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Abstract ICON observations were used to investigate local time (LT) and latitudinal variations of
thermospheric meridional winds in the middle-high thermosphere (160-300 km) during quiet times in 2020 June
and December. At middle-low latitudes (10°S—40°N), meridional winds were predominantly equatorward in the
summer hemisphere while mostly poleward in the winter hemisphere. The meridional winds showed that the
diurnal variation was dominant between ~20°N and ~40°N, but the semi-diurnal variation played a leading role
at lower latitudes (below ~20°N) during solstice months. Thermosphere-lonosphere Electrodynamics General
Circulation Model reproduced the ICON observed meridional wind variations qualitatively. A model diagnostic
analysis shows that the pressure gradient force dominated the semi-diurnal variation of the winds, while the
Coriolis force played a leading role in the diurnal variation in June. In December, LT variations of meridional
winds were primarily driven by pressure gradient and ion drag forces. During both months, the vertical viscosity
was important, tending to balance the effects of pressure gradients. Additionally, semi-diurnal variations of low-
latitude meridional winds in June were more affected by upward propagating tides than those in December.

1. Introduction

Thermospheric neutral winds play a significant role on the state of the coupled Ionosphere-Thermosphere (IT)
system. They drive ionospheric and thermospheric structures through electrodynamic and hydrodynamic pro-
cesses of the I-T system (Jiang et al., 2021; Richmond & Roble, 1987; Yu et al., 2022, 2023). Specifically, neutral
winds can redistribute the thermospheric mass, momentum and energy, and transport plasma along magnetic field
lines or generate electric fields through the wind dynamo to modify the ionosphere (Cai et al., 2022a, 2022b; Chen
et al., 2024 ; Kuai et al., 2025; Richmond, 1989; Wu et al., 2023, 2025; Yamazaki & Richmond, 2013; Zhai
et al., 2024). Meridional winds are particularly crucial to understand the latitudinal variations of IT parameters
and contribute to the thermal structure by the adiabatic heating and cooling process (Gasperini et al., 2016; Yu
et al., 2021a, 2021Db).

For decades, extensive efforts have been made to extend our understanding of the thermospheric neutral winds via
ground-based Fabry-Perot interferometers (FPI) (Biondi & Feibelman, 1968; Emmert et al., 2003; Fejer
et al., 2002), incoherent scatter radar measurements (Balsley et al., 1976; Lei et al., 2007) and ionosondes (Liu
etal., 2004; Luan et al., 2004). However, ground-based observations at a single point make it difficult to determine
the wind patterns in the surrounding area. Additionally, accelerometers onboard low-Earth-orbiting LEO satellites
can provide in-situ observations of neutral winds at satellite altitudes, as was demonstrated for the Dynamics
Explorer 2 (DE2) (Spencer et al., 1982) and the CHAllenging Minisatellite Payload (CHAMP) mission (Liu
et al., 2006; Xiong et al., 2016; Zhang et al., 2018). However, these measurements are limited to a single altitude
and cannot provide altitude profiles of the winds. In contrast, optical measurements of airglow emissions captured
by LEO satellites can measure neutral wind altitude profiles, as demonstrated by DE2 (Hays et al., 1981) and the
Wind Imaging Interferometer (WINDII) (Emmert et al., 2001, 2004; Fejer et al., 2000; Shepherd et al., 1993).

These observed wind data are collected to develop an extensively used empirical wind model, namely the
Horizontal Wind Model series (Drob et al., 2015; Emmert et al., 2008; Hedin et al., 1988, 1991), which provides a
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rough distribution of global horizontal winds despite data sparseness. Oberheide et al. (2011) developed the
Climatological Tidal Model of the Thermosphere in neutral temperature and winds, covering the gaps from the
lower thermosphere to satellite altitudes (80-400 km). Recently, the NASA Ionospheric Connection Explorer
(ICON) satellite used the Doppler Asymmetric Spatial Heterodyne technique to make remote measurements of
thermospheric neutral winds (Englert et al., 2007; Immel et al., 2017). This technique improves the Michelson
interferometer used in WINDII, and can take simultaneous interferogram samples in different emission lines at
various altitudes (Makela et al., 2021). Additionally, compared with the CHAMP in situ measurements, ICON
observed horizontal winds provide us a great opportunity to analyze the altitude variations of wind structures.

