γ2(0.2δL)).
That is, with probability at least 1− exp(−γ2(0.2δL)) there is a path from [x0, y0]× {0} up
to time tL = (1 + 3δ)L/v(λ).

The lines from (x0, 0) to (x1, tL) and from (y0, 0) to (y1, tL) have slopes

(1 + 2.86δ)

(1 + 3δ)v(λ)
and

(1 + 3.15δ)

(1 + 3δ)v(λ)
,

so Lemma 8 implies that the probability for a path starting in [x0, y0] to end outside of
[x1, y1] is ≤ C exp(−γL) for some C, γ > 0.

The final detail is to show that the path cannot escape from Γ. Intuitively this is true
since if the path hits the left edge of Γ at some point then it has to travel at an average
speed larger than v(λ) later to end up to the right of x1. The error probabilities depend on
t so we first have to rule out hitting the left edge of Γ at a time close to tL, say, between
time tL − (x1 − u1)/2λ and tL. Let E`(s, t) be the event that a path goes from the left edge
of Γ between time [s, t] to the right of x1 at time tL.

Let t1 = (x1 − u1)/2λ. For E`(tL − t1, tL) to occur, the open path has to make at least
x1 − u1 = 0.25δL jumps to the right within t1 units of time. The fastest way for this to
happen is x1 − u1 consecutive jumps, each taking an i.i.d. random time ei following an
exponential distribution with rate λ. Then large deviation implies that

P (E`(tL − t1, tL)) ≤ C ′ exp(−γ′δL)
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for some C ′, γ′ > 0.
Let a0 denote the slope of the line from (u0, 0) to (x1, tL) and note that a0 < 1/v(λ). For

the event E`(0, tL − t1) to occur, there must be an open path starting from the left side of
Γ with time duration t ≥ tL − t1 that satisfies rt ≥ t/a0. Hence by Lemma 8,

P (E`(0, tL − t1)) ≤ C0(a0) exp(−γ0(a0)(tL − t1)).

Since P (E`(0, tL)) ≤ P (E`(0, tL− t1))+P (E`(tL− t1, tL)) we have obtained an upper bound
on P (E`(0, tL)). Touching the right side of Γ can be handled in the same way. Combining
all the error probabilities completes the proof.

4.3 Renormalized lattice

Let (cm, dn) = (mL, n(1 + δ)L/v(λ)) be the vertices of the renormalized lattice, where L
depends on N and will be specified later. Let Γm,n = (cm, dn) + Γ, Γ̂ = −Γ, and Γ̂m,n =

(cm, dn) + Γ̂. The Γm,n will be called tubes. The tube Γ0,0 is said to be open if it contains an
open path in the contact process described in Lemma 10. The openness of Γm,n is defined
via translation.

The first coordinates of um and vm are

u0
m = mL− 1.5δL and v0m = mL− 0.5δL

so cutting Γm,n at height dn + (1 + δ)L/v(λ) gives an interval

[(m+ 1)L− 0.5δL, (m+ 1)L+ 0.5δL],

so it fits right between Γm+1,n+1 and Γ̂m+1,n+1, see Figure 10. Thus a crossing in Γm,n inter-

sects a crossing in Γ̂m+1,n+1 which intersects a crossing in Γm+1,n+1. Let the box associated
with (cm, dn) be

Bm,n = [mL− (1 + 3δ)L,mL+ (1 + 3δ)L]× [dn, dn + (1 + 3δ)L/v(λ)].

An initial configuration of 1’s and 0’s on a crossing of length ` ≥ 2N is said to be ε-good
if when we map this configuration to the interval [0, `] on Z and put 0’s outside [εN, `− εN ]
the contact process survives with probability at least 1− ε. Our next goal is to prove

Lemma 11. Given ε > 0, for any small α if we pick N large then starting with an ε-good
configuration on a top-to-bottom crossing σ1 in Q1, there will be an ε-good configuration on
a left-to-right crossing σ2 in Q2 and an ε-good configuration on a vertical crossing σ3 in Q3

at time T = ε0/α with probability ≥ 1− 2ε.

