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Abstract:
The control of complex systems is often challenging due to high dimensional nonlinear
models, unmodeled phenomena, and parameter uncertainty. The increasing ubiquity of sensors
measuring such systems and increased computational resources has led to an interest in
purely data-driven control methods, particularly using the Koopman operator. In this paper,
we elucidate the construction of a linear predictor based on a sequence of time realizations
of observables drawn from a data archive of different trajectories combined with subspace
identification methods for linear systems. This approach is free of any predefined set of basis
functions but instead depends on the time realization of these basis functions. The prediction
and control are demonstrated with examples. The basis functions can be constructed using time-
delayed coordinates of the outputs, enabling the application to purely data-driven systems. The
paper thus shows the link between Koopman operator-based control methods and classical
subspace identification methods. The approach in this paper can be extended to adaptive online
learning and control.
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1. INTRODUCTION

Controlling complex autonomous systems, such as swim-
ming robots, off-road vehicles, wind turbines, transporta-
tion networks, and power grids poses significant chal-
lenges due to high-dimensional nonlinear models, unmod-
eled phenomena, and parameter uncertainties. The in-
creasing ubiquity of sensors has led to an abundance of
data from such systems, which combined with improved
computational resources has led to an interest in purely
data-driven methods for modeling, analysis, and control
of such systems [1–3]. These data-driven approaches have
increasingly been based on linear operators associated
with nonlinear dynamical systems. The Perron-Frobenius
operator propagates the densities in the state space of a
dynamical system, and the Koopman operator propagates
the observables along the flow in the state space of a
dynamical system, see for example [4]. By considering
the evolution of functions of the states rather than the
states themselves, these operator-based methods trans-
form a nonlinear system into an infinite dimensional linear
system, which can be approximated by a finite-dimensional
linear system such as in [5,6]. Additionally, many efforts
have been made recently to extend these results from
autonomous dynamical systems to input-output systems,

⋆ This work was supported by grant 2021612 from the National
Science Foundation and grant 13204704 from the Office of Naval
Research.
1Paper presented at the 2023 Modeling, Estimation, and Control
Conference (MECC 2023), Lake Tahoe, NV, Oct. 2-5. Paper No.
MECC2023-159.

where the operator approximation must account for the
effect of a control input to predict the output variables. For
example, extended dynamic mode decomposition (EDMD)
coupled with model predictive control (MPC) such as in [7]
or with linear parameter varying (LPV) modes such as in
[8] and variations thereof have become popular. More re-
cently, ideas from subspace identification (SSID) for linear
systems, such as from [9] and [10] have been used by [11,12]
to develop a method based on identifying the significant
modes in the evolution of an observable along a single
trajectory and then using Gaussian processes as a mapping
to this identified lifted state. The current paper builds
on these ideas of subspace identification and clarifies and
extends them to include observation data from multiple
trajectories and further shows that basis functions for the
observables can be defined using only data from output
variables.

The main contributions of the paper are as follows. We
demonstrate the relation between a Koopman operator
associated with a nonlinear system and subspace identi-
fication methods of linear systems. We identify the rela-
tion between the approximate Koopman operator that is
calculated using techniques like EDMD versus subspace
methods. In the approach using subspace methods, the
approximate Koopman operator that is calculated prop-
agates time realizations of observables. Therefore, output
data from a single trajectory does not (usually) sample
the state space dynamics, as it is difficult to ensure that
a nonlinear system is sufficiently excited, an assumption
that underlies the subspace identification methods with a



single data record, see for example [13]. We show that using
multiple data records improves the accuracy of prediction.
Multiple data records have been shown to be useful even
in subspace identification for linear systems in [14] since a
sufficiently long single data record may not be available in
practice and, more importantly, the observables could be
projected on any set of basis functions, such as Gaussian
processes. Usually, the basis functions are functions of the
state, and in purely data-driven systems, such functions
cannot be constructed since explicit knowledge of the
states is not available nor are different observables realized
or sampled. This paper shows that the basis functions
can be constructed using time-delayed coordinates of the
outputs, enabling the application to purely data-driven
systems.

The rest of the paper is organized as follows. In section 2
we describe the approximations of the different ‘versions’
of the Koopman operator and in particular the approx-
imation that propagates time realizations of the observ-
ables. In section 3 we formulate the subspace identification
problem for the linearized dynamics using multiple data
records; in 4 we review Gaussian processes (GP) as basis
functions (of state variable) for observables and in 4.2
we reformulate the GP as basis functions of time delayed
observables and demonstrate numerical results in 6.

