2024 IEEE 37th International System-on-Chip Conference (SOCC) | 979-8-3503-7756-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/SOCC62300.2024.10737828

KWT-Tiny: RISC-V Accelerated, Embedded
Keyword Spotting Transformer

Aness Al-Qawlaq, Ajay Kumar M, Deepu John
University College Dublin, Ireland

Abstract—This paper explores the adaptation of Transformer-
based models for edge devices through the quantisation and
hardware acceleration of the ARM Keyword Transformer (KWT)
model on a RISC-V platform. The model was targeted to run on
64kB RAM in bare-metal C using a custom-developed edge Al
library. KWT-1 was retrained to be 369 times smaller, with only a
10% loss in accuracy through reducing output classes from 35 to
2. The retraining and quantisation reduced model size from 2.42
MB to 1.65 kB. The integration of custom RISC-V instructions
that accelerated GELU and SoftMax operations enabled a Sx
speedup and thus ~5x power reduction in inference, with inference
clock cycle counts decreasing from 26 million to 5.5 million clock
cycles while incurring a small area overhead of approximately
29%. The results demonstrate a viable method for porting and
accelerating Transformer-based models in low-power IoT devices.

Keywords—Transformer models, IoT, custom hardware, GELU
RISC-V, SoftMax, hardware acceleration, quantization, KWT

I. INTRODUCTION

Since its conception in the famous landmark paper
“Attention is All You Need” by Google in 2017 [6], the
Transformer model has met and exceeded state-of-the-art
performance in various applications; chief amongst which is
natural language processing (NLP). When compared to
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) in the NLP field, the Transformer has
exhibited better handling of long-range dependencies, superior
semantic feature extraction abilities, as well as the ability to be
very effectively parallelized [1]. This has directly led to the
onset of popular large language models such as ChatGPT, which
are transformer-based models with hundreds of billions of
trainable parameters. The success of the Transformer model at
NLP tasks led researchers to investigate the use of the
Transformer models for applications that have traditionally been
performed by the CNN architecture, such as Computer Vision
[3], Keyword Spotting [4], and Gesture Detection [5].

However, this comes at the expense of a large model size and
increased computational cost. Therefore, many Transformer
models are beyond the computational capabilities of resource-
constrained hardware. This presents a challenge for the growing
Internet of Things (IoT) movement which aims to enable cheap,
resource-constrained devices to invoke cutting-edge models in a
power-efficient manner. This problem is twofold — edge Al
systems struggle with both the large inference-time memory
requirements, as well as long execution times associated with
performing the required operations. In order to solve this issue,

This work was supported in part by 1) Science Foundation Ireland under the US-Ireland
R&D Program 2) Science Foundation Ireland through the SFI Centre for Research Training
in Machine Learning (18/CRT/6183) and Microelectronic Circuits Centre Ireland

*Code available at: https://github.com/anessk01/kwt_tiny

979-8-3503-7756-9/24/$31.00 ©2024 |IEEE

current literature focuses on quantising the transformer model,
as well as introducing custom hardware to accelerate inference.

There have been several different hardware acceleration
approaches in literature. Some, like AI-RISC [13] and AIfES
[14] target lower-power applications, but do not target the
Transformer architecture specifically. Other approaches, such as
FlexACC [15] and DaDianNao [2] focus on designing neural
network processors which support many different machine
learning architectures, outperforming general-purpose
processors in speed and energy consumption. There have also
been approaches that target the specific acceleration of the
Transformer architecture. RISC-VTF [1] proposes acceleration
through custom RISC-V instructions, and A3 [7] proposes
acceleration of the attention mechanism through approximation.

However, while current literature addresses the issue
associated with compute time, they are typically addressed
through the lens of high-power, high-performance systems
without much focus on the memory-related challenges
associated with pushing Transformers to be invoked on the edge.
Additionally, they tend to emulate Transformer operations to
measure the speedup as opposed to accelerating a real model.
This makes it challenging to gauge the accuracy degradation due
to hardware acceleration.