Proof. An open crossing is a self-avoiding path and hence isomorphic to an interval on Z.
We assume that σ1 maps to [−n1, n1] (if the length is even drop one site from the end),
where N ≤ n1 ≤ 2N1+η.

To control the contact process on [−n1, n1] we will embed the renormalized lattice into
the space-time box

S1 = [−n1, n1]× [0, Nρ].
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Figure 10: Picture of the block construction. Stars mark points of the renormalized lattice.

ρ will be chosen later, but at this point it is sufficient that 1 < ρ < ∞. We will use the
renormalized sites with cm ∈ [−n1+3δL, n1−3δL] and dn ≤ Nρ−(1+3δ)L/v(λ). In addition
we will only use the Γm,n and Γ̂m,n that are contained in S1. First we will show that with
high probability ALL of the tubes in S1 in our renormalized lattice are open. We will call the
resulting structure a chain link fence. Choose L = Nκ for some κ ∈ (0, 1). The dimension
of S1 implies that there are at most O(Nρ+1+η−κ) tubes in S1. Applying Lemma 10 and a
simple union bound shows that we will have a chain link fence in S1 with probability at least
1−O(Nρ+1+η−κ) · C3 exp(−γ3Nκ).

The chain link fence represents open paths in the graphical representation of the contact
process. Hence if the contact process survives by time (1 + 3δ)L/v(λ), it must have hit an
open path in the chain link fence and will spread over time through the chain link fence.
Starting from an ε-good configuration on σ1, the rightmost occupied site is at distance at
least εN to the end point of σ1. Lemma 8 with our choice of L = Nκ implies that with high
probability the right edge of the contact process ζ1t on [−n1, n1] (i.e., on σ1) will not reach
n1 by time (1 + 3δ)L/v(λ). The same argument applies for the left edge. That is, we can
view the process ζ1t as the contact process on Z up to time (1 + 3δ)L/v(λ). It follows from
the definition of an ε-good configuration that ζ1t survives up to time (1 + 3δ)L/v(λ) with
probability at least 1 − ε. From then on the contact process will spread through the chain
link fence so that for n ∈ N such that n ≥ 2n1/L and dn ≤ Nρ − (1 + 3δ)L/v(λ), we will
have at least one occupied site (on the intersection points of the chain link fence) near each
(cm, dn) with cm ∈ [−n1 + 3δL, n1 − 3δL].

The next step is to spread the contact process from σ1 in Q1 to σ2 in Q2. Embed σ2
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σ1

σ2

σ3

Figure 11: The set-up for Lemma 11. To make the picture easier to draw the rectangles are
much wider than 2Nη.

into Z as [0, n2] with the left end point of σ2 sent to 0. Let m2 be the right-most point on
σ2 that is in σ1. We do this so that there are no points of σ1 in (m2, n2]. We will use the
renormalized sites with cm ∈ [m2 + 3δL, n2 − 3δL] and dn ≤ Nρ − (1 + 3δ)L/v(λ). We will
only use the Γm,n and Γ̂m,n that are contained in S2 = [m2, n2]× [0, Nρ].

The argument here is very much the same as that for Q1. Following the same argument
we can prove the existence of a chain link fence in S2 with high probability. Next we observe
that if the contact process on σ2 survives through an interval In = [dn, dn+2(1+3δ)L/v(λ)]
then its open path must have hit the chain link fence in S2. Once the contact process spreads
through the chain link fence, there will be at least one occupied site near each (cm, dn) with
cm ∈ [m2 + 3δL, n2 − 3δL] and dn ≤ Nρ − (1 + 3δ)L/v(λ). By Lemma 9 this is more than
enough to conclude that the configuration on σ2 is ε-good at time T = ε0/α when α is
sufficiently small and N is large.

