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ABSTRACT

Coastal regions face climate-induced threats that have likely increased over the past four decades. In this work,
we quantify the future climate impacts on hydroclimatic extremes in the risk-prone, 15-m-above-sea-level
Eastern Shore of Virginia (ESVA) region, utilizing the Sixth International Coupled Model Intercomparison
Project (CMIP6) Assessment Report 6 (AR6) and General Circulation Models (GCMs). We incorporate historical
data on demographics and disasters, land use land cover (LULC), Landsat imagery, and sea level rise (SLR) to
better understand and highlight the correlation between hydroclimatic extremes and societal components in this
region. The hydrological model Soil and Water Assessment Tool (SWAT), Standardized Precipitation Index (SPI),
Normalized Difference Water Index (NDWI), and Interquartile Range (IQR) method have been used to evaluate
the intensity and frequency of projected climate extremes, in which SLR projections under different greenhouse
gas emission pathways are temporally and spatially quantified. Our findings include (1) a trend towards wetter
conditions is found with an increase in the number of flood events and up to an 8.9 % rise in the severity of flood
peaks compared to the 2003-2020 period; (2) current coastal high-risk regions, identified using historical data of
natural disasters, demographics, and LULC, are projected to be more susceptible to future climate impacts; and
(3) low-lying coastal towns and regions are identified as currently vulnerable to coastal and SLR-induced
flooding and are projected to become even more susceptible by 2100. This is the first effort that provides a
valuable scientific basis for anticipated shifts in future climate patterns, essential for natural hazard prevention in
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ESVA. It highlights the need for authorities and decision-makers to plan and implement adaptive strategies and
sustainable policies for the ESVA region and other coastal areas across the United States.

1. Introduction

Climate change is projected to considerably impact the hydrological
cycle, which is expected to further influence the redistribution of water
resources. In 2023, the United States experienced 28 different weather
and climate-related disasters with an estimated cost of at least one
billion dollars (Smith, 2024). This marks the highest number of billion-
dollar disasters ever recorded in a single year. Many previous studies
have indicated that changes in the intensity and frequency of weather-
related events could significantly impact both human society and the
natural environment (Nguyen et al., 2023a; Bonsoms et al., 2023; Tran
et al., 2021a, 2022c). To be specific, hydroclimatic extremes such as
hurricanes, sea level rise (SLR), droughts, and floods, which vary
spatially and temporally, can considerably impact local economies and
communities (Nghia et al., 2022a; IPCC, 2023). For many regions, floods
and droughts have been found to cause billions of dollars in damage
(Renetal., 2023; Tran et al., 2021b, 2023d; Nguyen et al., 2022a). These
extremes are expected to be even more frequent and severe in coastal
regions, primarily driven by increases in temperature and precipitation
towards 2100 (IPCC, 2023; Saleem et al., 2021; Shrestha et al., 2018;
Saeedi et al., 2023) as well as the combined impacts with future SLR
(Rebecca, 2022).

The latest report by the Intergovernmental Panel on Climate Change
(IPCC) on Ocean, Cryosphere, and Sea Level Change underscores the
considerable rise in the severity of climate extremes due to the increases
in meteorological variables (IPCC, 2023). The human-caused increase in

greenhouse gases has been highlighted as intensifying the frequency and
intensity of extreme weather events (IPPC, 2021), leading to more
water-related issues (Rosenzweig and Neofotis, 2013; Nguyen et al.,
2023b; Tran et al., 2022b). Specifically, the highest emission scenario
predicts an increase of up to 5 °C (Hausfather, 2019; IPCC, 2021), in
which we have only a 1 % chance of avoiding this phenomenon, with an
average increase of at least 2.0 °C in the upcoming decades (Raftery
et al., 2017). Notably, this rise is expected to significantly escalate the
frequency and severity of floods, coastal flooding, and SLR in coastal
regions (IPCC, 2021, 2023; Rebecca, 2022). In addition, low-lying
coastal regions along America’s East Coast have recently been found
as facing more hidden vulnerabilities related to SLR (NASA, 2024;
Ohenhen et al., 2023). It can be explained due to these regions’ low
elevation (Baills et al., 2020; Toimil et al., 2020), the absence of natural
barriers (O’Donoghue et al., 2021), and land degradation caused by
extreme weather conditions (Webb et al., 2017).

Eastern Shore of Virginia (ESVA) is a low-lying coastal region,
nestled between the Atlantic Ocean and Chesapeake Bay (Fig. 1). In
recent years, this area has been increasingly threatened by climate
change (Andrews et al., 2019; Sanford and Pope, 2010). Despite these
threats, ESVA serves as a refuge for diverse habitats, including maritime
forests, shrub thickets, grasslands, beaches, and tidal wetlands. These
ecosystems are crucial for millions of migratory songbirds, raptors,
shorebirds, and butterflies, providing essential resting and refueling
points (U.S. Fish and Wildlife Service, 2018). Given its low elevation,
ESVA is classified as high-risk and is currently vulnerable to climate
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Fig. 1. (a) Location of MD-ESVA within the State of Virginia; (b) Terrain profile and geographical characteristics of MD-ESVA; (c-f) LULC changes and historical
demographic changes (U.S Census Bureau, 2023), including (S1) Accomac, (S2) Melfa, (S3) Exmore, and (S4) Cape Charles, using the United States Geological Survey
(USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) datasets (1990-2020) (USGS, 2020). The percentage change (%) indicates the difference

between two consecutive years.
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change and SLR (Russ, 2020). These challenges are expected to be more
severe under future climate scenarios (Russ, 2020; Sanford and Pope,
2007, 2010). Despite the critical need for scientific research in this re-
gion, the current literature is significantly limited, primarily conducted
by regional agencies and departments (Chesapeake Bay Foundation,
2018; U.S. Fish and Wildlife Service, 2018), individuals (Nowroozi et al.,
1999; Sanford and Pope, 2007, 2010), or academic institutions, e.g.,
University of Virginia (Russ, 2020; Zambello, 2019). Additionally, we
found a noticeable absence of scientific efforts to quantify the projected
impacts of future climate on current natural extremes. This thus un-
derscores the urgent need to perform this work for the resilience of this
ecologically diverse and economically significant region.

