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ABSTRACT Non-Small Cell Lung Cancer (NSCLC) remains a leading cause of cancer-related deaths,
often characterized by complex mutational landscapes and resistance to monotherapies. To address this,
we developed a novel Boolean network (BN) model that integrates oncogenic and immunotherapy signaling
pathways to evaluate the efficacy of FDA-approved drug combinations in NSCLC. This computational
framework simulates the behavior of key cancer-related pathways under single and multiple mutation
scenarios, offering a system-level understanding of drug response. Our model incorporates sixteen targeted
inhibitors and simulates their effects on proliferation-promoting and apoptosis-regulating genes. Drug
efficacy was quantitatively assessed using a normalized mean size difference (NMSD) metric. Unlike prior
models that examine targeted therapy or immunotherapy in isolation, our integrated approach enables
systematic evaluation of synergistic effects between these modalities. Key results show that the inclusion
of immunotherapy—particularly PD-L1 inhibitors such as Durvalumab—significantly improves therapeutic
outcomes, especially in networks with multiple co-occurring mutations. The most effective four-drug
combination identified (Durvalumab + Lumakras + Ribociclib + Capivasertib) targets immune evasion,
KRAS signaling, cell cycle regulation, and AKT activation, reducing tumor-promoting signals by 89.2%
compared to the untreated state. This study provides a theoretical and mechanistic basis for combining
immune checkpoint blockade with targeted therapies in NSCLC and demonstrates the utility of BNmodeling
in optimizing personalized, mutation-specific treatment strategies.

INDEX TERMS Boolean network, computational model, durvalumab, immunotherapy, lung cancer,
NSCLC, PD-L1, signaling pathway, targeted therapy.

I. INTRODUCTION
Non-Small Cell LungCancer (NSCLC) constitutes themajor-
ity of lung cancer cases worldwide, contributing significantly
to cancer-related morbidity and mortality. Globally, NSCLC
accounted for approximately 80–85% of all lung cancer
cases. There were 2,480,675 new cases of lung cancer in 2022
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[1], highlighting its pervasive impact. In the United States
alone, NSCLC ranks as the second most common cancer. The
American Cancer Society estimates that in 2024, there will
be approximately 234,580 new cases of lung cancer in the
US (116,310 in men and 118,270 in women). It also projects
about 125,070 deaths from lung cancer (65,790 in men and
59,280 in women)) [2], [3]. Despite significant advancements
in targeted therapies and immunotherapy, achieving the best
therapeutic outcomes in NSCLC remains challenging due to
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the inherent heterogeneity and complexity of the disease [4],
[5].

Survival rates for NSCLC vary significantly based on
the stage at diagnosis, with localized NSCLC presenting
a more favorable 5-year survival rate of approximately
63%, compared to 35% for regional spread and 8% for
distant metastases [6]. This underscores the critical need
for continued research and innovation in NSCLC treat-
ment. Advances in understanding the molecular landscape
of NSCLC and the development of robust computational
models to predict treatment responses are pivotal in guiding
personalized therapeutic approaches and improving patient
outcomes [5], [7].

Treating NSCLC presents significant challenges, despite
notable advancements in therapeutic options. One of the
primary obstacles is the inherent heterogeneity of NSCLC,
which includes various histological subtypes and genetic
mutations [5], [8]. This diversity necessitates personalized
treatment approaches tailored to individual patient profiles,
which adds complexity to clinical decision-making [9].
Personalized medicine has emerged as a promising strategy
to enhance treatment efficacy by tailoring therapies to indi-
vidual patient characteristics [10]. This approach requires
a comprehensive understanding of the disease’s molecular
underpinnings, which advancements in genomic and compu-
tational technologies have greatly aided [5], [7].
Targeted therapies directed at specific genetic alterations,

such as Epidermal Growth Factor Receptor (EGFR) muta-
tions and Anaplastic Lymphoma Kinase (ALK) rearrange-
ments, have demonstrated good efficacy in the treatment of
NSCLC [11]. However, challenges such as acquired resis-
tance to targeted therapies and the identification of the
best possible treatment strategies for diverse patient pop-
ulations continue to persist [12], [13]. Continued research
is essential to fully understand and overcome these mech-
anisms of resistance, paving the way for more durable and
effective treatment strategies in NSCLC [13]. Additionally,
late diagnosis often occurs in NSCLC cases, leading to
advanced stages at presentation and limiting treatment effec-
tiveness [14]. For patients with advanced disease, treatment
options may be further constrained, highlighting the need for
expanded therapeutic strategies. Moreover, the toxicity asso-
ciated with current treatments, particularly chemotherapy,
poses challenges in managing patient symptoms and main-
taining treatment adherence.While immunotherapy generally
has lower toxicity, it still presents certain challenges that
must be carefully managed [15], [16]. Cost and accessibility
issues also impact treatment decisions, with novel therapies
often being expensive and not universally available. Lastly,
limited access to clinical trials hinders the exploration of
new treatment modalities and combinations, particularly for
underserved populations [17]. Addressing these challenges
requires continued research into NSCLC biology, advance-
ments in precision medicine approaches [5], improvements
in early detection methods, and efforts to ensure equitable

access to effective treatments for all NSCLC patients. Tradi-
tional targeted therapies, though promising, often fall short
due to the genetic heterogeneity and adaptive resistance
mechanisms of NSCLC tumors [13], [18], [19]. The advent
of immunotherapies, particularly those targeting the PD-1/
PD-L1 pathway, has shown significant potential in enhancing
anti-tumor responses [16], [20], [21].

Motivated by these considerations, we used a Boolean
network (BN) [22], [23] to model the pathways and iden-
tify the best possible drug targets and thereby identify the
best drug combinations [24], [26], [27], for NSCLC treat-
ment by integrating targeted therapy and immunotherapy
pathways. BNs are computational models that simplify gene
behavior by representing each gene’s regulatory state as
either ‘on’ (upregulated) or ‘off’ (downregulated). This helps
researchers’ study how genes interact with each other and
identify key genes that could be potential drug targets.
In recent years, the use of such models has proven to be
an effective tool for simulating and analyzing the intricate
signaling pathways involved in the progression of various
cancers [7], [28], [29], [31]. This research evaluates the effi-
cacy of combining targeted therapy with immunotherapy in
controlling specific genes within the NSCLC pathway using
a BN model. By integrating the PD-L1/PD1 immunotherapy
pathway into our BN model, we can assess the synergis-
tic effects of these therapies. The PD-L1/PD1 pathway,
known for its significant clinical outcomes, is crucial in
enhancing the overall effectiveness of the NSCLC treatment
regimen [16], [32].

Computational modeling of cancer treatment responses
faces several significant challenges [7], [8], [10], [11], [19],
[20], [31], including capturing the complexity of cellular
signaling networks, accounting for genetic heterogeneity
among tumors, and integrating diverse treatment modalities
with distinct mechanisms of action. Previous computational
approaches have typically focused on either targeted therapy
affecting specific oncogenic pathways or immunotherapies
modulating immune responses, but rarely both simultane-
ously [6], [7], [20]. Additionally, most models struggle to
translate theoretical predictions into clinically actionable
insights due to their complexity or reliance on parameters
that cannot be easily measured [8]. Our research addresses
these challenges by developing an integrated Boolean net-
work model that combines both treatment modalities and
produces predictions directly relating to FDA-approved
therapies.