2. FORMULATION FOR KOOPMAN OPERATOR
BASED CONTROL

Consider the autonomous dynamical system defined on a
manifold M

ẋ = f(x) (1)

with f : M 7→ TxM and suppose the bounded function g :
M 7→ R is an observable. The flow map of the dynamical
system, Ft : M 7→ M propagates the state as x(t +
t0) = Ft(x(t0)). The Koopman operator K : L∞ 7→ L∞

propagates the observable as Kg(x(t0)) = g ◦ Ft(x(t0))).
For the discrete-time dynamical system

xt+1 = F (xt) (2)

where xt ∈ M and F : M 7→ M, the action of the
Koopman operator on an observable function g : M 7→ R
is given as follows.

Kg(xt) = (g ◦ F )(xt) = g(xt+1). (3)

In practice, the action of the infinite-dimensional Koop-
man operator is approximated by its action on a finite-
dimensional space called the lifted space. This has fre-
quently been done through by projection to a finite set of
basis functions called the dictionary [5,7] that can either be
defined a priori or learned as part of the system identifica-
tion procedure or through the use of neural networks such
as in [15,16]. Here we take a different approach and treat
the sequence of measurements yt ∈ Rp as evaluations of an
observable function of the state. This observable function
is treated as a linear combination of finite basis functions
Ψ(xt), which would be propagated by an approximation
of the Koopman operator KΨ

Kg(xt) ≈ K[c⊺Ψ](xt) ≈ (KΨc)
⊺Ψ(xt) (4)

as shown in Fig. 1. Here c is a vector of projection
coefficients for the projection of g onto the function space
spanned by the dictionary functions Ψ. In order to obtain
an appropriate set of dictionary functions, Ψ, we first

g(xt) g ◦ F (xt)

{Ψ(xt)} {Ψ ◦ F (xt)}

zt zt+1

yt yt+1

K

projection projection

realization

KΨ

realization

K

C C

Fig. 1. Commutative diagram showing the propagation of
the observable g(x) by the operator K, the propaga-
tion of the projected observables Ψ(x) by the pro-
jected operator KΨ and their time realization zt by
the operator K.

obtain a lifted state zt ∈ Rr and a corresponding operator
K, which propagates it forward in time by applying ideas
of subspace identification using temporal sequences of data
without first approximating the operator KΨ or specifying
the basis functions Ψ. These lifted states zt are then
regarded as evaluations at a particular xt of a realization
of a random variable in a function space. This notion of
a random variable in a function space allows us to apply
Gaussian process regression (see [17]), which can be viewed
as obtaining an a posteriori distribution in a function
space, conditioned on the given data. That is, we model
the lifted states as a Gaussian process

zt ∼ Ψ(xt) = GP(µ(xt), k(xt, xt)) . (5)

Further, if we only have access to an output measurement
yt, which can be regarded as a function of the state xt,
the same lifting procedure can be applied to yt, as this
can be interpreted as indirectly lifting the state xt. The
measurements yt can then be retrieved as a projection
by the operator C from the lifted space of realized ob-
servables. This matrix C is also obtained through the
subspace identification procedure, but in the Koopman
interpretation, its rows contain the projection coefficients
c from Eq. (4) corresponding to the particular observable
functions associated with the output measurements yt.
In this interpretation a Koopman operator can be con-
structed that propagates the observables as functions of
time without first specifying or learning a dictionary of
basis functions.

The formulation can be extended to a control system on
realizations of observables z(t) with a control input at time
t as ut ∈ Rm

zt+1 = Kzt +But (6a)

yt = Czt +Dut (6b)

3. KOOPMAN OPERATOR VIA OBSERVABLES
FROM MULTIPLE DATA RECORDS

We begin by collecting a dataset of input-output data from
N trajectories of n + 1 timesteps each, Di = {ui

t, y
i
t}nt=0

for i = 1, . . . , N . We define the Hankel matrices for each
trajectory of n + 1 measured output and input data and
with l time delayed coordinates as,



Y i
l =


yi0 yi1 · · · yin−l

yi1 yi2 · · · yin−l+1
...

...
. . .

...
yil−1 yil · · · yin

 , U i
l =


ui
0 ui

1 · · · ui
n−l

ui
1 ui

2 · · · ui
n−l+1

...
...