General Circulation Models, also known as Global Climate Models
(GCMs), are commonly used to measure future projected impacts of
hydroclimatic extremes (Neill et al., 2016; Tebaldi et al., 2021). The
recent release of the Coupled Model Intercomparison Project Version 6
(CMIP6) introduced significant updates, including the Scenario Model
Intercomparison Project (ScenarioMIP) and the Shared Socioeconomic
Pathways (SSPs) (Eyring et al., 2016). Indeed, it is an effort by the IPCC
to incorporate socioeconomic and human-related factors into climate
models, as emphasized in the IPCC’s Sixth Assessment Report (AR6)
(IPPC, 2021; Meyer, 2015). Specifically, SSPs detail future scenarios of
greenhouse gas emissions and incorporate anthropogenic impacts as
well as land use and land cover (LULC) under specific baseline storylines
(Neill et al., 2016). By utilizing these scenarios in hydrological models,
researchers can better understand the combined physical impacts of
climate change and societal developments on hydrological processes.
For this study, the NASA Earth Exchange Global Daily Downscaled
Projections — NASA NEX-GDDP-CMIP6 is recommended, widely recog-
nized for its application in previous works (Park et al., 2023; Saadi et al.,
2024).

In this study, we aim to quantify the impacts of future climate on
hydroclimatic extremes such as floods, droughts, and SLR for the ESVA.
Our analysis incorporates different indices and approaches to assess
projected vulnerabilities caused by climate change, considering
different factors, e.g., regional demographics, changes in LULC, and
coastal hazards. The results would provide valuable scientific basis to
stakeholders and authorities in planning sustainable strategies and
ensure human well-being. Besides, our findings will support the Na-
tional Flood Insurance Program (NFIP) (FEMA, 2023a) launched by the
Federal Emergency Management Agency (FEMA) in quantifying coastal
risk through the nation’s coastal Flood Insurance Studies (FIS) (FEMA,
2020a) and Flood Insurance Rate Maps (FIRMs, or flood maps) (FEMA,
2020b, 2023b). In addition, this study reveals the magnitude of pro-
jected future flood risk for towns and regions over ESVA, in which the
newest release of the CMIP6 GCMs based on the IPCC AR6 and the
IPCC’s report on Ocean, Cryosphere, and Sea Level Change (IPCC, 202.3)
were used.

2. Materials and methods
2.1. Study area

ESVA is a coastal and risk-prone region which is located between the
Atlantic Ocean and the Chesapeake Bay, with a length of approximately
110 km and a width ranging from 15 to 30 km (Fig. 1). This region
covers Accomack and Northampton counties with a total area of
1764.43 km? (Sanford and Pope, 2010). The terrain of ESVA is pre-
dominantly flat, with elevations ranging from sea level to about 15 m
above sea level, and is characterized by deep and sandy soils. The
climate is classified as humid subtropical, marked by mild winters and
warm, humid summers. Precipitation is evenly distributed throughout
the year, with an annual average of 1143 mm (Sanford and Pope, 2007,
2010). The local economy is dependent on agriculture, fisheries, and
tourism. Traditional farming practices in the area mainly involve the
cultivation of corn, soybeans, and various small grains, which are crucial
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to regional agriculture.

Four important towns (S1-4) (Fig. 1c-f) have been highlighted in our
analysis due to their significance in terms of economy, natural ecology,
and human lives. Specifically, Melfa and Cape Charles serve as com-
mercial hubs of the ESVA (Ralph and George Carrington, 1952), while
Exmore is a populated town, and Accomac serves as the headquarters for
many departments of Accomack County. As of the time of conducting
this work, there are no current available observed streamflow data
measured by USGS over the ESVA that could be used for hydrological
model in terms of calibration and validation (2003-2020). This limita-
tion can be attributed to the challenges in measuring streamflow data
due to tidal and backwater effects, as well as the low elevation of this
region (Andrews et al., 2019). Therefore, we have expanded our model
area to include the state of Maryland (MD) (Fig. 1b) to obtain the
necessary data (in Pocomoke and Nassawango Creek stations) (Fig. 1b).
Within this study, the entire area will be referred to as MD-ESVA in our
analysis, while ESVA will specifically represent the Eastern Shore of
Virginia.

2.2. GCMs and SSP scenarios

To quantify the impacts of future projected extremes over ESVA, we
employed the NASA NEX-GDDP-CMIP6 dataset, which offers down-
scaled and bias-corrected GCMs with a spatial resolution of 0.25° x 0.25°
(approximately 25 x 25 km) (Thrasher et al., 2022). The datasets have
been downscaled using the Bias-Correction Spatial Disaggregation
(BCSD) method, a trend-preserving statistical downscaling algorithm,
widely used to generate accurate and high-resolution data from GCMs
(Maurer and Hidalgo, 2008; Wood et al., 2002, 2004).

Recent studies have found that the BCC-CSM2-MR, CanESM5,
MIROC6, and MRI-ESM2-0 models demonstrate effective application in
future climate investigations (Chen et al., 2022; Park et al., 2023; Peng
et al., 2023; Thrasher et al., 2022; Nguyen et al., 2024). Consequently,
these models have been chosen for our study due to their capabilities to
comprehensively capture the high variability in future meteorological
changes. Specifically, these four models have been shown to capture a
broad range of changes in streamflow (Chen et al., 2022; Peng et al.,
2023; Xu et al., 2023). Besides, Wang et al. (2021) highlighted that
CanESM5 and BCC-CSM2-MR produce satisfactory results in terms of
precipitation, evapotranspiration, and soil water. Furthermore, MIROC6
and MRI-ESM2-0 were found to have the highest adaptability in tem-
perature and precipitation, surpassing the other GCMs (Peng et al.,
2023). In this study, we have chosen the intermediate (SSP2-45) and
high-end (SSP5-85) scenarios (Thrasher et al., 2022) for analysis. The
summary of these selected GCMs can be found in Supplementary Table
Al.

2.3. Hydrological SWAT model

SWAT is a semi-distributed hydrologic model developed by the
United States Department of Agriculture (USDA) Agricultural Research
Service (ARS) (Tran et al., 2022a). This model has been widely used in
recent years for hydrological applications in watershed management
(Ahmed et al., 2020; Tran et al., 2023c), focusing on the physical im-
pacts of various factors on water regimes. These include the effects of
climate change (Chen et al., 2022; Tran et al., 2023b, 2024a; Shafeeque
et al., 2023), ecosystem services (Ashrafi et al., 2022), LULC changes
(Cheng et al., 2018; Tran and Lakshmi, 2022), and the validation of
satellite-based observations (Aryal et al., 2023; Tran et al., 2023a).