During geomagnetically quiet conditions, neutral winds primarily depend on horizontal pressure gradients and ion
drag force, which are driven by solar extreme ultraviolet (EUV) radiation inputs and the neutral-ion collisions,
respectively (Kelley, 2009; Qian et al., 2016). Additionally, the magnitudes of Coriolis force and vertical vis-
cosity force are sometimes comparable with pressure gradients and ion drag (Killeen & Roble, 1984). The
variation characteristics and physical mechanisms for the thermospheric winds have been investigated through
observations and numerical models. For example, Liu et al. (2006) presented the climatology characteristics of
equatorial zonal winds in ~400 km altitude based on CHAMP observations. Using ionosonde data, the day-night,
seasonal, and solar cycle variations of the meridional winds have been investigated by Buonsanto (1990, 1991)
and Liu et al. (2003, 2004). Lei et al. (2007) studied local time (LT) variations of thermospheric winds at Shi-
garaki station using the middle and upper atmosphere (MU) radar observations and simulations. Jiang et al. (2018)
reported the LT, seasonal, and longitudinal dependencies of quiet-time horizontal winds at three mid-latitude
stations at ~250 km using FPI observations and empirical and numerical models. Luan and Solomon (2008)
investigated the longitudinal variations in meridional winds, retrieved from peak heights and density in F, layer
observed by the Constellation Observing System for Meteorology, lonosphere, and Climate (COSMIC) satellites.
Yigitet al. (2022) used ICON/MIGHTI observations to investigate the climatology in the neutral winds at low and
middle thermosphere (90-200 km) during solstices. Gasque et al. (2024) presented the LT distribution of the
meridional winds in the F region based on ICON/Michelson Interferometer for Global High-resolution Ther-
mospheric Imaging (MIGHTI) measurements, and focused on the solar terminator wave structures of the ther-
mospheric winds. The physical mechanisms responsible for thermospheric winds have been studied through a
quantitative examination of the terms in the momentum equations using theoretical models, with a primary focus
on variations at high latitudes (e.g., Killeen & Roble, 1984, 1986; Kwak & Richmond, 2007; Larsen & Mik-
kelsen, 1983; Mikkelsen & Larsen, 1983). Thus, detailed forcing terms driving the LT variation of the neutral
winds and their latitudinal and altitudinal dependencies near mid and low latitudes have not been well addressed.

In this study, we report the LT variations of meridional winds in the mid-high thermosphere (160-300 km) using
ICON observations between 10°S and 40°N during June and December under geomagnetically quiet conditions.
The diurnal and semi-diurnal variations in meridional winds were reproduced qualitatively by the National Center
for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIEGCM). A
diagnostic package of TIEGCM was applied to research the physical mechanisms driving the meridional winds.
Additionally, impacts from upward propagating tides on the LT variations have also been investigated through the
controlled numerical experiments. Section 2 describes the ICON data and TIEGCM. Section 3 shows the results
and discussions. Section 4 presents the primary conclusions of this study.

2. Data and Model
2.1. ICON Data

The ICON satellite was launched on 10 Oct 2019 and orbits the Earth at ~600 km altitude. The MIGHTI onboard
the ICON satellite (Englert et al., 2017; Makela et al., 2021) employs two interferometers, MIGHTI-A and
MIGHTI-B, to sense the airglow in the red-line (630.0 nm) and green-line (557.7 nm) oxygen emissions on the
dayside and nightside, covering ~12°S to 42°N latitudes. The neutral wind velocity can be retrieved along the line
of sight from two MIGHTT instruments. Daytime wind data cover the altitude range of ~160-300 km from the red
line emission, and the altitude range of 90-300 km from the green line (557.7 nm) emission. The temporal
resolution of daytime wind profiles is 30 s. Nighttime wind data cover the altitude range of ~210-300 km from the
red line emission and the altitude range of 90-110 km from the green line. The temporal resolution of nighttime
wind profiles is 60 s. In this study, we used version v05 of the MIGHTI Level 2.2 data products of red-line neutral
wind from 160 to 300 km during the day and night, and we removed the data with “bad” label according to the
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Figure 1. (a) Temporal variations in AE (black line) and F10A7p (blue line) indices in June and December in 2020; (b) Kp
(black line) and Dst (blue line) indices, the black dashed line is the zero value of Dst; (c) B, (black line) and B, (blue line), and
the dashed line is the zero value of By and B,. The red vertical dashed lines divide June and December.