. . .
...

ui
l−1 ui

l · · · ui
n

.

In order to identify the system using the multiple trajec-
tory records, these Hankel matrices are collected to form
mosaic-Hankel matrices, see [18] as shown below

Yl =
[
Y 1
l Y 2

l · · · Y N
l

]
, Ul =

[
U1
l U2

l · · · UN
l

]
, (7)

where, Yl ∈ Rlp×(n−l)N and Ul ∈ Rlm×(n−l)N .

3.1 System matrix calculation using SSID

Assuming that we have collected the trajectory data and
organized it into a mosaic Hankel matrix as mentioned
above, we proceed by computing the lifted states Z lift

0 and
system matrices K,C,B, and D using an SSID algorithm
for multiple trajectories. We outline the procedure below,
following closely the presentation of [14]. The system (6)
can be concatenated and represented in the form as,

Yl = ΓlZ
lift
0 +HlUl (8)

where

Γl =


C
CK
CK2

...
CKl−1

 , Hl =


D 0 0 · · · 0
CB D 0 · · · 0
CKB CB D · · · 0

...
...

...
. . .

...
CKl−2B · · · · · D


Z lift
0 =

[
z10 · · · z1n−l z

2
0 · · · · · · zN−1

n−l zN0 · · · zNn−l

]
Where Γl ∈ Rlp×r is the extended observability matrix,
Hl ∈ Rlp×lm is the block-Toeplitz matrix and Z lift

0 ∈
Rr×(n−l)N is the matrix of lifted states for the initial
state of each column trajectory of mosaic Hankel matrix.
The subspace system identification algorithm proceeds by
projecting Eq. (8) onto the orthogonal complement of the
row space of Ul. The projection operator for this is given
by Π⊥

Ul
= I − U⊺

l (UlUl)
†Ul and this projection yields

YlΠ
⊥
Ul

= ΓlZ
lift
0 Π⊥

Ul
. With this, we extract column space

of Γl by taking the singular value decomposition of YnΠ
⊥
Un

YnΠ
⊥
Un

= [Q1 Q2]

[
Σ1 0
0 Σ2

] [
V ⊺
1

V ⊺
2

]
, (9)

where Σ1 contains the r largest singular values, and so we

consider an approximation of Γl to be Γ̂r = Q1Σ
1
2
1 . By

selecting the r largest singular values we are determining
the order of the lifted dynamics. Here, the first p rows of
Γ̂r give us the C matrix

C = Γ̂r(1 : p, :), (10)

and with this, the K matrix can be found by solving the
following least squares problem

K = [Γ̂r(1 : (n− 1)p, :)]† Γ̂r(p+ 1 : np, :), (11)

where the : operator is used as in the familiar MATLAB
syntax and (·)† is the Moore-Penrose pseudoinverse.

We again form a least squares problem to find matrices
B,D and, Z lift

0 , using the equation below where i =
1, 2, . . . , N and t = 0, 1, 2, . . . , l.

yit = CKtzi0 +
t∑

k=1

CK(t−k)Bui
k−1 +Dui

t. (12)

We first vectorize and collect all outputs in one vector and
write it in the form,

vec(Y ) =
[
y10 · · · y1n y20 · · · · · · yN−1

n yN0 · · · yNn
]⊺

=
[
Φ⊺

B Φ⊺
D Φ⊺

Zlift
0

] [
vec(B)⊺ vec(D)⊺ Z lift⊺

0

]⊺
= Φ⊺θ,

(13)

With this, the matrices B,D and the initial lifted state
Z lift
0 are given by the least square solution

θ̂ =

vec(B)
vec(D)

Ẑ lift
0

 = (ΦΦ⊺)−1Φ vec(Y ). (14)

4. GAUSSIAN PROCESSES AS BASIS FUNCTIONS

The SSID procedure outlined in the previous section for
identifying the lifted state z and system matrices provides
a method for obtaining the system matrices from input-
output data collected from the system. However, it is also
necessary to construct a mapping from the original states,
xt (or partial observation yt) to the lifted state. For this,
we employ Gaussian process regression, based on the idea
discussed in Sec. 2 that the lifted states zt obtained in
subspace identification can be viewed as evaluations at
a particular xt of a dictionary function, which is itself a
realization of a random variable in a function space. In Sec.
4.1 we give the procedure when measurements of the full
state observable are available and in Sec. 4.2 we consider
the case where only a partial observation is available.

