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• A transition between dry and wet con
ditions is found towards 2100 

• Droughts are dominant in the 2020s to 
2040s, whereas later periods are prone 
to severe floods 

• Coastal regions are highly vulnerable to 
coastal- and sea level rise-induced 
flooding 

• Need actions for climate resilience and 
adaptation to climate change  
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A B S T R A C T   

Coastal regions face climate-induced threats that have likely increased over the past four decades. In this work, 
we quantify the future climate impacts on hydroclimatic extremes in the risk-prone, 15-m-above-sea-level 
Eastern Shore of Virginia (ESVA) region, utilizing the Sixth International Coupled Model Intercomparison 
Project (CMIP6) Assessment Report 6 (AR6) and General Circulation Models (GCMs). We incorporate historical 
data on demographics and disasters, land use land cover (LULC), Landsat imagery, and sea level rise (SLR) to 
better understand and highlight the correlation between hydroclimatic extremes and societal components in this 
region. The hydrological model Soil and Water Assessment Tool (SWAT), Standardized Precipitation Index (SPI), 
Normalized Difference Water Index (NDWI), and Interquartile Range (IQR) method have been used to evaluate 
the intensity and frequency of projected climate extremes, in which SLR projections under different greenhouse 
gas emission pathways are temporally and spatially quantified. Our findings include (1) a trend towards wetter 
conditions is found with an increase in the number of flood events and up to an 8.9 % rise in the severity of flood 
peaks compared to the 2003–2020 period; (2) current coastal high-risk regions, identified using historical data of 
natural disasters, demographics, and LULC, are projected to be more susceptible to future climate impacts; and 
(3) low-lying coastal towns and regions are identified as currently vulnerable to coastal and SLR-induced 
flooding and are projected to become even more susceptible by 2100. This is the first effort that provides a 
valuable scientific basis for anticipated shifts in future climate patterns, essential for natural hazard prevention in 
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ESVA. It highlights the need for authorities and decision-makers to plan and implement adaptive strategies and 
sustainable policies for the ESVA region and other coastal areas across the United States.   

1. Introduction 

Climate change is projected to considerably impact the hydrological 
cycle, which is expected to further influence the redistribution of water 
resources. In 2023, the United States experienced 28 different weather 
and climate-related disasters with an estimated cost of at least one 
billion dollars (Smith, 2024). This marks the highest number of billion- 
dollar disasters ever recorded in a single year. Many previous studies 
have indicated that changes in the intensity and frequency of weather- 
related events could significantly impact both human society and the 
natural environment (Nguyen et al., 2023a; Bonsoms et al., 2023; Tran 
et al., 2021a, 2022c). To be specific, hydroclimatic extremes such as 
hurricanes, sea level rise (SLR), droughts, and floods, which vary 
spatially and temporally, can considerably impact local economies and 
communities (Nghia et al., 2022a; IPCC, 2023). For many regions, floods 
and droughts have been found to cause billions of dollars in damage 
(Ren et al., 2023; Tran et al., 2021b, 2023d; Nguyen et al., 2022a). These 
extremes are expected to be even more frequent and severe in coastal 
regions, primarily driven by increases in temperature and precipitation 
towards 2100 (IPCC, 2023; Saleem et al., 2021; Shrestha et al., 2018; 
Saeedi et al., 2023) as well as the combined impacts with future SLR 
(Rebecca, 2022). 

The latest report by the Intergovernmental Panel on Climate Change 
(IPCC) on Ocean, Cryosphere, and Sea Level Change underscores the 
considerable rise in the severity of climate extremes due to the increases 
in meteorological variables (IPCC, 2023). The human-caused increase in 

greenhouse gases has been highlighted as intensifying the frequency and 
intensity of extreme weather events (IPPC, 2021), leading to more 
water-related issues (Rosenzweig and Neofotis, 2013; Nguyen et al., 
2023b; Tran et al., 2022b). Specifically, the highest emission scenario 
predicts an increase of up to 5 ◦C (Hausfather, 2019; IPCC, 2021), in 
which we have only a 1 % chance of avoiding this phenomenon, with an 
average increase of at least 2.0 ◦C in the upcoming decades (Raftery 
et al., 2017). Notably, this rise is expected to significantly escalate the 
frequency and severity of floods, coastal flooding, and SLR in coastal 
regions (IPCC, 2021, 2023; Rebecca, 2022). In addition, low-lying 
coastal regions along America’s East Coast have recently been found 
as facing more hidden vulnerabilities related to SLR (NASA, 2024; 
Ohenhen et al., 2023). It can be explained due to these regions’ low 
elevation (Baills et al., 2020; Toimil et al., 2020), the absence of natural 
barriers (O’Donoghue et al., 2021), and land degradation caused by 
extreme weather conditions (Webb et al., 2017). 

Eastern Shore of Virginia (ESVA) is a low-lying coastal region, 
nestled between the Atlantic Ocean and Chesapeake Bay (Fig. 1). In 
recent years, this area has been increasingly threatened by climate 
change (Andrews et al., 2019; Sanford and Pope, 2010). Despite these 
threats, ESVA serves as a refuge for diverse habitats, including maritime 
forests, shrub thickets, grasslands, beaches, and tidal wetlands. These 
ecosystems are crucial for millions of migratory songbirds, raptors, 
shorebirds, and butterflies, providing essential resting and refueling 
points (U.S. Fish and Wildlife Service, 2018). Given its low elevation, 
ESVA is classified as high-risk and is currently vulnerable to climate 

Fig. 1. (a) Location of MD-ESVA within the State of Virginia; (b) Terrain profile and geographical characteristics of MD-ESVA; (c-f) LULC changes and historical 
demographic changes (U.S Census Bureau, 2023), including (S1) Accomac, (S2) Melfa, (S3) Exmore, and (S4) Cape Charles, using the United States Geological Survey 
(USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) datasets (1990–2020) (USGS, 2020). The percentage change (%) indicates the difference 
between two consecutive years. 
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change and SLR (Russ, 2020). These challenges are expected to be more 
severe under future climate scenarios (Russ, 2020; Sanford and Pope, 
2007, 2010). Despite the critical need for scientific research in this re
gion, the current literature is significantly limited, primarily conducted 
by regional agencies and departments (Chesapeake Bay Foundation, 
2018; U.S. Fish and Wildlife Service, 2018), individuals (Nowroozi et al., 
1999; Sanford and Pope, 2007, 2010), or academic institutions, e.g., 
University of Virginia (Russ, 2020; Zambello, 2019). Additionally, we 
found a noticeable absence of scientific efforts to quantify the projected 
impacts of future climate on current natural extremes. This thus un
derscores the urgent need to perform this work for the resilience of this 
ecologically diverse and economically significant region. 

