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We survey on-shell and off-shell higher derivative supergravities in dimensions 1 
D 11. Various approaches to their construction, including the Noether procedure, 
(harmonic) superspace, superform method, superconformal tensor calculus, S-matrix and 
dimensional reduction, are summarized. Primarily the bosonic parts of the invariants and 
the supertransformations of the fermionic fields are provided. The process of going on- 
shell, solutions to the Killing spinor equations, typical supersymmetric solutions, and the 

role of duality symmetries in the context of R4, D4R4 and D6R4 invariants are reviewed. 
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1. Introduction 

 

It was realized long ago that supergravity theories have improved quantum behavior compared to ordinary gravity. 

However, it was also found that three-loop counterterms exist for N 1 and N 2 supergravities, which entail 

supersymmetrizations of quartic in Riemann tensor terms with suitable contraction of indices [1–3]. This meant that 

divergences are not forbidden by local supersymmetry starting at 3-loops in these theories. Nonetheless, it was hoped 

that supergravities with a higher degree of extended supersymmetry would have improved finiteness behavior. This led 

to several studies of higher derivative superinvariants. For an early account of higher-order superinvariants in extended 

supergravity theories, see [4]. These considerations have implications for attempts to build up an effective supergravity 

theory as well. For a pedagogical introduction to the effective field theory treatment of quantum gravity, see [5]. 

Initially, the focus in the study of higher derivative supergravities was in four dimensions. However, with advances 

made in string theory and their compactifications, their construction and study in diverse dimensions started to attract 

attention as well. The interest in higher derivative supergravities began to evolve in a direction not necessarily restricted 

to their relevance to higher loop divergences but also their properties in relation to higher derivative terms that arise in 

the low energy limit of string theory. These properties notably include the powerful duality symmetries, and the role of 

local supersymmetry in the organization of the higher derivative terms in the low-energy effective action. 

Given that string theory is the prime candidate for providing a UV complete theory of quantum gravity, one may 

question the wisdom of investing much effort in the construction and study of higher derivative supergravities in diverse 

dimensions in their own right. However, it should also be kept in mind that it is not known if string theory is the unique 

UV complete theory of quantum gravity. Indeed, it is one of the premises of the so-called Swampland program [6] to 

determine the conditions imposed on a UV completion on the basis of physical considerations; see, for example, [7,8] for 

a review. The criteria put forward are mostly motivated by string theory but not all of them. In any event, the criteria 

inspired by string theory are natural to take into account while maintaining freedom in building up an effective theory 

which is not necessarily identical to string theory. Among the universal criteria are the requirements of unitarity and 

causality. These criteria have attracted much attention in recent years, and we shall come back to them briefly in the 

conclusions. A property which is not necessarily essential but which may certainly be useful is local supersymmetry, and 

the attendant duality symmetries. Indeed, requiring anomaly freedom of a chiral supergravity naturally requires higher 

derivative extensions. Higher derivative supergravities, in turn, have led to investigations of their consequences for black 

hole physics, AdS/CFT correspondence, and cosmology. There is a large body of literature already on the study of the 

higher derivative corrections to black hole and string solutions, and consequences for the black hole entropy, mostly in 

four and five dimensions. See [9–11] for a review, where an extensive list of references to earlier papers can be found. 

In addition to their relevance to the black hole entropy, higher derivative corrections to supergravities, in the context of 

holography, also provide information on the conformal anomalies of the dual CFT’s; see, for example, [12,13]. As to the 

applications in cosmology, the possible shapes for non-gaussianity for gravitational waves in the de Sitter approximation 

was computed in [14]. In a more general context, the cosmology of modified gravity theories has been reviewed in [15]. 

All in all, there is an abundance of motivation for constructing and studying higher derivative supergravities. 

Even though several reviews of two-derivative supergravities have appeared in the literature over the years, not that 

many exist for their higher derivative extensions. Presumably, this is in part due to the fact that their explicit construction 

is a very complicated task compared to the case of two-derivative supergravities. Our aim here is to remedy this to some 

extent by providing a relatively extensive survey of presently known higher derivative extensions of supergravities in 

diverse dimensions. Our focus will be on surveying the known results, rather than describing their detailed derivations,  

which would deserve separate reviews by themselves. We also summarize briefly their applications. 

We shall begin by summarizing briefly different approaches to their constructions, including the Noether procedure, 

superconformal tensor calculus, (harmonic) superspace, superform method (ectoplasm), dimensional reduction and S- 

matrix. We shall then start with D  11 and work our way down to D  1, though the focus will be on D  10, 11 

and 3  D  6 as most results available are in these dimensions. We shall typically give the bosonic parts of the actions 

and supersymmetry transformations of the fermionic fields. The latter is relevant in finding supersymmetric solutions. 

Indeed, we shall also survey the known solutions to the Killing spinors equations in diverse dimensions. This will be done 

for on-shell as well as off-shell supersymmetric theories. We shall give a concise summary of the existing results on the 

R4, D4R4 and D6R4 invariants and their duality symmetries in diverse dimensions. The relevance of these invariants to 

potential UV divergences and counterterms in supergravities in diverse dimensions will also be reviewed briefly. 

Finally a word on conventions. We do not attempt to provide a universal set of conventions for all the supergravity 

theories that will be reviewed. Instead, we will adhere to the conventions used in the original papers in each case, except 

in a few cases where we may use slightly different notations. We refrain from listing the contents of all the sections, as 

the Table of Contents provided serves that purpose. 

 
2. Approaches to construction of higher derivative supergravities 

 
Let us recall briefly the approaches that have been employed so far for the construction of higher derivative extensions 

of supergravities. 
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Noether procedure: In this approach (see, for example, [16]), if an off-shell formalism exists, there is no need 

to deform the supersymmetry transformation rules since the supersymmetry algebra closes without the need 

to impose equations of motion that follow from the total action. Thus, the task is to find the partners of the 

desired higher derivative term that will be supersymmetrized under the fixed off-shell supertransformations. If the 

supertransformations are known only on-shell, life gets much harder since the closure will depend on the equations 

of motion, and therefore any deformation of the action will require the deformation of the supertransformations 

as well, and this will go on order by order in suitable expansion parameters. The difficulty in this case lies in the 

fact that there are too many structures one can write down, and their variations under supersymmetry produce 

an even much larger number of terms. This means a large number of variations grouped into a large number of 

independent structures that need to cancel separately. That is why, even four-derivative extensions of supergravity 

by this approach are rather rare, let alone the eight derivatives and beyond, as we shall review in the following 

sections. 
The Noether procedure is used in the construction of higher derivative corrections in 11D, type IIB and heterotic 

supergravities in 10D, matter couplings of N  (1, 0), 6D supergravity, and N  1, 4, 6, 8 supergravities in 3D. 

Superconformal tensor calculus: Instead of starting with off-shell supergravities, it turns out to be more convenient to 

work with off-shell conformal supergravities (and their matter couplings) first, and then fix the dilatation, conformal 

boost and R-symmetries to obtain off-shell Poincaré supergravity possibly coupled to matter. The convenience is 
due to the fact that the off-shell conformal supergravity construction is based on the construction of curvatures 

that follow the structure constants of the underlying superconformal algebra. Nonetheless, there is still quite a 
bit of work to be done because the system is highly reducible to begin with, and in order to achieve maximum 
irreducibility of the superconformal gauge field configuration, a maximal set of the so-called conventional constraints 

need to be imposed on the superconformal curvatures. Final results emerge from the study of the consequences of 
these constraints. This procedure has been explained in detail in the textbook [17], and summarized in the case of 

D  6, N  (1, 0) in [18], which follows closely the case of N  2, D  4 dealt with in detail in [19,20]. For reader’s 

convenience, we shall outline the procedure for obtaining off-shell N  1, 4D supergravity from the superconformal 
tensor calculus. 

The superconformal procedure is based on the SU (2, 2 1) superalgebra whose commutation rules can be found, for 

example, in [17, (16.2)]. The construction procedure starts with assigning a gauge field to each generator of the 

superconformal algebra 

hµ = hI TI = ϵµaPa + ωµabMab + bµD + fµ
aKa + AµT + ψ¯ µQ + φ¯µS . (2.1) 

Here Mab and Pa are the usual Poincaré generators while D is the generator for dilatation, Ka generate special 
conformal boosts and T is the generator of the chiral U (1) symmetry. Furthermore, Q and S are the generators 
of supersymmetry and special supersymmetry, respectively. The linear transformation rules and the curvatures for 

these gauge fields can be obtained by using the structure constants of the superconformal algebra fIJ K , i.e. 

δhµ
I = ∂µϵI + ϵK hµ

J fJK 
I , Rµν 

I = 2∂[µhν]
I + hK hµ

J fJK 
I . (2.2) 

As certain curvatures depend linearly on specific gauge fields, it becomes possible to impose conventional constraints 

on these curvatures. Solving these constraints allows for the determination of the corresponding gauge fields, leading 

to an irreducible multiplet. In the case of four dimensional N  1 supersymmetry, the conventional constraints are 

given by 
a µ ab µ 

Rµν (P ) = 0 , e a R̂ µ ν  (M) = 0 , γ Rµν(Q ) = 0 , (2.3) 

where in the second constraint a supercovariantization is employed (see [17, (16.23)] for the explicit formula) so 
that this set of constraints close under supersymmetry. These constraints determine (ωµab, fµ

a, φµ), respectively, in 

terms of the independent fields (eµ
a, bµ, Aµ, ψµ). In particular, ones finds 

1 
a 

 

Noting that the field bµ has a shift symmetry, these fields form the off-shell Weyl multiplet with 8 bosonic plus 8 
fermionic degrees of freedom. 
To construct a supergravity action, we now need a compensating multiplet to gauge fix the redundant symmetries 
(D, Ka, T , S). While Ka is fixed by utilizing the gauge field of dilatation, bµ, the remaining ones can be fixed by 
considering various matter multiplets, giving rise to different off-shell formulations of supergravity. For simplicity, 
here we demonstrate the procedure by using a chiral multiplet which consists of a complex scalar Z , a left-chiral 

projection of a Majorana spinor PLχ 1 (1 γ5)χ and a complex auxiliary scalar field F , whose supertransformation 

rules can be found in [17, (16.33)]. Next, one constructs a superconformal invariant action for the chiral multiplet 
coupled to the Weyl multiplet for which fixing the redundant symmetries yields off-shell Poincaré supergravity. A 
suitable such action is given by (see, for example, [17]) 

e−1L = Re 

[

F F  ̄+ Z □c Z  ̄− χ  ̄P D/ χ + 
 1  

ψ  ̄ γ µ (PLχ F + Z D/ PRχ) + 
1 

Z F  ̄ψ  ̄µγ µνPRψν 

] 

, (2.5) 

• 

• 
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where D/ χ is supercovariantized derivative of χ, and 

□c Z = eaµ 
( 

∂µDaZ − 2bµDaZ + ωµabDbZ + 2fµaZ + iAµDaZ 

 1  
−  ψ̄ 

 1  
P D χ +  φ̄ γ P χ 

) 
. (2.6) 

Note that the term fa
aZ contains the Ricci scalar in view of (2.4). One can now gauge fix this action to obtain an 

off-shell Poincaré supergravity 

D-gauge and T-gauge : Z = 
√

3/κ , S-gauge : χ = 0 , (2.7) 

which gives rise to 
1 

e−1L = 
2κ2 

(
R − ψ¯ µγ µνρ Dν (ω)ψρ + 6AaAa

) 
+ F F¯ , (2.8) 

with the field content (eµ
a, Aa, F , ψµ), counting 12 bosonic plus 12 fermionic degrees of freedom. 

The superconformal tensor calculus is also useful for studying matter couplings. For four-dimensional N    1 

supersymmetry, one can begin with a chiral multiplet action along with the action for the desired matter multiplet. 

The chiral multiplet can then serve as the compensator for the superconformal symmetries, leading to an off- 

shell matter-coupled supergravity theory. In the context of extended supersymmetry, possible Weyl multiplets and 

compensators for N  2 supersymmetry can be found in details in [17]. For N  4, the conformal supergravity 

framework is discussed in [21], although an off-shell formulation with a compensating multiplet, where the only 

viable option is a vector multiplet, remains unknown. In higher dimensions, the Weyl multiplets of five-dimensional 

N  2 supergravity were introduced in [22–24]. Possible constructions with a compensating vector or linear 

multiplet were discussed in [25,26], while a construction involving hyper and vector multiplets can be found 

in [23,27]. In six dimensions, with N  (1, 0) supersymmetry, the elements of superconformal tensor calculus, 

possible Weyl multiplets, and the off-shell construction with a linear multiplet were discussed in [18,28]. 

The superconformal tensor calculus method is used in the description of the N  (1, 0), 6D, N  2, 5D, N  1, 2, 4D 

and N  1, (1, 1), (2, 0), 3D supergravities. 

Ordinary superspace: As is well known, supergravity theories can be formulated in superspace in terms of suitably 
chosen torsion and curvature constraints (see, for example, [29–31]). In 4D, for example, the N  1 superspace has 

in addition to the spacetime coordinates xµ, anticommuting coordinates θα which have complex conjugates θ α̇ , with 

α, α̇ = 1, 2, that are chiral SL(2, C ) spinors. Denoting the entire set of coordinates by zM , and the supervielbein by 

EM A , the supertorsion 2-form is the exterior derivative of the 1-form EA = dzM EM A , 

TA = DEA = 
1 

EC ∧ EB TBC A , (2.9) 

where DEA = dEA + EB ∧ ΩBA and ΩAB is a connection one-form. Denoting the flat indices by A = (a, α) its 

nonvanishing components are the Lorentz algebra valued Ωab, where Ωαβ = 1 Ωab(σab)αβ and Ωα̇β̇ = 1 Ωab(σab)α̇ β̇ 
. 

2 2 

Differentiation (2.9) one finds the Bianchi identity 

DTA = EB ∧ RBA , (2.10) 

where RA
B = dΩAB + ΩAC ∧ ΩC B. In components, this reads 

RABC 
D − DATBC 

D − TAB
E TEC 

D = 0 , (2.11) 

(ABC ) 

where (ABC ) indicates the graded cyclic sum over ABC and DA EA
M DM . These identities become nontrivial when 

constrains are imposed on the components of the torsion and curvature. The description of the supergravity requires 
the imposition of an appropriate set of constraints. Such a set which gives off-shell N   1, 4D supergravity is given 

by [32] 

Tαβ 
C = 0 , Tα̇ β̇ 

C = 0 , 

Tαα̇ 
B = −2iδB 

(
σ c

) 
, Rαα̇ 

cd = 0 , 

Tαb
c = 0 , Tα̇ b

c = 0 . (2.12) 

Recalling that Dα and Da have dimensions 1/2 and 1 respectively, possible dimensions of the superfield expressions 
in (2.10) run from 1/2 to 5/2. A very useful strategy is to analyze them in the order of increasing dimensions. 
Nonetheless this is still a long and complicated calculation [33]; for a sketch, see, for example, Chapter 16 of [34]. 