MIGHTT's data quality flags. This version was published in December 2022 and fills some long data gaps due to
solar contamination. Furthermore, version vO5 also incorporates the updates in the zero-wind calibration, the
thermal drift correction and the pointing verification using star observations (Englert et al., 2023).

2.2. TIEGCM

NCAR TIEGCM is a first principles upper atmosphere general circulation model that self-consistently solves the
momentum, energy, and continuity equations of the coupled IT system at each time step (Qian et al., 2014;
Richmond et al., 1992; Roble et al., 1988). The vertical resolution of the model used here is 0.25 scale height with
57 constant pressure surfaces ranging from ~97 to ~600 km altitude, depending on solar activity. The horizontal
resolution in latitude and longitude is 2.5° X 2.5°. In this study, the high-latitude inputs are provided by the
Weimer model (Weimer, 2005), driven with the observed solar wind and interplanetary magnetic field (IMF)
data. Two group runs were executed. One is with and another is without the monthly tidal climatology at the lower
boundary from the two-dimensional, linear steady state global scale wave model (GSWM) (Hagan & For-
bes, 2002, 2003). The time interval of simulation outputs is 1 hr with the complete runs in June and December in
2020. Additionally, the diagnostic package is used to calculate the acceleration terms in the momentum equation
(Killeen & Roble, 1984, 1986).

3. Results and Discussions
3.1. Geomagnetic Conditions

Figure 1 presents the temporal variation of AE, F,, 7, Kp, Dst and IMF B, and B, in 2020 June and December. AE
and Dst indices can be downloaded in https://supermag.jhuapl.edu/indices/. Fq 7,, Kp, B, and B, indices are from
https://cdaweb.gsfc.nasa.gov/cdaweb/sp_phys/. AE and Kp indices were less than 1,000 nT and 4, respectively,
except on DOY 356 and 358. Thus, we removed these two days from the statistical analysis of the meridional
winds. The absolute values of Dst were mostly less than 25 nT. B, and B, exhibited small disturbances within
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Figure 2. Local time (LT) (0-24 LT) and latitudinal (10°S—40°N) distribution of the meridional winds at 253.7 km in June
and December from ICON observations (a, ¢) and Thermosphere-Ionosphere Electrodynamics General Circulation Model
simulations (b, d). Positive (negative) values stand for northward (southward) winds.

~10nT. In June, F,, ; varied between 69 and 75 sfu with a monthly average value of 71.7 sfu. In December, F,, ;
in the first five days (DOY 336-341) are 101.2, 101.9, 99.9, 93, 97, 88.2 sfu, respectively, which are much larger
than that in the other days of December (between 78 and 86). Thus, we removed the first days of December (DOY
336-341). The averaged F, ; in the rest of December is 81.1 sfu. Overall, these 2 months are pretty quiet.

3.2. Data/Model Comparison

The monthly and longitudinal mean of meridional winds was calculated to present the LT and latitude dependence
of the wind profiles from ~160 to 300 km at 10°S—40°N latitude. The meridional winds were binned into 1-hr LT
intervals and 5° latitude bins. An altitude of ~250 km was chosen to show the LT and latitude distribution of
meridional winds in ICON observations (left column) and TIEGCM simulations (right column) in June and
December in Figure 2. In the North Hemisphere (NH), positive values stand for poleward (northward) meridional
winds, and negative values are equatorward (southward) meridional winds.