General Circulation Models, also known as Global Climate Models 
(GCMs), are commonly used to measure future projected impacts of 
hydroclimatic extremes (Neill et al., 2016; Tebaldi et al., 2021). The 
recent release of the Coupled Model Intercomparison Project Version 6 
(CMIP6) introduced significant updates, including the Scenario Model 
Intercomparison Project (ScenarioMIP) and the Shared Socioeconomic 
Pathways (SSPs) (Eyring et al., 2016). Indeed, it is an effort by the IPCC 
to incorporate socioeconomic and human-related factors into climate 
models, as emphasized in the IPCC’s Sixth Assessment Report (AR6) 
(IPPC, 2021; Meyer, 2015). Specifically, SSPs detail future scenarios of 
greenhouse gas emissions and incorporate anthropogenic impacts as 
well as land use and land cover (LULC) under specific baseline storylines 
(Neill et al., 2016). By utilizing these scenarios in hydrological models, 
researchers can better understand the combined physical impacts of 
climate change and societal developments on hydrological processes. 
For this study, the NASA Earth Exchange Global Daily Downscaled 
Projections – NASA NEX-GDDP-CMIP6 is recommended, widely recog
nized for its application in previous works (Park et al., 2023; Saadi et al., 
2024). 

In this study, we aim to quantify the impacts of future climate on 
hydroclimatic extremes such as floods, droughts, and SLR for the ESVA. 
Our analysis incorporates different indices and approaches to assess 
projected vulnerabilities caused by climate change, considering 
different factors, e.g., regional demographics, changes in LULC, and 
coastal hazards. The results would provide valuable scientific basis to 
stakeholders and authorities in planning sustainable strategies and 
ensure human well-being. Besides, our findings will support the Na
tional Flood Insurance Program (NFIP) (FEMA, 2023a) launched by the 
Federal Emergency Management Agency (FEMA) in quantifying coastal 
risk through the nation’s coastal Flood Insurance Studies (FIS) (FEMA, 
2020a) and Flood Insurance Rate Maps (FIRMs, or flood maps) (FEMA, 
2020b, 2023b). In addition, this study reveals the magnitude of pro
jected future flood risk for towns and regions over ESVA, in which the 
newest release of the CMIP6 GCMs based on the IPCC AR6 and the 
IPCC’s report on Ocean, Cryosphere, and Sea Level Change (IPCC, 2023) 
were used. 

2. Materials and methods 

2.1. Study area 

ESVA is a coastal and risk-prone region which is located between the 
Atlantic Ocean and the Chesapeake Bay, with a length of approximately 
110 km and a width ranging from 15 to 30 km (Fig. 1). This region 
covers Accomack and Northampton counties with a total area of 
1764.43 km2 (Sanford and Pope, 2010). The terrain of ESVA is pre
dominantly flat, with elevations ranging from sea level to about 15 m 
above sea level, and is characterized by deep and sandy soils. The 
climate is classified as humid subtropical, marked by mild winters and 
warm, humid summers. Precipitation is evenly distributed throughout 
the year, with an annual average of 1143 mm (Sanford and Pope, 2007, 
2010). The local economy is dependent on agriculture, fisheries, and 
tourism. Traditional farming practices in the area mainly involve the 
cultivation of corn, soybeans, and various small grains, which are crucial 

to regional agriculture. 
Four important towns (S1–4) (Fig. 1c-f) have been highlighted in our 

analysis due to their significance in terms of economy, natural ecology, 
and human lives. Specifically, Melfa and Cape Charles serve as com
mercial hubs of the ESVA (Ralph and George Carrington, 1952), while 
Exmore is a populated town, and Accomac serves as the headquarters for 
many departments of Accomack County. As of the time of conducting 
this work, there are no current available observed streamflow data 
measured by USGS over the ESVA that could be used for hydrological 
model in terms of calibration and validation (2003–2020). This limita
tion can be attributed to the challenges in measuring streamflow data 
due to tidal and backwater effects, as well as the low elevation of this 
region (Andrews et al., 2019). Therefore, we have expanded our model 
area to include the state of Maryland (MD) (Fig. 1b) to obtain the 
necessary data (in Pocomoke and Nassawango Creek stations) (Fig. 1b). 
Within this study, the entire area will be referred to as MD-ESVA in our 
analysis, while ESVA will specifically represent the Eastern Shore of 
Virginia. 

2.2. GCMs and SSP scenarios 

To quantify the impacts of future projected extremes over ESVA, we 
employed the NASA NEX-GDDP-CMIP6 dataset, which offers down
scaled and bias-corrected GCMs with a spatial resolution of 0.25◦ x 0.25◦

(approximately 25 × 25 km) (Thrasher et al., 2022). The datasets have 
been downscaled using the Bias-Correction Spatial Disaggregation 
(BCSD) method, a trend-preserving statistical downscaling algorithm, 
widely used to generate accurate and high-resolution data from GCMs 
(Maurer and Hidalgo, 2008; Wood et al., 2002, 2004). 

Recent studies have found that the BCC-CSM2-MR, CanESM5, 
MIROC6, and MRI-ESM2–0 models demonstrate effective application in 
future climate investigations (Chen et al., 2022; Park et al., 2023; Peng 
et al., 2023; Thrasher et al., 2022; Nguyen et al., 2024). Consequently, 
these models have been chosen for our study due to their capabilities to 
comprehensively capture the high variability in future meteorological 
changes. Specifically, these four models have been shown to capture a 
broad range of changes in streamflow (Chen et al., 2022; Peng et al., 
2023; Xu et al., 2023). Besides, Wang et al. (2021) highlighted that 
CanESM5 and BCC-CSM2-MR produce satisfactory results in terms of 
precipitation, evapotranspiration, and soil water. Furthermore, MIROC6 
and MRI-ESM2–0 were found to have the highest adaptability in tem
perature and precipitation, surpassing the other GCMs (Peng et al., 
2023). In this study, we have chosen the intermediate (SSP2–45) and 
high-end (SSP5–85) scenarios (Thrasher et al., 2022) for analysis. The 
summary of these selected GCMs can be found in Supplementary Table 
A1. 

2.3. Hydrological SWAT model 

SWAT is a semi-distributed hydrologic model developed by the 
United States Department of Agriculture (USDA) Agricultural Research 
Service (ARS) (Tran et al., 2022a). This model has been widely used in 
recent years for hydrological applications in watershed management 
(Ahmed et al., 2020; Tran et al., 2023c), focusing on the physical im
pacts of various factors on water regimes. These include the effects of 
climate change (Chen et al., 2022; Tran et al., 2023b, 2024a; Shafeeque 
et al., 2023), ecosystem services (Ashrafi et al., 2022), LULC changes 
(Cheng et al., 2018; Tran and Lakshmi, 2022), and the validation of 
satellite-based observations (Aryal et al., 2023; Tran et al., 2023a). 

2.3.1. Study workflow and model setup 
Fig. 2 presents the schematic workflow of our study, developed from 

Tran et al. (2024b) with additional details on the demographics and SLR 
data utilized for analysis of current and future impacts. Specifically, we 
aim to include in-depth assessments to determine the correlation be
tween regional demographics, LULC changes, climate extremes, and 
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SLR. The SWAT model, operated using the Quantum Geographic Infor
mation System (QGIS) (V3.16.9) software, was used for the model run 
(Dile et al., 2019). Watershed delineation was performed using the 
Terrain Analysis Using Digital Elevation Models (TauDEM) version 5.0 
(Tarboton, 2011). 