In summary, Bianchi identities are solved in terms of the superfields R, Gαβ̇ , Wαβγ W(αβγ ) in terms of which 

all torsion and curvature components can be expressed, and they contain spacetime coordinate dependent fields 
(eµ, ψµ, Z , Aµ) that form an off-shell multiplet in which the complex scalar Z and the gauge field Aµ are auxiliary 

• 

µ 
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fields, arising as the θ = 0 components of the superfields R and Gαα̇ , respectively. Setting R = 0 and Gαα̇ = 0 

gives the equations of motion of N  1, 4D supergravity. The framework outlined above can be extended to yield 

conformal supergravity. In a subsequent step the conformal symmetry can be fixed to yield Poincaré supergravity. 

For a detailed account of this procedure, see for example, [31], where matter couplings are also covered. For extended 

supersymmetry in superspace see, for example, [29]. These can be generalized to conformal superspace to describe 

conformal supergravities [35]. As to supergravities in higher dimensions, the most studied ones are in D  6, 10, 11, 

for which we shall give appropriate references in the sections where we cover these dimensions. 

In general, demanding the Bianchi identities in presence of a given set of torsion and curvature constraints may 

or may not require the imposition of equations of motion. In the first case, one gets an on-shell supergravity, 

while the latter case yields an off-shell supergravity, assuming that the solution is nontrivial. Often, the solutions 

to the torsion Bianchi identities facilitate the construction of certain super p-form field strengths with their own 

Bianchi identities, and these forms prove to be very useful. This framework is very powerful in determining the two- 

derivative supergravities, and their matter couplings. In order to go beyond two derivatives, one needs to deform the 

torsion and possibly the p-form constraints, as discussed further in Section 3.2. However, this complicates the matter 

because solutions to the Bianchi identities bring in a number of new superfields whose relation to the supergravity 

multiplet can involve a large number (e.g. thousands) of possible structures, which are hard to analyze; see for 

example [36]. 

The superspace space approach is used in the description of type IIB and heterotic supergravities in 10D, N  1, 2, 4D 

and N  4, 6, 8, 3D supergravities. 

Harmonic superspace: The N -extended superspace has a useful extension known as harmonic superspace, introduced 

in [37], which is the product of ordinary superspace with a coset space K   H G where G is the R-symmetry 

group and H is a suitably chosen isotropy group such that K is always a compact complex manifold [38]. This 

framework makes it possible to construct action formulae that may not necessarily admit an ordinary superspace 

formulation. While it is relatively straightforward to construct such actions with linearized supersymmetry, their 

non-linear generalizations may not always exist, for example, due to the non-integrability of the chirality condition 

on the integration measure caused by certain nonvanishing supertorsion components; see for example the case of 

Type IIB supergravity [39]. However, in some cases, there may exist non-linear action formulae with appropriate 

integration measures in which the integral is over the harmonic superspace. For a further discussion of harmonic 

superspace and its application to the construction of N   4, 5, 6, 8 supergravities in 4D, see Section 11.3. 

The superform method (ectoplasm): In a superspace of D-dimensional spacetime and n dimensional Grassmannian 

coordinates, consider a closed superform J , 

J = 
1 

dzMD ∧ · · · ∧ dzM1 JM1...MD , dJ = 0 , (2.13) 

where zM are the superspace coordinates. Such a superform furnishes a supersymmetric action formula [40–42] 

S i⋆J , (2.14) 
MD 

where i  M   MD|n is the inclusion map and i⋆ is its pullback which effectively embodies the projections θ  0 and 
dθ  0. A more explicit formula is given in (2.16) below. The fact that this action is invariant under supersymmetry 

can be seen as follows. Under the superdiffeomorphisms generated by the superfield ξ  ξ M ∂M , in which the 

fermionic part is the local supersymmetry transformation, one has 

δξ J = Lξ J = iξ dJ + diξ J , (2.15) 

and the first term vanishes due to the closure dJ   0, and the second term gives a surface term in the variation 

of the action, which we neglect. Denoting the supervielbein by EM A , and identifying the spacetime vielbein and the 

gravitino fields by em
a = Em

a  and ψmα = Em
α , where the bar denotes evaluation of a superfield at θ = 0, the action 

formula reads 

S = 

∫ 

dDx εm1...mD 

( 
emD 

aD · · · em1 

a1 Ja1...aD + D emD 

aD · · · em2 

a2 ψm1 

α1 Jα1 a2...aD + · · · 

... + ψmD 

αD · · · ψm1 

α1 Jα1...αD , (2.16) 

where each of the J s is evaluated at θ  0. Since S is invariant under the replacement JD JD dKD 1, the 
mathematical problem at hand is to compute the d’th de Rham cohomology group. It is understood, however, that 
JD is to be constructed out of the physical fields of the supergravity theory at hand. In the case of D  10, pure 

spinors in the sense of Cartan, namely those obeying the condition λα (γ a)αβ λβ  0, appear in the construction. 

In the closed superform method, there are two cases to consider: strict invariants and Chern–Simons invariants. In 
the first case, the nonvanishing components of the closed form JD are tensorial. In the latter case, they may involve 

the gauge potentials and possibly θs. These lead to Chern–Simons terms in addition to tensorial terms. In that case 

• 

• 
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JD can be constructed as follows [40–44]. Let W be a closed (D  1)-form in the (D n) dimensional superspace that 

can be written as dZ where Z is a local D-form that involves gauge potentials. If W can also be written as dK where 

K is a tensorial D-form, then 

JD = K − Z (2.17) 

is a closed D-form that can be used to form invariants using the superform method. In this construction, Z gives the 

Chern–Simons term while K gives the rest of the terms that go with it. We refer the readers to [43] for a review. 

The ectoplasm approach is used in the description of higher derivative couplings in maximal supergravities in 

D 7, 8, 9, N (1, 0), 6D and N 4, 4D supergravities. 

Dimensional reduction and hidden symmetries: Given a higher derivative extension of a supergravity theory in D- 

dimensions, it is straightforward to perform a dimensional reduction on Td to obtain higher derivative extensions 
of supergravity in (D  d)-dimensions. At the two-derivative level, the resulting theories are known to possess 

hidden symmetries, see Table 8 in Section 11.1. In the case of N  1, 10D supergravity coupled to nV abelian vector 

multiplets compactified on a torus Td, the hidden symmetry is O(d, d  nV ). A construction of the theory in which 
this symmetry is manifest by doubling the 10D spacetime and introducing additional nV coordinates is known as 

double field theory, reviewed in [45–47]. A four derivative extension of this theory where a 2d  nV dimensional 

group is gauged has been provided in [48]. Dimensional reduction of this result, in particular on tori, gives rise to 
four-derivative extension of half-maximal gauged supergravities coupled to Yang–Mills. 

The dimensional reduction method is used in the description of the higher derivative couplings of 10D type IIB 

supergravity and supergravities in D  1, 2, 3, 6, 7, 8, 9. 

The S-matrix and holography: The S-matrix method relies on extracting the supergravity effective action from the 

scattering amplitudes. For a textbook treatment of this subject, see [49]. If such amplitudes are available from an 

S-matrix approach, which is a situation encountered in string theory, but less robust in supergravity as a field 

theory, one can look for an action modulo field redefinitions that produces those amplitudes. Combinations of terms 

that give vanishing contributions to a given n-point amplitude may require the knowledge of (n  1) or higher 

point amplitudes, which increases the complexity of the problem. See, for example, [50] for the situation arising 

in the context of four graviton amplitudes in 11D supergravity. Quantization of the two-derivative supergravity 

and computation of loop amplitudes instead give information on local higher derivative functionals in terms of 

divergences that depend on a cut-off. Adding counterterms to remove these divergences leads to undetermined 

coefficients in front of them. If the theory is a low energy limit of string theory in some background, these 

coefficients are determined by string theory. Regarding the fate of hidden symmetries in higher derivative extensions 

of supergravity, at least the order α′ corrections in the O(d, d nV ) covariant setup has been achieved [51–53]. 

Whether this construction can be carried out to higher orders in α′ remains to be seen. Indeed, doubt has been cast 

on whether the α
′3ζ(3) correction in heterotic string theory effective action can be captured in a supersymmetric 

double field theory framework [54]. 

Remarkably, a super conformal field theory in 3D known as the ABJM model [55], which is a 3D Chern–Simons 

theory with gauge group U(N)  U(N) and level k  1, 2, coupled to bifundamental matter, has been employed 

to compute successfully the coefficients of the R4 [56] and D4R4 [57] terms in 11D low energy effective action of 
M-theory. This is a remarkable result because it provides a framework for going beyond 11D supergravity, as can 

be seen by the fact that it fixes the coefficient of the R4 term which cannot be fixed by 11D supersymmetry alone. 
The approach used in [56] is based on studying the flat spacetime limit of the Mellin amplitude associated with the 
four-point correlation function of scalar operators in the stress tensor multiplet of ABJM theory [55]. In this way, 

the momentum expansion of the M-theory four-graviton S-matrix elements is obtained. In practice, however, so 

far this approach has been tractable for four-point graviton amplitudes. Similarly, the relation between the large-N 

expansion of the integrated correlators in N  4 supersymmetric Yang–Mills theory and the scattering amplitudes 

in type IIB superstring theory in AdS5  S5 has been reviewed recently in [58]. 

The S-matrix and holography approach is used in the description of the higher derivative couplings of supergravity 

in 11D, type IIA and type IIB supergravities in 10D, and N = 8, 4D supergravity. 

 

 

3. D = 11 

 
The 11D supergravity multiplet consists of a metric gµν, a 3-form potential Cµνρ and a Majorana gravitino ψµ. The 

bosonic part of the Lagrangian is given by [59] 

e−1L = R(ω) − 
 1 

F 
 
µνρσ F µνρσ   1   

εµ1...µ11 F 
1442 

 
µ1...µ4 

 

Fµ5...µ8 

 

Cµ9...µ11 , (3.1) 

where Fµνρσ = 4∂[µCνρσ ]. The supertransformation of the gravitino, up to leading terms in fermions, is given by 
1 

δψµ = Dµϵ + 
 

 

288 

(
γµ

νρσ τ − 8δν γ ρσ τ 
) 

Fνρσ τ . (3.2) 

• 

• 
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Table 1 

On-shell massive multiplets in D = 4 super-Poincaré algebra without central charge up to N = 5 [62]. 

Spin N = 1 N = 2 N = 3 N = 4 N = 5 

5/2 1 

2 1 1 1 1 10 
3/2 1 2 1 4 1 6 8 44 

1 1 2 1 1 4 6 6 15 27 110 

1/2 1 2 1 4 6 4 14 20 48 165 

0 2 1 5 4 1 14 14 42 132 

 

 

Since 11D supergravity emerges in the strong coupling limit of Type IIA string theory, and string theory admits a derivative 

expansion in its low energy effective action, it is natural to expect a higher derivative deformation of 11D supergravity 

as well. Let us also recall that 11D supergravity admits the fundamental membrane and solitonic M5-brane solutions. 

Studying the local symmetries on the M5-brane worldvolume, one discovers that freedom from anomalies requires the 

presence of the C3  R4 term in the 11D action and the attendant anomaly inflow mechanism that ensures the cancellation 

of the anomalies, as will be discussed further below. The presence of this term in 11D supergravity calls for the restoration 

of supersymmetry order by order in the Planck length ℓp, and hence the need for uncovering the higher order in derivative 

terms in the action. The need for the higher derivative terms is also clear from the consideration of loop corrections to 

11D supergravity. On the account of its nonrenormalizability one needs to put a cut-off and introduce higher derivative 

counterterms. Despite all these motivations for getting a handle on the higher derivative terms in the effective action, 

their determination turns out to be an extremely complicated problem. In what follows we shall review those which have 

been obtained so far, starting with the eight-derivative deformations.1 

3.1. Eight-derivative deformations 

In 11D supergravity, the first non-topological deformation of the two-derivative action appears at the eight-derivative 

level. There exist no quadratic curvature terms in 11D maximal supergravities, as can be seen by the following argument. 

Assuming that quadratic curvature terms exist in 11D supergravity, their reduction on a torus T 8 yields quadratic curvature 

terms in 4D, N 8 supergravity. This theory admits a maximally supersymmetric Minkowski vacuum about which the 

modes of perturbations are arranged into irreducible representations, with smax  2, of the N  8 Poincaré superalgebra. 

In particular, there will be massive spin-2 modes generated by the combination of the Einstein–Hilbert term and Riemann 

curvature-squared term. However, from Table 1, one observes that when N 5, the massive spin-2 state must live in a 

multiplet with smax > 2, yielding a contradiction.2 As for the cubic in curvature terms, it is known they are incompatible 

with the 10D maximal supersymmetry [61]. Therefore, there should not be cubic curvature terms in 11D either, since 

their circle reduction would generate such terms. For these reasons, we will first review attempts to construct the 

eight-derivative superinvariant in 11D. 

Noether procedure approach 

The most extensive Noether procedure approach to the construction of the eight-derivative extension of 11D super- 

gravity was carried out in [63–65]. The ansatz considered by these authors has 1544 terms which take the schematic 
form3 

S(6) = ℓ6 

∫ 

dx11e

[
[R4]7 + [CR4]2 + [R3F 2]30 + [R2(DF )2]24 

+[R2ψ¯ 
2Dψ2]25 + [R3ψ¯ ψ2]92 + [R3F ψ¯ ψ]447 

+[R2F ψ¯ 
(2)ψ2]190 + [R2DF ψ¯ ψ2]614 + [RDF ψ¯ 

2Dψ2]113 , (3.3) 

where X n schematically denotes the structure of the terms where the indices need to be contracted in various ways, n 

denotes the number of independent such terms and ψ2 denotes the gravitino curvature. The explicit form of the terms 

R3F 2 
30 can be found in [63, Eq. (15)], and the terms R2(DF )2 

24 in [50, Eq. (A.5)].4 In this ansatz only a subset of eight- 
derivative terms are considered because the following assumptions have been made: (1) Terms with covariant derivatives 
of the Riemann tensor are not considered; (2) the covariant derivative of the gravitino appear only as a field strength; (3) 

the terms involving F are considered only up to second order; (4) parity invariance under which x10 → −x10, A → −A 
 

1 In [60], a five derivative deformation has been discussed but it can simply be obtained from a field redefinition of the 3-form potential. 