Now it remains to show the contact process on σ2 survives through some In with high
probability. Note that for n ≥ 2n1/L, in every interval In, m2 will be occupied at least twice.
Each time when m2 is occupied, we can start an independent contact process on σ2 with m2

initially occupied. For n ∈ N satisfying n ≥ 2n1/L and dn ≤ Nρ − (1 + 3δ)L/v(λ) we can
try sufficiently many times for one of the contact processes to survive on σ2 through some
interval In.

The proof for spreading the contact process from σ2 to σ3 is the same as the last para-
graph. Choosing N and α suitably we can make the error probability arbitrarily small and
hence the proof of Lemma 11 is complete.

At this point we have verified all of the claims in the sketch of the proof given in Section
1.2 and the proof is complete.
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5 Proof of Theorem 4

We will follow the approach described in the introduction. Let T = (t0 + β)/α for some
t0, β > 0 and let K be a large integer. The values of t0, β and K will be determined later in
the proof.

Lemma 12. For any ε > 0, there exists a choice of K and T so that

P ((0, 0) is open) ≥ 1− ε

when α is sufficiently small.

By translation invariance the result holds for any site (m,n) ∈ L.
Proof of Lemma 12. Recall that T = (t0 + β)/α. We consider the following three phases:
[0, t0/α], [t0/α, T ] and [T, 3T ].

Phase 1: [0, t0/α]. In this phase we will create a positive density of −1’s.
Consider a comparison process ξ̂t with the following transition rates:

1→ 0 at rate 1 0→ −1 at rate α
0→ 1 at rate 2λ −1→ 0 at rate θα

In the original process ξt, the transition rates are the same except that 0 turns to 1 at rate
λN1, where N1 is the number of occupied neighbors. In d = 1, this rate is always ≤ 2λ.
Hence if ξ̂0(x) = 1 then P (ξ̂t(x) = −1) ≤ P (ξt(x) = −1). Note that in the comparison
process the states of different sites are independent.

By a straightforward calculation the equilibrium density for the birth and death process
ξ̂t, which satisfies detailed balance, is:

π(1) =
2λθ

1 + θ + 2λθ
, π(0) =

θ

1 + θ + 2λθ
, π(−1) = 1

1 + θ + 2λθ
.

In our initial condition ξ0(x) ≡ 1 so we take ξ̂0(x) ≡ 1, Let ρ(t) = P (ξ̂t(x) = −1). Markov
chain theory implies ρ(t) → π(−1)/2. In order to specify a value for t0 we will bound the
rate of convergence. Let Xt, Yt be two Markov chains with the above transition rates with
X0 = 1 and Y0 following the equilibrium distribution π. Let µt represent the distribution
of Xt and let τ = inf{t : Xt = Yt}. Then a standard coupling argument of the two Markov
chains Xt and Yt, see e.g., Section 5.6 in [12], implies that

|ρ(t)− π(−1)| ≤ ||µt − π||TV ≤ P (τ > t).

Let px,y be the probability that the Markov chains starting from x and y respectively will
hit by time 1. It is easy to see that minx,y∈{−1,0,1} px,y ≥ c0α for some c0 > 0 by writing out
the probabilities. It then follows that for any integer m

P (τ > m) ≤ P (binomial(m, cα) = 0) = (1− c0α)
m ≤ e−c0αm.

This implies that we can choose t0 large so that

|ρ(t0/α)− π(−1)| ≤ 2P (τ > t0/α) ≤ 2e−Ct0 ≤ π(−1)/2,
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i.e., P (ξt0/α(x) = 1) ≥ ρ(t0/α) ≥ π(−1)/2.
Phase 2: [t0/α, (t0 + β)/α]. Starting with the −1’s at time t0/α dominating a product
measure with density at least π(−1)/2, we will with high probability kill all 1’s in [−2K, 2K].