On the other hand, this paper involves a more holistic
approach. A state-of-the-art keyword spotting transformer
model is trained, modified, and quantised on a PC. Then, its
inference operations are implemented in bare-metal C and
compiled for a RISC-V platform. Lastly, the RISC-V platform
is supplemented with custom hardware blocks, and the
processor’s instruction set is extended with a few custom
instructions to accelerate the inference of the model.

This paper investigates the performance degradation of
Transformers as they are downsized to fit on low-power devices.
It also focuses on the general framework involved in training
and accelerating Transformer-based models in the context of
embedded systems, with ARM’s Keyword Transformer (KWT)
[4] as the key example. Additionally, the custom hardware and
instructions are designed to be flexible, accelerating any
Transformer-based model, including encoder-decoders, vision
transformers, and BERT.

II. BACKGROUND: THE KEYWORD TRANSFORMER (KWT)

The Transformer is a novel machine learning architecture
first proposed by Google in 2017 for NLP purposes, where
Google first introduced the concept of self-attention [6]. Up
until the creation of the Transformer, deep learning models for
NLP uses were based on CNNs or RNNs [8]. These
architectures, while powerful, relied on fixed-length

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

representations of input sequences. CNNs and RNNs struggle
with long-term dependencies due to the maximum path length
between inputs and outputs being large. The shorter the paths
between inputs and outputs in a model, the easier it is to learn
long-range dependencies [9], improving performance. The
attention mechanisms within the Transformer achieve this goal
by reducing forward and backward signal path length.

The earlier mentioned KWT model is built on the Vision
Transformer (ViT) architecture, which is a post-norm, encoder-
only Transformer specifically built for computer vision tasks. It
has exhibited 98.6% accuracy on the Google Speech
Commands (GSC) dataset. As shown in Fig 1, a single
inference pass of KWT starts with a conversion of the raw input
audio signal to a Mel-scale spectrogram (X) with time windows
t=1,..,T and frequencies f = I, ..., F, also known as Mel-
Frequency Cepstral Coefficients (MFCC). The next steps
involve splitting the spectrogram X € R™*F into separate
flattened time domain patches, on which a linear projection is
applied. This linear projection maps the spectrogram to a higher
dimension d using a projection matrix W, € RF*% _ The
positional embeddings X,,,s € RT*D*¢ are then applied. The
resulting patches are fed into the Transformer’s [’th block (X;).

Output Classes

|
(Patch + Position Embeddings)

t

E Waveform to MFCC]

Spectrogram Time-Patches

Fig. I. KWT inference pass, figure modified from [1].

The signal X; is split into three vectors: Query (Q), Key (K),
and Value (V). Next, the dot product of Q and K is found and
normalised by \/d_h where dj, is the dimensionality of each
attention head. Next, the SoftMax (2) operation is applied to the
result, and then multiplied by the value vector. The result of the
multiplication is the self-attention (SA) vector (1):

SA(X) = soft (QKT) v 1)
= softmax
1 T
Where: '
softmax(X); = Ke—lx. (2)
j=1€"

And weights Wy, Wy and W, are obtained through training:

Q =XlWQ! K =X1WK, V=X1WV (3)

The results from (1) with mean (x) and variance (%) are
then normalised as in (4):

X, = 4

After this step, pre-computed scale (¥) and shift (ﬁ) are
applied to each element X, to produce the final normalised
result y; (5):

Vi = Vi X +B; (5)

The normalised result is then passed through a multilayer
perceptron (MLP) block. MLPs are a type of feedforward
neural network with behaviour as defined in (6):

Where, as in [10], erf is the Gauss error function:
1 x
GELU (x =x><—(1+erf(—)) 7
(0 = %3 5 ™

The output from the MLP is normalised as in (5) and goes
through a final linear mapping before the output class is
produced as in (8).

Linear(x) = xW; + b, (8)

As can be seen, this process involves many matrix
multiplications, SoftMax operations, and GELU calculations.
Additionally, it can also be seen that intermediate results
between layers must be freed from memory whenever no longer
needed since it is very limited on IoT platforms.