2.3.1. Study workflow and model setup

Fig. 2 presents the schematic workflow of our study, developed from
Tran et al. (2024b) with additional details on the demographics and SLR
data utilized for analysis of current and future impacts. Specifically, we
aim to include in-depth assessments to determine the correlation be-
tween regional demographics, LULC changes, climate extremes, and
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Fig. 2. The schematic flowchart used in this study. First, we prepared the necessary datasets for SWAT, which included the NASA Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement (GPM IMERG) V6.0 Final run (Hou et al., 2014) for daily precipitation and the Modern-Era Retrospective analysis for Research
and Applications V2.0 (MERRA-2) (Gelaro et al., 2017) for daily temperature. The projected daily precipitation and temperature datasets (2024-2100) were extracted

from CMIP6 GCMs for future scenarios (see section 2.2).

SLR. The SWAT model, operated using the Quantum Geographic Infor-
mation System (QGIS) (V3.16.9) software, was used for the model run
(Dile et al., 2019). Watershed delineation was performed using the
Terrain Analysis Using Digital Elevation Models (TauDEM) version 5.0
(Tarboton, 2011).

For the SWAT model, we conducted watershed extraction and
analyzed hydrologic information derived from the DEM input. This
analysis was essential to delineate streams, sub-basins, and Hydrological
Response Units (HRUs) (Arnold et al., 2012; Pignotti et al., 2017). The
watershed was divided into smaller sub-watersheds, and the watershed
characteristics from the DEM, combined with LULC and soil character-
istics, were stored in HRUs. Specifically, HRU in SWAT represents the
smallest spatial unit (Arnold et al., 2012), where the water balance
equation is used for calculation.

In this study, we modified the common approach used in traditional
SWAT models to better suit the unique characteristics of this region. Due
to its low elevation, predominantly flat terrain, and small area (see
section 2.1), the SWAT model first encounters difficulties in delineating
stream networks and subbasins. This challenge commonly appears in
coastal regions (Tran et al., 2023a) and can be explained due to the lack
of steep slopes, with most regions in the study area having slopes below
5° (Sanford and Pope, 2010). These characteristics limit our ability to
accurately identify flow directions across the watershed. However, to
address this, we tested seven different DEM products and selected the
Multi-Error-Removed Improved-Terrain (MERIT) DEM (90 m) (Yama-
zaki et al., 2019), which provided the most accurate stream delineation
over the MD-ESVA. The delineated stream network was validated using
the survey network from the HydroRIVERS (Lehner and Grill, 2013) and
Google Earth database to ensure the accuracy of our SWAT model set up.

On the other hand, LULC data from LCMAP (30 m) (1990-2020)
(Fig. 3b) (USGS, 2020) and soil data from DSOLMap (250 m) (Fig. 3c)
(Adrian et al., 2023) were extracted. To calibrate and validate the SWAT
model, data from the USGS database (2003—2020) for the Pocomoke
and Nassawango hydrological stations were used (Figs. 1b). The first
two years (2001 and 2002) of this 20-year simulation period were
chosen as the warm-up period. The calibration period was chosen be-
tween 2003 and 2013, with the validation period between 2014 and
2020 (Figs. 2 and 3). A total of 1000 iterations were performed along
with 23 parameters were chosen for the model calibration and calibra-
tion on a daily scale using the interactive web-based application R-
SWAT (Nguyen et al., 2022).

The historical scenarios were simulated for the period between 2003
and 2020, while future climate scenarios were catergorized as the near
future (2024-2044), the mid future (2045-2069), and the far future
(2070-2100) (Fig. 3d). These simulations utilized the calibrated pa-
rameters derived from the historical scenario (Fig. 2). The chosen pa-
rameters, fitted values, and their descriptions can be found in
Supplementary Table A2.

2.4. Anomaly detection of future flood peaks

In this study, the IQR was used to detect anomaly flood events
(2024-2100) by segmenting the dataset into quartiles, providing an
overview of data distribution (Wan et al., 2014). Scenarios utilizing
GCMs’ meteorological inputs were performed, and the future flood
peaks were collected for calculations. We defined the first quartile (Q1)
as the median of the dataset’s lower half and the third quartile (Q3) as
the median of the dataset’s upper half. Additionally, the second quartile
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Fig. 3. Spatial representation of (a) DEM, (b) LULC, (c) Soil map, (d) Schematic workflow of the SWAT model, and model performance during calibration and

validation shown for (e) Pocomoke station and (f) Nassawango station.

(Q2) was defined as the overall median of the dataset, while the IQR
range was calculated as Q3 — Q1. The upper and lower bounds were
calculated as (Q3 + (1.5 x IQR)) and (Q1 - (1.5 x IQR)), respectively.
Peak values located outside these bounds were considered anomalies
and used for further analysis.

2.5. Assessment of hydroclimatic extremes

To accurately assess climate extreme conditions, it is important to
establish criteria for determining the duration of events, especially
concerning the monitoring index used (Zhong et al., 2022). In our study,
we employed the Standardized Precipitation Index (SPI) for analysis,
with levels of drought severity indicated by the US Drought Monitor
(Svoboda et al., 2002). Specifically, drought conditions are identified
when the SPI values fall below zero and continue to decrease to less than
negative one (—1). Conversely, a drought event or dry condition is
considered to have ended when the SPI values return to positive, with
wetter conditions identified when the SPI values move towards positive
two (+2) and beyond. The description of this index, as well as the
summary of severity categories with their ranges, can be found in Sup-
plementary Table A3.

2.6. Coastal seawater expansion using NDWI

2.6.1. Landsat 7 data

In this study, to reveal the historical seawater expansion along the
coast of ESVA from 2000 to 2023, we utilized the USGS Landsat 7
Collection 2 Tier 1 calibrated Top of Atmosphere (TOA) reflectance data
obtained through the Google Earth Engine (GEE) platform (Gorelick
et al.,, 2017; Nghia et al., 2022b). Additionally, the data undergone
geometric correction based on ground control points, radiometric and
atmospheric corrections, and was filtered for cloud coverage (< 10 %)

before processed.