2 The massive modes generated by higher derivative terms are different from the KK modes. Owing to the presence of the central charge, if the 

mass term originates for the two-derivative action, then smax  2 even in the case of N  8. However, if the mass is generated by the presence of 

the Riemann-squared term, then smax > 2 can arise. 

3 Some of the R3 ψ¯ ψ2 terms were obtained by lifting higher derivative corrections of type IIA theory in [66]. 

4 The basis for the R2 (DF )2 terms in [50,67] differ from each other. We have determined the exact relation between these two bases but we 

refrain from giving it here. 
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S(6) = ℓ6 

∫ 

d11x 

[

a 

(

t t eR4 − 
 1 

ϵ ϵ eR4 − 
1 

ϵ t CR4

) 

 

and ψµ  γ 10ψµ is assumed; (5) terms proportional to the field equations resulting from S0 are left out; (6) higher 

derivative deformations of the supersymmetry transformation rules are not considered at all, and only the lowest order 
supersymmetry variations, namely those of ordinary two-derivative 11D supergravity, are implemented and (7) only 
cancellations of terms containing at most one factor of F are sought in [67]. The 5th and 6th assumptions are connected in 
the following sense. Supersymmetric variation of terms in the action that contain the lowest order field equations can be 
canceled by modifying the transformation rules in a way that can be deduced from the variations proportional to the stated 
field equations [63]. However, the variation of the higher derivative action with respect to the lowest order supersymmetry 

transformations δ0, cannot be canceled in this way, and achieving the cancellations by fixing the parameters is highly 

nontrivial. 
Even under the assumptions listed above, the Lagrangian still has 1544 parameters, and the subset of variations 

mentioned above give rise to 4643 structures that have the schematic form [67]5 

4 2 3 2 3 

[ϵ¯ψ R ]116 , [ϵ¯ψ2R DR]88 ,  [ϵ¯Dψ2R ]51 ,  [ϵ¯ψ R (DR)F ]1563 ,  [ϵ¯ψ R F ]513 , 
2  2 3 2 

[ϵ¯ψ2R D F ]614 , [ϵ¯ψ R DF ]995 ,  [ϵ¯ψ2RDRDF ]371 ,  [ϵ¯Dψ2R DF ]332 . (3.4) 

The F -independent terms in (3.3) and (3.4) are spelled out in [63]. Partial results were obtained in [63,64], while a fuller 

analysis was carried out in [67], where it was found that the bosonic part of the Lagrangian (3.3) is completely fixed in 

terms of two parameters, a and b, as follows 
 

H p 24 

24 30 
2 2 

6 

3 2 

] 

+ 

i=1 

ci(a, b)[R (DF ) ]i + 
r =1 

di(a, b)[R F ]i , (3.5) 

in which the coefficients ci and di have been determined in [67] and the symbols ϵ11ϵ11, ϵ11t8 and t8t8 are defined in the 

appendix. It is natural to expect that further variations in the Noether procedure would relate the parameters a and b to 
each other. Another way to fix them is to reduce the result on a circle and compare it with the results obtained long ago 
in [68] in the NS–NS sector. 

Finally, we note that the ϵ11t8CR4 term is related to anomaly inflow in the presence of M5-brane as follows [69]. 
The M5-brane which supports chiral fermions and a chiral 2-form has gravitational anomalies which can be obtained by 

descent from the following anomaly polynomial 
1 X8 = 

(2 )4 768 

[
−(trR2)2 + 4trR4

] 
. (3.6) 

π 
The descent equations X8  dI7, δI7  dA6 determine the anomaly A6. It turns out that this anomaly is precisely canceled 

by the variation of the bulk term ϵ11t8CR4  C X8 under the 11D local Lorentz transformations restricted to SO(5, 1). In 
other words, in the presence of an M5-brane, we have the so-called anomaly inflow 

δ 
M11 

C ∧ X8 = 

∫  
 

 

∂M11 

F ∧ δI7 = − 

∫ 

 

 

dF ∧ A6 , (3.7) 

where we have used the relation dF  2πδ5 with δ5 representing a 5-form which integrates to one in the directions 
transverse to the M5-brane and has delta function support on the M5-brane. Thus the anomaly inflow from the bulk 
cancels precisely the M5-brane worldvolume gravitational anomaly A6. For more details, including the cancellation of 
R-symmetry related anomalies, see [70,71]. The C X8 term has also been utilized to compute the Weyl anomaly on the 

worldvolume of multiple M5-branes using holography [72]. It was shown that the leading order coefficient 4N 3 [72] in 

the Weyl anomaly is shifted to 4N 3  3N [73] which for N  1 indeed matches in the case of a single free tensor multiplet 
theory. 

Superparticle approach 
As mentioned above, an alternative approach to computing the higher derivative extension of 11D supergravity is 

to compute the loop corrections. Instead of employing the usual BRST quantization, it turns out that an equivalent but 
more efficient way to proceed is to use the superparticle vertex operators [74]. To this end, we recall that κ-invariant 
superparticle propagating in 11D target superspace requires 11D supergravity field equations. However, since κ-symmetry 
is infinitely reducible, its covariant quantization is problematic. This problem is bypassed by quantizing the superparticle 
in the lightcone gauge. The resulting superparticle vertex operators for the supergraviton were used in [50] to determine 

the (DF )2R2 and (DF )4 terms from the four-graviton amplitude. The result schematically takes the form 

 

(6) 

PPS 
= ℓp 

∫ 

d11xe

[
αt8t8R4 + 

24 

 

 

i=1 

 

βi[R2(DF )2]i + 

24 

 

 

r =1 

γr [(DF )4]r 
]  

, (3.8) 

 
 

5 We thank Y. Hyakutake for making his unpublished work available to us, in which the counts for the 3rd and 6th structures given in [64], have 

been corrected. 

W6 

∑ 

∑ 

∫ 

S 
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3 
)et8t8R , thereby obtaining the action (3.5). 

αβ αβ 
2 

αβ d1 d2 
5! 

αβ d1···d5 

 

where the coefficients α, βi, γr and all the tensorial structures are given in [50, Eqs. (3.1–3), (A.2) and (A.5)]. Furthermore, 

as noted in [50], there are 6 linear combinations of (DF )2R2 terms and 9 linear combinations of (DF )4 terms in the 
effective action which lead to vanishing 4-pt amplitudes. These combinations are given in [50, Eqs. (A.3) and (A.7)]. Note 

also that the ϵ11ϵ11R4 does not contribute to the four-graviton amplitude. Its determination requires the five-graviton 
amplitude [50]. 

Comparing the results of [50] with those of [67], the a t8t8R4 terms agree. As to the R2(DF )2 terms, not only do 

they agree by relating (α, βi) to (a, b), but the results of [67] also provide the coefficients for the 6 linear combinations 
mentioned earlier that are not fixed by the 4-pt supergraviton amplitude. 

It is useful to note that the R4 term in the Lagrangian discussed above also arises as a one-loop divergent part of the 
four-graviton amplitude [75]. Introducing a momentum cut-off Λ the divergence is given by 4π Λ3et8t8R4, in conventions 

3 

of [76]. This can be eliminated by adding the counterterm ∆L = (a − 4π Λ3 
4 

In [76], the coefficient a is fixed to be a 2π 3 by comparing the result with the finite 4-pt graviton amplitude in type II 

string theory. It has been argued that the R4 term we are discussing does not receive corrections beyond one-loop [77,78]. 

Considering higher loops in 11D supergravity, one expects divergences of the form D2kR4 arising in the four-graviton 

amplitudes. It turns out that the D2R4 term vanishes on-shell, and at two-loops, D4R4 and D6R4 terms may arise [75]. If 
nonvanishing, these terms would suggest the existence of their supersymmetric completions. The two-loop amplitude has 

been studied in detail in [75]. Consistency with string theory indicates that the renormalized value of the D4R4 term should 

vanish and the D6R4 interaction, together with other terms of the same dimension, are the first nontrivial corrections to 

the eleven-dimensional M-theory effective action after R4 [78]. Higher loops in 11D supergravity and their consequences 
for D6R4, D8R4 and D10R4 counterterms have also been discussed in [78]. 

3.2. Superspace approach 

The equations of motion of the 11D supergravity [59] were reformulated in superspace in [79,80]. The key to superspace 

formulations is the nature of the constraints imposed on the superspace torsion. Some of these are called the conventional 
constraints, which amount to field redefinitions, while other physical (non-conventional) constraints put the theory on- 

shell in 11D. For a self-contained succinct review of these points, see, for example, [36]. In the original superspace 

formulation, the minimal set of constraints that put the theory on-shell were not studied. In addition, there is the 

additional issue of whether to introduce a super 4-form field strength into the formalism from the start, as opposed 

to working in what is referred to as the geometrical part of the theory, entailing the supervielbein and connection. For 

a discussion of the relationship between the two approaches, see [36], where it has been argued that while they are 
equivalent in the formulation of the standard two-derivative 11D supergravity, it is not known whether that is the case 

in the higher derivative extension of the theory discussed below in a geometric framework. In the superspace formalism, 

there is also a choice to be made as to whether to enlarge the structure group to include a Weyl(scale) transformation. 

This entails the introduction of a connection which takes its values in the Lie algebra of Spin(1, 10) R+, and superspace 

with such a connection is called Weyl Superspace [81]. 
In [81], working in Weyl superspace, Howe showed to obtain the 11D supergravity equations of motion, it is only 

necessary to consider the geometric part of the theory and to take the dimension-0 component of the supertorsion to be 

Tαβ 
c = −i(γ c)αβ , (3.9) 

where α, β 1, . . . , 32 are the spinor indices, and c  0, 1, . . . , 10 is the Lorentz vector index. In a later work [82], it 
was shown that taking the lowest components of the closed superspace four-form to vanish, one obtains the standard 

supergravity equations of motion. 

A geometrical framework 

Higher derivative extensions of 11D supergravity, referred to as the deformed theory, call for a new set of superspace 
constraints. This problem has been studied in the geometrical framework, that is, without introducing the superspace 

four-form and its Bianchi identities, in [36,83,84]. The deformation problem, which deals with the question of which 
torsion components are to be subject to physical constraints, very beneficially has been mapped to a problem in spinorial 

cohomology introduced in [85,86], and developed further in [82]. In this approach, it has been pointed out that the 
deformations in question can be understood perturbatively in the cohomology of a supersymmetric spinor derivative 

followed by a projection onto the highest weight representation. For a succinct review of this procedure, see, for 
example, [82]. There also exists a closely related pure spinor cohomology approach [87,88]. For a discussion of the relation 

between the ‘‘spinor’’ and ‘‘pure spinor’’ cohomologies, see [82]. 

To summarize the results of [36], it was found that by using the conventional constraints, with the structure group 
taken to be the Lorentz group, the torsion can be brought into a form in which, in particular, the dimension-0 components 

are given by 

T  c = 2
(
γ  c + 

1 
γ  d1 d2 X c + 

1 
γ  d1···d5 Y c 

) 
, (3.10) 

where X and Y tensors are in the (11000) and (10002) representations of the 11D Lorentz group. The remaining 
components of the torsion can be found in [36, Eq. (2.10)]. They span dimensions 1/2 to 3/2 and contain 31 more 



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1–95 

11 

 

 

10 

5 9 κ 

∼ + 

→ ∞ 

⏐ 

= 

= 

) [ ] [ ] 

11D 
p 

1 

24 96 

11 

= 

ab bc cde dae 2 bae 

 

representations! It has been argued that these representations are general enough to account for any deformation allowed 

by supersymmetry, and when substituted to the superspace Bianchi identities (SSBI’s), they will contain components of 

the most general stress tensor multiplet. In [36], all SSBI’s of dimensions 1/2 and 1 are solved to linear order in tensor 

superfields X and Y , and the solution is used to obtain the deformed equations of motion at dimensions 3/2 and 2. 

However, to find the explicit form of the equations of motion in terms of physical fields requires the determination of the 

X and Y tensors in terms of the physical gauge covariant fields such as the Riemann tensor and gravitino curvature. This 

is a very complicated, and yet to be cracked problem, since there are thousands of possible independent combinations of  

fields that can be harbored in the representations of X and Y , as has been noted in [36], and as can be glimpsed from the 

discussion of the Noether procedure results summarized in the previous section. 

3.3. Lifting from 10D, amplitudes and duality 

There have been proposals for the construction of the higher derivative deformation of 11D supergravity by lifting the 

corresponding results in Type IIA theory in 10D. The lifting ansatz takes the form 

2 = e−2φ/3 
(
ds2 + e2φ (dx11 + Aµdxµ)

) 
, 

Bµν = Cµν11,  Cµνρ = Aµνρ , (3.11) 

where µ, ν = 0, . . . , 9. The 10D/11D physical parameters are related via 

 
2κ2 = (2π)7g 2α′4 ,  2κ2 

 
= (2π) ℓ 

2 

,  κ2 

2 
11 

 
,  R11 = gs 

√
α′ , (3.12) 

10 s 11 11 10 π R11 

where R11 is the period of x11, i.e. x11 x11 R11. Using this ansatz, the eight-derivative terms in the type IIA 

one-loop effective action were lifted to 11D, thereby obtaining the purely bosonic eight-derivative corrections to 11D 

supergravity [89, Eq. (6.17)]. The reduction of the 11D action to 10D apparently gives rise to an expression with 

complicated dilation dependence. However, one can show that it is on-shell equivalent to the standard one-loop term 

without the dilaton, as discussed in [90]. 

The eight-derivative terms in the type IIA tree-level effective action do not survive the M-theory limit (gs ) and 

therefore it gives no contribution to the effective action of 11D supergravity [91]. When M-theory is compactified on a 

circle of finite radius, one recovers the eight-derivative terms in IIA tree-level effective action, upon the inclusion of the 

contributions from the KK modes [91]. 