In June (Figure 2a), ICON observations indicate that meridional winds in the NH were mostly equatorward
(southward) in the night sector with the maxima of ~90 m/s. Poleward (northward) winds only existed between
~8 and ~14 LT at 40°N with the maxima of ~30 m/s, and their LT range shortened with the decrease of latitude.
By ~10°N to 0°, the poleward winds were almost entirely replaced by the equatorward winds in all LTs. The wind
direction switch was latitude-dependent, tending to occur at earlier LTs with the decreasing latitude. In the
Southern Hemisphere (SH), meridional winds were equatorward (northward) near local midnight (~22—~2 LT),
reaching the maxima of ~30 m/s. Poleward (southward) winds were prevalent during the daytime and other
nighttime LTs, with the maxima of ~80 m/s. Additionally, the meridional winds showed an obvious diurnal
variation above ~20°N, and a semi-diurnal variation dominated at lower latitudes (from ~20°N to 10°S). Taking
~10°N for instance, the meridional winds had a maximum at ~8 LT (northward, ~30 m/s) and ~19 LT
(southward, ~10 m/s), and a minimum at ~15 LT (southward, ~60 m/s) and ~21.5 LT (southward, ~70 m/s).
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Figure 3. (a—d): Local time (LT) (0-24 LT) and altitude (160-300 km) distribution of the meridional winds at ~10°N and
~30°N in June from ICON observations and Thermosphere-Ionosphere Electrodynamics General Circulation Model
simulations; (e, f): same to (a—d), but in December.
In December (Figure 2c), ICON observations indicate that meridional winds in the NH were mostly poleward
(northward), and the LTs varied from ~5 to ~21 LT at 40°N to ~0—~24 LT at 10°N, extending to the equator. The
maxima of poleward winds were ~160 m/s, decreasing with the latitudes. Equatorward (southward) winds
occurred at other LTs with the maxima of ~70 m/s. In the SH, equatorward (northward) winds were observed at
all LTs. In December, the diurnal variations were also distinct above ~20°N, and a semi-diurnal variation was
dominant at lower latitudes (from ~20°N to 10°S). Taking ~10°N for instance, the meridional winds had a
maximum at ~12 LT (northward, ~80 m/s) and ~18.5 LT (northward, 80 m/s), and a minimum at ~6 LT
(southward, ~30 m/s) and ~15 LT (northward, ~30/s). Wind directions in June and December illustrate that the
observed wind circulation features are mostly consistent with the simulated results in Rishbeth and Miiller-
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Figure 4. Local time (LT) (0-24 LT) and latitudinal (10°S—40°N) distribution in V,, (meridional wind speed) (a), the total time
rate of change of V, (9V,/0¢) (b), Coriolis force (c), pressure gradient (d), vertical viscosity (e), and ion drag force of V,, (f);
neutral temperature (TN) (g) and latitude gradient of TN (h) at 253.7 km in June.

Wodarg (1999) (Figure 1). Yamazaki et al. (2023) used the same ICON/MIGHTI data to analyze the amplitudes
of different tidal composition in F-layer meridional winds. The results show that diurnal variation dominated at
higher latitudes and semi-diurnal variation dominated at lower latitudes, which is consistent with our results.
Additionally, the maximum and minimum occurred around the evening terminator indicated the existence of solar
terminator waves; for more details, see Gasque et al. (2024).

In TIEGCM simulations (Figures 2b and 2d), the LT and latitude distribution in June is generally similar to that of
ICON observations. TIEGCM reproduced the equatorward meridional winds in the NH in the nightside with the
similar maxima of ~90 m/s. The northward winds occurred over a larger LT range from ~7 LT to ~15 LT at
40°N, with the maxima of ~50 m/s, which was larger than the observed results (~30 m/s). The LT range of these
winds also shrank with decreasing latitude but extended to approximately 10°S, ranging from around 3 LT to 7
LT. In the SH, the equatorward (northward) observed winds near midnight were not modeled by TIEGCM.
TIEGCM reproduced the observed diurnal and semi-diurnal variations and their latitude dependency. Taking
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Figure 5. Local time variations in the total time rate of change of V, (0V,,/0t), Coriolis force, vertical viscosity, ion drag and pressure gradient force of V,, at the latitude of
~8°S (a), ~10°N (b), ~20°N (c), and ~30°N (d) at 253.7 km in June.