2.6.2. NDWI for seawater changes along the coast

The NDWI is used to monitor changes related to water content in
water bodies. Since water bodies strongly absorb light in the visible to
infrared electromagnetic spectrum, NDWI utilizes the green and near-
infrared (NIR) bands to highlight water bodies. In this study, it is
calculated using the surface reflectance of the Green (Band 2) and NIR
(Band 4) wavelengths from Landsat 7, as specified below:

__ Green — NIR

NDWI = —————
Green + NIR

@

The NDWI is designed to maximize the reflectance from water features
by using green wavelengths, while minimizing the low reflectance from
water in the NIR wavelengths and taking advantage of the high reflec-
tance from vegetation and soil in NIR. Thus, water features exhibit
positive values and are thus enhanced, whereas vegetation and soil
typically display zero or negative values, and are therefore suppressed
(Gao, 1996). Specifically, NDWI values range from —1 to +1 and are
important for delineating water bodies using satellite imagery. In this
study, the corresponding NDWI ranges are categorized as follows: water
surface (0.3 to 1), flooding or wet conditions (0.0 to 0.3), moderate
dryness or non-aqueous surfaces (—0.3 to 0.0), and dry or non-aqueous
surfaces (—1 to —0.3) (McFeeters, 1996).

2.7. Performance metrics

In our study, we utilized the Kling-Gupta efficiency (KGE) (Gupta
et al., 2009), Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970),
and Coefficient of determination (R?) (Moriasi et al., 2015) for the
evaluation of the SWAT model outputs. The specific ranges and equa-
tions of these metrics can be found in Supplementary Table A4.
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3. Results
3.1. SWAT calibration and validation

The model calibration and validation on the daily scale for the period
from 2003 to 2020 yielded acceptable results (Fig. 3e and f). In general,
for the Pocomoke station, our model achieved a NSE score of 0.56, R>
score of 0.56, KGE score of 0.62 (Fig. 3e) while they are 0.58, 0.61, and
0.58, respectively, for the Nassawango station (Fig. 3f). These results are
categorized as Satisfactory (see Supplementary Table A4) which can be
then used to investigate the impacts of climate change in the following
sections.
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3.2. Relationship between historical LULC, regional demographics, and
climate extremes

When examining the correlation between demographics, LULC
changes, and hydroclimatic extremes over ESVA, we found trends
similar to those of the United States. Firstly, as the significant increase in
the United States population between 2000 and 2010, explained by
urbanization and increased crop needs (Bounoua et al., 2018), the
population in ESVA has relatively increased (highest found at 16.75 % in
Cape Charles; Fig. 1f) except Melfa with a small decrease of 2.70 %
(Fig. 1d). Secondly, there was a significant increase in vacant residential
units. Although a total population of 45,426 people was recorded in
ESVA in 2022 (U.S. Census Bureau, 2022), there are around 10,083
vacant residential units, with only 5 % of them available for sale or rent
(A-NPDC, 2022). We found that most of them are abandoned, dilapi-
dated, condemned, and a staggering 56 % of unoccupied units have been

Flood Hazard in Block Groups Where Workers Work
By percent of workers in jobs paying less than $15,000/year
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Fig. 4. Demographic changes and coastal hazard events including (a) coastal flood hazard composite, (b, ¢) average flood hazard in different income-block groups,
(d) average inland flood hazard composite, (e) locations of towns over ESVA, and (f) summary of the risk-exposure benchmark over towns (Brideau et al., 2024).
Hazard composite includes the most popular types of hazards, including high tide, storm surge, coastal flooding, and SLR. These included analyses of the following
ten flood hazard zones: FEMA V zones, FEMA A zones, FEMA shaded X zones (FEMA, 2010), NOAA Office for Coastal Management (OCM) Flood Frequency zones,
NOAA OCM potential SLR-induced inundation extents for 1 ft (0.3 m), 2 ft (0.6 m), and 3 ft (0.9 m) above current Mean Higher High Water (MHHW) (NOAA, 2024a),
and Sea, Lake, and Overland Surges from Hurricanes (SLOSH) Maximum of the Maximums (MOMs) (NOAA, 2001) for categories 1, 2, and 3 hurricanes. Demographic
and population data (e.g., race, age, home ownership/rental, online access, income, rent, home value, and housing age) were extracted from the American Com-
munity Survey 5-year estimates (U.S Census Bureau, 2023) while the low-wage workers (annual income around $15,000/year) by place of residence and by place of
work are defined and provided by the Origin-Destination Employment Statistics (LODES) (U.S. Census Bureau, 2007), and the Longitudinal Employer-Household

Dynamics (LEHD) (U.S. Census Bureau, 2010).
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designated as vacation rentals. The lack of accommodation in good
conditions for sale or rent leads to an increase in population density in
urban and economically oriented areas such as S1-S4 (Fig. 1c-f). This
trend, once highlighted by Wayne (2022), currently faces no regulatory
prevention. Additionally, more densely populated areas have been
proven to experience more climate-related risks, in which residents
would encounter higher challenges in evacuation during extreme
weather events (Lazo et al., 2015).

On the other hand, when examining the correlation between his-
torical demographic changes and coastal hazards, we found that ESVA is
highly susceptible to extreme events. Specifically, most coastal regions
exhibited a high ratio of exposure to diverse types of extreme events,
such as high tides, coastal flooding, and SLR (Fig. 4a) (FEMA, 2010).
Inland regions and towns also suffered significant damage from storm
surges and inundation, primarily due to their low elevation and
geographic location (Fig. 1b) (see section 2.1) (Sanford and Pope, 2010).
We also found that during climate extreme events, rainfall could not be
drained into the Atlantic Ocean because of the differential in water
pressure against the seawater. The Virginia Coast Reserve (VCR), a
biosphere reserve created by The Nature Conservancy in the early

Table 1
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1970s, was found as highly vulnerable, mainly due to its low-lying
topography and geographical location (Fig. 1b). Furthermore, the soil
layers in ESVA were found to be highly saturated, with a high-water
table elevation (Sanford and Pope, 2010), thereby retaining more
water inland and exacerbating inundation issues (Fig. 4a and d).