The bosonic action of the eight-derivative deformation of 11D supergravity, is partially obtained by lifting the 

deformations of type IIA supergravity [89] and partially from the four-point superparticle correlators in 11D in the light- 
cone gauge [50, Eq. (3.1)-(3.3)], or from the four-point amplitudes in 11D supergravity [92–94]. Taking into account all 

this information, the eight-derivative deformation of 11D supergravity, up to an overall constant, is given by6 [89] 

∆S2 = ℓ6 

∫ [
(t8t8 − 

1 
ϵ11ϵ11)R

4 + C ∧ X 8(R) − t8t8F 2R3 − 
1 

ϵ11ϵ11F 2R3 

+ 
3 

F ∧ 
(
Rab ∧ Rbc ∧ F cde ∧ DFdae + 2Rab ∧ F bce ∧ Rcd ∧ DFdae 

+ R  ∧ R ∧ DF ∧ F 
1 

− 
2 

trR ∧ F 
abe ∧ DF , 

−3Rab ∧ F bae ∧ Rcd ∧ F dce 

] 
+ 

∫ 

L (DF )2R2 + 

∫ 

L (DF )4 + · · · , (3.13) 

 

where the (DF )4 and (DF )2R2 terms are the ones in (3.8), and F abc dxµFµ
abc /(4π)2, and the ellipsis denotes yet 

to be determined couplings, including those of the form (DF )3R which are not accessible in the light-cone gauge. For 

the definitions of t8t8R3 and ϵ11ϵ11F 2R3 see the appendix. A different method based on the four-point tree scattering 

amplitudes in 11D supergravity was used in [92–94], where (DF )4, (DF )2R2 and R4 terms were computed.7 For one-loop 

computations in 11D supergravity, see [74,91,95,96]. Note that the F 2R3 terms obtained via lifting from IIA supergravity 
have not been compared to those obtained by Noether procedure [67], although we expect them to match modulo field 
redefinitions. 

4. D = 10 

 
In ten-dimensions, the higher derivative deformation of supergravity theories has been studied in the case of N (1, 0) 

supergravity coupled to Yang–Mills from supersymmetry alone, and the results have been compared with the α′ expansion 

 

6 Prior to [89], partial results on the eight-derivative deformations of 11D supergravity were also derived by lifting certain deformations of type 

IIA supergravity in 10D in its NS–NS sector [66]. 
7 According to [50] their results for the (DF )2 R2 terms do not agree with those of [93]. 

ds 
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= 

= −  ̄ = 

v⋆ u⋆ 
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of heterotic and type I string effective action, as we shall review below. In the case of N  (1, 1) and N  (2, 0) 

supergravities, also known as type IIA and type IIB supergravities, respectively, a direct Noether procedure has not been 
pursued, with the exception of the study of a limited sector in type IIB supergravity in [97], where compatibility with the 

SL(2, Z) duality symmetry is discussed in detail, as we shall review briefly below. In the case of type II supergravities, the 
higher derivative extensions have been deduced to some extent from the string amplitudes, mostly from the computation 

of the four-point graviton amplitude. Less is known about higher point amplitudes in general [98], with the exception of 
the gravitational 5-pt and 6-pt amplitudes worked out in [99]. 

4.1. Type IIB 

To begin with, let us consider the string theory amplitude approach for finding the higher derivative effective action. 
Using the pure-spinor formalism [87,88], the full four-point tree amplitudes of both type II strings to all orders in α′ 
were computed in [100]. The result was found to be derivable from the Lagrangian given in [100, Eq. (1.2)]. Suppressing 

the terms containing the RR five-form field strength and truncating the result at order α′3, this result was cast into a 
manifestly SL(2, Z) invariant form in [101]. In this subsection, we shall begin by writing down the two-derivative action, 
Then, we shall review the work of [97] which uses supersymmetry and SL(2, Z) duality to get information on the scalar 

field dependent couplings at order α′3. Next, we shall turn to the amplitude considerations in type IIB and certain relations 

with 11D supergravity on T 2. 
The bosonic part of the two-derivative classical type IIB effective (pseudo)action in Einstein frame, and including the 

RR five-form field strength only here, is given by [102] 
 

S(0) 

 1  
∫ (

R 2P P  ̄µ |G3| |F5|2 
)   1   

∫ 

C G Ḡ  (4.1) 
1 + 4 ∧ 3 ∧ 3 , 

IIB = 
2κ2 

− µ − 
2 · 3! 

− 
4 · 5!  

⋆ 
8iκ2 

where 
i τ = C0 + ie−φ ,  P =  (τ2)−1∇ τ ,  G3 = (τ2)−1/2 (F3 − τ H3) , 

µ 
2 

µ 

H3 = dB2 ,  F3 = dC2 ,  F5 = dC4 − 
1 

H3 ∧ C2 + 
1 

F3 ∧ B2 , (4.2) 

2 2 

and τ2  (τ  τ )/(2i). The equation of motion F5  ⋆F5 is to be imposed by hand after varying the action. Strictly from 

the point of view of supersymmetry, the computation of a higher derivative extension of this action by employing the 
Noether procedure is notoriously complicated. 

A no-go at the nonlinear level 

Superspace approach may be simpler but unfortunately, it runs into an obstacle at the nonlinear level as follows. In the 
type IIB superspace described in [39], it is known that one can construct an analytic superfield whose lowest component 

is related to the axion–dilaton τ satisfying the constraint D¯ Φ   0. As highlighted in [39], this constraint is integrable 
even at the non-linear level. A natural ansatz for an action formula has the form 

S = 

∫ 

d10x d16 θ E W (V , U ⋆) , (4.3) 

 

where V , U ⋆ are the analytic superfields whose lowest components are v, u⋆ that make up the SU (1, 1) element 
u v  

, 

and E is the integral measure which is required to be an analytic superfield as well, but with lowest component being 

equal to the vielbein determinant e. It was shown in [39] that such a measure does not exist at the nonlinear level, due 

to the non-integrability of the analyticity constraint on E at the nonlinear level. 

The use of linearized supersymmetry and SL(2, Z) duality 

There are useful building blocks for the higher derivative terms that can be deduced by considering superspace 

formulation at the level of linearized supersymmetry. To ensure the linearized equations of motion, one works with the 

analytic superfield Φ whose lowest component is the axion–dilaton that satisfies the constraints 

D̄ Φ = 0 , D4Φ = 0 , (4.4) 

which are integrable at the linearized level. In view of these constraints, Φ has the component expansion 

Φ = τ + θλ + θ 2G + · · · + θ 4 (W + ∂F5) + · · · + θ 8∂4τ¯ , (4.5) 

where G = dB and W is the linearized Weyl tensor. Using this superfield, one can write down the following action 

S(3) = α′3 

∫ 

d10x d16θ F (Φ) + c.c. 

= α′3 

∫ 

d10x 

(
f (−24)λ16 + f (−22)Gλ14 + · · · + f (0)W 4 + · · · + f (24)λ⋆16

) 
, (4.6) 

2 
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+ 

h 

1 

= − 
 ̄

µ 
order α′3 variation of the quartic fermion term in (4.8), give rise to the following 

(
ϵ⋆γ µψ⋆ 

) 
λ16 and (ϵλ⋆) λ16 terms 

11 
32 1 

= 

⊂ 

h 

( 2 2 

1 

256 
µνρ 1 1 µ 

δL = 8ieα′3 
(
ϵ¯⋆γ µψ⋆ 

) 
λ16

(
f 

(12,−12) + 108D11f 
(11,−11)

) 

−2iα′3 
(
ϵ¯λ⋆

) 
λ16

(
D¯ −12f (12,−12) 

+ 3240f (11,−11) 
− 90 g 

) 
, (4.10) 

w 2 
∂ 2 

1 2 3(1 − 4w2) 2 

µ 1 1 

τ 

 

where f q(τ ) are functions related to F (τ ) through the Taylor expansion needed in the action formula, and q denotes the 

U (1) charge such that each term in the expansion is U (1) invariant, recalling that λ and G have U (1) charges 3/2 and 1, 

respectively. This action, however, is not invariant under SL(2, R) or SL(2, Z ), and f (τ ) is an arbitrary function. Nonetheless, 

it motivates the following procedure as a step towards the construction of the nonlinear higher derivative extension of 

type IIB supergravity. Firstly, all functions f (q)(τ ) can be replaced by the non-holomorphic modular forms f (
w,−w)

(τ , τ ) 
that carry weight w  q/2, to ensure SL(2, Z ) covariance. These are also discussed further below and defined in (4.14). 
These forms are expected to receive contributions from string amplitudes up to h-loops. It turns out that the relevant 

contribution for the α′3 arises for h = 1, due to the properties displayed in (4.16). Thus, in (4.6), we let 

f (q)(τ ) → f (
−q/2,q/2)

(τ , τ¯ ) . (4.7) 

This step in general does not preserve supersymmetry. To restore it, one natural step is to replace the linearized field 
strengths with their nonlinear and supercovariant forms. Next, one can examine a subset of variations of the supergravity 

action S(0) plus S(3) under (possibly α′ deformed) supersymmetry transformations. This is what was achieved in [97] who 
considered the following action (in Einstein frame) 

S = 

∫ 

d10x e

[  1  (
λ¯ γ µνρλ⋆

) (
λ¯ ⋆γ λ

) 
+ · · · + α′3 

(
f (12,−12)

λ16 − 432f (11,−11) 
(
λ15γ µψ⋆ 

) 
+ · · · 

)] 
. (4.8) 

It was shown in [97] that introducing the following order α′3 variation of the dilatino 
i 

δ(3)λ = − 
16 

α′3g (τ , τ¯ ) 
(
λ14

)
cd 

(
γ µνργ 0

)
dc 

(
γµνρϵ⋆

)
a 

, (4.9) 

where g (τ , τ¯ ) is a to be determined function, the zeroth order in α′ variation of the α′3 term (reviewed in [97]), and the 
 ̄  ̄

 

 

1 1 

where 

D  = i 

(

τ 
 ∂ 

− i 
w 
) 

, (4.11) 

and D¯ w is the complex conjugate of Dw. It was also shown that the closure of the supersymmetry algebra on λ⋆ at order 

α′3, modulo the λ⋆ equation of motion, requires that 

D  g = 
 1 

f (12,−12) 
. (4.12) 

This relation, together with two equations that follow from the requirement of the vanishing of (4.10) give 

g = − 
27 

f (11,−11) , D¯ 
12D11f 

(11,−11) = − 
525 

f (11,−11) ,  D11D¯ 
12f 

(12,−12) = − 
525 

f (12,−12) , (4.13) 
8 1 1 4  1 1 4  1 

where one uses the fact that D11g  0 has no solution. These are Laplace equations whose solutions involve representation 

functions of SL(2, R) in general. However, motivated by the fact that the low energy effective action of type IIB string has 

SL(2, Z) instead, we are more interested in properties of the solution under the discrete subgroup SL(2, Z)  SL(2, R). For 

general weight w, such solutions are the non-holomorphic Eisenstein series defined as 

f (
w,−w)

(τ , τ¯ ) = 
∑ 

τ ) 
1 +h 

h+ 1 +w 

 

 
h+ 1 −w 

 
. (4.14) 

 
  

(m,n)≠(0,0) (m + τ n)  2 (m + τ¯ n) 2 

Under SL(2, Z ) transformation τ → (aτ + b)(cτ + d)−1 with ad − bc = 1, a field Φ with weight (q, −q) is 

Φ → (cτ + d)q(cτ¯ + d)−qΦ . (4.15) 

It is useful to note that expanding f (
w,−w) 

in the large τ2 ≫ 1, i.e. small string coupling, regime gives 
2 

f (
w,−w)

(τ , τ¯ ) = 2ζ(3) τ 3/2 + 
2π 

τ −1/2 + O 
(
e−τ2 

) 
, (4.16) 

where the first term is associated with closed string tree level [68], the second term with the 1-loop effects [95,103], and 
the last terms encode the contributions from non-perturbative D-instanton states [104]. While the Noether procedure at 

the nonlinear level has not been carried out to determine the coefficient of R4 term, strong arguments, including the use 
of linearized supersymmetry, have been given in [97] for its being f (0

,0) 
(see also [105]). It is also useful to note that the 

1 function f (0
,0) 

is often denoted by (10) 

1 E(0,0), as discussed in Section 11.1. 
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 ̂

+ · · · + f D R + · · · 
) 

, (4.17) 

 ̂ ˆ̂ 

 ̃

(1,0) 

16 4 
at order α′5. To be specific, the tensorial structure of the ̂ G 4  term considered in [106] is ̂ G 4  = ( Ĝ µ ν ρ Ĝ µ ν ρ  )2. There are two 

S(5) = α′5 

∫ 

d10x e
(
f 

(14,−14)λ16Ĝ4 + f (13,−13)λ15γ µψ∗ + f̃  
(13,−13) λ16 Ĝ2 Ĝµν ρ Ĝµν ρ · · · 

256 
µνρ 

8 µ νρ 

supersymmetry on the λ16G4 term, the first three terms in the following action at O(α′5) are considered 

 16 4 

The same idea has been applied to the analysis of the modular property of the function in front of the λ Ĝ term, 

 

other terms mixing with the λ Ĝ term under the supersymmetry transformation. Thus to explore the consequences of 

     
(0,0)  4 4 

2 

 

where ‘‘. . . ’’ indicates other O(α′5) terms in the effective action which are beyond the discussion of [106]. We have added 

the D4R4 term to emphasize that it is expected to arise from a fuller analysis of supersymmetry. Assuming the modified 

supersymmetry transformation rules for the dilatino and gravitino at order α′5 to be of the form 

δ(5)λ∗ = α′5g1G
4(λ14)ab(γ µνρ )baγµνρ ϵ

∗ ,  δ(5)ψµ = α′5g2λ
16GGνρσ (γ νρσ γµ)ϵ∗ , (4.18) 

the δ(5) variation of the following two terms from the two-derivative action 

S(0) = 

∫ 

d10xe

( 1 
λ¯ γ µνρ λ∗λ̄ ∗γ λ − 

1 
ψ  ̄∗γ λ∗ Ĝµνρ 

) 
(4.19) 

 

cancels the δ(0) variation of the terms in (4.17) provided that the undetermined functions in the effective action 

and modified supersymmetry transformations obey certain linear differential relations. Requiring also the closure of 

supersymmetry algebra at O(α′5), one obtains 

4D13D¯ 
14f 

(14,−14) = − 
713 

f (14,−14),  D13f 
(13,−13) = 

11 
f (14,−14) , 

2 4  2 2 2 2 
(13,−13) (14,−14) (13,−13) 

2i(g1 + 191g2) = f2 ,  192D13g1 = if2 ,  108g1 = f2 . (4.20) 

It follows that f (14,−14) 
is an eigenfunction of the Laplacian defined on the fundamental domain of SL(2, R) transforming as 

2 a weight (14, 4 4 4 

−14) modular form. Regarding the coefficient of the D R term, as for the case of R term discussed earlier, 
at the nonlinear level the requirement of SL(2, Z) symmetry suggests that it should be proportional to f (0

,0)
, which is often 

denoted by E 
(10) 

as discussed in Section 11.1. In the weak coupling limit, i.e. 
2 

τ2 ≫ 1, one finds that it gets contributions 

from tree level, two-loop and D-instantons [107]. 