The paper is organized as follows. In Section II,
we describe the molecular pathways and key proteins
involved in the progression of NSCLC. Section III presents
the computational methodology for analyzing the abnormal-
ities and therapeutic interventions for the NSCLC signaling
pathways. In Section IV, we present the results in terms of the
predicted efficacy of different drug combinations. Section V
concludes the paper by summarizing the main results and
outlining the topics for future research.
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II. MOLECULAR PATHWAYS AND KEY PROTEINS IN
NSCLC PROGRESSION
Cells perform essential functions such as metabolism and
differentiation through signaling pathways. These pathways
consist of various molecules, including proteins, genes, and
transcription factors, that work together in a coordinated
manner to perform specific cellular functions [32]. Signal-
ing pathways in cells are activated by stimuli or signaling
molecules such as hormones or growth factors that bind
to specialized proteins called receptors on the cell surface.
These receptors then activate downstream molecules, ini-
tiating a cascade of intracellular signaling activities. This
signaling continues until the final molecule in the pathway
is activated. Disruptions in signaling pathways or abnor-
mal activation/inhibition due to genetic mutations can lead
to aberrant signaling behavior, resulting in the loss of cell
cycle control and potentially causing cancer [33]. Under-
standing the key proteins and pathways involved in NSCLC
progression is crucial for developing targeted therapies and
improving patient outcomes. This section delineates the roles
of critical pathways implicated in NSCLC, their interactions,
and their contributions to tumorigenesis. Our goal was to
adopt a system-level approach to examine the impact of muta-
tions on entire signaling pathways, rather than focusing solely
on the nature of the genetic mutations, and a brief description
of each pathway (associated with NSCLC) follows.

A. EGFR PATHWAY
EGFR (Epidermal Growth Factor Receptor) is a trans-
membrane receptor tyrosine kinase that, upon activation by
ligands such as Epidermal Growth Factor (EGF) and Trans-
forming Growth Factor-alpha (TGF-α), triggers a series of
downstream signaling pathways. These pathways include
the RAS-RAF-MEK-ERK and PI3K-AKT cascades, which
collectively promote cell proliferation, survival, and dif-
ferentiation [34]. The activation process starts with the
binding of EGF or TGF-α to EGFR, resulting in receptor
dimerization and subsequent autophosphorylation of tyrosine
residues [35]. In NSCLC, EGFRmutations or overexpression
often led to dysregulated cell growth. To address this, targeted
therapies such as Osimertinib, a tyrosine kinase inhibitor
(TKI) [36], [37], have been developed to specifically inhibit
the aberrant EGFR signaling pathways.

B. ERBB2 PATHWAY
ERBB2 is also known as Human Epidermal Growth Factor
Receptor 2 (HER2) and is another member of the EGFR
family. It is a receptor tyrosine kinase (belonging to the ErbB
family of receptor tyrosine kinases) and is involved in cell
growth, differentiation, and survival, and is often amplified
in NSCLC [38], [39]. Ligand binding to partner receptors
(EGFR) leads to dimerization with ERBB2, resulting in
autophosphorylation and activation of its kinase domain. Its
overexpression results in enhanced dimerization and acti-
vation of downstream signaling pathways, particularly the

PI3K/AKT, PLCγ -PKC, and MAPK pathways, contributing
to increased cell proliferation and tumor growth [40]. Anti-
ERBB2 therapies, such as Trastuzumab-Deruxtecan, have
shown efficacy in targeting ERBB2-positive cancers [41].

C. ALK PATHWAY
ALK (Anaplastic Lymphoma Kinase) is a receptor tyrosine
kinase involved in cell growth and differentiation [42]. The
EML4-ALK fusion protein results from chromosomal rear-
rangement and acts as a constitutively active tyrosine kinase,
driving oncogenic signaling like MAPK, PI3K-AKT, and
JAK-STAT [42]. This fusion is a hallmark of a subset of
NSCLC and is targeted by ALK inhibitors such as Lorlatinib,
which have demonstrated significant clinical efficacy [43].

D. KRAS PATHWAY
KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) is
a small GTPase that acts as a molecular switch in signaling
pathways controlling cell growth and survival [44]. KRAS
mutations are prevalent in NSCLC and result in the con-
stitutive activation of the MAPK signaling pathway [44],
promoting cell proliferation and survival. Direct targeting of
mutant KRAS has been challenging, but recent developments
like the KRAS G12C inhibitor: Sotorasib (Lumakras) offer
promising therapeutic options [45].

E. PI3K/AKT/MTOR PATHWAY
The PI3K/AKT/mTOR pathway is crucial for regulating cell
growth, proliferation, and survival. Activation is triggered
by receptor tyrosine kinases (e.g., EGFR) and G-protein-
coupled receptors [35]. PI3K (Phosphatidylinositol 3-kinase)
activation leads to the production of Phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), which recruits and activates
Protein kinase B (PKB/AKT). AKT phosphorylation tar-
gets are involved in cell growth and survival (e.g., mTOR,
BAD) [46]. PTEN (Phosphatase and Tensin Homolog) is a
tumor suppressor that negatively regulates the PI3K/AKT
pathway [46]. Loss of PTEN function, through mutations
or deletions, leads to hyperactivation of the PI3K/AKT
pathway, contributing to tumorigenesis by promoting cell
survival and proliferation. Dysregulation of this pathway,
through mutations in PI3K or loss of PTEN, is common
in NSCLC. Inhibitors targeting various components of this
pathway, such as Alpelisib (PI3K inhibitor) and Everolimus
(mTOR inhibitor), are being explored for their therapeutic
potential [47].

F. JAK/STAT PATHWAY
Activation of the JAK/STAT (Janus kinase/signal transducer
and activator of transcription) pathway, particularly STAT3,
is implicated in NSCLC progression [48]. Constitutive acti-
vation of STAT3 promotes cell survival, proliferation, and
immune evasion. Targeting the JAK/STAT pathway, either
through direct STAT3 inhibitors or JAK inhibitors [48], rep-
resents a therapeutic strategy to counteract its oncogenic
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FIGURE 1. NSCLC signaling pathway with all drugs intervention points.

effects. Currently, there are no available FDA-approved drugs
for treating STAT mutations.

G. MAPK PATHWAY
The MAPK (Mitogen-Activated Protein Kinase) pathway
controls cell growth, differentiation, and survival. Activa-
tion is triggered by growth factors binding to receptor
tyrosine kinases. Downstream, it involves sequential acti-
vation of RAS (rat sarcoma virus protein), RAF (Rapidly
Accelerated Fibrosarcoma), MEK (Mitogen-activated pro-
tein kinase kinase), and ERK (Extracellular signal-regulated
kinase) [49]. Mutations in components of this pathway
(e.g., RAS, RAF) lead to uncontrolled proliferation [50].
The MET (Mesenchymal-Epithelial Transition factor) is a
proto-oncogene that encodes the MET receptor tyrosine
kinase. The MET receptor and its ligand, hepatocyte growth
factor (HGF), play crucial roles in various cellular processes,
including growth, survival, angiogenesis, and metastasis.
In NSCLC, MET amplification or mutations lead to con-
stitutive activation of downstream signaling, like MAPK,

PI3K-AKT, RAS, and JAK/STAT pathways promoting tumor
growth and metastasis [45]. Inhibitors like Crizotinib target
the aberrant MET signaling in NSCLC [51].