For the SWAT model, we conducted watershed extraction and 
analyzed hydrologic information derived from the DEM input. This 
analysis was essential to delineate streams, sub-basins, and Hydrological 
Response Units (HRUs) (Arnold et al., 2012; Pignotti et al., 2017). The 
watershed was divided into smaller sub-watersheds, and the watershed 
characteristics from the DEM, combined with LULC and soil character
istics, were stored in HRUs. Specifically, HRU in SWAT represents the 
smallest spatial unit (Arnold et al., 2012), where the water balance 
equation is used for calculation. 

In this study, we modified the common approach used in traditional 
SWAT models to better suit the unique characteristics of this region. Due 
to its low elevation, predominantly flat terrain, and small area (see 
section 2.1), the SWAT model first encounters difficulties in delineating 
stream networks and subbasins. This challenge commonly appears in 
coastal regions (Tran et al., 2023a) and can be explained due to the lack 
of steep slopes, with most regions in the study area having slopes below 
5o (Sanford and Pope, 2010). These characteristics limit our ability to 
accurately identify flow directions across the watershed. However, to 
address this, we tested seven different DEM products and selected the 
Multi-Error-Removed Improved-Terrain (MERIT) DEM (90 m) (Yama
zaki et al., 2019), which provided the most accurate stream delineation 
over the MD-ESVA. The delineated stream network was validated using 
the survey network from the HydroRIVERS (Lehner and Grill, 2013) and 
Google Earth database to ensure the accuracy of our SWAT model set up. 

On the other hand, LULC data from LCMAP (30 m) (1990–2020) 
(Fig. 3b) (USGS, 2020) and soil data from DSOLMap (250 m) (Fig. 3c) 
(Adrian et al., 2023) were extracted. To calibrate and validate the SWAT 
model, data from the USGS database (2003−2020) for the Pocomoke 
and Nassawango hydrological stations were used (Figs. 1b). The first 
two years (2001 and 2002) of this 20-year simulation period were 
chosen as the warm-up period. The calibration period was chosen be
tween 2003 and 2013, with the validation period between 2014 and 
2020 (Figs. 2 and 3). A total of 1000 iterations were performed along 
with 23 parameters were chosen for the model calibration and calibra
tion on a daily scale using the interactive web-based application R- 
SWAT (Nguyen et al., 2022). 

The historical scenarios were simulated for the period between 2003 
and 2020, while future climate scenarios were catergorized as the near 
future (2024-2044), the mid future (2045–2069), and the far future 
(2070–2100) (Fig. 3d). These simulations utilized the calibrated pa
rameters derived from the historical scenario (Fig. 2). The chosen pa
rameters, fitted values, and their descriptions can be found in 
Supplementary Table A2. 

2.4. Anomaly detection of future flood peaks 

In this study, the IQR was used to detect anomaly flood events 
(2024–2100) by segmenting the dataset into quartiles, providing an 
overview of data distribution (Wan et al., 2014). Scenarios utilizing 
GCMs’ meteorological inputs were performed, and the future flood 
peaks were collected for calculations. We defined the first quartile (Q1) 
as the median of the dataset’s lower half and the third quartile (Q3) as 
the median of the dataset’s upper half. Additionally, the second quartile 

Fig. 2. The schematic flowchart used in this study. First, we prepared the necessary datasets for SWAT, which included the NASA Integrated Multi-satellitE Retrievals 
for Global Precipitation Measurement (GPM IMERG) V6.0 Final run (Hou et al., 2014) for daily precipitation and the Modern-Era Retrospective analysis for Research 
and Applications V2.0 (MERRA-2) (Gelaro et al., 2017) for daily temperature. The projected daily precipitation and temperature datasets (2024-2100) were extracted 
from CMIP6 GCMs for future scenarios (see section 2.2). 

T.-N.-D. Tran and V. Lakshmi                                                                                                                                                                                                               



Science of the Total Environment 947 (2024) 174289

5

(Q2) was defined as the overall median of the dataset, while the IQR 
range was calculated as Q3 – Q1. The upper and lower bounds were 
calculated as (Q3 + (1.5 × IQR)) and (Q1 – (1.5 × IQR)), respectively. 
Peak values located outside these bounds were considered anomalies 
and used for further analysis. 

2.5. Assessment of hydroclimatic extremes 

To accurately assess climate extreme conditions, it is important to 
establish criteria for determining the duration of events, especially 
concerning the monitoring index used (Zhong et al., 2022). In our study, 
we employed the Standardized Precipitation Index (SPI) for analysis, 
with levels of drought severity indicated by the US Drought Monitor 
(Svoboda et al., 2002). Specifically, drought conditions are identified 
when the SPI values fall below zero and continue to decrease to less than 
negative one (−1). Conversely, a drought event or dry condition is 
considered to have ended when the SPI values return to positive, with 
wetter conditions identified when the SPI values move towards positive 
two (+2) and beyond. The description of this index, as well as the 
summary of severity categories with their ranges, can be found in Sup
plementary Table A3. 

2.6. Coastal seawater expansion using NDWI 

2.6.1. Landsat 7 data 
In this study, to reveal the historical seawater expansion along the 

coast of ESVA from 2000 to 2023, we utilized the USGS Landsat 7 
Collection 2 Tier 1 calibrated Top of Atmosphere (TOA) reflectance data 
obtained through the Google Earth Engine (GEE) platform (Gorelick 
et al., 2017; Nghia et al., 2022b). Additionally, the data undergone 
geometric correction based on ground control points, radiometric and 
atmospheric corrections, and was filtered for cloud coverage (≤ 10 %) 

before processed. 

2.6.2. NDWI for seawater changes along the coast 
The NDWI is used to monitor changes related to water content in 

water bodies. Since water bodies strongly absorb light in the visible to 
infrared electromagnetic spectrum, NDWI utilizes the green and near- 
infrared (NIR) bands to highlight water bodies. In this study, it is 
calculated using the surface reflectance of the Green (Band 2) and NIR 
(Band 4) wavelengths from Landsat 7, as specified below: 

NDWI =
Green − NIR
Green + NIR

(1)  

The NDWI is designed to maximize the reflectance from water features 
by using green wavelengths, while minimizing the low reflectance from 
water in the NIR wavelengths and taking advantage of the high reflec
tance from vegetation and soil in NIR. Thus, water features exhibit 
positive values and are thus enhanced, whereas vegetation and soil 
typically display zero or negative values, and are therefore suppressed 
(Gao, 1996). Specifically, NDWI values range from −1 to +1 and are 
important for delineating water bodies using satellite imagery. In this 
study, the corresponding NDWI ranges are categorized as follows: water 
surface (0.3 to 1), flooding or wet conditions (0.0 to 0.3), moderate 
dryness or non-aqueous surfaces (−0.3 to 0.0), and dry or non-aqueous 
surfaces (−1 to −0.3) (McFeeters, 1996). 

2.7. Performance metrics 

In our study, we utilized the Kling-Gupta efficiency (KGE) (Gupta 
et al., 2009), Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), 
and Coefficient of determination (R2) (Moriasi et al., 2015) for the 
evaluation of the SWAT model outputs. The specific ranges and equa
tions of these metrics can be found in Supplementary Table A4. 