III. KWT-TINY

The parameters of the KWT model which achieved the
96.9% accuracy figure are shown in Table I. As is evident, such
a large number of parameters, each of which is a 32-bit floating
point number, could not be loaded onto the few kB of RAM
available in most low-power embedded systems. The embedded
system being used in this paper is the lowRISC Ibex [17], which
has the specifications listed in Table II.

TABLE L KWT-1 MODEL SPECIFICATIONS [1]
Attribute Specification
Parameters 607k
Output Classes 35
Accuracy 96.9%

Due to the limited memory resources on this platform, a
much smaller KWT-based model, KWT-tiny, had to be trained.
Through an iterative approach, the layers with the least impact
on inference accuracy were removed. These were found to be
the depth layers, which are the sequential transformer layers
where the output of one is fed into the input of the next. One

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

transformer layer was found sufficient enough to support two
output classes, as opposed to the 12 layers in the original KWT
for 35 output classes.

TABLE II. LOWRISC IBEX SPECIFICATIONS
Attribute Specification
RAM 64 kB
Clock Speed 50 MHz
FPU Not Available

To further satisfy the memory constraints without sacrificing
too much accuracy, the input MFCC was down-sampled from
the original [40, 98] to [16, 26], which proved to be a reasonable
balance between memory constraints and accuracy constraints.
More changes in dimensions of each of the layers were made to
further ensure that the floating-point weights of the model, as
well as program logic, were able to fit in the available 64kB of
RAM. KWT-Tiny was trained using the Torch-KWT [11]
library. These changes are summarised in Table III.

TABLE IIL KWT-TINY vS KWT-1
Attribute Significance KWT-1 KWT-
Tiny
INPUT DIM Dimensions of Input [40, 98] [16, 26]
Spectrogram
PATCH Dimensions of a Single
DIM Spectrogram Patch [40, 1] (16, 1]
DIM Size of layer normalisation 64 12
vector
DEPTH Number of transformer layers 12 |
in series
HEADS Number of pa'rallel attention 1 1
computation blocks
MLP_DIM Size of MLP network 256 24
DIM_HEAD Size of each attention head 64 8
SEQLEN Size of attention scores matrix 99 27
OUTPUT Number of unique word-classes 35 5
CLASSES that can be discerned

As is evident in Table III, KWT-Tiny can only discern two
output classes, meaning that it is ideal for the detection of a
single keyword such as “Hey Google” or “Alexa”, as opposed
to KWT-1 which can discern between 35 different output classes
in the GSC dataset.

The accuracy of KWT-tiny was tested on the full Google
Speech Commands dataset, where the two output classes were
“dog” and “notdog”. The results of the accuracy of KWT-tiny
as well as its parameter count when compared to KWT-1 are
shown in Table IV.

As can be seen in Table IV, a 369x reduction in model size
of KWT-1 resulted in a small ~10% reduction in model
accuracy. This was largely due to the success of the iterative
approach which correctly identified the least important layers
and downsized them accordingly. This finding indicates that
Transformer-based models can indeed retain high accuracy

when scaled down for embedded applications if the correct
layers are targeted. For KWT-Tiny, it was found that downsizing
the MLP network as well as the depth of the transformer block
presented the best accuracy-size trade-off, whereas overly
downsizing the normalization vector led to steep accuracy loss.

TABLE IV. KWT-TINY VS KWT-1: ACCURACY
Attribute KWT-1 KWT-Tiny % Change
Parameters 607k 1646 —99.73%
Memory use _ 0,
(Floating Point) 2.42 MB 6.58 kB 99.73%
Accuracy 96.9% 87.2% -9.7%

IV. QUANTISING KWT-TINY

Quantising the KWT-Tiny model is important for two main
reasons: (1) storing model weights in INT8 as opposed to
FLOAT?32 reduces model size by 4 times, and (2) performing
mathematical operations using floating point emulation on
embedded devices with no FPU is very expensive, especially
when it comes to floating point division.

KWT-Tiny-Q and its input MFCC were quantised through
post-training static quantisation, whereby all model weights
were multiplied by a static scale factor (2”) and then quantised
to INTS8 as in (9).

Wine = flOOT(Wfloat X Zy) (9)

The scale factor was chosen to be a power of 2 to make
quantisation and dequantisation as cheap as possible on an
embedded platform by using bit shifts.