~10°N for instance, TIEGCM simulated winds showed two maxima at ~8 LT (northward, ~30 m/s) and ~19 LT
(southward, ~15 m/s), and two minima at ~15 LT (southward, ~30 m/s) and ~0 LT (southward, ~75 m/s) (see
Figure 5b). Compared with the observations, TIEGCM underestimated the magnitude of the southward wind
minimum at ~15 LT. In December, TIEGCM simulations also reproduced the meridional wind direction and LT
distributions. However, the semi-diurnal variations occurred at all latitudes, differing from the observations that
only exhibited this feature at lower latitudes (~20°N to 10°S). Additionally, the magnitudes of the meridional
wind are different with the maxima of ~80 m/s in northward winds (lower than the observations of ~160 m/s),
and the maxima of ~60 m/s in southward wind (lower than the observations of ~70 m/s).

Figure 3 presents the LT and altitude distribution of meridional winds at ~10°N and ~30°N in June and December
from ICON observations and TIEGCM simulations. Note that there are no nighttime wind observations in
160-210 km altitude range mentioned in Section 2. In general, the simulation results match the ICON obser-
vations well, though there were still some magnitude differences. As aforementioned, the semi-diurnal variations
were more obvious at lower latitudes (~10°N) both in June and December. The observations and simulations
show that the diurnal and semi-diurnal variation were evident at all altitudes from 160 to 300 km. Additionally,
the maxima (minima) of the winds drifted to earlier LTs with the increasing height during both months. In
summary, the basic distribution of meridional winds in LT, latitude and altitude are reproduced qualitatively by
TIEGCM, though with some discrepancies. Therefore, the model outputs can be utilized to investigate the
physical mechanisms of the wind patterns under quiet conditions.

3.3. Forcing Terms of Meridional Winds

A diagnostic term-by-term analysis (Killeen & Roble, 1986; Yu et al., 2022) was performed for the model outputs.
The meridional momentum equation is given as:

OV, _ g 0 [10Vs] o U,U, 1 od v,
Uy + 4, (Vi = V,)) + 4 (U; = U,) = V-V, -2
ot = Py oz|moz| T UntAn( )+ A = TR TR T oz
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Figure 6. Local time (LT) (024 LT) and altitude (160-300 km) distribution in V,, (meridional wind speed) (a), the total time
rate of change of V,, (0V,,/01) (b), Coriolis force (c), pressure gradient force (d), vertical viscosity (e), and ion drag force of V,
(f); neutral temperature (TN) (g) and latitude gradient of TN (h) at ~10°N in June.
where V,, are meridional wind speeds, ¢ is time, 0V, /0t is total meridional acceleration, g is the gravitational
acceleration, P, is the reference pressure, y is the viscosity coefficient, H is the pressure scale height, f " is the
Coriolis parameter, Ayx and /1yy are ion drag coefficients, U; and V; are zonal and meridional velocities of ion, R is
Earth radius, @ is air pressure, 4 is latitude and W, is the vertical wind. According to the meridional momentum
equation, the total meridional acceleration (0V,,/0¢) is determined by terms on the right-hand side of the equation:
vertical viscosity, Coriolis force, ion drag force, horizontal momentum advection, centrifugal force, pressure
gradient force, and vertical momentum advection. As demonstrated by previous studies (Wang et al., 2008; Yu
et al., 2022), the contributions from vertical momentum advection, horizontal momentum and centrifugal force
are insignificant and can be ignored.
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Figure 7. Same to Figure 6, but at ~30°N in June.
Net positive (negative) acceleration could increase (reduce) the northward meridional wind speed, but reduce
(increase) the southward wind speed. It is worth noting that the forcing terms impact wind speed in an accu-
mulative way, but net acceleration represents the instantaneous force at one time. The relative contributions of
forcing terms can be seen by the comparison of magnitude and distribution with aV, /ot.
Figure 4 show the LT and latitude distribution of the other four total forces and total acceleration, and the wind
variations at ~250 km in June. The neutral temperature and its latitudinal gradient distribution are also provided in
Figures 4g and 4h. To assess the forcing magnitudes of the meridional winds intuitively, the fixed latitudes (~8°S,
~10°N, ~20°N, ~30°N) are chosen to show the line plots in different LTs of these acceleration terms in Figure 5.
In June, the pressure gradient force was a primary forcing mechanism in meridional winds at ~250 km below
~20°N at all LTs. Between ~20°N and 40°N, ~1-~12 LT, the Coriolis force had a significant positive effect on
the acceleration term. The LT distribution of these terms indicated that the pressure gradient force dominated the
semi-diurnal variations at lower latitudes (below ~20°N; see Figures 4b and 4d). Note that the pressure gradient
YU ET AL. 9 of 18
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Figure 8. Same to Figure 4, but in December.