Choose β so that e−θβ > 3/4. This implies that the probability a site is in state −1 from time
t0/α up to time T = (t0 + β)/α is at least ν = 3π(−1)/8. We will call these sites “walls”.
Suppose that the distance between two consecutive walls is m. There is a probability at
least

[(1− e−1)e−2λ]m

to kill all the particles in the interval by time 1: all sites are hit by deaths and there are no
births. The probability we fail to do this in N tries is at most

(1− [(1− e−1)e−2λ]m)N . (12)

For all t ≥ 0 the set of −1’s in ξt dominates the set of −1’s in ξ̂t, which is a product measure
with density ν, the distance between two consecutive walls is bounded by a Geometric(ν)
random variable. Let

M(K) =
− log(4K2)

log(1− ν)

be chosen so that the probability of a gap of size > M(K) is

≤ (1− ν)M(K) = (4K2)−1.

Note that there can be at most 2K gaps between walls in [−2K, 2K]. Let AK be the event
that there are two consecutive walls separated by distance at least M(K) in [−2K, 2K].
Then we have

P (AK) ≤ 2K(1− ν)M(K) =
1

2K
→ 0

as K →∞. Let G2 denote the event that all the 1’s in [−2K, 2K] die during this phase. It
follows from (12) that

P (Gc
2) ≤ P (AK) + 2K(1− [(1− e−1)e−2λ]M(K))β/α. (13)

In the next step we will choose a suitable K to make (13) sufficiently small and to achieve
our third objective.

Phase 3: [T, 3T ]. In this phase we will build a wall in [K, 2K] that lasts for time [T, 3T ]
and another one in [−2K,−K] to keep [−K,K] vacant during [T, 3T ]. Let G3 denote the
event that there are two such walls.

The density of −1’s at time T is at least ν = 3π(−1)/8. The probability that a wall of −1
will not flip to 0 within time 2T = 2(t0 + β)/α is exp(−2θ(t0 + β)). Since the flips at each
site are independent, the probability that we will obtain a wall in [K, 2K] × [T, 3T ] and a
wall in [−2K,−K]× [T, 3T ] is

P (G3) ≥ 1− 2 exp(−2Kνθ(t0 + β)), (14)
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which is arbitrarily close to 1 if K is sufficiently large. For a given ε > 0, we will choose
K large enough so that the right hand side of (14) is at least 1 − ε/2. Having completed
the choice of K, we note that if K, β, and ε > 0 are fixed then for α sufficiently small, the
probability (13) that we fail to kill all 1’s in phase 2 is less than ε/2.

Thus, with high probability all the 1’s in [−2K, 2K] die by time T , and there are walls in
[K, 2K]×[T, 3T ] and [−2K,−K]×[T, 3T ] to keep 1’s from being reintroduced into [−K,K]×
[T, 3T ]. Finally, combining the error probabilities in each phase, we have

P ((0, 0) is closed) ≤ P (Gc
2) + P (Gc

3) ≤ ε.

At this point we have completed the proof of Lemma 12. The desired conclusion follows
using the reasoning at the end of Section 1.3.

6 Proof of Theorem 5

6.1 The block construction event has high probability

Recall from (2) that π(−1) = 1/(1 + θ + 4λθ) in d = 2. Recall that the block [−2K, 2K]2 ×
[0, 3T ] is good if starting with all 1’s in [−2K, 2K]2 at time 0 there are no 1’s in the space-time
box [−K,K]2 × [T, 3T ]. Let χ(p) denote the mean cluster size when the open probability is
p.

Lemma 13. Let p0 < psitec (Z2) be the constant such that

−4χ(p0)2 log((1− e−1)e−4λ) = 1. (15)

When 1−π(−1) < p0, there are constants cT and cK > 0 so that if T = cT/α and K = T/cK
then

lim
α→0

P (the block [−2K, 2K]2 × [0, 3T ] is good) = 1.

Proof. As in the previous section T = (t0 + β)/α for some t0 and β to be determined. We
need K and T to be comparable so that the range of dependence between events in the block
construction stays bounded as T → ∞. Again there are three phases in the construction
but this time the proof is simpler if we start with the last one.