Intermediate residuals which would be the result of the
integral multiplications of various INT8 weights are sized as
INT16 to prevent too much data loss during inference. As per
other transformer quantisation techniques, SoftMax and layer
normalisation continued to be computed in a floating-point
manner, as quantising those operations was found to be quite
taxing on accuracy [12]. This would mean that the intermediate
results are dequantised before being passed to the SoftMax and
LayerNorm layers, the outputs of which would be re-quantised
for the next layer and so on.

To decide the value of 2¥, each audio input in the GSC
dataset was fed into KWT-Tiny and also into different versions
of KWT-Tiny-Q, each with different values of 2¥ in (9). The
accuracy of each version was then compared as in Table V. A
scale factor too large would result in overflows in the
intermediate results, and a scale factor value too small would
reduce the precision of the quantised weights.

As is evident in Table V, the ideal approach involved a
different scale factor for weights and inputs. This is because
weights range from 0 to 1, whereas the MFCC input vector can
contain elements with magnitude of a few hundred. This means
that the weights can be scaled by a larger factor than the input
while increasing precision and not contributing to overflows.
KWT-Tiny-Q exhibited 25% of the memory consumption of
KWT-Tiny with 82.5% accuracy, a loss of ~5%.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

TABLE V. KWT-TINY-Q ACCURACIES

Scale Factor 27 | Scale Factor Model A
for Weights 2Y for Input Size ceuracy
8 8 60.3%
16 16 71%
32 32 1.646kB 77.3%
64 32 82.5%
64 64 65.2%

V. KWT-TINY IN BARE-METAL C

Current edge Al approaches for transferring models onto
resource-constrained platforms involve the use of libraries such
as TensorFlow Lite (TFLite), ONNX, or TVM. The KWT-1
model is available for usage on mobile phones with TFLite [4].
A challenge with these approaches is that the libraries
themselves can be as large as a few MB. While this is no issue
with modern smartphones with multiple GB of RAM, many
embedded platforms would not be able to fit such libraries in
memory. Another challenge with these approaches is that the
embedded developer and computer architect are both abstracted
away from the lower-level details of the operation of the model,
which makes operation acceleration and memory optimisation
for a particular platform very difficult.

To counteract these challenges, this paper proposes a simple
C library for transformer-based computations. This approach
maximises customisability and memory optimisation. The
library is created to allow for both floating point-based
computations for non-quantised models as well as INT16
operations for quantised models. The library should be
compatible with most Transformer-based models. The
downside with this approach is that the embedded engineer must
be familiar with how to create the inference pipeline based on
the provided library functions, but this should be a simpler task
than developing the entire tensor library. To enable the
computations in Fig. 1 and Fig. 2, the library described in Table
VI was created.

) N N
Input to Attention Matrix Multiplication Rearrange and Split
P Block P of Input and Attention P Result into Q, K and

Weights V Matrices
—— —— ~ @ @@/
A 4

N Y N

Output from Apply Final Linear | Compute Scaled Dot
Attention Block Layer Product Attention
~— @ ~ -

Fig. 2. Self-Attention computation pipeline

The inference C code comprises two main sections:
initialization, involving copying model hyperparameters and
loading weight pointers; and the inference pipeline. However,
fitting model parameters in memory alone doesn’t guarantee
sufficient runtime memory for calculations due to intermediate
result storage. Efficient memory usage is crucial, with stack

size calculated for maximal runtime needs. The linker must be
configured to allocate stack memory accordingly. In this case,
60kB program memory and 4kB stack were allocated. Compiler
size optimization using the “-Os” flag was necessary to fit
KWT-Tiny on the Ibex platform.

TABLE VI C TRANSFORMER-BASED TENSOR LIBRARY
Method Purpose
computeMeanAnd Used in layer normalisation operations as discussed
Variance() in (4). Computes mean and variance of input vector.
layerNorm() Normalises every element in an input vector,

applying normalisation § and y as discussed in (5).

Applies matrix multiplication C = Ab through the use

matrixMultiply() of the basic 0(n®) algorithm.