Fig. 4b shows the flood hazard value for each block group, with the
average values shown in Fig. 4c. We found that block groups with high
flood hazard values are distributed across all levels of low-wage
employment in ESVA. Additionally, block groups where >35 % of the
jobs pay less than $15,000 per year exhibit higher flood hazard values
(Fig. 4b and c). These low-income groups are more susceptible to coastal
disasters, with a trend showing that more workers in low-wage jobs tend
to experience a greater number of flood hazard events (Fig. 4b and c).
We also summarized and ranked the vulnerability levels of towns in
ESVA to historical coastal extremes in Fig. 4e and f. Six towns, including
Tangier Island, Saxis, Wallops Island, Black Point Landing, Deep Hole,
and Chincoteague, were indicated as most susceptible compared to
others (Fig. 4f). These towns, along with VCR (Fig. 1b)—located along
the ESVA coast—will be examined in sections 3.7 and 3.8 for historical
and projected SLR scenarios.

Projected difference (in percentage) in average monthly precipitation and temperature for the period (2024-
2100) compared to the historical scenario (2003-2020). The darker color indicates higher changes. For
temperature (T), the red color represents a higher increase compared to the blue color. For precipitation (P),
the blue color indicates an increasing trend, whereas the red color signifies a decreasing trend. BCC is BCC-
CSM2-MR, Can is CanESM5, MIR is MIROC6, and MRI is MRI-ESM2-0.
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3.3. Projected changes in temperature and precipitation

First, we examined changes in average monthly temperature and
precipitation across GCMs and SSPs (Table 1). The average monthly
historical precipitation (2003-2020) was approximately 3.52 mm.
However, this figure increases by 4.17 % to 3.67 mm under the SSP2-45
and to 3.73 mm under the SSP5-85 scenario between 2024 and 2100.

Table 1 shows notable trends in maximum and minimum tempera-
tures, along with precipitation variations, across different GCMs and
SSPs (2024-2100). For temperature, ESVA is projected to experience
higher temperatures at the beginning of the year, with February and
March identified as experiencing the most significant increases. Inter-
estingly, a shift towards cooler weather is anticipated starting in August,
highlighting a division between warmer and cooler seasons as we
approach the year 2100. These results indicate an extreme trend in
climate over ESVA, characterized by higher contrasts between hot and
cold periods. For precipitation, an increase is observed as similar as the
rise in temperatures, particularly from January to March while lowest
precipitation is projected starting from April to November. This corre-
lation suggests a potential for more pronounced seasonal extremes in
ESVA.

3.4. Projected flood peaks

Flood peak is an important result from numerical models that is
essential for hydrological assessment (Merz et al., 2022). Fig. 5 shows
the projected flood peaks (a) Accomac, (b) Melfa, (c) Exmore, and (d)
Cape Charles over future periods (2024-2100) under SSPs 2-45 and
5-85.

In general, we found that the number of high flood peaks increases
starting from the mid-future period (2045-2069) across various regions
compared to the near future (2024-2044) (Fig. 5). While projected flood
peaks in the near future (2024-2044) remain relatively unchanged
compared to the historical period, a higher number of record-breaking
peaks are frequently observed in the mid and far future, with the more
severe greenhouse gas emission pathway (SSP5-85) showing higher
peaks compared to SSP2-45. Specifically, when comparing future pro-
jected flood peaks towards 2100 with historical flood peaks
(2003-2020), we observed increases ranging from 3.41 to 8.65 % during
the mid-future and up to 8.9 % during the far future across examined
regions (Fig. 5). Additionally, we found that Exmore is the most sus-
ceptible to future flood peaks, followed by Melfa (projected peaks in-
crease from 4.68 % in the mid-future to 5.84 % in the far-future), Cape
Charles (4.27 % to 5.34 %), and Accomac (3.41 % to 4.32 %),
respectively.

Anomaly flood peaks are key indicators of detecting potential risks in
hydrological cycles, with significant implications for ecosystems and
human communities (Maurer et al., 2018; Villarini and Smith, 2010; Yin
et al., 2009). We employed the IQR method (see section 2.4) to identify
projected flood peaks under various GCMs and SSPs for the near future
(2024-2044), mid future (2045-2069), and far future (2070-2100) over
the Accomac, Melfa, Exmore, and Cape Charles regions. In general, there
is an increasing trend in the variability of flood peaks from the near to
the far future, with the most significant peaks occurring under the
SSP5-85 scenario, showing a correlation with higher emission pathway.

We found that the two populated towns, Exmore and Cape Charles,
are projected to experience higher numbers of anomaly flood peaks
starting from the mid-future, followed by Melfa and Accomac (Figs. 1
and 5). During the mid-future period (2045-2069), the year 2059 stands
out due to its severity, with significant flood peaks found across these
four towns. This is followed by 2056, with noticeable projected peaks
found in Melfa and Cape Charles; 2050, for Exmore and Melfa; and 2048,
for Cape Charles. During the far future, the year 2080 stands out for
Exmore, which is projected to have an exceptionally high peak of 12.04
m>/s, found as the highest among the years in this period, considering its
relatively small area (Fig. 1e). Consistent with the presented results, we
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observed an increase in flood vulnerability for more populated towns
with higher housing units, specifically Exmore and Cape Charles (Fig. 1).
This presents a potential challenge for evacuation during extreme
weather events. The increased vulnerability can be explained by the
higher impervious surface coverage in developed areas, which prevents
water from infiltrating into the ground, exacerbating runoff and flooding
issues.

3.5. Seasonal streamflow changes

Fig. 6 shows the average monthly streamflow differences between
the historical period (2003-2020) and the near future (2024-2044),
mid-future (2045-2069), and far future (2070-2100). In general, these
towns experience an increase in streamflow during the winter months
(November to March), leading to a wetter condition (Fig. 6). Conversely,
the period from April to July is projected to be the driest, with a sig-
nificant decrease in streamflow compared to the historical period.
Notably, these changes between wet and dry seasons are substantial,
which could result in severe environmental issues, particularly for
important towns such as Accomac, where the majority of Accomack
County’s administrative offices are located. As we approach 2100, the
discrepancy in streamflow between wet and dry months is projected to
exacerbate, especially under the higher emission scenario (SSP5-85).
Additionally, wet months could become considerably wetter, while dry
months show a substantial decrease in streamflow.