Phase 3: [T, 3T ]. Starting with no 1’s in [−2K, 2K]2 at time T , we will upper bound the
probability of B, the event there is a path of length K starting at a point on the boundary
of [−2K, 2K]2 along which the sum of the times between infections is at most 2T .

Starting from all 1’s on the boundary of [−2K, 2K]2, it takes at least K births to reintroduce
a 1 into the region [−K,K]2. There are 16K sites on the boundary of [−2K, 2K]2. Starting
from a given site, the number of paths of length K is 4K . Let {ei : i ≥ 1} be independent
exponential random variables with rate λ and let SK = e1 + · · · eK . We need {SK ≤ 2T} to
reach [−K,K]2 by time 2T . Hence,

P (B) ≤ 16K · 4K · P (SK ≤ 2T ). (16)
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Standard large deviations results (see, e.g., Section 2.7 in [12]) imply that if 0 < c < 1 then
we have

P (SK ≤ cK/λ) ≤ exp(−γ(c)K) for some γ(c) > 0. (17)

If c0 is chosen so that exp(−γ(c0)) = 1/5, and we choose cK such that

2T = 2cKK ≤ (c0/λ)K (18)

then combining (16) and (17) shows that

P (B) ≤ 16K ·
(

4

5

)K

→ 0 as K →∞. (19)

Phase 1: [0, t0/α]. In this phase we build a giant component of −1’s in which the holes are
small.

As in Section 5 we consider a comparison process ξ̂t with the following transition rates:

1→ 0 at rate 1 0→ −1 at rate α
0→ 1 at rate 4λ −1→ 0 at rate θα

In the original process ξt, the transition rates are the same except that 0 turns to 1 at rate
λN1, where N1 is the number of occupied neighbors. In d = 2, this rate is always ≤ 4λ.
Hence if ξ̂0(x) = 1 then P (ξ̂t(x) = −1) ≤ P (ξt(x) = −1).

Using an argument in Phase 1 in the previous section, we can pick a time t0 so that at
time t0/α, the density of −1’s is ≥ (1 − δ)π(−1). If β is chosen so that e−θβ > (1 − δ) the
density of −1’s that were alive at time t0/α and persist to time T = (t0 + β)/α is at least
(1− δ)2π(−1). If 1− π(−1) < p0 then when δ is small p = 1− (1− δ)2π(−1) < p0. We will
call sites occupied by −1’s that persist from t0/α to (t0 + β)/α closed. All other sites are
said to be open.

Bounding the largest hole in the cluster of −1’s
Consider independent site percolation in which sites are open with probability p < p0. Let
C0 denote the open cluster containing the origin. It follows from (6.77) in [21] that

Pp(|C0| ≥ n) ≤ 2 exp

(

− n

2χ(p)2

)

if n > χ(p)2,

where χ(p) is the mean cluster size when the open probability is p. Theorem 6.108 in [21]
states that χ(p) is an analytic function of p on [0, pc), implying that limp→0 χ(p) = 1.

Let AK denote the event that there exists an open cluster of size at least n(K) that
overlaps with [−2K, 2K]2, where n(K) = 4(1 + δ)χ(p)2 logK. We have

Pp(AK) ≤ 16K2 · 2 exp
(

− n(K)

2χ(p)2

)

→ 0 as K →∞. (20)

Phase 2: [t0/α, (t0 + β)/α]. In this phase we will kill all 1’s in [−2K, 2K]2.
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As in the previous section the probability to kill a particular particle in time 1 is at least
qλ = (1− e−1)e−4λ. In the contact process on a finite set of size n ≤ n(K), the process dies
out by time 1 with probability at least

q
n(K)
λ = K4(1+δ)χ(p)2 log qλ ≡ K−r

where r = −4(1 + δ)χ(p)2 log qλ. Hence the probability that the contact process on a set of
size at most n(K) has not died out by time β/α is less than

(1−K−r)β/α.