H. DDR PATHWAY
The DDR (DNA Damage Response) pathway plays a crucial
role in maintaining genomic integrity and preventing muta-
tions that can lead to cancer. In NSCLC, key proteins such
as MDM2 (Murine Double Minute 2), PD-L1 (Programmed
Cell Death Ligand 1), and retinoic acid are significant com-
ponents of this pathway. MDM2 is an E3 ubiquitin ligase
that negatively regulates the tumor suppressor p53, thereby
influencing cell cycle progression and apoptosis in response
to DNA damage. The overexpression of MDM2 in NSCLC
can compromise the cell’s ability to induce cell cycle arrest
and apoptosis, promoting tumor progression [52]. Targeting
these components—MDM2, PD-L1, and retinoic acid—can
provide a multifaceted approach to improve treatment effi-
cacy inNSCLCby addressing both the repair of DNAdamage
and the immune evasion strategies employed by tumors.
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FIGURE 2. (a) Example of a signaling pathway. (b) BN model example of the signaling pathway. (c) BN with a stuck-at-1 (SA1) fault at gene D.
(d)BN with drug intervention at gene D to repair the SA1 fault.

FIGURE 3. Boolean Network model for NSCLC pathway with PDL1, this diagram also shows its ideal input and output states.

I. ITP53 PATHWAY
p53 (Tumor Protein p53) is a tumor suppressor protein that
regulates the cell cycle and apoptosis. Activated by cellular
stress or DNA damage, it induces cell cycle arrest, DNA
repair, and apoptosis [52]. MDM2, a negative regulator of
p53, inhibits its activity by promoting its ubiquitination and
degradation. This interaction is crucial because it prevents
p53 from accumulating in cells under normal conditions.
However, in response to stress, the p53-MDM2 interaction
is disrupted, allowing p53 to activate its target genes. TP53 is
the name of the gene, while p53 is the name of the protein that
the gene encodes. TP53 mutations are common in NSCLC,
leading to loss of tumor suppressor function and contributing
to tumor progression. [53].

J. PD-L1 PATHWAY
PD-L1 (Programmed Death-Ligand 1) expression on tumor
cells interacts with PD-1 on T cells, leading to immune
evasion. High PD-L1 expression is associated with poor

prognosis in NSCLC [52]. PD-L1 is a critical immune check-
point protein that can be upregulated in response to various
stress signals, including DNA damage. Its expression allows
cancer cells to evade immune surveillance, making it a tar-
get for immunotherapy. The interplay between PD-L1 and
the DDR pathway highlights the importance of targeting
immune evasionmechanisms in conjunction with DNA repair
processes. Immune checkpoint inhibitors, such as Durval-
umab, block the PD-1/PD-L1 interaction, reactivating the
immune response against tumor cells and improving patient
outcomes [54].

The progression of NSCLC is driven by a complex
interplay of oncogenes, tumor suppressors, and signaling
pathways. Key proteins such as EGFR, ERBB2, MET,
EML4-ALK, PTEN, KRAS, p53, and components of the
PI3K/AKT/mTOR and JAK/STAT pathways play critical
roles in tumorigenesis. Understanding these molecular mech-
anisms has led to the development of targeted therapies,
which are transforming the treatment landscape of NSCLC.
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III. METHODOLOGY FOR ANALYSIS OF GENE
MUTATIONS IN THE NSCLC PATHWAY
This paper aims to computationally predict the effects
of different combinations of FDA approved drugs on the
NSCLC pathway under the presence of genetic mutations.
We achieve this by simulating the effect of combinations
of multiple drugs on the pathway under various combi-
nations of genetic mutations and calculating the efficacy
of each drug combination in maximizing cancer cell death
and minimizing their proliferation, as quantified by an effi-
cacy metric known as the normalized mean size difference
(NMSD) which is defined later in the paper. Ranking the
drug combinations in terms of NMSD allows us to determine
which pathway elements serve as potential drug targets. The
details of our methodology are described in the following
subsections A-F.

A. DEFINE THE NSCLC PATHWAY AND PROTEINS
For this study, we focused on a network of 42 proteins
and genes (Fig. 1) to understand their interconnections
and interactions in the progress of NSCLC. These proteins
are part of a gene regulatory network (GRN). GRNs are
used to represent the complex interactions between genes,
proteins, and other molecular components that govern bio-
logical processes. In NSCLC, the GRN includes key players
such as EML4-ALK, KRAS, etc. which interact within
various signaling pathways mentioned in the last section,
to influence tumorigenesis, proliferation, and apoptosis [55].
Understanding these complex interconnections within the
GRN is essential for developing targeted therapies that can
effectively address the unique molecular characteristics of
NSCLC and improve patient outcomes. By studying these
interactions, we aim to uncover the underlying mechanisms
of diseases that occur when mutations disrupt normal cellular
processes.

Figure 1 provides a comprehensive visualization of the
integrated NSCLC signaling pathway with all potential
drug intervention points highlighted. The network illus-
trates the complex interconnections between key oncogenic
pathways, including EGFR, PI3K/AKT/mTOR, MAPK, and
PD-L1/PD-1 signaling. Green nodes represent growth factors
and receptors that initiate signaling cascades. Blue nodes
represent reporter genes and cell cycle regulators that con-
trol apoptosis and proliferation. Yellow nodes highlight all
other genes and proteins that participate in disease pro-
gression. Purple diamond-shaped nodes mark the 16 drug
intervention points explored in our study, demonstrating
how targeted therapies and immunotherapies can modulate
different aspects of the network. Solid lines with arrows
indicate activating interactions, while solid lines ending with
a hammer represent inhibitory relationships. This compre-
hensive pathway diagram serves as the foundation for our
Boolean network model, capturing the essential regulatory
relationships that drive NSCLC progression and treatment
response.

B. MODELING THE SIGNALING PATHWAY WITH
BOOLEAN NETWORKS
A key aspect of GRNs is their ability to model the regulatory
mechanisms underlying signaling pathways. To study these
pathways, different computational modeling approaches have
been developed. One widely used approach is the BN model,
which provides a simplified representation ofGRNs by focus-
ing on the binary states of gene activation or inactivation [57],
[58], [59].