3.6. Temporal and spatial variations in climate extremes

In the previous section, we evaluated projected flood peaks for the
period 2024-2100. However, quantifying these climate extremes both
statistically and spatially is crucial. In this section, we employ the 12-
month SPI index (see section 2.5) to assess the intensity and frequency
of flood and drought events towards 2100. Fig. 7 and Table 2 show the
magnitudes of these events for the ESVA and the four chosen towns
(Fig. 1). In general, a drying trend is observed in the near-future period
(2024-2044), as indicated by negative values (Fig. 7) while the entire
ESVA is projected to experience wetter conditions during the mid- and
far-future periods.

During the near future (2024-2044), ESVA region exhibits dry con-

ditions (SPI12%,#> = — 0.359), then transitions to mild-wet conditions
during the mid future (2044-2069) (SPI122,#° = 4 0.027), and reaches

its peak wetness in the far future (SPI12%,*° = + 0.227) (Fig. 7 and
Table 2). This trend, indicating a shift from drier to wetter conditions, is
found to occur across the examined regions and is projected to intensify

under the impacts of SSP5-85. Specifically, the driest conditions are

forecasted under SSP5-85 with (SPI123.8 = — 0.535), while a sub-
stantially wetter condition is indicated for the far future (SPI123, %% = +

0.317) (Table 2). Similarly, the four examined towns show similar trends
compared to the ESVA. These results confirm our findings in previous
sections, which suggest that (a) except for the dry conditions up to 2044,
there is a general trend towards wetter conditions by 2100, starting from
the mid-future period (2045-2069) while (b) higher emission projection
(SSP5-85) is found to have more substantial impacts.

Fig. 8 shows the spatial representation of drought intensity and the
probability of drought occurrences using SPI values calculated based on
the ensemble model for MD-ESVA region. In general, drought has been
identified as the major trend in the near future (2024-2044), with higher
emission levels show higher severity. Locals in ESVA confirmed recent
moderate drought events starting from 2020s in ESVA during the 2024
ESVA Climate Equity Workshop in Melfa, Virginia (Brideau et al., 2024)
as well as in the July 2020 report by NOAA (NOAA, 2020). Furthermore,
the Virginia Department of Environmental Quality (DEQ) recently
placed ESVA on their drought watch advisory list (DEQ, 2024) due to
increasing dry and drought conditions. These findings align with our
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Fig. 5. Historical and projected flood peaks at (a) Accomac, (b) Melfa, (c) Exmore, and (d) Cape Charles. Future projections are simulated using the SWAT model,
incorporating inputs from GCMs under different SSP scenarios (2-45 and 5-85). Black lines represent historical flood peaks (2003-2020), red lines represent the
ensemble model (2024-2100), which combines the inputs from GCM candidates, while dash grey lines show the projections from individual GCMs. Values in boxes
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anomaly peaks were detected using the IQR method.
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Fig. 6. (continued).
observations of current drying trends. (2024-2044) is expected to exhibit dry conditions (Fig. 8c) and a higher
We found that ESVA is projected to become wetter towards 2100, occurrence probability of drought events, with the higher emission
reaching peak records during the far future, while the early period scenario indicating more severe impacts (Fig. 8d). Specifically, we found
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Fig. 7. Evaluation of drought and flood events using SPI-12 index for the (a) near future (2024-2044), (b) mid future (2045-2069), and (c) far future (2070-2100)
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climate extremes can be found in Supplementary Table A3. The black dotted line represents the SPI ranges across different GCMs.
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Table 2

Science of the Total Environment 947 (2024) 174289

Summary of the average SPI index for the Accomac, Melfa, Exmore, Cape Charles, and ESVA using the
ensemble model across the near future (2024-2044), mid future (2045-2069), and far future (2070-2100).
Positive (+) values, indicated in red, suggest a wet trend, while negative (—) values, shown in blue, denote a
dry trend. The ranges for the SPI drought index can be found Supplementary Table A3.

Ensemble model (SSP2-45)

Site

Near future (2024-2044)

Accomac
Melfa
Exmore
Cape Charles
ESVA

Mid future (2045-2069)

Far future (2070-2100)

+0.017
+0.019
+0.020
+0.018
+0.027

Ensemble model (SSP5-85)

Near future (2024-2044)

Accomac
Melfa
Exmore
Cape Charles
ESVA

that the highest drought occurrence around under 25 % in the near
future, whereas it is found to be higher under the SSP5-85 scenario.
However, these figures are projected to decrease towards the mid- and
far-future periods as ESVA becomes wetter (Fig. 8d).

3.7. Historical seawater expansions, tides, and SLR

Mean Sea Level (MSL, also known as sea level) is an average surface
level of one or more among Earth’s coastal bodies of water from which
heights such as elevation may be measured. According to Climate
Change Service (C3S), European Centre for Medium-Range Weather
Forecasts (ECMWF), and World Glacier Monitoring Service (WGMS), ice
loss accounts for around 8226 gigatonnes (Gt) of water since 1976, of
which 8100 Gt has been lost since 1991, and 3600 Gt since 2014 (C3S,
2024). The year 2023 was recorded as the warmest year since global
records began in 1850 at 1.18 °C above the 20th-century average of 13.9
°C (NOAA, 2024b). This marked the considerable ice lost from glaciers
globally that was equivalent to 1.7 mm of SLR and this is approximately
4.6 times the amount of ice contained in all glaciers in the European Alps
(Farinotti et al., 2019). SLR arises from processes operating across a
range of spatial and temporal scales involving the ocean, cryosphere,
solid Earth, atmosphere, and land (IPCC, 2023). Since 1993, the global
SLR observed an average increase of about 3.4 mm, particularly since
2000 (Hugonnet et al., 2021).