4.1 Gaussian Processes as Basis functions of full state
observable

The purpose of the Gaussian process model here is to
give the mapping zt = Ψ(xt) from the original system
states x ∈ Rd to the lifted states z ∈ Rr. For this, we use
the data gathered above as Z lift

0 and corresponding states
X = [x1

0, · · · , x1
n−l, · · · , xN

0 , · · · , xN
n−l] obtained from the

first p rows of the mosaic-Hankel matrix Yl for the case
when we have full state observable that is yt = xt. This
data is then used to model each lifted state as a Gaussian
process,

zi(x)|D ∼ GP(µzi|D(x), kzi|D(x, x)) (15)

where i = 1, 2, · · · , r. The posterior mean and covariance
are calculated as

µzi|D(x) = µ(x) +KxX

(
KXX + σ2

nI
)−1

Z lift
0 (i, :)⊺ (16)

kzi|D(x, x) = Kxx −KxX

(
KXX + σ2

nI
)−1

KXx (17)

where the kernel matrices are found by evaluating the
kernel function. In particular, we are using the ARD
squared exponential kernel. The kernel parameters can be
optimized through log-likelihood maximization. Here this
is done using the MATLAB toolbox for Gaussian process
regression to fit each of the r GPs independently.



4.2 Gaussian Processes as Basis functions of time delayed
observables

Often in system identification theory [9], using time-
delayed state observables to identify the whole nonlinear
states can be an effective way to estimate the state of
a system even if the full state is not directly measured.
Therefore, when the output is not a full state, the Gaussian
process model gives the mapping from the output and
the time-delayed coordinates of outputs and inputs to the
lifted states zt = Ψ(x̂).

x̂t =[yt, yt−1, · · · , yt−k, ut−1, · · · , ut−k]
⊺

X̂ =[x̂1
0, · · · , x̂1

n−l, · · · , x̂N
0 , · · · , x̂N

n−l].
(18)

These time-delayed observables X̂ with the corresponding
realizations of the lifted state Z lift

0 is used to model the
lifted state as Gaussian process.

zi(x̂)|D ∼ GP(µzi|D(x̂), kzi|D(x̂, x̂)). (19)

The posterior mean and covariance are calculated using
(16) and (17).

5. PREDICTION USING GP-SSID

For predicting the evolution of the system from a given
initial condition x0, its corresponding initial condition
of the lifted state is represented as a Gaussian random
variable, found by evaluating the GP at x0.

z0 ∼ GP(µz|D(x0), kz|D(x0, x0)) (20)

The mean and covariance of the initial lifted state are
found by evaluating the posterior mean and covariance for
each lifting function, using (16) and (17).

µz|D(x0) =
[
µz1|D(x0) · · · µzr|D(x0)

]⊺
(21a)

kz|D(x0, x0) = diag
[
kz1|D(x0, x0) · · · kzr|D(x0, x0)

]
(21b)

Then, denote the mean and covariance of the lifted state
by z̄ = µz|D and P = kz|D, respectively. This mean
and covariance are propagated forward in time using the
system matrices as

z̄t+1 = Kz̄t +But (22a)

Pt+1 = KPtK
⊺ (22b)

and the estimated mean of the output, ŷ along with its
covariance Q at each step can be obtained as

ŷt = Cẑt +Dut (23a)

Qt = C Pt C
⊺ (23b)

where t is the time index.

6. RESULTS

6.1 Linear predictor without Control

We apply the proposed method to obtain the Koopman
operator for the nonlinear Duffing oscillator using multiple
and single data records. Then, we compare the open-loop
prediction of each linear model against the true trajectory
simulated using the nonlinear model,

ẋ1 = x2

ẋ2 = 4x1 − x3
1

y = [x1 x2]
⊺

(24)

The training data set is collected by discretizing the
nonlinear system (24) using a fourth order Runge-Kutta
method and time step of 0.01s. For the first linear model
(multiple data records), we sample 200 trajectories all
randomly initialized for x ∈ R2 in the range [−3, 3] and
simulate each trajectory for 150-time steps. We then con-

Fig. 2. (a) training data set for the model with multiple
data records (b) training data for the single trajectory
case. Red points are the training data for the GP and
multicolored lines show the full trajectories.