In a BN modeling approach, each gene or regulatory ele-
ment is represented as a node that can exist in one of two
states: active (2) or inactive (0) (Fig. 2). These binary states
can approximate the up-regulation or down-regulation of
gene expression levels observed in GRNs. The BN model
captures the interactions and dependencies between genes,
providing insights into their dynamic behavior. By applying
BNs to model GRNs, researchers can explore how various
genes interact and regulate each other in response to different
signals, thereby gaining a better understanding of complex
biological networks. This switch-like behavior of many genes
can be effectively modeled within a binary framework, mak-
ing BN a suitable choice for modeling GRNs. Furthermore,
in a GRN, a gene is influenced by one or more other genes.
This interaction among genes can be modeled as a Boolean
logic function.

Modeling gene regulatory networks using BN was first
introduced in 1969 [60], [61], [62]. Formally, a BN consists
of a collection of binary-valued variables X = {x1, x2, x3,. . . ,
xn} and a set of Boolean functions F = {f1, f2, f3,. . . , fn}
[63], [64]. BN can also be represented as a directed graph G,
where the elements of X represent nodes or system variables,
connected by directed edges [64]. These nodes are binary-
valued, indicating they can be either inactive (0) or active
(2). The causal interactions between nodes are described by
the Boolean functions in F [64]. In the context of signaling
pathways, elements such as genes and transcription factors
can be upregulated (activated) or downregulated (inhibited),
and this behavior can be modeled using the binary framework
of BNs. We provide an example of BN modeling using a
simple signaling pathway in Fig. 2.

In Fig. 2(a), we present a signaling pathway composed of
six genes (A-F). When genes A and B are upregulated, they
bind together to activate gene C. Activated gene C inhibits
gene E, while gene D activates gene E. Subsequently, acti-
vated gene E activates gene F. In this example, we model
these genes using BN by considering them as either activated
(upregulated) or inhibited (downregulated). Fig. 2(b) illus-
trates the BN equivalent of the pathway shown in Fig. 2(a).
Since both genes A and B must be activated to turn on
gene C, this relationship is modeled using a logical AND
gate, represented by the Boolean function C=A&B. Gene C
inhibits gene E; hence, the signal from gene C to gene E first
passes through a NOT gate. This signal then combines with
the input signal from gene D via an OR gate to regulate gene
E. Therefore, the Boolean function for gene E is E= (∼C)|D.
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TABLE 1. Inputs of the NSCLC boolean network (without faults) and their
corresponding non-proliferative states.

Gene E activates gene F, and this interaction is represented
using a follower or buffer, with the Boolean function for gene
F given by F = E.

C. MODELING ABNORMALITIES IN THE BOOLEAN
NETWORK
Cancerous mutations in genes can cause a gene to be perma-
nently up-regulated or down-regulated, resulting in abnormal
or faulty signaling. When such a mutation occurs in a gene
then it is no longer influenced by the activity of other genes.
Such permanent up-regulation or down-regulation could be
modeled as a stuck-at-fault (0 or 1) in the BN model. A gene
stuck at state ‘0’ indicates that the gene is inactive, while
a gene stuck at ‘1’ signifies that the gene is active. Thus,
if a cancerous mutation causes the gene to become upregu-
lated/active, then we model this mutation with a stuck-at-1
(SA1) fault and if the mutated gene becomes downregu-
lated/inactive then we model it as a stuck-at-0 (SA0) fault.
An example of a stuck-at-1 fault is shown in the toy signaling
model in Fig. 2(c).
The NSCLC BN model in this study has 10 inputs, which

include growth factors, and tumor suppressors, and its 9 out-
puts are reporter genes (Fig. 3). Therefore, the input and
output vectors for our NSCLC pathway diagram can be rep-
resented as follows:

Input = [P16, KRAS, EGF, TGFα, HGF, EML4ALK,
PTEN, KIF5BRET, DNA_Damage, PAMP]

Output = [RARbeta, CD1, Rb, S6K, BAD, CASP9, Fork-
head, FHIT1, T_Cell]

Figure 3 presents our complete Boolean Network model
for the NSCLC pathway, integrating the PD-L1 immune
checkpoint pathway with traditional oncogenic signaling.
The diagram illustrates the logical architecture of the net-
work, comprising 42 nodes (genes/proteins) interconnected
through logical operations (AND, OR, NOT and Buffer) that
represent their regulatory relationships. Input nodes (depicted
on the left) include growth factors (EGF, TGF-α, HGF), onco-
genes (KRAS, EML4-ALK, KIF5BRET), tumor suppressors
(P16, PTEN), and immune stimuli (PAMP, DNA_Damage).
Output nodes (shown on the right) represent critical cellular
processes and include proliferation markers (CD1, Rb, S6K),
apoptosis regulators (BAD, CASP9, Forkhead), tumor sup-
pressors (FHIT1, RARbeta), and immune response indicators

TABLE 2. Outputs of the NSCLC boolean network (without faults) and
their corresponding non-proliferative states.

(T_Cell). The non-proliferative input state of the pathway
diagram is shown below the input nodes, where tumor
suppressors are activated (1) and oncogenic signals are deac-
tivated (0). Likewise, the ideal output state is indicated below
the output nodes, with cancer-promoting genes turned off (0),
and tumor-suppressive, apoptotic, or immune-response genes
turned on (1). This model structure allows us to simulate the
effects of mutations (represented as stuck-at faults) and drug
interventions on the system’s behavior, enabling quantitative
assessment of treatment efficacy. For this BN model, the
ideal test input state is defined as when the proliferative
inputs such as the growth factors are turned off and the tumor
suppressors are turned on. Thus, the non-proliferative test
input and consequently the non-proliferative output (when
there are no gene mutations in the pathway) are defined as
follows:

Ideal Input = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
Ideal Output = [0,0,0,0,1,1,1,1,1]
We define the non-proliferative input/output states in this

manner because, for a healthy cell, a non-proliferative input
state implies that the tumor suppressors PTEN and P16 are
activated (state 1). In contrast, the other proliferative inputs
are deactivated (state 0). Thus, the corresponding fault-free
output must have all cancer-promoting reporter genes turned
off and all cancer-suppressing genes such as the pro-apoptotic
genes turned on. This condition can be verified in the muta-
tion (fault)-free network shown in Fig. 3, where the inputs
are in an ideal state, which means all the growth factors are
turned off and all the tumor suppressor genes are turned on.
Boolean logic 1 and 0 were used in our BN model (Fig.3)
to define these On and Off conditions respectively. The non
proliferative input and its corresponding output state for the
fault-free BN depicted in Fig. 3 are displayed in Tables 1
and 2, respectively.

To evaluate drug efficacies, we considered that multiple
faults could occur simultaneously in the network, meaning
the NSCLC pathway can have more than one mutation at a
time. Due to computational complexity, we limited our study
to a maximum of three faults (mutations) occurring at a time
in BN.With 42 individual faults, we evaluated drug efficacies
across 42C1 +

42C2 +
42C3 = 12383 combinations of faults.

The three terms in the above summation enumerate all the
possible combinations of 42 mutations that can occur when
we restrict ourselves to a maximum of three simultaneously
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TABLE 3. List of all drugs and corresponding targets [25], [26], [27].

occurring mutations. The two and three-fault scenarios are
the cases when two and three mutations occur across any of
the 42 possible genes in the signaling pathway. We consider
all the possible combinations of two and three faults that can
occur across the 42 fault locations (42C2, 42C3) and simulate
the effect of each drug combination on these combinations of
mutations using the BN model.