Let G2 be the event that all the 1’s in [−2K, 2K]2 die during this phase. We have

P (Gc
2) ≤ Pp(AK) + 16K2 · (1−K−r)β/α. (21)

By the definition of p0, we have −4χ(p)2 log qλ < 1 for p < p0. We can choose δ > 0
sufficiently small so that r = −4(1 + δ)χ(p)2 log qλ < 1. Note β/α = βT/(t0 + β). If
T = cKK for some cK > 0, since r < 1 it follows from (20) and (21) that

P (Gc
2) ≤ Pp(AK) + 16K2 · (1−K−r)cKβK/(t0+β) → 0 as K →∞. (22)

This completes the proof of Lemma 13.

6.2 Comparison with oriented percolation

First we introduce some notation used in [5]. Let D = d + 1, where we assume d = 2.
Let A be a D × D matrix satisfying the following conditions: (i) if x = (x1, . . . , xD) has
x1 + · · · + xD = 1 then the D-th coordinate of Ax, denoted by (Ax)D, satisfies (Ax)D = 1,
and (ii) if x and y are orthogonal then so are Ax and Ay. Let Q = {Ax : x ∈ [−1/2, 1/2]D}
and LD = {Ax : x ∈ Z

D}, so that the collection {z + Q : z ∈ LD} is a tiling of space by
rotated cubes.
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Figure 12: H′
k (black dots) and H′

k−1 (white dots), which are the corners of the Voronoi
region containing x

Let Hk = {z ∈ LD : zD = k} be the points on “level” k. We will often write elements of
Hk in the form (z, k) where z ∈ R

d. Let H′
k = {z ∈ R

d : (z, k) ∈ Hk}. Let {e1, . . . , eD} be

30



the standard basis in R
D and put vi = Aei for i = 1, . . . , D. Writing vi = (v′i, 1), v

′
i ∈ R

d has
length

√
D − 1. The definition for H′

k implies that H′
k+1 = {v′i + x : x ∈ H′

k, 1 ≤ i ≤ D}.
For x ∈ H′

k, let Vx be the Voronoi region for x, i.e., the closed set of points in R
d that are

closer to x in Euclidean norm than to all the other points of H′
k (including ties). See Figure

12 for an illustration of Voronoi region. It follows from the definition of Voronoi region that
for every k ∈ N,

∪x∈H′

k
Vx = R

d.

We can further note that Vx is contained in the closed ball of radius D centered at x (see
(5.1) in [5]). Thus for any L > 0, if cL = L/(2D) then

cLVx ⊂ cLx+ [−L,L]d and so ∪x∈H′

k
cLx+ [−L,L]d = R

d. (23)

Each (z, n) ∈ Hn is associated with a block (cLz+ [−2K, 2K]2)× [nT, (n+3)T ]. We extend
the definition of good blocks from (0, 0) to z ∈ LD by translation, and say (z, n) is open if
the associated block is a good block, i.e.,

if (z, n) ∈ W 0
n , then (cLz + [−K,K]2)× [(n+ 1)T, (n+ 3)T ] contains no 1’s.

For our purpose we will choose L = K so that there is no hole in the dead zone. That is, if
all sites in Hn are good then ∪z∈H′

n
cLz + [−K,K]2 = R

2.

Next we give a description of the oriented percolation process. It will be constructed
from the set of random variables {η(z), z ∈ LD}, where η(z) ∈ {0, 1}. If η(z) = 1 then the
site z is said to be open, otherwise it is closed. By Theorem 1.3 in Liggett, Schonmann, and
Stacey [27], an M -dependent oriented percolation with open probability 1− ε dominates an
oriented percolation where each site is open with independent probability 1 − fM(ε) such
that limε↓0 fM(ε) = 0. Hence for the rest of this section, we can suppose {η(z), z ∈ LD} are
i.i.d. with P (η(z) = 1) = 1− θ for some sufficiently small θ > 0.