struct the mosaic-Hankel matrix and follow the procedure
discussed in section 3 to construct a higher dimensional
linear system. For the second model, we sample a sin-
gle trajectory of 8000 time steps long to construct the
Koopman operator. We select 200 data points of the
system states and the corresponding time realization of
the basis functions (Zlift) from both models, which we
use to train the Gaussian processes. In the case of the
multiple trajectory model, we select r = 10, while for the
single trajectory model, we select r = 20. For predicting
the forward dynamics, we first use the respective trained
Gaussian processes to lift the initial states to the lifted
space and then propagate forward using equations (22)
and (23).
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Fig. 3. Comparison of the prediction of multiple trajectory
model (solid blue line), single trajectory model (Dash-
dot yellow line) and Koopman EDMD model (dotted
red line) with the solution obtained by direct integra-
tion of the nonlinear system (dash-square black line)
(24) for the initial state [-1.1,-1].



To compare the prediction of the proposed GP-SSID
algorithm to the traditional EDMD algorithm, see for
instance [5], we use the same data from the multiple
trajectory data set to construct the Koopman operator
using the EDMD method with the choice of 25 radial
basis functions and the states themselves, which gives us
the total number of basis functions r = 27. We then
compare predictions using 500 randomly sampled initial
points in the state space, enabling us to predict a 2-second
trajectory for each initial point. The average root mean
squared error for the SSID model trained with multiple
trajectories is 0.0728, while for the single trajectory model,
it is 1.2093, and for the K-EDMDmethod average RMSE is
0.5424. Figure 3(a-c) shows one of the prediction example
with an initial state at [−1.1,−1]. Figure 3d illustrates the
increase in RMSE as the prediction time increases.

6.2 MPC with Koopman operator

In this section, we consider a Duffing oscillator with a
control input

ẋ1 = x2

ẋ2 = − 0.2x2 + 4x1 − x3
1 + u

y = [x1 x2]
⊺

(25)

For comparison purposes, we identify two linear models,
one based on multiple data records and the other on
a single trajectory. Next we use linear model predictive
control (MPC) technique to control the nonlinear system
(25) and compare these two linear models in terms of the
performance index of the MPC and convergence to the
desired output.

We gather training data sets shown in figure 4; for the
first model, we use multiple data records by simulating
100 randomly sampled initial states forward for 500-time
steps with random control inputs u ∈ [−3, 3]. For the
second model, we propagate an initial condition for 8000-
time steps with a random control input of a similar range.
Subsequently, we construct mosaic-Hankel matrices from
the collected data, identify the linear system matrices,
and train the basis function (Gaussian Processes) for both
models, as discussed in sections 3 and 4. The size of the
lifted states selected is r = 35 for both the models.

(a) (b)

Fig. 4. Training data set for the Duffing oscillator (25).
Red points are the training data for the GPs, and
the blue points show the full trajectories. (a) multiple
data records, (b) single trajectory

Linear model predictive control (MPC) techniques is uti-
lized with the identified linear models to guide the system’s
states toward a desired state/trajectory. MPC optimizes

the performance of dynamic systems by solving a sequence
of optimization problems, determining the best control in-
puts that minimize the deviation between the desired and
actual outputs while ensuring compliance with imposed
constraints. We can formulate the MPC as a quadratic
optimization problem with constraints as

min
u

ti+Np∑
j=ti

1

2

(
(yj − yrj )

⊺Qj(yj − yrj ) + u⊺
jRjuj

)
(26)

s.t. Z0 = GP(µ(x0), k(x0, x0))

Zj+1 = KZj +Buj , j = ti. . . . . Np

yj = CZj

umin ≤ uj ≤ umax

Where Qj = 5, QNp = 10 and Rj = 10−3 are the positive
semi-definite weight matrices for the outputs and inputs,
ti is the current time, Np = 100 is the prediction horizon
and yr is the reference trajectory that is to be tracked.
In this example, we want to drive a given initial state x0
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Fig. 5. MPC results for linear model constructed us-
ing single trajectory data. The initial state x0 =
[−0.7160,−0.9789] and the target state is [2, 0].

to a desired state xdes = [2, 0]. At the start of the MPC,
the Gaussian processes are used to lift the initial state
x0. Then MPC predicts for Np-time step, and one control
step is implemented, which updates the initial state. Each
of these feedback updates are passed again through the
Gaussian process, and the process continues. Figure 5
shows the results for the model which uses single trajectory
data, and in figure 6 are the results for the model using
multiple data records. From both figures, we can observe
that the multiple data record model performs better and
tracks the desired reference trajectory, as seen in figure 6.