D. DRUG SELECTION AND MODELING DRUG
INTERVENTION
Drugs typically exert their effects by interacting with recep-
tors on the cell surface or enzymes within cells. They can
either inhibit (block) or enhance (induce) the function of a
protein by binding to its target receptor site. This drug interac-
tion can be represented in a BN by either forcibly suppressing
or enhancing the value of a gene at the appropriate location.

To illustrate this type of modeling, we return to our earlier
toy example Fig. 2(d) illustrates the application of a drug that
inhibits its target molecule, gene D. In the BN, this interaction
is represented by a NOT gate (inhibition) followed by an
AND gate (binding). We considered gene D as a faulty gene
that is unexpectedly always turned on and stuck at a value of
‘1’ (Fig. 2(c)) which means that whatever the value of gene
C is, it is not at all controlling the state of gene E or F as
it is supposed to. When we use an inhibitory drug at D at
state 1 (which means the drug is present or active), it sends
an inhibitory signal (0) to gene D (Fig. 2(d)). Gene E not only
receives a signal from gene D but also from gene C, meaning
both gene C and gene D, with the effect of the inhibitory
drug incorporated, influence gene E, which is modeled using
an AND gate. Because the AND gate receives an inhibitory
signal (0) from the drug, it successfully inhibits gene D.
Recall that in our Boolean gene regulatory network modeling
approach, whenever a protein binds with another protein,
we model it using an AND gate. A similar modeling is shown
for the drug because, in practical applications, the drug binds
with the targeted protein. It should be noted that, in the
presence of the drug, the mutation in gene D, represented by

a stuck-at-1 fault, can no longer influence the state of gene E
or its upregulated gene F.

In this study, we evaluate the effect of 16 different small-
molecule inhibitory drugs (Table 3) on an NSCLC signaling
pathway with mutations. We considered a total of 42 unique
mutation locations. The objective was to determine how
effective these drugs were in mitigating the aberrant behavior
caused by mutations in the NSCLC network. Table 3 outlines
the sixteen drugs and their molecular targets. We focus on
targets rather than specific drugs, as this study is computa-
tional, leaving the selection of specific drugs to clinicians.
Furthermore, it is possible that certain drug targets don’t
currently have any approved medications accessible, and our
approach can highlight the potential value of designing new
drugs for these targets. For example, in Table 3 we indi-
cated a STAT Inhibitor to target STAT3/5 because there is
no FDA-approved drug in the market that targets it. For the
16 drugs considered here, we assign the value ‘1’ when the
corresponding drug is being used and ‘0’ when it is not being
used.

E. GENERATE DRUG COMBINATIONS
In addition to the 16 drugs, which can be administered
individually, we also evaluate the results of using drug com-
binations. Due to computational complexity and the potential
adverse effects of administering too many drugs simultane-
ously, we limit our study to a maximum of 4 drugs applied
at once. For each drug or drug combination, we determine
its drug-induced output across each of the 12,383 fault com-
binations and then compare the drug-induced output to the
non-proliferative output.

We used combinatorial techniques to generate all possible
combinations of the drugs mentioned in Table 3. Since there
are 16 drugs and we considered combinations of up to four
drugs at a time, this results in a total of 16C1 +

16C2 +
16C3 +

16C4 = 2516 drug combinations. The Boolean network was
then simulated with these drug combinations in the presence
of one, two, or three faults (mutations).

F. COMPUTE THE EFFECTS OF DRUG COMBINATIONS
For each drug combination, we computed the effect of intro-
ducing one, two, or three mutations in the pathway. From a
system-level perspective, the Boolean network (BN) repre-
senting NSCLC is analogous to a multi-input multi-output
(MIMO) digital circuit. In the absence of faults or muta-
tions, the output of the system is determined solely by its
inputs. Thus, a fault-free network receiving non-proliferative
input signals accurately reflects the signaling behavior of a
healthy cell. In contrast, if the same non-proliferative inputs
are applied to a BN with faults (e.g., mutations), the net-
work produces a different output, representing the aberrant
signaling typical of cancerous cells. This divergence in out-
put highlights that cancerous cells do not share the same
input-output mapping as healthy cells. Therefore, when a
non-proliferative signal is applied in the presence of muta-
tions, the resulting output deviates from the expected healthy
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TABLE 4. A sample NMSD chart.

state, illustrating the impact of dysregulated signaling in
cancer. Therefore, administering drugs to a network with
faults has the potential to drive the output towards a non-
proliferative state. To measure the efficacy of each drug, it is
essential to assess how much the drugged output differs from
the non-proliferative output state. To quantitatively measure
this difference between the outputs (it must be noted that the
outputs of a BN are binary-valued vectors) we used the size
difference (SD) score. SD measures the difference between
two binary-valued vectors, with its value increasing propor-
tionally with greater dissimilarity.

To mathematically describe SD, we have taken two binary
(0 or 1) valued vectors a = (a1,. . . , an) and b = (b1,. . . , bn),
where n represents the size of the vectors [64]. Then, we can
construct a confusion matrix M as follows:

M =

ai = 1 ai = 0

bi = 0

bi = 1 (
A B
C D

)
(1)

Equation 1 introduces the confusion matrix M, which
serves as a fundamental tool for comparing binary vectors
in our Boolean network analysis. This matrix categorizes
each element comparison into one of four possible outcomes:
when both elements are 1 (A), when only the second element
is 1 (B), when only the first element is 1 (C), or when both
elements are 0 (D). This classification enables us to quantify
both the matches (A and D) and mismatches (B and C)
between the vectors, providing a mathematical foundation
for measuring the difference between non-proliferative and
proliferative states in our network. Therefore, with the help
of the confusion matrix M (Refer to ‘‘(1)’’), we define SD as
follows:

SD(a, b) =

(
B+ C

A+ B+ C + D

)2

, SD ∈ [0, 1] (2)

Equation 2 defines the SD metric, which quantifies the
dissimilarity between two binary vectors. This metric is
particularly well-suited for our Boolean network analysis
as it normalizes the count of mismatches (B+C) by the
total number of comparisons (A+B+C+D), then squares
this ratio to yield a value between 0 and 1. The squaring
operation emphasizes larger differences and de-emphasizes
smaller ones, making SD more sensitive to significant devia-
tions from the non-proliferative state. A value of 0 indicates
identical vectors (perfect match to non-proliferative state),
while 1 indicates that one vector is the binary complement of
the other (maximum deviation from non-proliferative state).

This metric provides a crucial quantitative basis for evaluat-
ing how effectively different drug combinations restore the
output of the mutated network towards a non-proliferative
state. In our fault-free BN, the state of the non-proliferative
output requires all output genes to be in the state mentioned
in Table 2. However, when faults (i.e., mutations) are intro-
duced, the output genes deviate from this non-proliferative
state. Our study aims to identify the drug or combination of
drugs that brings the output genes in the presence of faults as
close as possible to the non-proliferative output state. This is
determined by comparing the drugged output to the healthy
output using the SD score. A higher SD value indicates that
the drug fails to suppress the cancerous output genes, whereas
an SD value closer to 0 suggests that the drug effectively
suppresses them.