Type IIB supergravity has an anomaly in composite local U (1) symmetry which also implies an anomaly in the global 

SL(2, R) transformations; this means that SL(2, R) is not a symmetry of the theory. For a detailed discussion of this anomaly, 

its cancellation, and restrictions on spacetime background, see [108]. 

The use of duality symmetry is a powerful approach to studying the higher derivative extensions of supergravity 

theories, not just in 10D but in other dimensions where duality groups En(n) are present. These are the Cremmer–Julia 

groups listed in Table 8 in Section 11.1, where we summarize the basic aspects of this approach. For a textbook exposition 

of this subject, see [105]. 

 

11D on T 2 and decompactification of type IIB string 

Another avenue for using supersymmetry and duality to get a handle on the higher derivative extension of type IIB 

supergravity is to reduce the higher derivative extensions of 11D supergravity (to the extent they are determined by 

Noether procedure discussed in the section on 11D above) on T 2 and compare to an appropriate decompactification limit 

of type IIB string. We shall come back to this point briefly in Section 11. 11D supersymmetry may also be exploited at 

the level of amplitude computations at one-loop and beyond, and this approach has been successfully implemented in a 

series of papers pioneered in [109]. 

 

String theory amplitudes 

Using supersymmetry and duality alone, the story unfortunately does not go much further for type II theory, and 

there are a large number of terms in the effective action even at the eight derivative level, let alone the higher derivative 

corrections to the supersymmetry transformation rules, that have not been determined as yet. Given the difficulties in 

deforming the superspace constraints to accommodate the higher derivative terms, and the obstacles in dealing with the 

RR sector in the beta function method, the most promising approach that remains is the computation of sting theory 

amplitudes, and the construction of the effective action that produces them. The pioneering work along these lines was 

done long ago in [109] where 4-pt amplitudes in the NS–NS sector of heterotic string theory, which constitutes a universal 

sector in all string theories, were computed. In [99], 5- and 6-pt graviton amplitudes were computed as well. In what 

follows we shall summarize various results for the higher derivative corrections at order α′3 obtained so far from the 

computation of the various string theory amplitudes at the tree and one-loop level. 

where G is the supercovariantized three-form field strength [106], which appears in the IIB low energy effective action 

 ̂

2 2 µ 2 
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[ ] 
[ ] 

3 

18 8 8 9 9 i 

G2 R3 1 3 2 

+ 
( 3 

f (1
,−1)

(τ , τ¯ )t18G2R3 + c.c.
)] 

, (4.24) 

3 
2 24 

µ1µ2µ3 µ4µ5µ6 i 

4 
, 
3 

, , 
4 

, 
8 

i=1 

 

The tree-level 4-point amplitudes to all orders in α′ 
Using the pure-spinor formalism, the complete four-point effective action of both type II superstrings to all orders in 

α′, at tree level in string loops was computed in [100]. The result, which includes the fermions as well, is given in [100, 
Eq. (5.36)]. The explicit tensorial structures are to be deduced by employing a procedure described in [100] but the result 
is not provided. Furthermore, in the case of type IIB, the SL(2, R) invariance (at tree level) is not manifest. In a subsequent 
paper [101], putting aside the RR 5-form, the terms at order α′3 were put into a form with manifest SL(2, R) invariance 

(in Einstein frame) as follows [101, Eq. (3.3)]8 

IIB 
4pt,tree 

= cα′3t8t8

[
R4 + 6R2

(
|∂P |2 + |∂G3|2

) 
+ 6|∂P |2|∂G3|2 + 6R ∂P (∂ Ḡ  

3)2 + c.c 

] 

+α′3ζ(3)

[
O1((|∂P |2))2 + O2((|∂G3|2)2)

] 
, (4.21) 

where, c = ζ(3)/(3 · 28), and in the linear approximation [101] 

∂G3 = 
√

2 e−D/2∂H − ieD/2∂F3  , (∂H)abcd = ∂[aHbcd] , 

(∂P )ab 
cd = ∂∂D + ieD∂∂χ ,  F3 = dC2 , (4.22) 

with (D, χ) representing the (dilaton, axion), (∂∂)ab
cd :=  

[c  

] 
d], and O1 and O2 are operators that are complicated 

δ[a 
∂b ∂ 

combination of the products of Kronecker deltas, for which we refer the reader to [101]. The dilaton exponentials in the 
above definitions are put in accordance with the field’s conformal weights, but the overall dilaton factor in the action 
has been omitted. The terms involving the Riemann tensor are deduced by general covariance, and therefore they do 

not require the computation of higher point amplitudes. Note also that the expected ϵ8ϵ8R4 term is not visible in the 
linearized approximation. 

The effective action at order α′3 in the NS–NS sector has been computed in [110,111] solely from the bosonic gauge 

symmetries, and the requirement that a circle reduction produces a T -duality invariant result. The action at order α′3 
found in this way in 10D schematically takes the form, 

 

IIB 

NS−−NS,tree = cα′3 

∫ 

dx10e

[
[R4]2 + [R3H2]22 + [R2(∇H)2]22 + [R2H4]7 

+[R(∇H)2H2]106 + [RH6]1 + [(∇H)4]12 + [(∇H)2H4]77 + [H8]2

] 
, (4.23) 

where X n denotes n number of structures with different index contractions of the fields X . The structures denoted by 
X can be found in [111]. However, a comparison of the result above with that of [100] discussed above remains to be 

carried out. Given that the action (4.23) is for the NS–NS sector, it should be the same for the heterotic string [112]. 

The one-loop 4-point amplitudes at order α′3 
The dependence of the type IIB effective action on the three-form and five-form RR field strengths at order α′3 was 

obtained in [113] from the 4-pt amplitude at the one-loop level. The result for the R2(DF3)2 terms, upon choosing suitably 
the 4 parameters that cannot be determined from the 4-pt amplitude at the linearized level, comes out to be compatible 
with the result (4.21). In other words, the ζ(3) term from (4.21) and the one-loop term from [113] are compatible with the 
SL(2, Z ) invariant structure f (0

,0)
R2(DG3)2. The first two terms in the weak string coupling limit expansion of f (0

,0) 
given 

1 
2 2 

1 

in (4.16) describe the tree-level and one-loop contributions. As for the R (DF5) terms, 58 structures with the maximum 
number of contractions between the indices of Ra ...a Ra ...a and those of (∂F5)2 , are given explicitly in [113, eqs. 

(2.13), (A.12–15) and (A.17–18)]. 

• The R3G2 terms at order α′3 

1  4  5  8 a1...a8 

3 2 ′3 

The G2R3 and |G3| R3 term at order α  have been given in [114, Eq. (3.36) ] as 

cα′3

[
f (0

,0)
(τ , τ¯ )

(
− 

1 
ϵ ϵ + 2t t − 

1 
ϵ ϵ − t 

)
|G |2R3 

LIIB ⏐ = 9 9 8 8 8 8 18 3 

where 

2 1 3 

8 

t G2R3 = 
1 

t t G2R3 − 
 1 

ϵ ϵ G2R3 − 2 · 4! 
∑ 

d˜ G G Q˜ µ1...µ6 , (4.25) 

and Q˜
i are eight independent R3 structures listed in [114, Eq. (A.13) ]. Furthermore, 

(d˜
1, . . . , d˜

8) = 4 

(

1, − 
1 

, 0 
1 

1, 1 
1 

−2, 
1 
) 

. (4.26) 

 

8 The fourth term has been corrected in [98]. 

• 

L 

S 

• 
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 ̄
 ̄

( ) 

4 

κ 

2 

3 3 

IIA 2 
10 

2 

+ 
1 

G(2) · G(2) + 
1 

G(4) · G(4) − ⋆ 

[ 
1 

dC (3) ∧ dC (3) ∧ B

]} 

, (4.29) 

IIA + 
4 

+ + 

+ 
3 

e t8t8R(ω+) + 
4 

ϵ8ϵ8R(ω+) + 
3 

ϵ9ϵ9H R(ω+) 

2 
α B ∧ X8(R(ω+)) + X8(R(ω−)) 

h=0 

The definitions of various contractions of the symbols in (4.24) are given in the appendix. In view of the definition of the 

functions f (0
,0) 

and f (1
,−1)

, the Lagrangian above contains both tree-level, one-loop and instanton contributions. 
1 1 

The tree level 5- and 6-point graviton amplitudes 

The 5- and 6-point graviton amplitudes at tree level were computed in [99] where the absence of R5 

higher derivatives of R4, R5 and R6 terms with zeta valued coefficients was shown. 

• One loop 5-pt amplitudes and B ∧ X8 terms 

 

terms and certain 

The one loop 5-pt point amplitude involving NS–NS B-field and gravitons were studied in [115,116]. The result includes 

the term, which is of the Green–Schwarz type, though the type IIB theory is anomaly-free, given by 

LGS = B ∧ X8(R(ω+)) − X8(R(ω−)) . (4.27) 

Despite the progress that has been made so far, the eight derivative terms still have not yet been completely determined. 
For further references in which partial results are obtained, see [114]. In particular, for a treatment of the usefulness, as 
well as limitations, of the Lorentz connection with bosonic torsion H3, see [89]. As for the use of supersymmetry, a study 

of a particular set of variations, to wit, those involving the 16th and 14th power of the dilatino, have been considered 

to discover that the modular function f0(τ , τ ) is needed in the R4 term [97]. However, linearized supersymmetry, while 

predicting the existence of certain higher derivative terms, cannot produce them all, including the fh(τ , τ ) factors. A fruitful 

approach to obtaining more detailed information is to consider 11D superparticle on T 2 of vanishing volume, and integrate 
out the winding modes [74,95,96]. Doing so, in [114], for example, a conjecture is made for specific types of terms, namely 

 

L ∼ α′3 
∑ 

chfh(τ , τ¯ )GmG¯ m−2hR4+h−m + h.c. , (4.28) 

where the coefficients ch are specified. 

4.2. Type IIA 

The bosonic part of the classical two-derivative action for the type IIA string is given by 

S(0) = − 
 1 

∫ 

d10x
√

−g 

{

e−2φ 

[

R − 4(∂φ)2 + 
1 

H2

] 

 

 

2 2 2 

where 

G(2) = dC (1) , G(4) = dC (3) + dB ∧ C (1) . (4.30) 

From tree and one-loop level 5-pt point amplitudes, and considerations of known dualities, it is conjectured in [98] that 

the 8-derivative terms in the bosonic part of the type IIA string effective action, not taking into account the RR fields and 

the ∂µφ terms (and taking into account some terms that were missing in [89]) takes the form, 

S(3) = cα′3e−2φ 
[
t8t8R(ω )4 − 

1 
ϵ8ϵ8R(ω )4 − 2t8t8H2R(ω )3 

1 ∑ 
 ̃  ̃−  ϵ9ϵ9H R(ω )3 + 8 · 4! diHµνλHρσ τ Q i + · · · 

] 

 

6 
+ 

i 

cα′3π 2 [ ( 
4 

1 

µνλρσ τ 

4 1 2 3 

− ϵ9ϵ9H (DH) R(ω ) + · · · 
) 

+ · · · 
] 

4 

9 
+ 

(2π)6  
′3 

( ) 

where c := ζ(3)/(3 · 211), and 

ω = ω(e) ± 
1 

H , X (R) = 
 1  

(

R4 − 
1 

(R2)2

) 

, (4.32) 
± 

2 
8 

(2π)43 · 26 4 

See the appendix for the definitions of various symbol contractions. The terms with the overall e−2φ factor are tree level, 

and the remaining terms are one-loop contributions. In the tree level Lagrangian the ellipsis inside the round brackets 

• 

2 2 

− , (4.31) 
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refers to the terms that have the structure H2(  H)2R which can be computed from 5-pt amplitudes, and terms such 

as H4R2 that contribute to 6-pt amplitudes which have not been computed so far. In the one-loop level Lagrangian the 

ellipsis in the round brackets refers to terms of the form H4R2, and possibly other terms that would contribute to six- 
and higher point amplitudes. The tree level contribution in (4.31) is obtained by the four graviton amplitude and the 
sigma-model computation [68,117]. The first two terms of the one-loop contributions in (4.31) are found in the sigma 
model beta function approach in [118–123], and by making use of the four graviton amplitude in [124], while the last 

term is introduced to ensure the string-string duality between type IIA on K3 and heterotic string on T 4 [125–128]. Under 
this duality, the last term is related to the Green–Schwarz anomaly cancellation term in the heterotic string effective 
action [69,129]. 

It should be noticed that when restricted to the NS–NS sector, the type IIA tree level effective action at order α′3 shares 
the same form as the one for type IIB [89]. Thus, as noted before, the N  (1, 0) truncation of the NS–NS sector of Type 
IIA effective action at tree level is also the same as that of the heterotic effective action [112]. At one loop level, the terms 
contracted with two t8 tensors are also the same for IIA and IIB. However, terms involving two epsilon tensors, as well 
as the B ∧ X8 terms appear with opposite signs. 

4.3. N = (1, 0), 10D supergravity coupled to Yang–Mills 

We begin by reviewing a particular deformation of N (1, 0) supergravity coupled to Yang–Mills up to quartic in 
Riemann curvature terms, strictly from the point of view of local supersymmetry as was obtained by Bergshoeff and de 
Roo (BdR) [130,131]. Next, we shall review another deformations that are quartic in Riemann curvature but only in the 
gravitational sector [132–134]. In a subsequent section, we shall compare these results with the low energy limits of 
E8 E8 and SO(32) heterotic string. Note that higher derivative terms in type I effective action can be obtained from those 
in SO(32) heterotic string via suitable field redefinitions [135–137]. 

R  Riem2  (Riem2)2 from Noether procedure 

The supergravity multiplet and the Yang–Mills multiplet have the fields (eµ
a, Bµν, φ, ψµ, χ) and (Aµ, λ) respectively. 