We first examine the historical seawater expansion along the coast of
ESVA between 2000 and 2023 using NDWI (see section 2.6.2) (Fig. 9).
Additionally, we present historical SLR and tide level provided by NOAA
(NOAA, 2010) at four tidewatch stations: Chesapeake Bay Bridge Tunnel
(CBBT; Virginia), Wachapreague (WACH; Virginia), Kiptopeke (KIPT;
Virginia), and Ocean City Inlet (OCI; Maryland) (Fig. 9¢). These stations
are primarily located along the ESVA in Virginia (VA), except for the
Ocean City Inlet, which is located in Maryland (MD). In this section, we
also investigate the VCR region along with six disaster-vulnerable re-
gions (Fig. 9a and b) due to their high susceptibility to coastal natural
hazards and ecological significance to ESVA, identified using historical
demographic data and coastal hazard events (see section 3.2).

In general, there is a noticeable increase in seawater expansion due
to SLR from 2000 to 2023 along the coast of ESVA and significantly in
the VCR, particularly in the Wallops Island, Deep Hole, Chincoteague,
and Black Point Landing regions (Fig. 9a and b). This trend was also
statistically observed using records from tidewatch stations during this
period, where MSL, which is the average height of the sea’s surface,
showed significant increasing trends. Similarly, the MHW, the mean of
all the high-water heights observed over the National Tidal Datum

Mid future (2045-2069)

Far future (2070-2100)

+0.048
+0.049
+0.028
+0.021
+0.097
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Epoch (NTDE), and the MLW, the mean of all low-water heights
observed during the current NTDE, also showed significant increasing
trends (p-value < 0.05) (Fig. 9¢). Moreover, many parts of the four
examined regions were shown to be submerged by seawater as detected
in the year 2023. This situation is likely to worsen under future climate
scenarios, which will be then discussed in the following section.

3.8. Projected SLR towards 2100

In the previous section, we discussed the historical seawater expan-
sion caused by SLR over ESVA. However, it is important to understand
this severe phenomenon for future context, in which we would investi-
gate the projected SLR up to 2100 in this section. Specifically, we
quantify the SLR magnitude under the SSP2-45 (mean global tempera-
ture increase of 3 °C) and SSP5-85 (mean global temperature increase of
5 °C) scenarios (IPCC, 2021, 2023) across the coast of ESVA, including
(1) Tangier, (2) Saxis, (3) Wallops Island, (4) Deep Hole, Chincoteague,
and Black Point Landing, and the VCR region (Fig. 10), which were
identified as vulnerable due to natural hazards in section 3.2.

SLR is influenced by processes that operate across a range of spatial
and temporal scales involving the ocean, cryosphere, solid Earth, at-
mosphere, and land (IPCC, 2023). This results from both global and
regional processes, including thermosteric sea level change (also known
as thermal expansion) and the melting of the Greenland and Antarctic
ice sheets. In this work, we used the projected SLR for two greenhouse
gas emission levels (SSPs 2-45 and 5-85) provided in the latest IPCC
report on Ocean, Cryosphere, and Sea Level Change (IPCC, 2023).
Specifically, these projections were extracted from the global mean sea
level (GMSL) projections, which are derived from the independent
contributions of land-water storage (e.g., surface water, soil moisture,
groundwater storage, snow), ocean dynamic sea level change, alter-
ations in Earth’s gravity and rotation, viscoelastic solid Earth deforma-
tion, glacial isostatic adjustment, vertical land motion, and extreme sea
level events (IPCC, 2023). These projections were updated using CMIP6
models to project the ocean dynamic sea level contribution to relative
sea level (RSL) change, updating the previous findings from the IPCC
Assessment Report 5 (AR5). In this work, the newly defined SLR pro-
jections under SSP2-45 based on the IPCC report on Ocean, Cryosphere,
and Sea Level Change (IPCC, 2023) are projected as an increase of 0.09
m by 2030, 0.20 m (2050), 0.48 m (2090), and 0.56 m (2100), while
under SSP5-85, they are 0.10 m (2030), 0.23 m (2050), 0.63 m (2090),
and 0.77 m (2100) (Fig. 10). These projections will be combined with
the baseline scenario analyzed for the year 2023 (see section 3.7) to
provide a continuous analysis of future SLR impacts on this region.
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Fig. 8. Spatial distribution of drought intensity and occurrence probability using SPI index over different GCMs and the ensemble model within future periods,
including near future (2024-2044), mid future (2045-2069), and far future (2070-2100). For (a-b), the blue color represents the wet trend while the red color
represents the dry trend. For (c-d), different shades of yellow and grey are used to present the occurrence probability of drought in percentage. Darker colors

represent higher severity.

Our findings indicate that projections for the years 2030, 2050,
2090, and 2100 reveal an escalating increase in SLR across ESVA and all
examined regions, with a particularly notable intensification under the
higher emission scenario (SSP5-85). We found that Tangier, Saxis, and
Wallops Island are likely to be entirely submerged by future seawater
due to their low elevations, while many parts of the Deep Hole, Chin-
coteague, and Black Point Landing regions are projected to be highly
inundated by seawater by 2100 (Fig. 10b). Additionally, we observed
that coastal regions and the VCR region are highly susceptible to SLR,
with most of the areas along the VCR coast expected to be submerged by
rising seawater (Fig. 10a). In general, the rising sea levels underscore a
severe threat to the safety of current coastal ecosystems and human lives
over ESVA, where saltwater intrusion and coastal erosion are likely to
become more exacerbated due to SLR. This trend highlights the urgent
need for strategic planning and adaptation measures to combat SLR-
induced inundation, which could exacerbate the decline of farmland,
contamination of groundwater by saltwater, reduction in living areas,
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and ecological imbalances in the ESVA region.
4. Discussion and suggestions

First, we found an increase in both total population and population
density in examined towns between 2000 and 2020, despite a slight
decrease in the total population across the entire ESVA (Fig. 1; see
section 3.2). This indicates that people tend to reside in populated towns
and regions in recent years, resulting in a marked increase in the total
number of housing units, especially between 2010 and 2020 (Fig. 1).
Furthermore, by 2050, it is projected that 89 % of the U.S. population
will reside in urban areas (UN Population Division, 2018), and this trend
is also highlighted at the state level. Our findings indicate that an
increasing number of people are moving to developed areas with higher
populations (see section 3.2), driven by (1) the aim of having higher
salaries and (2) the deterioration of accommodations mainly caused by
inland and coastal flooding (A-NPDC, 2022; Russ, 2020). The rise in
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Fig. 8. (continued).