For each drug or drug combination, we determined its
drugged output across each of the 12383 fault combinations
and compared the drugged output to the healthy output to
calculate the SD. This resulted in a matrix containing the SD
values for each fault across all considered drugs and their
combinations.

G. IDENTIFYING ROBUST DRUG COMBINATIONS
After calculating the SD values for each drug combination
across all possible fault scenarios, we identified the most
effective drug combination for each specific fault by selecting
the one with the lowest SD value. To find the drug com-
bination that is the most optimal across all faults, i.e. the
drug combination that robustly reduces cell proliferation and
maximizes apoptosis, we had to find the mean SD score
for a given drug combination. However, comparing the raw
average SD scores for various drug combinations is mis-
leading and thus we needed to normalize the raw average
SD score for each drug combination with respect to the
average SD score for the untreated, i.e. no-drug-applied case.
Normalizing with respect to the untreated cases allows us to
determine how good the drug combinations are compared to
the untreated cases and how they compare against each other.
Untreated cases refer to scenarios where the BN circuit has
been simulated with the presence of faults and no drug has
been applied. We refer to this metric as the Normalized Mean
Size Difference (NMSD). Intuitively, the drug combination
with the lowest NMSD would be considered the most robust
or effective across all possible fault combinations. In Table 4,
we present an example matrix of SD for three faults and three
drugs. To identify the most effective drug for each specific
fault, we select the drug with the lowest SD score. For fault 1,
drug 2 demonstrates the lowest SD, indicating it is the most
effective in suppressing this fault. Similarly, drug 3 is the
optimal choice for fault 2, as it shows the lowest SD for this
fault. For fault 3, drug 2 again emerges as the most effective,
having the lowest SD among the options. To determine the
most effective drug across all three faults, we calculate the
NMSD for each drug. This involves normalizing the mean
SD relative to the mean SD of the untreated case, as shown
in the NMSD column of Table 4. Since drug 2 has the lowest
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NMSD, it is the most effective drug across all three faults.
The NMSD metric is calculated as follows:

NMSD
(
Drugi

)
=

Mean
(
SD

(
Drugi

))
Mean(SD(Untreated))

(3)

We calculated the NMSD (Equation 3) for each drug
combination in the BN with one, two, and three faults (or
mutations) at a time. Given that there are 16 drugs, and
we considered up to four drug combinations at a time, this
results in a total of 2516 drug combinations.With 12383 com-
binations of faults, our resulting NMSD matrix would be
2516 (drugs) by 12383 (faults). Presenting and interpreting
such a large matrix is impractical, so we have summarized
the NMSD scores for each drug combination under one,
two, and three mutations (or faults) in the supplementary
file (Additional File 1). We simulated the BN and calcu-
lated the NMSD using the Python programming language.
The code for BN simulation and NMSD table generation
is publicly available at the following GitHub repository:
https://github.com/PranabeshTAMU/NSCLC-WithPDL1.

IV. RESULTS AND DISCUSSION
After simulating the BN model constructed above, we com-
pared the different drug combinations and their efficacy for
single, two, and three faults (mutations) at a time, the goal
was to identify the most effective combination therapy with
the lowest NMSD score. We provided the NMSD scores
for each drug combination under one, two, and three muta-
tions (or faults) as tables in the supplementary materials
(see Additional File 1). Additionally, each supplemental table
(in Additional File 1) includes the top 16 effective drug
combinations (i.e., single-drug, two-drug combinations, up to
four-drug combinations) for each fault combination. In the
following subsections, we discuss some of the topmost effec-
tive drug combinations for each fault combination. For the
untreated case, the NMSDwas equal to 1 (Table 4) which sig-
nifies the worst-case scenario, and if the drug combinations
showed an NMSD close to 0, it was considered a success. The
drug combination that attained the lowest NMSDwas the best
treatment option (Table 4).

A. DRUG EFFICACY FOR SINGLE DRUG APPLICATION
In our initial Boolean network analysis, we systematically
evaluated the efficacy of each drug individually against all
possible combinations of single, double, and triple muta-
tions. Figure 4 presents a comprehensive comparison of all
16 drugs’ NMSD scores across these mutation scenarios. The
NMSD metric quantifies how effectively each drug restores
the network towards a non-proliferative state, with lower
values indicating better performance. Among all single-drug
interventions tested, Capivasertib (an AKT inhibitor) consis-
tently demonstrated superior efficacy, achieving the lowest
NMSD score of approximately 0.47 across all mutation sce-
narios (Tables 5, 6, 7). This represents a substantial 53%
improvement compared to the untreated condition, indicating
that AKT inhibition alone can significantly counteract the

TABLE 5. Robust drug intervention strategy for single mutation.

TABLE 6. Robust drug intervention strategy for two mutations.

TABLE 7. Robust drug intervention strategy for three mutations.

effects of multiple oncogenic mutations in NSCLC signal-
ing pathways. Ribociclib, a CDK4/6 inhibitor, showed the
second-best performance among single drugs, highlighting
the importance of cell cycle regulation in NSCLC treatment
(Fig. 4).

B. DRUG EFFICACY FOR TWO DRUG COMBINATIONS
Following the simulation with one drug, the BN model was
then simulated with two drug combinations in the simulta-
neous presence of single, two, and three fault combinations.
This simulation tested all two-drug combinations across dif-
ferent fault scenarios, including single-fault, two-fault, and
three-fault combinations. Several successful therapeutic out-
comes are highlighted in Fig. 5 including some of the best
two-drug combinations. The best two-drug combination hav-
ing the lowest NMSD score for treating NSCLC with a single
mutation was Trametninb + Capivasertib (Table 5), which
targets MEK and AKT (Table 3). It reduced the NMSD
by approximately 74.4% compared to the untreated case.
For the two and three mutation cases, the drug combination
Ribociclib + Capivasertib (Tables 6, 7) emerged as the most
efficacy. Ribociclib is a targeted drug for CDK4/6 (Table 3).
This combination demonstrated approximately a 70% reduc-
tion in the NMSD score compared to the untreated case.

C. DRUG EFFICACY FOR THREE DRUG COMBINATIONS
Figure 6 displays drug efficacy for three drug cases with a
maximum of three faults present at a time among the 42 fault
locations. The detailed NMSD values can be found in the sup-
plementary file (Additional File 1), while this paper presents
only the top-performing results in Tables 5, 6, 7. Like the pre-
ceding subsections, Trametinib + Ribociclib + Capivasertib
emerges as the most effective three-drug combination for a
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FIGURE 4. All targeted drugs (which are used for this experiment), with respective NMSD scores to treat NSCLC with single, two, and threemutations
at a time.