Fig. 3. Spatial representation of (a) DEM, (b) LULC, (c) Soil map, (d) Schematic workflow of the SWAT model, and model performance during calibration and 
validation shown for (e) Pocomoke station and (f) Nassawango station. 
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3. Results 

3.1. SWAT calibration and validation 

The model calibration and validation on the daily scale for the period 
from 2003 to 2020 yielded acceptable results (Fig. 3e and f). In general, 
for the Pocomoke station, our model achieved a NSE score of 0.56, R2 

score of 0.56, KGE score of 0.62 (Fig. 3e) while they are 0.58, 0.61, and 
0.58, respectively, for the Nassawango station (Fig. 3f). These results are 
categorized as Satisfactory (see Supplementary Table A4) which can be 
then used to investigate the impacts of climate change in the following 
sections. 

3.2. Relationship between historical LULC, regional demographics, and 
climate extremes 

When examining the correlation between demographics, LULC 
changes, and hydroclimatic extremes over ESVA, we found trends 
similar to those of the United States. Firstly, as the significant increase in 
the United States population between 2000 and 2010, explained by 
urbanization and increased crop needs (Bounoua et al., 2018), the 
population in ESVA has relatively increased (highest found at 16.75 % in 
Cape Charles; Fig. 1f) except Melfa with a small decrease of 2.70 % 
(Fig. 1d). Secondly, there was a significant increase in vacant residential 
units. Although a total population of 45,426 people was recorded in 
ESVA in 2022 (U.S. Census Bureau, 2022), there are around 10,083 
vacant residential units, with only 5 % of them available for sale or rent 
(A-NPDC, 2022). We found that most of them are abandoned, dilapi
dated, condemned, and a staggering 56 % of unoccupied units have been 

Fig. 4. Demographic changes and coastal hazard events including (a) coastal flood hazard composite, (b, c) average flood hazard in different income-block groups, 
(d) average inland flood hazard composite, (e) locations of towns over ESVA, and (f) summary of the risk-exposure benchmark over towns (Brideau et al., 2024). 
Hazard composite includes the most popular types of hazards, including high tide, storm surge, coastal flooding, and SLR. These included analyses of the following 
ten flood hazard zones: FEMA V zones, FEMA A zones, FEMA shaded X zones (FEMA, 2010), NOAA Office for Coastal Management (OCM) Flood Frequency zones, 
NOAA OCM potential SLR-induced inundation extents for 1 ft (0.3 m), 2 ft (0.6 m), and 3 ft (0.9 m) above current Mean Higher High Water (MHHW) (NOAA, 2024a), 
and Sea, Lake, and Overland Surges from Hurricanes (SLOSH) Maximum of the Maximums (MOMs) (NOAA, 2001) for categories 1, 2, and 3 hurricanes. Demographic 
and population data (e.g., race, age, home ownership/rental, online access, income, rent, home value, and housing age) were extracted from the American Com
munity Survey 5-year estimates (U.S Census Bureau, 2023) while the low-wage workers (annual income around $15,000/year) by place of residence and by place of 
work are defined and provided by the Origin-Destination Employment Statistics (LODES) (U.S. Census Bureau, 2007), and the Longitudinal Employer-Household 
Dynamics (LEHD) (U.S. Census Bureau, 2010). 
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designated as vacation rentals. The lack of accommodation in good 
conditions for sale or rent leads to an increase in population density in 
urban and economically oriented areas such as S1-S4 (Fig. 1c-f). This 
trend, once highlighted by Wayne (2022), currently faces no regulatory 
prevention. Additionally, more densely populated areas have been 
proven to experience more climate-related risks, in which residents 
would encounter higher challenges in evacuation during extreme 
weather events (Lazo et al., 2015). 

On the other hand, when examining the correlation between his
torical demographic changes and coastal hazards, we found that ESVA is 
highly susceptible to extreme events. Specifically, most coastal regions 
exhibited a high ratio of exposure to diverse types of extreme events, 
such as high tides, coastal flooding, and SLR (Fig. 4a) (FEMA, 2010). 
Inland regions and towns also suffered significant damage from storm 
surges and inundation, primarily due to their low elevation and 
geographic location (Fig. 1b) (see section 2.1) (Sanford and Pope, 2010). 
We also found that during climate extreme events, rainfall could not be 
drained into the Atlantic Ocean because of the differential in water 
pressure against the seawater. The Virginia Coast Reserve (VCR), a 
biosphere reserve created by The Nature Conservancy in the early 

1970s, was found as highly vulnerable, mainly due to its low-lying 
topography and geographical location (Fig. 1b). Furthermore, the soil 
layers in ESVA were found to be highly saturated, with a high-water 
table elevation (Sanford and Pope, 2010), thereby retaining more 
water inland and exacerbating inundation issues (Fig. 4a and d). 

Fig. 4b shows the flood hazard value for each block group, with the 
average values shown in Fig. 4c. We found that block groups with high 
flood hazard values are distributed across all levels of low-wage 
employment in ESVA. Additionally, block groups where >35 % of the 
jobs pay less than $15,000 per year exhibit higher flood hazard values 
(Fig. 4b and c). These low-income groups are more susceptible to coastal 
disasters, with a trend showing that more workers in low-wage jobs tend 
to experience a greater number of flood hazard events (Fig. 4b and c). 
We also summarized and ranked the vulnerability levels of towns in 
ESVA to historical coastal extremes in Fig. 4e and f. Six towns, including 
Tangier Island, Saxis, Wallops Island, Black Point Landing, Deep Hole, 
and Chincoteague, were indicated as most susceptible compared to 
others (Fig. 4f). These towns, along with VCR (Fig. 1b)—located along 
the ESVA coast—will be examined in sections 3.7 and 3.8 for historical 
and projected SLR scenarios. 

Table 1 
Projected difference (in percentage) in average monthly precipitation and temperature for the period (2024- 
2100) compared to the historical scenario (2003–2020). The darker color indicates higher changes. For 
temperature (T), the red color represents a higher increase compared to the blue color. For precipitation (P), 
the blue color indicates an increasing trend, whereas the red color signifies a decreasing trend. BCC is BCC- 
CSM2-MR, Can is CanESM5, MIR is MIROC6, and MRI is MRI-ESM2–0. 