Computes Softmax operation using built-in function

Softmax() expf() and floating point division as discussed in (2)
elu() Computes Gelu operation using built-in functions
g erf(), sqrt() and floating point division as in (7)
linear() Computes (8) using matrixMultiply()

Splits flattened input array to query (Q), key (K), and

splitintoQKV() value (V) vectors as discussed in (3).

scaledDotProduct
Attention()

Uses softmax() and matrixMultiply() to compute the
scaled dot product attention result as discussed in (1)

Additionally, memory occupied by intermediate results no
longer required for the next layers’ input need to be cleared. In
a bare metal system with no OS support, the use of the popular
memory allocation function malloc() is typically not supported.
To counteract this, a manual implementation of malloc() was
devised, whereby two separate arrays of pre-defined size are
allocated to act as global memory banks. Their sizes are found
through dry-running the pipeline and ensuring that the maximal
intermediate result’s size fits within one of the banks. Two
banks are required as there are cases in which two residual
results are required simultaneously such that they can be added
together as per the pipeline in Fig. 1. In the implementation for
KWT-Tiny on C, the banks were of size SEQLEN X MLP_DIM
and SEQLEN X DIM_HEAD X 3 respectively, with attributes
as defined in Table III.

VI. HARDWARE ACCELERATION

RISC-V [16] is an open-source instruction set architecture
(ISA) that is modular and extensible. It allows computer
architects to extend its functionality through the addition of
custom instructions which can be used to invoke custom
hardware. RISC-V reserves space as per its standards for custom
instructions [16]. RISC-V also comes with a mature software
toolchain [19] including compilers, linkers, and assemblers.
The processor in use, the lowRISC Ibex, is an open-source [17]
parametrizable single-core CPU written in System Verilog and
suited for low-power applications. It complies with the
RV32IMC standard, which is the 32-bit version of RISC-V that
supports basic integer arithmetic, fixed point multiplication,
division, and a compressed instruction set extension which
provides 16-bit compact instructions. It is synthesised on the
Xilinx Arty-A735T FPGA. The acceleration of KWT-Tiny on a
RISC-V platform can be obtained through the introduction of a
few custom instructions that the processor can use to compute
certain inference-time operations. Once these are introduced,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

they can be invoked directly using assembly language
invocation through the ‘asm’ keyword as per the RISC-V GNU
toolchain standards [19]. This approach means that the compiler
toolchain does not need to be modified to detect the operations
in question; allowing for more universally compilable code. The
non-accelerated, non-quantised KWT-Tiny model was profiled
to obtain the most compute-intensive operations during an
inference run. The results are shown in Fig. 3, Fig. 4, and Fig. 5.

Clock Cycles per Operation - 26,984,000 cycles

Positional Embeddings
Output Linear Layer

Multilayer Perceptron 37.8%

Self-Attention

Fig. 3. Profiling of single inference run by operation

Clock Cycles per Self-Attention Operation - 10,160,000 cycles
Normalization

Linear Layer

55.9%
Matrix Multiplications 26.9%

SoftMax

Fig. 4. Profiling of single self-attention computation by operation

Clock Cycles per MLP Operation - 14,422,000 cycles

Normalization

Linear Layer 6.8%

62.7%

GELU

Fig. 5. Profiling of single MLP computation by operation

The GELU and SoftMax operations were found to be taxing
in inference. As a result, an R-type RISC-V custom instruction
(Fig. 6) is added to the Ibex decoder logic and is called directly

in assembly in the C code. This custom instruction uses RISC-
V’s reserved “custom-1” opcode with value 7°b0101011 [16].
Once called, the decoded instruction would activate specially
designed hardware blocks housed in the Ibex’s modified ALU
to accelerate GELU and SoftMax. GELU and Softmax
operations were chosen to be accelerated as they are shared
across many different deep neural network applications, not
only Transformers.

I funct?7 I rs2 I rsl I funct3 I rd | opcode I R-type

Fig. 6. R-type instruction in RISC-V

The value of funct7 remains 0 in all cases, and funct3 is
used to decide the behaviour performed by the custom
instruction as per Table VII.