To assess the effectiveness of our proposed methodology in
contrast to established data-driven techniques for address-
ing the presented optimal control problem, we leverage
the K-EDMD algorithm as outlined in [5]. We employ this
algorithm to construct a linear system using the same mul-
tiple trajectory dataset. This construction involves using
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Fig. 6. Comparison of the MPC results from the lin-
ear models constructed using GP-SSID with multiple
data records (solid blue line) and K-EDMD (dot-
ted red line) with model-based nonlinear MPC so-
lutions (dash-dot yellow line). The initial state x0 =
[−0.7160,−0.9789] and the target state is [2, 0].

36 radial basis functions alongside the states themselves,
leading to generating a Koopman operator with a total of
r = 38 basis functions. Subsequently, we apply a Model
Predictive Control (MPC) formulation, as detailed in Sec-
tion 6.2, tailored to the linear system derived through the
K-EDMD algorithm. The results of our MPC solutions are
illustrated in figure 6. Notably, our proposed methodology
exhibits faster convergence compared to the K-EDMD
approach. Furthermore, the terminal error is larger in the
case of the K-EDMD algorithm.

While the GP-SSID based Koopman linear MPC is well
suited for data-driven systems, we also compare this ap-
proach with a purely model-based nonlinear model predic-
tive control (NMPC) approach with a similar cost func-
tion. We observe that the model-based controller exhibits
faster convergence and achieves a lower cost when com-
pared to the data-driven Koopman operator-based linear
controllers. However, the computational time required for
linear MPC based on both the GP-SSID and K-EDMD
approaches is lower in comparison to the computational
demands of the nonlinear model-based controller for the
same time step δt = 0.01s. As an illustration of the
difference in computational time, for the example shown
in fig. 6, GP-SSID and K-EDMD methods take about 101s
and 105s, respectively, and the nonlinear MPC takes 1108s.

The GP-SSID method consistently outperforms the K-
EDMD algorithm in terms of prediction accuracy, as il-
lustrated in figure 3 and while it seems that the MPC
implementations of both approaches (as shown in fig. 6 )
yields similar solutions, this similarity in performance is a
result of using a one-step control horizon, continually up-
dating the initial conditions. Nonetheless, it’s essential to
note that the one-step control horizon also entails a higher
computational cost and may make online implementation

infeasible. Therefore we evaluate the performance of both
algorithms with a larger control horizon of Nc = 50. For
the example considered in fig. 6 when Nc is increased to 50
the computational time for both GP-SSID and K-EDMD
approaches is about 1.7s although the terminal error with
the K-EDMD approach grows compared to the GP-SSID
approach.
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Fig. 7. Comparison of MPC results with control horizon
Nc = 50 obtained from the linear models constructed
using GP-SSID with multiple data records (in solid
blue line) and K-EDMD (dotted red line). The initial
state x0 = [−0.7160,−0.9789] and the target state is
[2, 0].

6.3 MPC with Koopman operator for partially observed
state

Consider the Duffing oscillator with control in (25), which
is partially observed such that

y = x2 (27)

Collecting data and identifying the Koopman operator
using subspace identification remains similar to the pre-
vious example in section 6.2. We sample 100 trajectories
with random initial states and propagate them for 400
time steps with random control inputs. To train the basis
function (Gaussian processes), we use output y along with
5 time-delayed inputs and outputs with the corresponding
time realizations of the lifted function Zlift ∈ R25. We
formulate a similar MPC model (26) as discussed in the
previous section to control the output x2 to track reference
signal. Here, the weight matrices used are Qj = 100 and
Rj = 0.001. The results in figure 8 show that we can use
this method to track a reference trajectory for a partially
observed system.

Fig. 8. MPC result for tracking the observable x2 to 0.

7. CONCLUSION

In this paper, we have explored connections between
the classical system identification technique of subspace



identification and recently developed methods for system
identification based on constructing a finite-dimensional
approximation of the Koopman operator. In particular,
we have shown that these methods can be directly related
by considering the latent state identified through SSID
to be an evaluation of a set of dictionary functions at
a particular state of the underlying nonlinear system.
With this formulation, we have shown that for nonlinear
systems, it is necessary to consider multiple data records,
as a single trajectory does not sufficiently explore the
state space in most cases. This is indicated by improved
prediction and control performance. We also show that
the same formulation can be applied in cases where only
partial state measurements are available.
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