Max T Ensemble 
2-45

Ensemble 
5-85

BCC 

2-45

Can 

2-45

MIROC 

2-45

MRI 

2-45

BCC 

5-85

Can 

5-85

MIROC 

5-85

MRI 

5-85

1 75.09 85.64 63.50 73.90 82.83 80.12 77.63 88.08 88.38 88.48

2 90.93 105.61 94.01 102.54 85.75 81.43 113.43 117.24 98.49 93.29

3 78.17 87.19 88.14 86.06 67.65 70.83 98.68 94.70 75.24 80.12

4 53.96 60.25 59.38 59.13 46.87 50.46 66.84 67.29 51.03 55.84

5 40.97 46.38 45.78 45.54 34.74 37.83 51.97 53.07 39.06 41.44

6 29.24 33.56 32.79 34.36 25.15 24.66 37.41 39.45 28.99 28.41

7 20.68 24.09 21.74 23.14 17.94 19.92 25.14 26.95 21.13 23.13

8 19.23 22.90 19.00 19.72 18.47 19.75 22.91 24.48 21.44 22.76

9 18.90 23.25 14.68 18.44 20.11 22.35 17.85 24.95 24.42 25.76

10 19.35 25.91 11.34 18.85 23.09 24.14 16.85 29.35 28.32 29.14

11 24.19 30.46 14.53 23.56 29.22 29.46 19.54 31.20 35.81 35.30

12 35.21 44.92 25.89 33.26 41.55 40.16 36.05 41.17 53.15 49.32

Min T Ensemble 
2-45

Ensemble 
5-85

BCC 

2-45

Can 

2-45

MIROC 

2-45

MRI 

2-45

BCC 

5-85

Can 

5-85

MIROC 

5-85

MRI 

5-85

1 -33.18 18.52 -78.11 -9.82 -44.72 -0.06 -21.83 73.87 -17.94 39.96

2 37.53 97.97 33.63 107.12 -4.37 13.74 109.13 183.06 42.41 57.29

3 25.36 45.45 37.27 51.00 4.09 9.08 54.88 71.22 19.56 36.15

4 8.64 17.62 14.57 19.17 -3.45 4.29 22.62 29.45 3.70 14.71

5 4.00 10.61 6.61 10.43 -3.36 2.33 13.62 18.67 2.03 8.12

6 -1.80 4.04 0.33 3.53 -7.18 -3.86 5.19 10.60 -2.44 2.79

7 -4.93 -0.66 -4.77 -3.02 -7.30 -4.61 -0.74 2.74 -4.08 -0.55

8 -8.21 -3.58 -10.76 -8.43 -8.75 -4.92 -6.72 -2.09 -5.17 -0.32

9 -14.66 -8.73 -22.32 -14.28 -13.16 -8.89 -19.05 -5.02 -7.26 -3.57

10 -24.52 -15.20 -36.29 -22.26 -21.98 -17.54 -28.02 -6.11 -17.23 -9.44

11 -31.30 -20.42 -44.49 -24.83 -29.31 -26.58 -35.78 -8.02 -21.02 -16.88

12 -43.74 -20.44 -59.30 -36.91 -42.69 -36.05 -36.15 -8.21 -21.31 -16.09

P Ensemble 
2-45

Ensemble 
5-85

BCC 

2-45

Can 

2-45

MIROC 

2-45

MRI 

2-45

BCC 

5-85

Can 

5-85

MIROC 

5-85

MRI 

5-85

1 8.94 10.18 6.13 5.67 0.96 22.99 9.80 8.30 13.52 9.09

2 9.00 18.48 19.44 14.01 -4.22 6.75 25.18 21.66 12.55 14.53

3 17.38 15.48 17.09 19.66 17.09 15.68 13.36 21.69 10.39 16.48

4 -2.78 -2.26 0.59 -4.57 -3.84 -3.28 -1.72 -5.04 4.60 -6.88

5 1.40 -0.26 -4.41 1.61 10.57 -2.16 -8.24 -3.20 10.11 0.30

6 -1.65 -2.90 -10.52 -0.24 -5.64 -6.18 -11.27 4.30 -11.56 -1.05

7 7.50 9.66 -10.80 17.30 9.92 13.58 -2.46 25.83 9.26 5.99

8 -1.47 1.61 -9.89 0.87 4.13 -0.99 -6.69 1.65 -0.34 11.84

9 0.83 3.91 -7.59 3.17 6.43 1.31 -4.39 3.95 1.96 14.14

10 1.82 4.22 0.89 -7.73 9.68 4.45 11.39 -5.22 8.90 1.80

11 -3.43 -2.72 -6.59 -19.00 -7.44 -20.70 1.54 -22.31 -19.31 -10.81

12 12.55 13.87 20.19 6.01 4.13 19.89 24.62 18.52 1.46 10.88
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3.3. Projected changes in temperature and precipitation 

First, we examined changes in average monthly temperature and 
precipitation across GCMs and SSPs (Table 1). The average monthly 
historical precipitation (2003–2020) was approximately 3.52 mm. 
However, this figure increases by 4.17 % to 3.67 mm under the SSP2–45 
and to 3.73 mm under the SSP5–85 scenario between 2024 and 2100. 

Table 1 shows notable trends in maximum and minimum tempera
tures, along with precipitation variations, across different GCMs and 
SSPs (2024-2100). For temperature, ESVA is projected to experience 
higher temperatures at the beginning of the year, with February and 
March identified as experiencing the most significant increases. Inter
estingly, a shift towards cooler weather is anticipated starting in August, 
highlighting a division between warmer and cooler seasons as we 
approach the year 2100. These results indicate an extreme trend in 
climate over ESVA, characterized by higher contrasts between hot and 
cold periods. For precipitation, an increase is observed as similar as the 
rise in temperatures, particularly from January to March while lowest 
precipitation is projected starting from April to November. This corre
lation suggests a potential for more pronounced seasonal extremes in 
ESVA. 

3.4. Projected flood peaks 

Flood peak is an important result from numerical models that is 
essential for hydrological assessment (Merz et al., 2022). Fig. 5 shows 
the projected flood peaks (a) Accomac, (b) Melfa, (c) Exmore, and (d) 
Cape Charles over future periods (2024-2100) under SSPs 2–45 and 
5–85. 

In general, we found that the number of high flood peaks increases 
starting from the mid-future period (2045–2069) across various regions 
compared to the near future (2024-2044) (Fig. 5). While projected flood 
peaks in the near future (2024-2044) remain relatively unchanged 
compared to the historical period, a higher number of record-breaking 
peaks are frequently observed in the mid and far future, with the more 
severe greenhouse gas emission pathway (SSP5–85) showing higher 
peaks compared to SSP2–45. Specifically, when comparing future pro
jected flood peaks towards 2100 with historical flood peaks 
(2003–2020), we observed increases ranging from 3.41 to 8.65 % during 
the mid-future and up to 8.9 % during the far future across examined 
regions (Fig. 5). Additionally, we found that Exmore is the most sus
ceptible to future flood peaks, followed by Melfa (projected peaks in
crease from 4.68 % in the mid-future to 5.84 % in the far-future), Cape 
Charles (4.27 % to 5.34 %), and Accomac (3.41 % to 4.32 %), 
respectively. 

Anomaly flood peaks are key indicators of detecting potential risks in 
hydrological cycles, with significant implications for ecosystems and 
human communities (Maurer et al., 2018; Villarini and Smith, 2010; Yin 
et al., 2009). We employed the IQR method (see section 2.4) to identify 
projected flood peaks under various GCMs and SSPs for the near future 
(2024-2044), mid future (2045–2069), and far future (2070–2100) over 
the Accomac, Melfa, Exmore, and Cape Charles regions. In general, there 
is an increasing trend in the variability of flood peaks from the near to 
the far future, with the most significant peaks occurring under the 
SSP5–85 scenario, showing a correlation with higher emission pathway. 

We found that the two populated towns, Exmore and Cape Charles, 
are projected to experience higher numbers of anomaly flood peaks 
starting from the mid-future, followed by Melfa and Accomac (Figs. 1 
and 5). During the mid-future period (2045–2069), the year 2059 stands 
out due to its severity, with significant flood peaks found across these 
four towns. This is followed by 2056, with noticeable projected peaks 
found in Melfa and Cape Charles; 2050, for Exmore and Melfa; and 2048, 
for Cape Charles. During the far future, the year 2080 stands out for 
Exmore, which is projected to have an exceptionally high peak of 12.04 
m3/s, found as the highest among the years in this period, considering its 
relatively small area (Fig. 1e). Consistent with the presented results, we 

observed an increase in flood vulnerability for more populated towns 
with higher housing units, specifically Exmore and Cape Charles (Fig. 1). 
This presents a potential challenge for evacuation during extreme 
weather events. The increased vulnerability can be explained by the 
higher impervious surface coverage in developed areas, which prevents 
water from infiltrating into the ground, exacerbating runoff and flooding 
issues. 