FIGURE 5. Some of the best two drug combinations with the lowest NMSD score to treat NSCLC with single, two, and three mutations at a time.

single mutation scenario, which reduced the NMSD score by
86.2% compared to the untreated case. On the other hand, the
drug combination Durvalumab + Ribociclib + Capivasertib
held the top position, with the lowest NMSD score, for two
and three mutations. The target of Durvaluab was PD-L1
(Table 3). In this case, it is noticeable that all top three drug
combinations with the lowest NMSD score, when the number
of mutations is high, contained Durvalumab. This combina-
tion showed a significant treatment effect in the case of three
mutation scenarios with an 83% reduction from the untreated
case. Notably, Durvalumab consistently appeared in the top-
performing drug combinations across all three-fault scenarios
tested, not just in a subset of cases. This remarkable consis-
tency across diverse mutation combinations suggests that the
inclusion of PD-L1 inhibition provides robust enhancement
of treatment efficacy regardless of the specific mutations
present, highlighting the potential universal benefit of incor-
porating immunotherapy into NSCLC treatment regimens.

D. DRUG EFFICACY FOR FOUR DRUG COMBINATIONS
The best four-drug combination for single and two muta-
tions we found to be Durvalumab + Trametinib + Ribo-
ciclib + Capivasertib (Fig. 7), which targets the genes
PD-L1+MEK+ CDK4/6 + AKT. Figure 7 presents a
comprehensive analysis of the top-performing four-drug
combinations across different mutation scenarios in our
Boolean network model. The horizontal axis represents the
NMSD score, with lower values indicating superior efficacy

in restoring network functionality towards a non-proliferative
state. The vertical axis lists the various four-drug combi-
nations tested. Notably, the combination of Durvalumab +

Lumakras + Ribociclib + Capivasertib emerges as the most
effective regimen for treating networks with three concur-
rent mutations, achieving an NMSD score of only 0.108
(Table 7). This represents an impressive 89.2% reduction
in network disruption compared to the untreated conditions.
This particular combination strategically targets four distinct
mechanisms: immune checkpoint regulation (PD-L1 inhi-
bition via Durvalumab), KRAS signaling (via Lumakras),
cell cycle progression (CDK4/6 inhibition via Ribociclib),
and AKT pathway activation (via Capivasertib). The supe-
rior performance of this diverse combination highlights the
value of simultaneously targeting multiple oncogenic drivers
and immune evasion mechanisms in NSCLC with complex
mutation profiles. Due to space limitations, all the results are
shown in a supplementary file (Additional File 1). We also
built a table to display all the parameters used for our exper-
imental design and simulation (Table 8).

E. ANALYSIS AND IMPLICATIONS OF RESULTS
The PI3K/AKT/mTOR pathway is involved in cell growth,
proliferation, and survival [65]. Activating mutations within
this pathway can lead to uncontrolled cell growth and can-
cer progression. The AKT inhibitor, Capivasertib, is being
investigated in clinical trials for its efficacy in NSCLC [66].
This drug aims to inhibit the activity of the AKT gene,
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FIGURE 6. Some of the best three-drug combinations with thelowest
NMSD score to treat NSCLC with single, two, and threemutations at a time.

thereby slowing down cancer cell growth. CDK4/6 are critical
regulators of the cell cycle. Overactivation of these kinases
can lead to uncontrolled cell division and tumor growth.
The CDK4/6 inhibitor, Ribociclib, is primarily approved
for breast cancer but is also being explored for its poten-
tial in treating NSCLC [67]; it works by halting the cell
cycle, thereby preventing the cancer cells from proliferating.
The KRAS pathway is a central regulator of cell growth,
metabolism, and survival. Dysregulation of this pathway
can contribute to cancer development and progression. The
KRAS inhibitor, Lumakras, has been identified for its poten-
tial to treat NSCLC [68].
The primary strength of our approach lies in its integration

of multiple treatment modalities within a unified computa-
tional framework. Unlike previous studies that examined tar-
geted therapies or immunotherapies in isolation, our Boolean
network model captures the synergistic interactions between
these complementary approaches. This integration enables
more accurate prediction of combination therapy effects and
provides a theoretical foundation for clinical strategies that

FIGURE 7. Some of the best four-drug combinations with thelowest
NMSD score to treat NSCLC with single, two, and threemutations at a time.

target both cancer cell-intrinsic oncogenic pathways and
tumor-immune interactions simultaneously. Additionally, our
model’s ability to simulate multiple concurrent mutations
more accurately captures the genetic complexity of real
NSCLC tumors, which frequently harbor several driver alter-
ations. By restricting our analysis to FDA-approved drugs,
we ensure that our predictions have immediate translational
potential and could inform the design of clinical trials for
novel drug combinations.

In general, our simulations revealed that as the number
of mutations in the network increased, the NMSD scores
also rose. This makes intuitive sense since an increase in the
number of mutations would provide a cancer cell with more
avenues to sustain its aberrant signaling, thereby evading the
inhibitory effects of the applied drugs. We also observed that
while increasing the number of drugs applied does decrease
the NMSD score, this strategy becomes less effective with
a higher number of mutations. Additionally, administering
too many drugs simultaneously to a patient is not a viable
strategy, given the associated side effects
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TABLE 8. Key parameters of the boolean network model and analysis.

V. CONCLUSION AND FUTURE WORKS
In this study, we developed a novel computational framework
for evaluating combination therapies in NSCLC through
Boolean network modeling of integrated oncogenic and
immunotherapy pathways. Our model successfully captures
the complex interplay between multiple signaling pathways
involved in NSCLC progression and predicts the efficacy
of various drug combinations in counteracting the effects of
genetic mutations.

Our key findings demonstrate that the integration of
immunotherapy with targeted therapy substantially enhances
treatment efficacy across diverse mutation scenarios.
Specifically, combinations including the PD-L1 inhibitor
Durvalumab consistently showed superior performance in
networks with multiple mutations, providing strong theoret-
ical support for combining immune checkpoint inhibition
with targeted pathway inhibition in NSCLC treatment. The
optimal four-drug combination identified in our study—
Durvalumab + Lumakras + Ribociclib + Capivasertib—
targets four distinct mechanisms (immune checkpoint, KRAS
signaling, cell cycle progression, and AKT activation), creat-
ing a synergistic effect that reduced the normalized mean size
difference by 89.2% compared to untreated conditions.

These findings have significant implications for person-
alized medicine approaches in NSCLC. By predicting how
specific drug combinations perform against different muta-
tion profiles, our model could inform treatment selection
based on a patient’s tumor molecular characteristics. This
approach aligns with the growing trend towards precision
oncology, where treatments are tailored to the unique genetic
makeup of individual tumors.