The bosonic part of the higher derivative extension of the coupled system up to the fourth power of the Riemann tensor 
is given by [131]: 

Lhet = −ee−2φ 

[

R(ω(e)) + 4∂ φ∂µφ − 
 1 

H Hµνρ −  T + 
(
3T T µνρσ + T T µν

)
] 

, (4.33) 

 

where 

BdR µ 
12 µνρ 2 2 

µνρσ µν 

H = dB + α X3(ω ) + β X3(A) , ω 1 = ω (e) ±  H , (4.34) 
− µ± µ 

2 
µ 

and 

Tµνρσ = α tr(R[µν(ω−)Rρσ ](ω−)) + β tr(F[µν Fρσ ]) , 

Tµν = α tr Rµλ(ω−)Rλ
ν (ω−) + β tr Fµ

λFλν , T = g µν Tµν , 

X3(A) = trYM(A ∧ dA + 
2 

A ∧ A ∧ A) , X3(ω) = trL(ω ∧ dω + 
2 

ω ∧ ω ∧ ω) . (4.35) 

3 3 

The deformation parameters are α and β, and β = 1/g 2 . One can solve for H recursively from (4.34) in powers of (α, β), 

the first few terms taking the form 

H(0) = dB , 

H(1) = α X3(ω−)(0) + β X3(A) , 

H(n) = α X3(ω−)(n−1) n ≥ 2 . (4.36) 

It is worth noting that the BdR action at first order in (α, β) is complete including the four-fermion terms, though, it is 
understood that supersymmetry holds up to the same order. 

The action (4.33) is invariant up to order O(α3, α2β, αβ2) with the supersymmetry transformations up to that order 
taking the form 

δea = ϵ¯γ ψµ + · · · , 

δψµ = Dµ(ω+)ϵ + · · · , 

δBµν = 2ϵ¯γ[µψν] + 2α tr(ω−[µδω−ν]) + 2β tr(A[µδAν]) + · · · , 

δχ = (γ µ∂ φ − 
 1 

γ µνρ H )ϵ + · · · , 
µ 

12 
1 

µνρ 

δφ = 
2 

ϵ¯χ + · · · , 

δAµ = ϵ¯γµλ + · · · , 

δλ = − 
1 

γ µνF  ϵ + · · · , (4.37) 
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where the ellipsis for the supergravity multiplet transformations denotes the order O(α3, α2β) terms [131, Eq. (4.19)], and 

in the case of Yang–Mills multiplet the order O(α2β, αβ2) terms [131, Eqs. (4.13) and (4.14)]. At order O(α3, α2β, αβ2), 
the quartic fermion terms as well as terms in which ∂µφ and H may possibly arise have not been determined 
in [131]. In obtaining the result (4.33), the convenient trick [131,138] (employed previously in off-shell 6D conformal 
supergravity context in [139]) that uses the fact that (Aµ, λ) transform under supersymmetry at lowest order in (α, β) as 

(ωµ ab, ψ ab(ω )) do, is employed. In the Lagrangian and supersymmetry transformation rules obtained in this way, the 
dependence on the parameters (α, β) arises either explicitly, or implicitly through the expansion (4.36). It is understood 

that only terms of order O(α2, αβ, α3, α2β, αβ2) are to be kept. 

It was also shown in [131] that no α2R3 and αβRF 2 arise but order O(α2, αβ) terms do arise and they involve 
fermionic bilinears multiplying the (Bµν, ψµ, χ) field equations. These terms [131, Eq. (3.17)] arise as a result of putting 
the supersymmetry deformations in a form without a differentiated supersymmetry parameter. 

The dilaton factor e−2φ appears as an overall factor, and therefore the BdR action is to be compared with the tree- 

level contributions to the heterotic string low energy effective action. Since tr F 4 terms, for which these two groups have 

different properties, do not arise in the BdR action discussed above, it can be compared with the heterotic string effective 

action with either gauge group. The results from heterotic string theory can be extracted from the amplitude computations, 

some of the earliest ones being [109,140,141], or from the beta function calculations carried out in [142]. Comparisons 

are not straightforward due to the complicated consequences of the field redefinitions. However, putting aside the Yang– 

Mills couplings, we can see from the work of [142] that the effective action at order α′ obtained from the beta function 

calculations does agree with the BdR action. 

Riem4 invariants from Noether procedure 

There are three independent eight-derivative extensions of the two-derivative action for N 1, 10D supergravity. 
Two of these were constructed in [133] where an action with the generic form 

S = 

∫ 

d10x
√

−g R + γ R4 + · · · (4.38) 

was considered. Here R4 refers to terms that are fourth order in Riemann tensor with indices contracted in all possible 

ways allowed by supersymmetry. In [133], only terms independent of, or linear in, H and ∂µϕ were considered. 

Consequently, in the variation of the action, only terms in which H and ∂µϕ are absent were studied. A combination 

of the two invariants constructed in [133] and a third one found in [134] can be expressed as suitable combinations of 

the following invariants, in the notation of [66], taking the schematic form 

IX = (t8 + 
1 

ϵ10B)t8R4 + · · · , 

 

IY1 

1 
= (t8 + 

2 
ϵ10B)(trR ) + 4HR DR + · · · , 

IZ = −ϵ10ϵ10R4 + 4ϵ10t8BR4 + · · · , (4.39) 

where ϵ10B denotes the Levi-Civita symbol with two of its indices contracted with those of B. These are independent of 

the 8-derivative invariant expressed in terms of T 2 terms in (4.33). Up to quadratic fermions, the invariant IX is given 

in [66, Eq. (3.8)]. It should be noted that in the expressions above the terms involving bare B-field are not invariant 

under Yang–Mills gauge transformations. Since the commutator of two supersymmetry transformations involves a Yang– 

Mills gauge transformation as well as local Lorentz transformations, anomalies in these transformations are also expected 

in a manner in which the Wess–Zumino consistency conditions are satisfied. We are not aware of a detailed study of 

this phenomenon in 10D, but it has been displayed in (1, 0), 6D supergravity coupled Yang–Mills in considerable detail 

in [143,144]. Note, however, that there is just one combination of the invariants listed above which has no bare B-field, 

and therefore manifestly gauge invariant. As we shall see below, it turns out that it is that combination which appears in 

the heterotic tree-level effective action, with the celebrated ζ(3) dependent coefficient. 
The invariants (modulo the anomalies just discussed) I1 , I2 obtained by de Roo and Suelmann [133] are related to 

IX , IY1 , IZ by9 

I = 
 1 

(I + 
3 

I ) ,  I = − 
1 

I  . (4.40) 

48 8 2 1 

As noted above, the combination IX − 1 IZ does not contain the term ϵ10t8BR4 and appears in string theory at arbitrary 

loop order. According to [66], 

 

e−1 

 

Lhet |(α′)3 = 
[  

het 
BdR 

e−2φ ζ(3)α′3  
I 

3 · 214 
X − 

1 
IZ 

)] 

+ α′3J1 , 
 

(4.41) 

 

9 In comparing the results in the literature, we map the two-potential as BdRS = 
√

2BPVW = − √1 BT , where dRS, PVW and T refer to the 

papers [66,133,136]. 
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with Lhet from (4.33) and J1 is a one-loop term explained below. Note that Ihet already contains the overall dilaton factor 

BdR BdR 

e−2φ . Demanding the O(d)  O(d) symmetry to be present in tree-level string action compactified on d-torus, Ref. [145] 
has obtained the B-field dependent couplings in the eight-derivative term proportional to ζ(3) up to fifth order in H. As 

discussed below (4.38), IX and IZ are partially determined by supersymmetry. At order α′3 at the tree level the Yang–Mills 
dependent terms come solely from IBdR [109,146–149]. J1 is the one loop term [136,150–152] involving the B  X8 required 
by the GS mechanism. Its bosonic part is given by 

J1 = 

(

t8 + 
1 

ϵ10B

) 

X8(R, F ) + · · · , (4.42) 

 

where X8(R, F ) has different forms for E8  E8 and SO(32) invariant models.10 In the first case, tr F 4 factorizes as (tr F 2)2 

but for SO(32) this factorization does not occur. Therefore, an invariant including tr F 4 is needed to make up X8. Finally 
X8 can be expressed as a combination of IX , IY1 and 3 other separate invariants involving the Yang–Mills field strength 

F [133,134,153]11 

I3 = (t8 + 
1 

ϵ10B)(trF 2)2 + · · · , 

I4 = (t8 + 
1 

ϵ10B)trR2trF 2 + · · · , 

I5 = (t8 + 
1 

ϵ10B)trF 4 + · · · . (4.43) 

The first two invariants in the equation above can be obtained by replacing R2 in IY1 with F 2 and F 2  I I R2 respectively. 

In the E8 model, tr F 4 factorizes into (tr F 2)2. In that case, X8(R, F ) and the bosonic part of its supersymmetric completion 
can be obtained as a suitable combination of IX , IY1 , I3 and I4. For completeness, we recall here the well-known expressions 
for X (R, F ), in conventions of [154]: 

SO(32) : X = 
1 

tr R4 + 
 1 

(trR2)2 − 
 1  

tr R2 tr F 2 + 
 1 

tr F 4 − 
 1  

(trF 2)2 , 
8 32 240 24 7200 

E × E : X = 
1 

tr R4 + 
 1 

(tr R2)2 − 
 1 

tr R2trF 2 − 
  1   

(tr F 2 )2 . (4.44) 

8 32 12 (i) 3600 (i) 

At leading order, the low energy effective action of the heterotic string admits a class of Mink4 CY3 solutions [155] 
which play an important role in phenomenological applications of string theory. Whether such solutions continue to exist 
when α′ corrections are switched on was partially investigated in [156]. It was found that for tree-level stringy corrections 

up to order α′3, the metric of the internal six-dimensional Kähler space satisfies 

R 
α′3 

k l 
ij = 

24 
ζ(3)(∇i∇jS − Ji Jj ∇k∇lS) , (4.45) 

where J i is the complex structure and 

S = Rij
klRkl

mnRmn
ij − 2R k l R m nR i j . (4.46) 

The corresponding Ricci form Pij  JkRkj is an exact form implying that the first Chern class is still vanishing. Thus the 
internal six-dimensional Kähler space is still a Calabi–Yau manifold [156]. The 3-form flux remains vanishing while field 
equations determine the dilaton to be 

α′3 

φ = constant + 
24 

ζ(3)S . (4.47) 

The spin connection is embedded in the Yang–Mills gauge group as in the two-derivative case. The first corrections to 

the embedding condition begin at α′3 which comes from the α′4 part of the action which is currently unknown. For 
(4.46) and (4.47) to naturally arise from the integrability condition of the Killing spinor equation, the 10D supersymmetry 
transformation rules of gravitino and dilatino must be modified to include terms proportional to the gradient of S [156]. 

Based on this analysis, it was concluded that with the tree level α′3 terms taken into account, the E8  E8 heterotic string 
still admits compactification on a six-dimensional Calabi–Yau which gives rise to four-dimensional models that have an 
E6 gauge group with four standard generations of fermions. 

4.4. Dualization of the Riemann-squared action 

Starting from the BdR Lagrangian in 10D, the dualization of the two-form to a six-form was achieved in [157], and 

it was investigated in greater detail in [158]. Earlier results were also obtained in superspace [159], on which we shall 
comment further below. 

 

10 Note that in the absences of the Yang–Mills field, J1 =  1 IX +  1 IY + · · · . 

11 The last invariant is given in [134]. 
192 16 

8 8 8(i) 

1 
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( rs ) 

−2ϕ 

−2ϕ + ⏐ 

− 

2  µν 2 µνρσ 

2 2µν 2 2 

µνρ − −[µ ν −ρ] 
3 

−[µ −ν −ρ] 

δCµν = − ϵ¯γ[µψν] + 2α′ ω−[µ δω−ν]rs , 

1 
4 

2ϕ 

µ 

 
µνab 

ν 
12 

µνρ 

 
µνρ 

which can be solved to yield G given in (4.49). The field equation for G at O(α′) following from 

by 

d10x(L01 +α′L1) is given 

BdR 4 2 × 7! 
µ1···µ7 

4 
µνρσ µν 2 

1 

6 

 

Here we shall describe the bosonic sector of the Lagrangians involved, and the supertransformations, up to quadratic 

fermions terms. The bosonic part of the BdR Lagrangian, already given above, but in a slightly different notation, is given 

by [158] 

Lhet = ee2ϕ 
[ 1 

R(ω) + g µν∂ ϕ∂ ϕ − 
 1 

G Gµνρ − 
1 

α′R (ω )Rµνab(ω )

] 
, (4.48) 

 

where 

BdR 4 
µ ν 

12 
µνρ 

4 
µνab  − − 

ω±µab =ωµab ± Gµab , Gµνρ = 3∂[µCνρ] , 
Gµνρ =Gµνρ − 6α′ Xµνρ (ω−(G)) , 

X (ω ) = tr 

(

ω ∂ ω + 
2 

ω ω  ω 

) 

. (4.49) 

It is understood that the term proportional to α′2 coming from G2 is to be dropped, since we are considering the Lagrangian 

to first order in α′. The action of the Lagrangian (4.48) is invariant under the following supersymmetry transformation 

rules up to O(α′) and higher order fermion terms, 

δeµ
r =ϵ¯γ r ψµ , δψµ = Dµ(ω+(G))ϵ , 

δχ = 
1 

γ µϵ∂ ϕ − 
 1 

G γ µνρϵ , 

2 
µ 

12 
µνρ 

δϕ =ϵ¯χ . (4.50) 

To dualize the two-form potential, one adds the following Lagrange multiplier term to the Lagrangian 

∆L10D(B, C ) = 

where 

1 

6 × 7! 
ϵµνρσ1...σ7 Hσ1...σ7 Gµνρ  = e ̃H µ ν ρ  

(
Gµνρ + 6α′Xµνρ (ω−)

) 
, (4.51) 

Hµ1...µ7 = 7∂[µ1 Bµ2...µ7] , H̃ µνρ 
1 

= 
7! 