3.5. Seasonal streamflow changes 

Fig. 6 shows the average monthly streamflow differences between 
the historical period (2003–2020) and the near future (2024-2044), 
mid-future (2045–2069), and far future (2070–2100). In general, these 
towns experience an increase in streamflow during the winter months 
(November to March), leading to a wetter condition (Fig. 6). Conversely, 
the period from April to July is projected to be the driest, with a sig
nificant decrease in streamflow compared to the historical period. 
Notably, these changes between wet and dry seasons are substantial, 
which could result in severe environmental issues, particularly for 
important towns such as Accomac, where the majority of Accomack 
County’s administrative offices are located. As we approach 2100, the 
discrepancy in streamflow between wet and dry months is projected to 
exacerbate, especially under the higher emission scenario (SSP5–85). 
Additionally, wet months could become considerably wetter, while dry 
months show a substantial decrease in streamflow. 

3.6. Temporal and spatial variations in climate extremes 

In the previous section, we evaluated projected flood peaks for the 
period 2024–2100. However, quantifying these climate extremes both 
statistically and spatially is crucial. In this section, we employ the 12- 
month SPI index (see section 2.5) to assess the intensity and frequency 
of flood and drought events towards 2100. Fig. 7 and Table 2 show the 
magnitudes of these events for the ESVA and the four chosen towns 
(Fig. 1). In general, a drying trend is observed in the near-future period 
(2024-2044), as indicated by negative values (Fig. 7) while the entire 
ESVA is projected to experience wetter conditions during the mid- and 
far-future periods. 

During the near future (2024-2044), ESVA region exhibits dry con
ditions (SPI122−45

near = − 0.359), then transitions to mild-wet conditions 

during the mid future (2044–2069) (SPI122−45
mid = + 0.027), and reaches 

its peak wetness in the far future (SPI122−45
far = + 0.227) (Fig. 7 and 

Table 2). This trend, indicating a shift from drier to wetter conditions, is 
found to occur across the examined regions and is projected to intensify 
under the impacts of SSP5–85. Specifically, the driest conditions are 
forecasted under SSP5–85 with (SPI125−85

near = − 0.535), while a sub

stantially wetter condition is indicated for the far future (SPI125−85
far = +

0.317) (Table 2). Similarly, the four examined towns show similar trends 
compared to the ESVA. These results confirm our findings in previous 
sections, which suggest that (a) except for the dry conditions up to 2044, 
there is a general trend towards wetter conditions by 2100, starting from 
the mid-future period (2045–2069) while (b) higher emission projection 
(SSP5–85) is found to have more substantial impacts. 

Fig. 8 shows the spatial representation of drought intensity and the 
probability of drought occurrences using SPI values calculated based on 
the ensemble model for MD-ESVA region. In general, drought has been 
identified as the major trend in the near future (2024-2044), with higher 
emission levels show higher severity. Locals in ESVA confirmed recent 
moderate drought events starting from 2020s in ESVA during the 2024 
ESVA Climate Equity Workshop in Melfa, Virginia (Brideau et al., 2024) 
as well as in the July 2020 report by NOAA (NOAA, 2020). Furthermore, 
the Virginia Department of Environmental Quality (DEQ) recently 
placed ESVA on their drought watch advisory list (DEQ, 2024) due to 
increasing dry and drought conditions. These findings align with our 

T.-N.-D. Tran and V. Lakshmi                                                                                                                                                                                                               



Science of the Total Environment 947 (2024) 174289

9

Fig. 5. Historical and projected flood peaks at (a) Accomac, (b) Melfa, (c) Exmore, and (d) Cape Charles. Future projections are simulated using the SWAT model, 
incorporating inputs from GCMs under different SSP scenarios (2–45 and 5–85). Black lines represent historical flood peaks (2003–2020), red lines represent the 
ensemble model (2024-2100), which combines the inputs from GCM candidates, while dash grey lines show the projections from individual GCMs. Values in boxes 
represent mean flood peaks over different future periods (near, mid, and far) and the box plots show the distribution of flood peaks from the ensemble model in which 
anomaly peaks were detected using the IQR method. 
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Fig. 6. The average monthly streamflow difference in percentage between the historical data, GCMs, and ensemble model in (a) Accomac, (b) Melfa, (c) Exmore, and 
(d) Cape Charles over the near future (2024-2044), mid future (2045–2069), and far future (2070–2100) under the SPP2–45 and 5–85 scenarios. 
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observations of current drying trends. 
We found that ESVA is projected to become wetter towards 2100, 

reaching peak records during the far future, while the early period 

(2024-2044) is expected to exhibit dry conditions (Fig. 8c) and a higher 
occurrence probability of drought events, with the higher emission 
scenario indicating more severe impacts (Fig. 8d). Specifically, we found 

Fig. 6. (continued). 
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Fig. 7. Evaluation of drought and flood events using SPI-12 index for the (a) near future (2024-2044), (b) mid future (2045–2069), and (c) far future (2070–2100) 
under SSP2–45 and 5–85 scenarios. The red color indicates dry periods, while the blue color signifies wet periods using ensemble model. The severity classification of 
climate extremes can be found in Supplementary Table A3. The black dotted line represents the SPI ranges across different GCMs. 
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that the highest drought occurrence around under 25 % in the near 
future, whereas it is found to be higher under the SSP5–85 scenario. 
However, these figures are projected to decrease towards the mid- and 
far-future periods as ESVA becomes wetter (Fig. 8d). 

3.7. Historical seawater expansions, tides, and SLR 

Mean Sea Level (MSL, also known as sea level) is an average surface 
level of one or more among Earth’s coastal bodies of water from which 
heights such as elevation may be measured. According to Climate 
Change Service (C3S), European Centre for Medium-Range Weather 
Forecasts (ECMWF), and World Glacier Monitoring Service (WGMS), ice 
loss accounts for around 8226 gigatonnes (Gt) of water since 1976, of 
which 8100 Gt has been lost since 1991, and 3600 Gt since 2014 (C3S, 
2024). The year 2023 was recorded as the warmest year since global 
records began in 1850 at 1.18 ◦C above the 20th-century average of 13.9 
◦C (NOAA, 2024b). This marked the considerable ice lost from glaciers 
globally that was equivalent to 1.7 mm of SLR and this is approximately 
4.6 times the amount of ice contained in all glaciers in the European Alps 
(Farinotti et al., 2019). SLR arises from processes operating across a 
range of spatial and temporal scales involving the ocean, cryosphere, 
solid Earth, atmosphere, and land (IPCC, 2023). Since 1993, the global 
SLR observed an average increase of about 3.4 mm, particularly since 
2000 (Hugonnet et al., 2021). 