high-population regions leads to the development of new infrastructures
for accommodation and public services (as shown in our current trend
between 2010 and 2020) (Fig. 1), which could have several conse-
quences, including an increase in urban heat (Chen et al., 2021; Yin
et al., 2018; Zhang et al., 2013). On the other hand, the increase in
housing units and concrete-based infrastructure significantly increases
the total impervious surface area (Zhang et al., 2013), resulting in higher
urban heat records (Nguyen et al., 2022b; Yin et al., 2018; Zhou and
Chen, 2018). This phenomenon could profoundly impact socioeconomic
conditions and human well-being, as explained by the increase in heat
stress (Oleson et al., 2015), leading to heat-related illnesses (Chen et al.,
2021). It is worth noting that the near future is expected to experience
more severe impacts from drought, whereas the mid- and far-future
periods are likely to see increased flooding impacts (see sections 3.5
and 3.6). This is similar to recent findings for the coastal Tar-Pamlico
River basin (North Carolina), where the region is found to be domi-
nated by floods, especially more severe in low-lying areas (Tran et al.,
2024b). Besides, the driest months (April to July), especially during the
near future (Table 6), could then increase the region’s vulnerability to
extreme heat and affect human lives, agricultural activities, and busi-
nesses. Furthermore, the continued rise in temperature towards 2100
(Table 1) could diminish economic productivity, particularly in

15

physically demanding occupations (Kjellstrom et al., 2009), and
discourage outdoor activities such as shopping and dining, thus affecting
businesses reliant on foot traffic (Hoehne et al., 2018). Conversely, the
far future is predicted to be highly prone to flooding (Fig. 8 and Table 2),
which could cause more water-related issues in terms of water sanitation
and hygiene.

Furthermore, ESVA is likely to face more challenges due to the rise in
both unoccupied and vacant residential units. This concern, highlighted
in our analysis (see section 3.2), comes with considerable implications.
First, a substantial number of homes across ESVA are reported to suffer
from a significant lack of indoor plumbing (Skeo, 2015). A report in
2014 by the U.S. Fish and Wildlife Foundation revealed that out of 1226
houses, 112 (approximately 9 %) lacked complete indoor plumbing fa-
cilities (A-NPDC, 2022). It is important to recognize that these homes
pose a risk as sources of human waste disposal, potentially exacerbating
uncontrolled pollution due to insufficient management efforts. The
increasing population density may intensify this issue, leading to more
polluted water and materials being discharged into the ground, affecting
groundwater quality. Furthermore, ESVA is known for its abundant
groundwater resources (Sanford and Pope, 2010), which complicates
the task of mitigating pollution once contamination occurs. Our findings
indicate a trend towards wetter conditions with increased inland
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Fig. 9. Historical coastal seawater changes (2000—2023) for (a) VCR and (b) examining sites, including (1) Tangier, (2) Saxis, (3) Wallops Island, (4) Deep Hole,
Chincoteague, and Black Point Landing. The historical mean sea level (MSL), mean high water (MHW), mean low water (MLW), and mean tide level (MTL) are shown

in (c).

inundation and coastal-induced flooding due to SLR, further aggravating
these issues, not only for groundwater but also for surface water,
particularly ponds, which have recently been identified as emerging
pollution sources in ESVA (Charlie, 2023). Additionally, while ESVA is
known for its agricultural and poultry farming activities, the challenges
posed by these industries are likely to be severely heightened by future
inland and coastal flooding. A common issue identified is the exposure of
residual manure to rain on poultry farms, allowing pollutants to enter
the natural runoff through nearby streams (Tom, 2020) or percolate to
deeper soil-water layers. Moreover, Russ (2020) indicated an increasing
disappearance of family farms in ESVA as rising seawater gradually re-
duces soil productivity. This implies that severe impacts from SLR to-
wards 2100, as presented in our work, could then transform these
farmlands into significant sources of pesticides and poultry waste.
Furthermore, farmers’ practice of spreading untreated manure, rich in
nitrogen and phosphorus, on the land exacerbates this problem. In
normal conditions, the land can only absorb a limited amount of these
chemicals (Kobell et al., 2015), which then highlights excess contami-
nation in groundwater and land under this future context. In general,
these challenges are likely to deteriorate living conditions in ESVA.
Therefore, we propose the following recommendations for authorities
and decision-makers:
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e Implement regulations and establish documentation to monitor both
current and unused accommodations, as well as farmland, to reduce
pollution from household and agricultural disposals.

e Control the population in highly populated towns and regions to
mitigate the impacts of regional flooding and extreme heat on human
health.

e Construct additional levees and disaster protection barriers using
environmentally friendly materials along the coast.

5. Conclusions

In this study, we performed an in-depth analysis to quantify the
anticipated changes in future extremes along with demographics, LULC
changes, and SLR over ESVA, Virginia. Our work features the IPCC AR6
report on the use of GCMs and SSPs, in which we highlight the impor-
tance of understanding the correlation between hydroclimatic extremes
and societal components. Main findings are summarized, as follows:

(1) A notable increasing trend is found in meteorological conditions
that lead to an increase in both the intensity and frequency of
climate extremes over ESVA. Our findings indicate a transition
from a dry (2024-2044) to a wetter condition (2045-2100), with
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increases in flood peaks ranging from 3.41 % to 8.65 % during the
mid future and up to 8.9 % in the far future.

High-risk regions, identified using historical data of coastal haz-
ards, demographics, and LULC, are projected to be more sus-
ceptible to future climate impacts. Under future extreme
meteorological conditions, these regions could face severe im-
pacts such as heat-related illnesses, and surface and groundwater
pollution. Besides, these issues could be exacerbated by the in-
crease in population and concrete-based infrastructure, especially
in developed and economically oriented regions.

(2)

(3) Historical coastal risk caused by SLR was identified, while the
current low-lying and coastal regions of the ESVA are projected to
be more vulnerable to coastal- and SLR-induced flooding towards
2100, in which higher greenhouse gas emission scenario shows
more profound impacts.

By incorporating human factors into our approach, we highlight the
significant potential for ensuring the region’s long-term resilience and
safety against the challenges posed by climate change and human ac-
tivities. Consequently, this work is a valuable resource for stakeholders
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and regional authorities, assisting them in implementating sustainable
strategies focused on disaster prevention and effective management of
the region’s water resources.
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