TABLE VII. CUSTOM INSTRUCTION BEHAVIOUR
funct3 .
Value ALU Operator Behaviour
s Uses a lookup table to approximate
376000 ALU_EXP exp(X) where X is a Q8.24 integer
s Uses a lookup table to approximate
376001 ALU_INVERT (1/X) where X is a Q8.24 integer
s Uses a lookup table to approximate
36011 ALU_GELU GELU(X) where X is a Q8.24 integer
3°b100 ALU TO FIXED Converts a floating point _number to
- - Q8.24 representation
3b101 ALU TO FLOAT Converts a‘Q8.24 number to floating
- - point representation

To accelerate the SoftMax operation, the floating point
division operation is replaced by a simple lookup table with
operator ALU_INVERT. To design hardware that can compute
SoftMax on a fixed-point basis, there needs to be a constrained
range over which the input x; can vary. A typical way this has
been avoided was through normalizing the SoftMax as follows

[18], which obtains the same result as in (2):
emax(x)—xi
Softmax(x)i = m (10)

j=1

This means that a lookup table can also be used to
approximate the exp() through ALU EXP. The C code would
loop through a vector X, calculate ALU EXP(X;) for each
element, accumulate the sum, and then use
ALU _INVERT(sum), then multiply the results to obtain the
final SoftMax result. It was found that all values of e™ax(¥)~xi
lie between 0 and 10. It was also found that 32 divisions per
unit struck a fair balance between accuracy and ROM size to be
taken up. As such, the lookup tables for ALU EXP and
ALU INV were chosen to be 320 elements of 32-bit numbers
each, which is a total size of 2.56kB of ROM. The lookup tables
(LUT) were indexed respectively as in (11) and (12):

1
LUTy[z*32] = — (11)

LUT,[(z*32) — 1] = (12)

As is clear in Fig. 7, GELU can be approximated very
effectively through a simple piecewise approximation: if
x> 1595, then GELU(x) =x . If x < —1.857 , then

N =

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

GELU(x) = 0. If —1.857 < x < 1.595, then GELU (x) can be
approximated by a 32-element lookup table as defined in (13):

30 GELU Approximation

GELU(x)
\

0.5

0.0
— //
—— y=GELU(X)
¥ = GELUapprox(X)
-05
-3 -2 -1 0 1 2 3

Fig.7. Plotofy = GELU(x) and y = GELU ppyox(X)

LUT;[x] = GELU (x) (13)
The choice of the thresholds was done through a gradient
descent computation that showed that this was the near-optimal
choice for a 32-element LUT, with a quoted accuracy
degradation of only 0.0042%. This means that the total ROM
consumption is 2.69 kB for all LUTs. The results of hardware
synthesis in Table VIII show a percentage increase in area of
approximately 29% between baseline and modified Ibex. A
comparison of all produced models is shown in Table IX.

TABLE VIII. SYNTHESIS RESULTS ON ARTY-A735T
Attribute | Baseline Ibex | Modified Ibex | Overhead (%)
LUT 5092 7368 10.94
DSP 10 16 6.67
FF 5276 6074 1.92
BRAM 16 16 0.00
TABLE IX. COMPARISON OF MODELS
. KWT- KWT- KWT-Tiny-Q
Attribute KWT-1 Tiny Tiny-Q (+Hardware)
Parameters 607k 1646 1646 1646
. 1.646 kB
Model Size 242MB | 6.584kB | 1.646 kB (+2.69 kB ROM)
Program Size - 58.8 kB 44.4 kB 44.6 kB
Inference 6 6 6
Clock Cycles - 26 X 10 13 x 10 5.5x10
Accuracy 96.9% 87.2% 82.5% ~80%

VII. CONCLUSION

This paper investigated and accelerated Transformers from
the lens of embedded systems, training, quantising, and
accelerating ARM’s Keyword Transformer through custom

instructions on a RISC-V platform, resulting in a 5x speedup at
the cost of ~7% accuracy and 29% area overhead. The paper
introduces KWT-Tiny, a two-output class keyword spotter for
embedded applications that is 369 times smaller than KWT-1
at the cost of 10% accuracy. The paper also proposes a novel C
Transformer library and a novel GELU acceleration technique.