force is mainly produced by the temperature gradient, thus the latitudinal gradient pattern of the temperature
(Figure 4h) was similar to that of the pressure gradient (Figure 4d). The semi-diurnal variations in temperature
gradient (Figure 4h) are primarily driven by the large temperature changes during sunrise and sunset. These
temperature changes appear to influence summer meridional winds at lower latitudes, suggesting a connection
between the diurnal cycle and wind behavior. Furthermore, the large temperature variations near the terminator
and the resulting pressure gradient force likely play a key role in the formation of solar terminator waves (Gasque
et al., 2024). Meanwhile, between ~20°N and 40°N, the diurnal variations were mainly determined by the Co-
riolis force, as shown in Figures Sc and 5d, which had an enhancement with the increased latitudes. The ion drag
term was relatively smaller in June. Thus, the interplay of pressure gradient and Coriolis force as well as vertical
viscosity dominated meridional wind variations in the middle-high thermosphere in June.

Figures 6 and 7 present the LT and altitude distribution of these terms at latitudes of ~10°N and ~30°N in June. At
~10°N, the magnitude of the Coriolis force and ion drag force was relatively small. The pressure gradient force
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Figure 9. Same to Figure 5, but in December.

and the vertical viscosity force had an enhancement with increasing height. At ~30°N, the direction of the
pressure gradient force reversed from southward to northward after sunset at ~230 km with increasing height. The
direction of the vertical viscosity force at ~30°N reversed from northward to southward after sunset at ~200 km
with increasing height. Additionally, the magnitude of the viscosity force increases with height due to the
decrease of the neutral densities with height, which usually acted to smooth out the vertical changes of winds
(Wang et al., 2008). Before local noon (~12 LT), the positive Coriolis forces increased with the altitude,
dominating the poleward winds and their diurnal variations.

Figure 8 show the distribution of the variables same to Figure 4 but in December. Additionally, the line plots at
different latitudes are shown in Figure 9. In December, the pressure gradient force was also a dominant mech-
anism for the meridional winds at ~250 km and was also closely related to their semi-diurnal variations at almost
all latitudes. Additionally, ion drag force had a large negative effect on the acceleration term between ~8 and ~19
LT, especially above ~20°N (Figure 9d). The magnitude of the ion drag force during the dayside is similar to that
of pressure gradient and vertical viscosity forces. Thus, the interplay of pressure gradient and vertical viscosity as
well as the ion drag forces dominated the meridional wind variations in F height in December. The ion drag term
is connected with the collision frequency between ion and neutral components, neutral winds and ExB drift
velocities (Hsu et al., 2016). Therefore, fewer ions in the ionosphere during the nightside resulted in the weaker
ion drag forcing than during the dayside (Wang et al., 2008). Additionally, the simulated semi-diurnal variations
occurred at all latitudes, which were different from the observations that semi-diurnal variations only dominated
at lower latitudes (~20°N to 10°S). That indicated that the dominant forcing term of semi-diurnal variations above
~20°N (pressure gradient force) may be overestimated by the simulation in December.

In December, TIEGCM simulations show the semi-diurnal variation of the wind at all latitudes, thus, one latitude
(~30°N) is chosen to present the LT and altitude distribution of these terms in Figure 10. The direction and
magnitude of pressure gradients also depend on the altitude. The direction of pressure gradient force reverses from
southward to northward at ~180 km at ~16 LT. At ~18 LT, there was a maximum of positive pressure gradients
above ~260 km. Ion drag forces have no obvious direction differences with height, but increased in magnitudes
with the increasing height. The most striking feature in the vertical viscosity forces is that they have a positive
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Figure 10. Local time (LT) (0-24 LT) and altitude (160-300 km) distribution in Vn (meridional wind speed) (a), the total
time rate of change of V,, (0V,,/01) (b), Coriolis force (c), pressure gradient force (d), vertical viscosity (e), and ion drag force
of V,, (f); neutral temperature (TN) (g) and latitude gradient of TN (h) at ~30°N in December.

maximum at ~240 km at ~10-~18 LT, different from their continuous increases with height at all LTs in June.
Additionally, the Coriolis forces also increased with the altitude.