We first examine the historical seawater expansion along the coast of 
ESVA between 2000 and 2023 using NDWI (see section 2.6.2) (Fig. 9). 
Additionally, we present historical SLR and tide level provided by NOAA 
(NOAA, 2010) at four tidewatch stations: Chesapeake Bay Bridge Tunnel 
(CBBT; Virginia), Wachapreague (WACH; Virginia), Kiptopeke (KIPT; 
Virginia), and Ocean City Inlet (OCI; Maryland) (Fig. 9c). These stations 
are primarily located along the ESVA in Virginia (VA), except for the 
Ocean City Inlet, which is located in Maryland (MD). In this section, we 
also investigate the VCR region along with six disaster-vulnerable re
gions (Fig. 9a and b) due to their high susceptibility to coastal natural 
hazards and ecological significance to ESVA, identified using historical 
demographic data and coastal hazard events (see section 3.2). 

In general, there is a noticeable increase in seawater expansion due 
to SLR from 2000 to 2023 along the coast of ESVA and significantly in 
the VCR, particularly in the Wallops Island, Deep Hole, Chincoteague, 
and Black Point Landing regions (Fig. 9a and b). This trend was also 
statistically observed using records from tidewatch stations during this 
period, where MSL, which is the average height of the sea’s surface, 
showed significant increasing trends. Similarly, the MHW, the mean of 
all the high-water heights observed over the National Tidal Datum 

Epoch (NTDE), and the MLW, the mean of all low-water heights 
observed during the current NTDE, also showed significant increasing 
trends (p-value < 0.05) (Fig. 9c). Moreover, many parts of the four 
examined regions were shown to be submerged by seawater as detected 
in the year 2023. This situation is likely to worsen under future climate 
scenarios, which will be then discussed in the following section. 

3.8. Projected SLR towards 2100 

In the previous section, we discussed the historical seawater expan
sion caused by SLR over ESVA. However, it is important to understand 
this severe phenomenon for future context, in which we would investi
gate the projected SLR up to 2100 in this section. Specifically, we 
quantify the SLR magnitude under the SSP2–45 (mean global tempera
ture increase of 3 ◦C) and SSP5–85 (mean global temperature increase of 
5 ◦C) scenarios (IPCC, 2021, 2023) across the coast of ESVA, including 
(1) Tangier, (2) Saxis, (3) Wallops Island, (4) Deep Hole, Chincoteague, 
and Black Point Landing, and the VCR region (Fig. 10), which were 
identified as vulnerable due to natural hazards in section 3.2. 

SLR is influenced by processes that operate across a range of spatial 
and temporal scales involving the ocean, cryosphere, solid Earth, at
mosphere, and land (IPCC, 2023). This results from both global and 
regional processes, including thermosteric sea level change (also known 
as thermal expansion) and the melting of the Greenland and Antarctic 
ice sheets. In this work, we used the projected SLR for two greenhouse 
gas emission levels (SSPs 2–45 and 5–85) provided in the latest IPCC 
report on Ocean, Cryosphere, and Sea Level Change (IPCC, 2023). 
Specifically, these projections were extracted from the global mean sea 
level (GMSL) projections, which are derived from the independent 
contributions of land-water storage (e.g., surface water, soil moisture, 
groundwater storage, snow), ocean dynamic sea level change, alter
ations in Earth’s gravity and rotation, viscoelastic solid Earth deforma
tion, glacial isostatic adjustment, vertical land motion, and extreme sea 
level events (IPCC, 2023). These projections were updated using CMIP6 
models to project the ocean dynamic sea level contribution to relative 
sea level (RSL) change, updating the previous findings from the IPCC 
Assessment Report 5 (AR5). In this work, the newly defined SLR pro
jections under SSP2–45 based on the IPCC report on Ocean, Cryosphere, 
and Sea Level Change (IPCC, 2023) are projected as an increase of 0.09 
m by 2030, 0.20 m (2050), 0.48 m (2090), and 0.56 m (2100), while 
under SSP5–85, they are 0.10 m (2030), 0.23 m (2050), 0.63 m (2090), 
and 0.77 m (2100) (Fig. 10). These projections will be combined with 
the baseline scenario analyzed for the year 2023 (see section 3.7) to 
provide a continuous analysis of future SLR impacts on this region. 

Table 2 
Summary of the average SPI index for the Accomac, Melfa, Exmore, Cape Charles, and ESVA using the 
ensemble model across the near future (2024-2044), mid future (2045–2069), and far future (2070–2100). 
Positive (+) values, indicated in red, suggest a wet trend, while negative (−) values, shown in blue, denote a 
dry trend. The ranges for the SPI drought index can be found Supplementary Table A3. 

Site
Ensemble model (SSP2-45)

Near future (2024-2044) Mid future (2045-2069) Far future (2070-2100)

Accomac – 0.318 + 0.017 + 0.232

Melfa – 0.319 + 0.019 + 0.233

Exmore – 0.317 + 0.020 + 0.231

Cape Charles – 0.274 + 0.018 + 0.217

ESVA – 0.359 + 0.027 + 0.227

Ensemble model (SSP5-85)
Near future (2024-2044) Mid future (2045-2069) Far future (2070-2100)

Accomac – 0.570 + 0.048 + 0.363

Melfa – 0.571 + 0.049 + 0.364

Exmore – 0.561 + 0.028 + 0.371

Cape Charles – 0.544 + 0.021 + 0.376

ESVA – 0.535 + 0.097 + 0.317
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Our findings indicate that projections for the years 2030, 2050, 
2090, and 2100 reveal an escalating increase in SLR across ESVA and all 
examined regions, with a particularly notable intensification under the 
higher emission scenario (SSP5–85). We found that Tangier, Saxis, and 
Wallops Island are likely to be entirely submerged by future seawater 
due to their low elevations, while many parts of the Deep Hole, Chin
coteague, and Black Point Landing regions are projected to be highly 
inundated by seawater by 2100 (Fig. 10b). Additionally, we observed 
that coastal regions and the VCR region are highly susceptible to SLR, 
with most of the areas along the VCR coast expected to be submerged by 
rising seawater (Fig. 10a). In general, the rising sea levels underscore a 
severe threat to the safety of current coastal ecosystems and human lives 
over ESVA, where saltwater intrusion and coastal erosion are likely to 
become more exacerbated due to SLR. This trend highlights the urgent 
need for strategic planning and adaptation measures to combat SLR- 
induced inundation, which could exacerbate the decline of farmland, 
contamination of groundwater by saltwater, reduction in living areas, 

and ecological imbalances in the ESVA region. 