The edge set E↑ for LD is defined to be the set of all oriented edges from z to z + vi,
z ∈ LD, 1 ≤ i ≤ D. A sequence of points (z0, . . . , zn) in LD is called an open path from z0
to zn if there is an edge in E↑ from zi to zi+1 and zi is open for i = 0, . . . , n − 1. We write
z0 → zn if there exists an open path from z0 to zn. Given the initial wet sites W0 ⊂ H0, we
say z ∈ Hn is wet if z0 → z for some z0 ∈ W0. Let W 0

n be the set of wet sites in Hn when
W0 = {0}. Let Ω0

∞ = {W 0
n 6= ∅ for all n ≥ 0}. Let W̄n be the set of wet sites in Hn when

all the sites in H0 are wet. Call sites in V̄n = Hn\W̄n dry. The connection between W 0
n and

W̄n is made in Lemma 5.1 in [5].

Lemma 14 (Lemma 5.1 in [5]). Let Hr
n = {(z, n) ∈ LD : z ∈ [−r, r]d}. There are θ1 > 0

and r1 > 0 such that if θ < θ1 and r ≤ r1 then as N →∞,

P (Ω0
∞ and W 0

n ∩Hrn
n 6= W̄n ∩Hrn

n for some n ≥ N)→ 0.

Previously in the case d = 1, we proved extinction of our process ξt on the event Ω0.
This is not good enough in d = 2 because the space-time blocks associated with sites in
V 0
n = Hn\W 0

n might contain 1’s. Note that a 1 (i.e., a fly) must have a parent which was
also a 1 at the time of the birth. Hence we can trace backwards in time by looking at the
lineage of a given 1, which is a space-time path in our space-time block.
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To prove extinction, we need to trace the lineages of 1’s backwards in time. However,
in the corresponding grid LD, 1’s lineage may spread sideways through several dry regions,
so we need to introduce an additional set of edges E↓ for LD. Let E↓ be the set of oriented
edges from z to z − vi, 1 ≤ i ≤ D, and from z to z + vi − vj for 1 ≤ i 6= j ≤ D.

Lemma 14 implies that on Ω0
∞, W 0

n ∩Hrn
n = W̄n∩Hrn

n for large n. Hence we will consider

the dry sites. Now fix r > 0 and let Bn be the dry sites in Hrn/4
n connected to the complement

of ∪n
m=n/2H

rm/2
m by a path of dry sites on the graph with edges E↓, where the last site in the

path need not be dry. Lemma 5.5 in [5] will give our desired result.

Lemma 15 (Lemma 5.5 in [5]). There exists some θ0 > 0 so that if θ ≤ θ0 then

P (Bn 6= ∅ infinitely often) = 0.

Recall that a wet site inHrn
n corresponds to a good space-time block while a dry site inHrn

n

corresponds to a space-time block which may contain a 1 in its translation of [−K,K]2 ×
[T, 3T ]. Since a dry site (z, n) ∈ Hrn/4

n corresponds to a block containing a 1 in (cLz +
[−K,K]2) × [(n + 1)T, (n + 3)T ], we must be able to trace the lineage of this 1 to find an

ancestor at a site outside of ∪nm=n/2H
rm/2
m , which corresponds to a path of dry sites in E↓.

This cannot happen on {Bn = ∅}.
Lemma 13 guarantees that when α is sufficiently small we have θ ≤ θ0. It then follows

from Lemma 15 that for sufficiently large n, there cannot be any 1’s in [−cLrn/4, cLrn/4]2×
[(n+1)T, (n+3)T ]. Otherwise there must be a dry site in Hrn/4 connected to the component

of ∪nm=n/2H
rm/2
m by a path of dry sites through edges in E↓, which contradicts the fact

that Bn = ∅ for sufficiently large n. Therefore, we have a linearly growing dead zone
[−cLrn/4, cLrn/4]2 that will take over the whole space, leading to the extinction of the 1’s.
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