The seasonal differences and directions of the wind field are attributed to the summer-winter pressure gradient
induced by the higher neutral temperatures in the summer hemisphere (Figures 4g and 8g). Notably, the ion drag
force was larger in December (winter hemisphere) compared to that in June (summer hemisphere), especially
during daytime. During solstices, the large-scale interhemispheric circulation happens due to the uneven solar
radiation between two hemispheres (Fuller-Rowell, 1998). Thus, the stronger upwelling in the summer hemi-
sphere transports N,-rich air up to upper thermosphere, leading to a lower O/N, in the local summer hemisphere
than the local winter hemisphere (Burns et al., 2015; Qian et al., 2016; Yu et al., 2020). Note that electron
production and loss result mainly from the photoionization of O and the dissociative recombination of O* with N,
and O,, respectively (Rishbeth, 1998; Yu et al., 2004). Thus, O/N, has a good correlation with the electron (ion)
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Figure 11. (a) Local time (LT) variations in V,, (blue lines) and the total time rate of change of V, (0V,,/ 0 ¢, red lines) with (solid lines) and without (dashed lines) tides at
the latitude of ~10°N at 253.7 km in June; (b) same as (a) but in December; (c) LT variations in pressure gradient force (red lines) and vertical viscosity (black lines) of
V., and the latitude gradient of neutral temperature (blue lines) with (solid lines) and without (dashed lines) tides at the latitude of ~10°N at 253.7 km in June; (d) same as
(c) but in December.

density when O, is supposed to behave similarly to N, (Burns et al., 1995). This caused the higher electron (ion)
density in the winter hemisphere, which was a factor in direct proportion to the ion drag force, and thus the larger
ion drag force here.

3.4. Tide Effects on Meridional Winds

Besides the effects from the solar source, the neutral winds are also modified by the upward propagating tides at
the middle-low atmosphere (e.g., Crowley et al., 1989). To test whether the tides impact the V,, pattern during the
quiet time, we compare the LT variations of simulation results with and without upward propagating tidal forcing
in Figure 11 (~10°N, ~250 km). The simulations without tidal forcing were run by excluding the bottom inputs of
both migrating and non-migrating diurnal/semidiurnal tides.

In June (Figure 11a), the winds (blue dashed line) showed a stronger diurnal variation in the absence of upward
propagating tides. Introducing tides into the simulations added a semi-diurnal variation in the winds, primarily
manifesting as a second maximum near ~19 LT (blue solid line). Figure 11c shows that the wind maximum near
~19 LT was dominated by the large positive pressure gradient force values with tides (red solid line), which
changed to less negative values without tides (red dashed line). This was also related to the changes in the lat-
itudinal gradient of temperature (blue lines in Figure 11c) (Jones et al., 2016). Therefore, the upward propagating
tides modify the pressure gradient force to control the semi-diurnal variations in summer meridional winds at
lower latitudes. The semi-diurnal variations at lower latitude in June were mainly driven by the semi-diurnal tides,
not the solar source. In December, the upward propagating tides had relatively less effects on the wind variations,
and the semi-diurnal variations at lower latitudes were still existing without tidal forcing (Figure 11b). Thus, the
semi-diurnal variations in winter solstice meridional winds were largely dominated by the solar heating and the
resulting thermospheric temperature changes.
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Figure 12. Local time (LT) (024 LT) and latitudinal (10°S—40°N) distribution in V,, (meridional wind speed) (a), the total
time rate of change of V, (9V,,/0r) (b), Coriolis force (c), pressure gradient force (d), vertical viscosity (e), and ion drag force
of V, (f); neutral temperature (TN) (g) and latitude gradient of TN (h) at 253.7 km in June without tides.