4. Discussion and suggestions 

First, we found an increase in both total population and population 
density in examined towns between 2000 and 2020, despite a slight 
decrease in the total population across the entire ESVA (Fig. 1; see 
section 3.2). This indicates that people tend to reside in populated towns 
and regions in recent years, resulting in a marked increase in the total 
number of housing units, especially between 2010 and 2020 (Fig. 1). 
Furthermore, by 2050, it is projected that 89 % of the U.S. population 
will reside in urban areas (UN Population Division, 2018), and this trend 
is also highlighted at the state level. Our findings indicate that an 
increasing number of people are moving to developed areas with higher 
populations (see section 3.2), driven by (1) the aim of having higher 
salaries and (2) the deterioration of accommodations mainly caused by 
inland and coastal flooding (A-NPDC, 2022; Russ, 2020). The rise in 

Fig. 8. Spatial distribution of drought intensity and occurrence probability using SPI index over different GCMs and the ensemble model within future periods, 
including near future (2024-2044), mid future (2045–2069), and far future (2070–2100). For (a-b), the blue color represents the wet trend while the red color 
represents the dry trend. For (c-d), different shades of yellow and grey are used to present the occurrence probability of drought in percentage. Darker colors 
represent higher severity. 
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high-population regions leads to the development of new infrastructures 
for accommodation and public services (as shown in our current trend 
between 2010 and 2020) (Fig. 1), which could have several conse
quences, including an increase in urban heat (Chen et al., 2021; Yin 
et al., 2018; Zhang et al., 2013). On the other hand, the increase in 
housing units and concrete-based infrastructure significantly increases 
the total impervious surface area (Zhang et al., 2013), resulting in higher 
urban heat records (Nguyen et al., 2022b; Yin et al., 2018; Zhou and 
Chen, 2018). This phenomenon could profoundly impact socioeconomic 
conditions and human well-being, as explained by the increase in heat 
stress (Oleson et al., 2015), leading to heat-related illnesses (Chen et al., 
2021). It is worth noting that the near future is expected to experience 
more severe impacts from drought, whereas the mid- and far-future 
periods are likely to see increased flooding impacts (see sections 3.5 
and 3.6). This is similar to recent findings for the coastal Tar-Pamlico 
River basin (North Carolina), where the region is found to be domi
nated by floods, especially more severe in low-lying areas (Tran et al., 
2024b). Besides, the driest months (April to July), especially during the 
near future (Table 6), could then increase the region’s vulnerability to 
extreme heat and affect human lives, agricultural activities, and busi
nesses. Furthermore, the continued rise in temperature towards 2100 
(Table 1) could diminish economic productivity, particularly in 

physically demanding occupations (Kjellstrom et al., 2009), and 
discourage outdoor activities such as shopping and dining, thus affecting 
businesses reliant on foot traffic (Hoehne et al., 2018). Conversely, the 
far future is predicted to be highly prone to flooding (Fig. 8 and Table 2), 
which could cause more water-related issues in terms of water sanitation 
and hygiene. 

Furthermore, ESVA is likely to face more challenges due to the rise in 
both unoccupied and vacant residential units. This concern, highlighted 
in our analysis (see section 3.2), comes with considerable implications. 
First, a substantial number of homes across ESVA are reported to suffer 
from a significant lack of indoor plumbing (Skeo, 2015). A report in 
2014 by the U.S. Fish and Wildlife Foundation revealed that out of 1226 
houses, 112 (approximately 9 %) lacked complete indoor plumbing fa
cilities (A-NPDC, 2022). It is important to recognize that these homes 
pose a risk as sources of human waste disposal, potentially exacerbating 
uncontrolled pollution due to insufficient management efforts. The 
increasing population density may intensify this issue, leading to more 
polluted water and materials being discharged into the ground, affecting 
groundwater quality. Furthermore, ESVA is known for its abundant 
groundwater resources (Sanford and Pope, 2010), which complicates 
the task of mitigating pollution once contamination occurs. Our findings 
indicate a trend towards wetter conditions with increased inland 

Fig. 8. (continued). 
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inundation and coastal-induced flooding due to SLR, further aggravating 
these issues, not only for groundwater but also for surface water, 
particularly ponds, which have recently been identified as emerging 
pollution sources in ESVA (Charlie, 2023). Additionally, while ESVA is 
known for its agricultural and poultry farming activities, the challenges 
posed by these industries are likely to be severely heightened by future 
inland and coastal flooding. A common issue identified is the exposure of 
residual manure to rain on poultry farms, allowing pollutants to enter 
the natural runoff through nearby streams (Tom, 2020) or percolate to 
deeper soil-water layers. Moreover, Russ (2020) indicated an increasing 
disappearance of family farms in ESVA as rising seawater gradually re
duces soil productivity. This implies that severe impacts from SLR to
wards 2100, as presented in our work, could then transform these 
farmlands into significant sources of pesticides and poultry waste. 
Furthermore, farmers’ practice of spreading untreated manure, rich in 
nitrogen and phosphorus, on the land exacerbates this problem. In 
normal conditions, the land can only absorb a limited amount of these 
chemicals (Kobell et al., 2015), which then highlights excess contami
nation in groundwater and land under this future context. In general, 
these challenges are likely to deteriorate living conditions in ESVA. 
Therefore, we propose the following recommendations for authorities 
and decision-makers:  

• Implement regulations and establish documentation to monitor both 
current and unused accommodations, as well as farmland, to reduce 
pollution from household and agricultural disposals.  

• Control the population in highly populated towns and regions to 
mitigate the impacts of regional flooding and extreme heat on human 
health.  

• Construct additional levees and disaster protection barriers using 
environmentally friendly materials along the coast. 

5. Conclusions 

In this study, we performed an in-depth analysis to quantify the 
anticipated changes in future extremes along with demographics, LULC 
changes, and SLR over ESVA, Virginia. Our work features the IPCC AR6 
report on the use of GCMs and SSPs, in which we highlight the impor
tance of understanding the correlation between hydroclimatic extremes 
and societal components. Main findings are summarized, as follows:  

(1) A notable increasing trend is found in meteorological conditions 
that lead to an increase in both the intensity and frequency of 
climate extremes over ESVA. Our findings indicate a transition 
from a dry (2024-2044) to a wetter condition (2045–2100), with 

Fig. 9. Historical coastal seawater changes (2000−2023) for (a) VCR and (b) examining sites, including (1) Tangier, (2) Saxis, (3) Wallops Island, (4) Deep Hole, 
Chincoteague, and Black Point Landing. The historical mean sea level (MSL), mean high water (MHW), mean low water (MLW), and mean tide level (MTL) are shown 
in (c). 
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increases in flood peaks ranging from 3.41 % to 8.65 % during the 
mid future and up to 8.9 % in the far future. 

(2) High-risk regions, identified using historical data of coastal haz
ards, demographics, and LULC, are projected to be more sus
ceptible to future climate impacts. Under future extreme 
meteorological conditions, these regions could face severe im
pacts such as heat-related illnesses, and surface and groundwater 
pollution. Besides, these issues could be exacerbated by the in
crease in population and concrete-based infrastructure, especially 
in developed and economically oriented regions.  

(3) Historical coastal risk caused by SLR was identified, while the 
current low-lying and coastal regions of the ESVA are projected to 
be more vulnerable to coastal- and SLR-induced flooding towards 
2100, in which higher greenhouse gas emission scenario shows 
more profound impacts. 

By incorporating human factors into our approach, we highlight the 
significant potential for ensuring the region’s long-term resilience and 
safety against the challenges posed by climate change and human ac
tivities. Consequently, this work is a valuable resource for stakeholders 

Fig. 10. Projected SLR over MD-ESVA and examined regions over ESVA (1) Tangier, (2) Saxis, (3) Wallops Island, (4) Deep Hole, Chincoteague, and Black Point 
Landing, and VCR under the SSP 2–45 and 5–85 scenarios between 2030 and 2100. 
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and regional authorities, assisting them in implementating sustainable 
strategies focused on disaster prevention and effective management of 
the region’s water resources. 
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