Immunotherapy, particularly immune checkpoint inhibitors
like Durvalumab, has shown remarkable efficacy in treating
various cancers by blocking the proteins that prevent T-cells
from attacking cancer cells. When combined with targeted
therapies that inhibit specific oncogenic proteins (such as

KRAS, AKT, and CDK4/6), there is a synergistic effect. This
combination can more effectively suppress cancer growth
and prevent the tumor from evading the immune system
[69], [70]. One of the major challenges in targeted therapy
is the development of drug resistance. Cancer cells often
adapt by activating alternative pathways or mutating further.
Immunotherapy can help mitigate this issue by providing
a robust and adaptive immune response capable of target-
ing these resistant cancer cells. Targeted therapies focus
on specific molecular aberrations, which can limit their
efficacy to patients with those mutations. Immunotherapy,
however, can induce a broad-spectrum attack on the tumor,
recognizing and attacking a wide array of cancer-specific
antigens. This makes the combination particularly effective
in heterogeneous tumors like NSCLC. Clinical studies have
demonstrated that combining immunotherapy with targeted
therapy can lead to improved overall survival rates in NSCLC
patients [71], [72]. For example, the addition of Durvalumab
to a combination therapy regimen has been shown to sig-
nificantly prolong progression-free survival in patients. The
results in this paper provide a firm theoretical basis for these
experimental observations. The integration of immunother-
apy and targeted therapy fits well within the framework of
personalized medicine. By tailoring the treatment to the spe-
cific genetic makeup of the tumor and the patient’s immune
profile, this approach can maximize therapeutic efficacy and
minimize adverse effects.

In conclusion, the combination of immunotherapy with tar-
geted therapy offers a promising and multifaceted approach
to treating NSCLC. It leverages the strengths of both strate-
gies, providing a more comprehensive attack on cancer while
potentially overcoming the limitations associated with each
treatment when used alone. As research and clinical trials
continue to advance, this combined approach is expected
to play an increasingly vital role in the future of NSCLC
treatment, ultimately leading to better patient outcomes and
prolonged survival.

A significant enhancement to our current model would
be the incorporation of additional tumor microenvironment
factors that influence the PD-L1/PD-1 axis. We plan to
extend our Boolean network to include interactions with
various immune cell types, including cytotoxic T cells, reg-
ulatory T cells, and myeloid-derived suppressor cells. This
extension would provide a more comprehensive representa-
tion of the complex interplay between cancer cells and the
immune system within the tumor microenvironment. Also
including cytokine signaling pathways, particularly those
involving IFN-γ , TGF-β, IL-6, and TNF-α—could signifi-
cantly enhance our model’s ability to predict immunotherapy
responses. These cytokines play crucial roles in modulat-
ing PD-L1 expression, T-cell activation, and immunosup-
pression. Expanding our Boolean network to incorporate
these signaling molecules would create a more comprehen-
sive model of the cancer-immune interface and potentially
improve the precision of our drug combination predictions.
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Future validation of our computational predictions using
in vitro NSCLC cell lines (such as A549, H460, and
H1299) and patient-derived xenograft models would sig-
nificantly strengthen our findings. Specifically, examining
the combined effects of AKT, KRAS, CDK4/6, and PD-L1
inhibitors on cancer cell viability, apoptosis induction, and
immune response activation would provide crucial experi-
mental support for our computational models. A decrease in
the expression of these genes would serve as an initial indica-
tor of drug efficacy, warranting further testing on higher-order
animal models and eventually progressing to the preclinical
trial stage.

Additionally, we aim to explore the mutation landscape
in gene regulatory networks and assess its impact on drug
development and repurpose, with the overarching goal of
enhancing personalized medicine. Understanding the extent
to which a mutation or a combination of mutations drives
aberrant gene regulatory behavior has significant implica-
tions for clinical trial design, including mutation-focused
basket-trial formats that are gaining popularity in precision
medicine.

Our Boolean network approach offers distinct advantages
when compared to alternative computational methods for
predicting drug efficacy. Unlike statistical correlation meth-
ods that rely solely on empirical data associations, our
mechanistic modeling incorporates known biological inter-
actions and causal relationships, providing insights into the
underlying mechanisms of drug action. Compared to con-
tinuous differential equation models, which require precise
kinetic parameters that are often unavailable for complex
signaling networks, our Boolean approach captures the essen-
tial qualitative behaviors while requiring significantly less
parameterization.

Machine learning approaches for drug response predic-
tion can achieve high predictive accuracy but often function
as ‘‘black boxes’’ with limited interpretability [73], [74].
In contrast, our Boolean network model provides transparent
insights into how specific mutations affect pathway behavior
and how drugs modulate these effects. This interpretability
is crucial for generating testable hypotheses and guiding
experimental validation.

Network-based methods similar to ours have successfully
predicted drug combinations for other cancer types [75],
[76]. However, our approach is distinguished by its specific
integration of immunotherapy with targeted therapy path-
ways, which is particularly relevant for NSCLC where both
treatment modalities have shown clinical efficacy. To the
best of our knowledge, this is the first study that integrates
multiple oncogenic and immunotherapy signaling pathways
into a unified Boolean network framework to simulate drug
responses under various mutational conditions in NSCLC.
While previous computational studies have focused on indi-
vidual pathways or limited mutation scenarios, our approach
enables a system-level exploration of drug efficacy across
diverse mutational landscapes.

In the future, this framework can be extended using prob-
abilistic approaches such as Bayesian networks, especially if
sufficient time-series or quantitative expression data become
available. Such models may allow for the incorporation of
biological variability and uncertainty, enabling even more
refined predictions of therapeutic outcomes.

A potential application of the current BN model is in
formulating inclusion criteria for basket trials by specifying
not only the type but also the number of mutations permitted
in the study. Our Boolean network model could directly
inform basket trial design for targeted therapies in NSCLC.
For example, a basket trial testing the Durvalumab + Capi-
vasertib + Ribociclib combination that our model identified
as highly effective could stratify patients based on the number
and type of mutations in the PI3K/AKT, cell cycle, and
immune checkpoint pathways. Based on our computational
findings, patients with up to three concurrent mutations in
these pathways might be suitable candidates for this combi-
nation therapy, while those with more extensive mutational
burdens might require alternative approaches. This type of
computational guidance could significantly improve patient
selection criteria and increase the efficiency of clinical trial
design.

Looking forward, we recognize several important direc-
tions for enhancing this work:

First, experimental validation using cell lines and animal
models is crucial to confirm our computational predictions.
Testing the top drug combinations identified in our study
on NSCLC cell lines with appropriate genetic backgrounds
would provide valuable validation of our theoretical findings.

Second, expanding our model to incorporate the tumor
microenvironment would enhance its biological relevance.
Including interactions with diverse immune cell populations
(T cells, natural killer cells, myeloid cells) and stromal com-
ponents would create a more comprehensive representation
of in-vivo tumor dynamics.

Third, integrating pharmacokinetic and pharmacodynamic
parameters would improve the clinical applicability of our
predictions. Accounting for drug absorption, distribution,
metabolism, and excretion could help optimize dosing reg-
imens and sequence for combination therapies.

Fourth, extending our Boolean network to a probabilis-
tic framework would allow for more nuanced modeling of
biological variability. This approach could better capture the
stochastic nature of cellular responses and provide confidence
intervals for our predictions.

Fifth, incorporating resistance mechanisms would address
a critical challenge in cancer therapy. Modeling the evolution
of treatment resistance over time could help design adaptive
treatment strategies that anticipate and prevent the emergence
of resistant cell populations.

Finally, developing an interactive software tool based
on our model would facilitate its use by clinicians and
researchers. Such a tool could allow users to input specific
mutation profiles and obtain personalized drug combination
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recommendations, bridging the gap between computational
prediction and clinical application.
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