ε 
µνρσ1...σ7 Hσ1...σ7 , (4.52) 

and integrates over Gµνρ . To this end, it is convenient to write the total Lagrangian as 

LBdR + ∆L10D(B, C ) = L01 + α′L1 , (4.53) 

L01 = ee2ϕ 
[ 1 

R(ω) + g µν∂ ϕ∂ ϕ − 
1 

G 
(
Gµνρ − 2e−2ϕ ̃H µ ν ρ  

)] 
, (4.54) 

L1 = − 
4 

ee  Rµνab(ω−)R (ω−) + e H̃  Xµνρ (ω−) . (4.55) 

The O(α′) terms are collected in L1 where the dependence on G arises through the torsionful connection ω−. We are 

treating G as an independent variable, while H = dB. Thus, the field equation for B gives the re∫lation dG = −α′ tr(R ∧ R), 

Gµνρ = e H̃µνρ 
6α′e−2ϕ  δL1  

. (4.56) 
δGµνρ 

Gµνρ = e H̃µνρ 6α′e−2ϕ  δL1  

δGµνρ 
G=e−2ϕ ̃H 

. (4.57) 

As shown in [157], the term δL1/δω µab is proportional to field equations. Substituting for G in the action (4.53) by using 

this equation, and going over to the brane frame [160] by rescaling the metric as 

gµν → gµ
′ 

ν = e−2ϕ/3gµν , (4.58) 

the following dual Lagrangian is obtained 

Lhet,dual = ee−2ϕ/3
[ 1 

R − 
  1   

H Hµ1···µ7 

] 

+ α′ e 

[
− 

1 
Rµνρσ R + 6H  R − 3H R − 

3 
R H 

2 1 14 2 −  H  H −  H4 + (H ) + (D H 
 

)DµHν1···ν7 

3  µν 6 3 7! µ 
ν1···ν7 

+ 

This equation is readily solved for G in terms of H, again at O(α′), as 

µν,ρσ 
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+  ̃H H D H µνρ  σ 

˜  
( 

abc abc 
) 

αβ = γ 

αβ 

MN 

αβ 

µ 
3 

1 

αβ 

µ 2 4  2 µ  ν 
 16  2 µν 

 
22  2  2 

+ 6ϕ DµH + 
9 

Hµνϕ ϕ + 
3 

Hµνϕ + 
9 

H ϕ 

2 µ ν 

− 
9 

Rµνϕ ϕ 

2 µν 

− 
3 

Rµνϕ + 
9 

Rϕ2 
16 µ  ν 

− 
27 

ϕµνϕ ϕ 
8 µν 4  2 2 16 2 µ 

1  µ  2 

− 
9 

ϕµνϕ − 
9 

(ϕ ) + 
27 

ϕ ϕ µ − 
9 

(ϕ µ) 

2  µνρ σ1···σ6 

 

 

4 
−  ̃H ϕ H + ̃H µν ρ X (ω)

] 
, (4.59) 

1 H := H H  λ1···λ5 ,  H2 
1 := H H λ1···λ6 ,  H2 := 

1 
H2 g µν . (4.60) 

µν,ρσ 
5!  

µνλ1···λ5  ρσ µν 6! µλ1···λ6  ν 
7  µν 

Using the duality relation (4.57) and performing the rescaling (4.58), the supersymmetry transformations take the form 

δeµ
a =ϵ¯γ aψµ , 

1 
δψµ =Dµ(ω)ϵ + 

72 
Habc 3γ γµ + γµγ ϵ + EOMs , 

δBµ1...µ6 =3ϵ¯γ[µ1...µ5 ψµ6] + EOMs , 
1 

δχ = 
2 

γ 
1 

ϵ∂µϕ − 
12 

H̃µ ν ρ  γ 
µνρ ϵ + EOMs , 

δϕ =ϵ¯χ . (4.61) 

4.5. Superspace approach 

In a superspace approach to the construction of the higher derivative extension of heterotic supergravity in 10D, the 

key equations are the superspace Bianchi identities 

DTA = RAB ∧ EB , DG = α′ tr(R ∧ R) . (4.62) 

With a particular set of constraints these were solved in [161–168], where the consistency of the BI’s was proven to 

all orders in α′. In this approach, the dimension zero torsion component is taken to be Ta a  but certain other 

components are deformed by α′ dependent terms. In particular, the following relation (in our notation) arises 

Gabc = e−2ϕ Tabc + α′Wabc (T ) , (4.63) 

where Wabc is a nonlinear function of the torsion superfield Tabc which can be found in papers referred to above. To obtain 

the deformed equations of motion, one solves for Tabc in terms of Gabc order by order in α′, and uses the result in the 

supertorsion BI’s. The resulting equations of motion were obtained at O(α′) in [167,168]. These equations apparently have 

not been compared with those which arise from the BdR action. While they are expected to agree at O(α′), it is an open 

question whether equivalence holds to all orders in α′. This approach has been updated in [169] where the relationship to 

another approach by [170,171] which focuses on order by order in α′ analysis (without addressing fully the question of the 

consistency of the entire procedure) was clarified. Interestingly, the formulation of [169] is such that the Gauss–Bonnet 

action appears as part of the bosonic action. The full four-derivative action in this framework has not been worked out 

but it is expected to be related to the result that follows from [161–166] by field redefinitions. 

The solution of the Bianchi identities (4.62) will yield the deformed equations of motion to any order in α′. However, 
this framework does not capture the most general supersymmetric deformation of heterotic supergravity. For example, 

at order O(α′3), deformations involving (tr R2)2, but not tr(R4), will arise. To get the latter, one can either deform the 

constraint on Ta  to include a tensor in 1050 dimensional representation of SO(9, 1) [172–178] or take Gαβγ to be 

nonvanishing [179]. 

Heterotic supergravity in the six-form formulation in superspace including α′ corrections was studied in [180–184] 

where partial results were obtained. A more complete treatment which builds especially on the results of [184] appeared 

in [159,185–188], where the dualization phenomenon in superspace, suggested in [189], was spelled out. Here we shall 

focus on the key results of [159] where the equations of motion deduced from superspace were also integrated into an 

action for the bosonic fields, and we shall compare the result with ours. 

The super BIs for supertorsion TA  and the super seven-form H7 = DB6 are given by 

DTA = RAB ∧ EB , DH7 = 0 . (4.64) 

Note that the BI for H7 does not acquire α′ deformation, unlike the BI for G in (4.63). The BI’s (4.64) are solved by (see [159] 

and references therein) 
 

Tαβ 
c = γ c , Taβ 

γ = 
1 

 
 

(72)2 
Tbcd 

(
γ bcdγ a

) 
γ , Tαb

c = 0 , Tαβ 
γ = 0 , 

where 

β 

6! 
ν ρσ1···σ6 µν,ρσ µνρ 

µ 
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1... 7 6!  1... 7 

A = 
[
− □T + D T − T D T − T T 

2 d 3 

a a abc abc c 

µν µν  2 

2 2 

( 
abc abc 

) 

= 

→ → 

18 36 
, 

36 1944 

48 1 2 a b 1 2 
[abc] 

ab abc 1 2 3 

STZ 3 

4 2 × 7! 
µ1···µ7 

4 
µνρσ µν µν 

2 
µ 

36 
abc abc 

− 2 ϕ ′  1 2 2 

! 3 

ab 

+ 4H 
µνρ 

φ̃ → e 3 , kg → α , and L → 4L. Note also that the term 162 (M ) term in [188, Eq. (4.10)] should be absent, as noted later in [159] as well. 

 
1 abc T ,

 

Ha1...a5αβ = − 
(
γa1...a5 

)
αβ 

, Ha  a = ϵa  a abc 

other components of H7 = 0 , (4.65) 

together with a scalar superfield φ satisfying 

D φ = χ , D χ  =  γ a D φ + 

(

− φT + α′A  

) 
(
γ abc

) 
, (4.66) 

1  1 
    

 
  

 
   

where Da is the covariant derivative with bosonic torsion, and Aabc is a crucial superfield which governs the α′ deformation 

given by [159]12 

 1  1  d  1  de  5  2 
abc abc da bc a  b cde abc 

 5   5 − T Tbc + T − 
  1   

ϵ  a1...a7 T 
 

a Da Ta  a 

108 da 54 abc 3888 1... 3 4  5... 7 

− 
 1 

T α 
(
2γ ηa1 b1 ηa2 b2 + γ a1 γ  γ b1 ηa2 b2 + 24γ a1 γ γ b1 δa2 δb2 

) 
Tb b β 

] 
, (4.67) 

where Tabc = T[abc] and Tab
α is the gravitino curvature, and 

Tab,cd := Tab
eTcde , T 2 := Ta

cdTbcd , T 3  := Tad d Tb
d2 d3 Tcd 

d1 , T 2 := Tabc T abc . (4.68) 

It is noteworthy that the solution is an exact one, even though there is an α′ dependent deformation. The EOMs that result 
from the analysis of the superspace BI’s are also given in [159] in terms of superfields whose lowest order components 

in θ expansion are the supergravity multiplet of fields. For a more detailed explanation of how the EOMs are obtained 

in superspace, see [186]. These equations imply an action with α′Riem2 term, and yet their supersymmetry is realized 

exactly. No higher than first order in α′ terms arise in supersymmetric variations of these EOMs since, as can be seen 

in [159], the α′ dependent terms do not involve the dilatino χ which is the only field that develops α′ deformation; see 
(4.66). 

A bosonic Lagrangian which yields these EOMs can only be determined up to terms proportional to the lowest order 
(i.e. two-derivative) EOMs. Such terms can always be removed by field definitions (see, for example, [190] for a detailed 

explanation). With this understood, the resulting bosonic Lagrangian is found to be [159]13 

L = ee− 2 ϕ 
[ 1 

R − 
  1   

H Hµ1···µ7 

] 

+ 
1 

eα′

[
−Rµνρσ R + 2R  R + 4R  H − 4RH 

4 − (D H )DµHν1···ν7 + 
16 

H2 H2µν − 
2 

H 
40 − (H ) 

7 
µ 

˜µνρ 

ν1···ν7 

Dσ Hµν,ρσ + 4̃H 

µν 

µνρ ωL  (ω)
] 

3 4 3 

. (4.69) 

The supertransformation resulting from the constraints (4.65) are [187] (up to cubic fermions here) 

δeµ
a =ϵ¯γ aψµ , 

1 
δψµ =Dµϵ − 

72 
Tabc 3γ γµ + γµγ ϵ , 

δBµ1...µ6 =3ϵ¯γ[µ1...µ5 ψµ6] , 

δχ = 
1 

γ µϵ∂ φ + 

(

− 
 1 

φT + α′A  

) 

γ abcϵ , 

δφ =ϵ¯χ , (4.70) 

where it is understood that φ  e−2ϕ/3 and χ   e−2ϕ/3χ. These are also understood to be valid up to the lowest order 
EOMs. It has been shown in [159] that the algebra closes on-shell, and that the closure functions are α′ independent. 
Thus, the closure of the algebra is not a statement up to order α′ but an exactly valid statement. The fact that Aabc obeys 

the relation DAabc   γabcdeXde where Xde
α is an arbitrary function [159] is behind this property. 

Comparison of the Lagrangian LSTZ with the bosonic sector of the dual of the BdR Lagrangian in 10D (4.59), which was 

obtained by solving the duality equation to order α′, was carried out in [158]. It was shown that the difference amounts 
to field redefinition of the dilaton. However, it was argued that a full comparison of the action as well as supersymmetry 

 

12 Certain terms for Aabc and their implications for the α′ corrections were considered in [180–184]. 

13 In converting the conventions of [188] ours, we first let ωµab → −ωµ , and then let ηab → −ηab, ϵa1 ...a10 → −ϵa1 ...a10 , Mµνρ → 2 H̃ µ ν ρ  , 

α α α β 
2 αβ a 

36 
abc abc αβ 

abc a 

2 

αβ 
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abc 

 ̃

= 
= − 

=  = 

= + + + = + = 

1 2 a b 

a b a b c 1 2 
[abc] 

six-form formulations as can be seen by substituting Tabc = ̃H a b c  from (4.65) into this relation, which now takes the form 

µ 
4 

+µab 

µ 
12 

µνρ 

 

transformations require the dualization of the BdR action in the two-form formulation to all orders in α′, and it was 

conjectured that a solution may be obtained as follows. 

In superspace, leaving the solution of the BIs reviewed above intact, one can also construct a super three-form G which 

obeys the super BI (4.62) as [159] 

Gαβγ =0 , 

Gαβa =φ (γa)αβ + α′ Uαβa , 

Gαbc = − (γbcχ)α + α′ Uαbc , 

Gabc = − φTabc + α′ Uabc , (4.71) 

where [159] 

Uabc =
[
−2□Tabc − 6DdTda,bc − 6Tde

aDbTcde − 6Rde
abTcde − 6RdaTbc

d + 4T 3 

− Ta a 
α
(
γabc η

a1 b1 ηa2 b2 + γ a1 γabc γ b1 ηa2 b2 + 12γ a1 γc γ b1 δa2 δ
b2 

+ 12δa1 δ
b1 ηa2 b2 γc + 6δa1 δ

b1 δa2 γ b2 

)  
Tb b 

β 
] 

, (4.72) 

the expressions for Uαβa and Uαbc , which are functions of Tabc and Tab
α, can be found in [159], and Rabcd is the 

supercovariant curvature (calculated with the torsion full spin-connection). The last equation in (4.71) is expected to 
be equivalent to (4.63) upon field redefinitions, and it also represents the duality relation between the two-form and 

 

Gabc = −φ H̃ a b c  + α′ Uabc ⏐
T 

. (4.73) ˜H 
def = def 

Solving for Habc order by order in α′ and substituting the result into the EOMs obtained by STZ in [159] is expected, though 

not proven, to generate the EOMs of BdR to all orders in α′, just as solving for Tabc in (4.63) is expected, but not proven, 

to lead to the same result up to field redefinitions, as explained above. For a further discussion of these issues, see [158]. 

4.6. Killing spinors in N = (1, 0), 10D supergravity with higher derivatives 

The Killing spinor equation in the heterotic string with leading α′ corrections was analyzed in [191]. These corrections 

come from the Chern–Simons modification of the three-form field strength, as in (4.36). Up to the first order in α′, the 

supersymmetric solutions of this theory imply the existence of a Killing spinor ϵ satisfying 

0 = 

(

∇  − 
1 

ω γ ab

) 

ϵ , 

0 = 

(

γ µ∂ φ − 
 1 

H γ µνρ

) 

ϵ , 

 

0 = Fµνγ µνϵ , (4.74) 

where H dB α′X (ω ), with ω ω dB, and F dA, thus switching on only one vector field. Using the Killing 

spinor, one can build spinor bilinears 

ℓµ = ϵ¯γµϵ, Wµ1···µ5 = ϵ¯γµ1···µ5 ϵ , (4.75) 

which satisfy 

ℓµℓµ := 0,  Wµ1···µ5 := 5ℓ[µ1 Ωµ2···µ5] . (4.76) 

Since ℓµ is null, one can pair it with another null vector nµ obeying nµℓµ 1. Using the Killing spinor equations above, 
one can show that ℓµ is a Killing vector of the solution. Thus one can choose a coordinate system in which ℓµ∂µ ∂v. 