VIII. REFERENCES

[1] Q. Jiao, W. Hu, F. Liu and Y. Dong, "RISC-VTF: RISC-V Based Extended
Instruction Set for Transformer," 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Melbourne, Australia, 2021, pp. 1565-1570, doi:
10.1109/SM(C52423.2021.9658643.

[2] Y. Chen et al., "DaDianNao: A Machine-Learning Supercomputer,” 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,
UK, 2014, pp. 609-622, doi: 10.1109/MICRO.2014.58.

[3] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby,
N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale. arXiv:2010.11929 [cs].

[4] Berg, A., O’Connor, M., Cruz, M.T. (2021) Keyword Transformer: A Self-Attention
Model for Keyword Spotting. Proc. Interspeech 2021, 4249-4253, doi:
10.21437/Interspeech.2021-1286

[S] A. D’Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani and R. Cucchiara, "A
Transformer-Based Network for Dynamic Hand Gesture Recognition," 2020
International Conference on 3D Vision (3DV), Fukuoka, Japan, 2020, pp. 623-632,
doi: 10.1109/3DV50981.2020.00072

[6] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., and Polosukhin, I. (2017) 'Attention is all you need', Advances in Neural
Information Processing Systems, pp. 5998-6008.

[7] T.Ham, et al., "A"3: Accelerating Attention Mechanisms in Neural Networks with
Approximation," in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), San Diego, CA, USA, 2020 pp. 328-341. doi:
10.1109/HPCA47549.2020.00035

[8] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[91 Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jiirgen Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies

[10] Hendrycks, D. and Gimpel, K. (2020). Gaussian Error Linear Units (GELUs).
arXiv:1606.08415 [cs]. [online] Available at: https://arxiv.org/abs/1606.08415.

[11] Morshed, M. (2024). mashrurmorshed/Torch-KWT. [online] GitHub. Available at:
https://github.com/mashrurmorshed/Torch-KWT [Accessed 4 Feb. 2024].

[12] Liu, Z., Wang, Y., Han, K., Zhang, W., Ma, S. and Gao, W. (2021). Post-Training
Quantisation for Vision Transformer. arXiv (Cornell University). doi:
https://doi.org/10.48550/arxiv.2106.14156.

[13] Verma, V. (2022) 'AI-RISC: Scalable RISC-V Processor for IoT Edge Al
Applications', PhD dissertation, University of Virginia, School of Engineering and
Applied Science. doi: https://doi.org/10.18130/nj7t-7j93

[14] Waulfert L, Kuhnel J, Krupp L, Viga J, Wiede C, Gembaczka P, Grabmaier A. AIfES:
A Next-Generation Edge Al Framework. IEEE Trans Pattern Anal Mach Intell. 2024
Jan 18;PP. doi: 10.1109/TPAMI.2024.3355495.

[15] E. -Y. Yang, T. Jia, D. Brooks and G. -Y. Wei, "FlexACC: A Programmable
Accelerator with Application-Specific ISA for Flexible Deep Neural Network
Inference," 2021 IEEE 32nd International Conference (ASAP), NJ, USA, 2021, pp.
266-273, doi: 10.1109/ASAP52443.2021.00046.

[16] Waterman, A. and Asanovi¢, K. (2017). The RISC-V Instruction Set Manual
Volume I: User-Level ISA Document Version 2.2. [online] Available at:
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf.

[17] GitHub. (2022). Ibex RISC-V Core.
https://github.com/lowRISC/ibex.

[18] Vasyltsov, 1. and Chang, W. (n.d.). Efficient Softmax Approximation for Deep

Neural Networks with Attention Mechanism. [online] Available at:
https://arxiv.org/pdf/2111.10770.pdf.

[19] GitHub. (2022). RISC-V GNU Compiler Toolchain. [online] Available at:
https://github.com/riscv-collab/riscv-gnu-toolchain

[online] Available at:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 31,2025 at 16:17:09 UTC from IEEE Xplore. Restrictions apply.