Figures 12 and 13 give the latitude distribution of the winds and the forcing terms without upward propagating
tidal forcing. We still can see the larger effects of tides on the semi-diurnal variations in meridional winds at lower
latitudes in June. The significant changes occurred on the pressure gradient and vertical viscosity force, while
there were no large changes in other terms. Therefore, the winds at higher latitudes, which were mainly deter-
mined by the Coriolis force, still showed the similar diurnal variation characteristics compared with the results
with tidal forcing. In December, all forcing terms had no evident changes when there were no upward propagating
tides driving TIEGCM runs. Thus, the winds presented the similar latitude and LT distribution compared with the
results with tidal forcing. Note that magnitude of the semi-diurnal tidal forcing (GSWM) in June and December
has been verified to be similar. Namely, semi-diurnal variations of meridional winds at lower latitudes in June
were more affected by upward propagating tides than those in December.
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Figure 13. Same to Figure 12, but in December.

4. Conclusion

We report the LT (0-24 LT) and latitudinal (10°S—40°N) variations of meridional winds in F layer observed by

ICON during quiet times in 2020 June and December, and investigate their physical mechanisms by TIEGCM

simulations. Our main conclusions are summarized as follows:

1. During the solstice months in solar minimum, ICON observations show that meridional winds in the summer
hemisphere are mostly equatorward. The LT ranges of dayside poleward winds, occurring ~8—~15 LT at
40°N, shrink with the decreasing latitude. The meridional winds in the winter hemisphere are predominantly
poleward. The LT ranges of nightside equatorward winds that exist ~21-~5 LT at 40°N, also decrease with the
latitude.

2. In both solstice months, the observed meridional winds show that the diurnal variation played a leading role
between ~20°N and 40°N, but the semi-diurnal variation dominated at lower latitudes (from ~20°N to 10°S).
TIEGCM simulated meridional winds were generally in good agreement with the ICON observations, though

YU ET AL. 15 of 18

95U91 suowW0)) 2ANEAI) d[qeatdde oy £q PAUIGACS 918 SI[INIE V() 1SN JO SN 10§ AIBIGYT SUHUQ AL A UO (SUONIPUOD-PUE-SLLIGY WY Ad[ 1A ATeaqi[auIuoy/:sdyy) SUOIPUOD) pue swId ] auy 995 “[§707/L0/1€] U0 A1e1qrT autuQ A9[iA “088E00VEFZOZ/6Z01°01/10p/wiod Koy Areaqujoutiuo-sqndne/:sdy woyy popeojumoq °Z ‘ST0T “Y80SEEET



ADVANCING EARTH
AND SPACE SCIENCES

Earth and Space Science 10.1029/2024EA003880

Acknowledgments

We thank the support from the B-type
Strategic Priority Program of the Chinese
Academy of Sciences (Grant
XDB0780000), the National Key R & D
Program of China (Grant
2022YFF0503901), B-type Strategic
Priority Program of the Chinese Academy
of Sciences (XDB41000000), National
Science Foundation of China (42304178),
China Scholarship Council, and China
Meteorological Administration
“Ionospheric Forecast and Alerting” Youth
Innovation Team (CMA2024QN09).
Xuguang Cai acknowledges the supports
from National Science Foundation AGS-
2437053. HL acknowledges support by
JSPS Grants 20H00197, JP22K21345.

there were some magnitude discrepancies. Additionally, the semi-diurnal variations occurred at all latitudes in
the simulations in December.

3. TIEGCM simulations illustrate that the pressure gradient force was a major forcing mechanism for the
meridional winds both in June and December, which mainly dominated the semi-diurnal variation of the
winds. The vertical viscosity tended to balance the effects of pressure gradient force. However, in June, the
Coriolis force had a large positive effect on meridional winds between 20°N and 40°N, which dominated the
diurnal variation here. In December, the ion drag force had a large negative effect on the winds during the
daytime.

4. The controlled simulations with and without tidal forcing show that the meridional winds at lower latitudes in
June were more affected by the upward propagating tides compared with those in December. The upward
propagating tides played a decisive role in the semi-diurnal variations of the winds at lower latitudes (~20°N to
10°S) in June.

Data Availability Statement

ICON data is from https://cdaweb.gsfc.nasa.gov/pub/data/icon/12/12-2_mighti_vector-wind-red/2020/. The data
used in this article are available at in Yu (2024).
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