The fact that the metric admits a null Killing vector alone implies that the metric can be parametrized as follows 
 

ds2 = −2f (du + β)(dv + Kdu + ω) + hmndxmdxn , (4.77) 
 

where β βmdxm and ω ωmdxm, and all the functions are independent of v. Algebraic manipulations of the Killing 

spinor equations lead to 

∂vφ = 0,  Fµνℓν = 0 , 

FpqΠ
−pq

mn = 0,  H−pqΠ
−pq

mn = 0 , 

HqrsΠ
−qrs

mnp = 
1 

(2∂qφ − H q)Ω
q
mnp , (4.78) 

7 
+− 

αβ 
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 ̂

± 

= 

′ + 

± 

= 

µ 

= − 

where E refer to the EOMs with self-explanatory notation, except that E 
µ 

is a particular combination of the vector field 

and the scalar matrix Mmn is built out of the coset representative Lm
A = Lm

a, Lm
ā with a, ā = 1, . . . , d, as Mmn = 

Lm
aLn

a + Lm
a¯ Ln

a¯ . The Maurer–Cartan form associated with this coset is defined as 

 
where certain projection operators Π− in the space orthogonal to ℓµ and nµ have been defined, and they can be found in 

the appendix of [191]. It was shown that [191] the necessary condition for a Killing spinor to exist is in fact sufficient for 

its existence. As is well known, the integrability conditions of the Killing spinor equations imply a subset of the equations 

of motion. To state this subset, let us define the frames 

e+ = ℓµdxµ,  nµdxµ = e− . (4.79) 

One finds that all equations motion follow from the integrability conditions of the Killing spinor equations, except the 

following components14 

E −−,  E +−,  E −m,  E − (4.80) 

g B B 
ˆ

A 

equations which can be simplified to read 

ˆ
A 

µ 
( )(e−2φ F µν) . (4.81) 

EA = ∇ν ω+ 

Of course, the Bianchi identity for H(3) must also be satisfied. Thus, to find a supersymmetric solution, one may make an 

ansatz consistent with (4.77), and use the equations (4.78) as well, to solve the equations listed in (4.80), and the Bianchi 

identity for H(3). Based on the results above, a 1 -BPS black hole solution in heterotic supergravity with leading stringy 
4 

corrections has been obtained in [193], and it takes the form (setting κ2 = 1) 

ds2 = − 
 2 

du(dv − 
1 

Z du) + Z (dρ2 + ρ2dΩ2 ) + dymdym,  m = 1, . . . , 4 , 

Z− 2 
+ 0 (3) 

H = dZ+ ∧ du ∧ dv − ρ3∂ρ Z0Ω(3) , 

A = 
 2  

M−xidxj,  e−2φ = e−2φ∞ 
Z1 

, (4.82) 

ρ2(1 + ρ2)  ij Z0 

where ρ2 xixi, Ω(3) is the volume form of the 3-sphere with unit radius, Mi
−

j is the anti-self dual part of the SO(4) 

generators (i.e. the constant ’t Hooft symbol) and Z0, Z are functions depending on ρ only and they are determined 
in [193]. A particular solution is of the form [193] 

ρ2 2 2 

Z0 = 1 + 8α 
(ρ2 + 1)2 

+ O(α′ ) , 

Z  = 1 + 
Q− 

+ O(α′2) , 
− 

ρ2 

Z  = 1 + 
Q+ 

− 16α′ 
 Q−Q+  

+ O(α′2) , (4.83) 
+ 

ρ2 ρ4(ρ2 + Q−) 

where Q are integration constants. See [193] for an interpretation of this particular solution. Generalizations to non- 

supersymmetric black holes were investigated in [194,195]. It is found that for fixed mass and charges, higher derivative 

corrections to black hole entropy are always positive [196]. 

5. D = 9, 8, 7 

 

Results on higher derivative extensions of supergravities in D   9, 8, 7 are scarce. One such rare result is provided 

in [197], where the bosonic part of half-maximal supergravities in D dimensions is obtained by a toroidal reduction of the 

heterotic supergravity with its four-derivative extension, but without the Yang–Mills sector. (See also [198] where such 

a reduction is carried out for the 4-torus reduction, including the fermions.) In a double field theory approach, in which 

the Yang–Mills sector is also considered, the bosonic sector in D dimensions is also obtained in [48]. Putting aside the Yang–

Mills sector, the reduction on a d-torus Td gives half-maximal supergravity in D  10  d dimensions coupled to d vector 

multiplets. The full bosonic field content is 

(gµν , Bµν , φ , Mmn , Am) , (5.1) 

where m = 1, . . . , 2d. Furthermore, the scalar fields other than the dilaton φ p(arametriz)e the coset SO(d, d)/(SO(d)×SO(d)), 

 

 
(L−1 

 L) B 

(
Qµa

b Pµa
b¯ 
) 

 (5.2) 
∂µ  A ≡ 

P̄µā 
b 

, 
Q̄µā 

b¯ 

 
 

14 The integrability conditions can be studied by either commuting the differential operators that define the Killing spinors equations, or perhaps 

more conveniently by using the method of Killing spinor identities [191], developed in [192]. 
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+ 
[ 

− 
( 

µνρσ 

µν µν 

µν 
m 

A 
(    

a a
) 

a      a a      a 

2 
− − − 

8 

V = f 
4 6 

2 
µν ρ m n 

4 
m ρ n µ ν 

µνρ [µ ν ρ] 
3 

[µ ν ρ] µνρ [µ ν ρ] 
3 

[µ ν ρ] 

2 

1 

2 

1 

4 

m 

1 

where Qµa
b and Q¯µa¯ 

b¯ 
are the composite connections. Up to order α′, the bosonic part of the action in D dimensional 

spacetime takes the form [197] 

I = 

∫ 

dDx 
√

−g e−φ 

{ 

R + ∂ φ ∂µφ − 
 1 

H Hµνρ + 
1 

Tr ∂ S ∂µS − 
1 

Fm S n F µν 

 

 

1 
α′ 2Hµνρ Ω 

8 1 

µ 
 

 
µνρ 

12 

(ω) + Ωµνρ 

µνρ 

 

(Q ) − Ω 

 
 

 
µνρ 

8 
µ 

(Q̄ )
) 

4 µν  m  n 

+ Rµνρσ R −  Rµνρσ 

(
Hµν,ρσ + F µν mF ρσ 

m + F µν mSm
nF ρσ 

n

) 

1 µ ν 1 µ ν 1 µ ν 

+ 
8 

Tr S∇µS∇ S∇ν S∇ S + 
16 

Tr ∇µS∇ν S∇ S∇ S − 
32 

Tr ∇µS∇ν STr ∇ S∇ S 
1 µ λ  ν τ  ρ σ 1  2 2 µν 1  2 µ ν 

+ 
24 

Hµνρ H σ H λ H τ  − 
8 

Hµν H + 
8 

Hµν Tr ∇ S∇ S 

−  H2 F µρ 
mSm

nF νρ 
n +  Hµν,ρσ 

(
Fµρ 

mSm
nFνσ n + 2Fm Fρσ m

) 

1 
− 

2 
H 

 
µνρ 

 

Fµσ 

 

m(S∇ν S)m
nFρ 

σ 
1 

n + 
4 

H 

 
µνρ 

 

Fµσ ∇ 
 

Sm
nFνρ n 

1 
+ 

8 
Fµν mSm

nFρσ nF µρ p Sp
qF νσ 

1 

q − 
2 

Fµν 
mSm

nF µρ 
nF νσ p Sp

qFρσ q 

1 
+ 

8 
Fµν 

mFρσ mF µρ nF νσ 
1 

n + 
8 

Fµν 
mFρσ m F µν p Sp

qF ρσ 
q 

− 
1 

F  m
(
S∇ S∇ν S

) n
F µρ  + 

1 
F µρ mS nF ν  Tr ∇ S∇ S 

−  F  m 
(
∇ S∇ρ S

) 
nF µν  −  F  m 

(
∇µS∇ S

) 
nF νρ  

]} 

, (5.3) 
1 

 

 

where 

4 
µν ρ m n 

8 
µν ρ  m n 

 

Sm
n = Mmpη

pn ,  Fm = 2∂[µAν] ,  Hµνρ = 3∂[µBνρ] , 

Ω (ω) = Tr 

(

ω ∂ ω  + 
2 

ω ω ω 

) 

,  Ω (Q ) = Tr 

(

Q ∂ Q  + 
2 

Q Q Q 

) 

, (5.4) 

 

and similarly for Ωµνρ(Q¯ ). 

Gauged version of the half-maximal supergravity coupled to n vector multiplets in D dimensions with higher derivative 

extension terms, has been obtained from double field theory (DFT) in [48], where the potential and the implications of 

the α′ corrections for the vacua of the theory are also discussed. In this case, the scalar fields other than the dilaton φ 

parametrize the coset SO(d, d + N )/(SO(d) × SO(d + N )), and the scalar matrix Mmn is built out of the coset representative 

Lm = Lm , Lm  ̄  with a = 1, . . . , d, a¯ = 1, . . . , d + N , as Mmn = Lm Ln + Lm  ̄Ln  ̄, where d = 10 − D. It is important to 

note that here, and in the rest of this section we are now using the index m which takes the values m = 1, . . . , 2d + N for 

simplicity in notation, while the same index is used in eqs. (5.1), (5.3) and (5.4) to take the values m = 1, . . . , 2d. The 

SO(d, d + N ) invariant matrix ηmn and its inverse ηmn are used to lower and raise indices. The result found in [48] for the 

bosonic part of the action in D = 10 − d dimensions is given by 

S = 

∫ 

dDX 
√

−ge−2φ 

{

R + 4∇ ∇µφ − 4∇ φ∇µφ − 
 1 

H Hµνρ 

µ µ 

1 m µνn 
1 

12  
µνρ 

µ  mn 

− 
4 

Fµν F Mmn + 
8 

∇µMmn∇ M − V0 

+ α′
[
Hµνρ 

(
− 

1 
Ω µνρ 

(A) 
1 

Ω 
4 µνρ (ω− ) 

1 
Ω 

4 µνρ 
(Q ) 

1 
Ω 

4 µνρ (Q̄
 )
) 

+ 
1 

R˜(−)µνρσ 
R˜(−)

µνρσ + Lungauged + Lgauged − V
]} 

, (5.5) 

where H = dB and the potential associated with the gauged two-derivative theory is 

 1 
0 

12 
mp r fnq 

sMmnMpqMrs + 
1 

fmp qfnq 
pMmn + 

1 
fmnpf 

mnp , (5.6) 

σ 
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+ 

3 

= 
( 
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) 
′ ′ ′ 

− 

2 

= 

= 
= 

= 

= 

µ 

= = = 

i  i 7 i 

= 

 

and fmnp are the structure constants of the gauge group with 2d  N generators. The order α′ contribution to the potential 

is found to be [48] 

V Pmm Pnn P¯
pp P¯

mm P¯
nn Ppp Pqq Prr P¯

ss f 
mpqf np′q′ 

f m
′rsf n

′r ′s′
 

+ 

(

Pmm′ Pnn′ P¯
pp′ + 

4 
P¯

mm′ P¯
nn′ Ppp′ 

) 

Pqq′ Prr ′ P¯
ss′ f mnsf m

′pr f n
′p′qf q

′r ′s′ 
. (5.7) 

 

Further definitions used above are 

R˜
µνρσ 

 

(ω− 
 

) = Rµνρσ 

 

(ω− ) 
1 

F 
2 

µνmFρσ n (Pmn − 2 P¯ mn) ,  ω± 
1 

= ω ± 
2 

H , 

Pmn 
= 1 

(ηmn − Mmn) ,  P¯
mn = 

1 
(ηmn + Mmn) , 

2 
1 Ω (A) = A ∂ A  −  f A mA nA p . (5.8) 

µνρ [µ ν ρ] 
3 

mnp [µ ν  ρ] 

The Chern–Simons forms Ω(ω), Ω(Q ) and Ω(Q¯ ) are as defined in (5.4) except that in the latter one the composite 

connection Q¯ is now valued in SO(d + N ). The Lagrangians Lungauged and Lgauged have very complicated forms, and they are 
given as L

(−) 
and L

(−) 
in eqs. (3.66) and (3.67) of [48]. In fact, the total ungauged Lagrangian can be obtained from 

ungauged 

(5.5) by setting fmn
p 

gauged 

= 0, and the result is expected to agree with (5.3), which was obtained from the toroidal reduction 

of the higher derivative extended heterotic supergravity, upon letting m  1, . . . , 2d as well. As for the potential V0 given 

in (5.6), we have checked that it agrees with that found in [199] in 7D, where the couplings were obtained directly by 

Noether procedure. 

In general, some of the higher derivative extensions of supergravity are relevant for potential ultraviolet divergences. 

As we shall see in Section 11.2, the D8R4, D6R4, D4R4 and R4 terms are relevant for counterterms in dimensions D  9, 8, 7, 
respectively. Certain action integrals, including those in D 8, 7, are formulated in the ectoplasm approach, as will be 
summarized in Section 11.4. 

6. D = 6 

 
Higher derivative deformations of 6D supergravities with N   (2, 2), N   (1, 1) and N   (2, 0) apparently have 

not been studied directly but some results have been obtained in the latter two cases from the compactifications of the 

heterotic string on T 4 and of Type II on K 3, respectively [89,98]. In the case of N  (2, 2) supergravity, resulting from 
a toroidal compactification of type II supergravities, the consequences of the duality symmetry for the higher derivative 

extension, albeit at the level of the leading terms in R4, D4R4, D6R4 have been explored by various authors, as we shall 
review in Section 11. 

In the case of N  (1, 0) supergravity, the existence of off-shell formulations makes the construction of higher 

derivative supersymmetric invariants more manageable, and we shall review the results obtained in this way. We shall 

also review aspects of results obtained from the compactification of heterotic string on K 3. 

6.1. N = (1, 1), 6D supergravity from type IIA on K 3 

The N = (1, 1) supergravity multiplet consists of the fields 

(eµ
a, ψ i , Bµν, Aµ, Aµi

j, χ i, φ) , (6.1) 

where i = 1, 2 is the SU (2)R doublet index. The two-derivative Lagrangian was constructed by Romans [200]. The bosonic 

Lagrangian of the ungauged N = (1, 1) supergravity without mass deformation is given by [200] 

e−1L6D (1 1) = 
1 

R − 
1 

∂ φ∂µφ − 
1 

e−
√

2φ (f  f µν + F jF µν i) − 
 1 

e−2
√

2φ H Hµνρ 

, , 
4 2 

µ 
4 

µν µν 
12 

µνρ 

1 µνρλτσ j i 

− 
8 

ϵ Bµν(fρλfτσ + Fρλi Fτσ j ) , (6.2) 

where fµν and Fµνi
j are the abelian field strengths of the Aµ and Aµi

j, respectively. The supersymmetry transformations of 
the fermions are given by 

δψ = ∇ ϵ − 
 1 

e
√

2φ γ H/ γ ϵ − 
 1  

(γ νρ − 6δ ν γ ρ)e−
√

2φ 1 
δj + γ F j)ϵ , 

µ i µ i 
24 

7 µ i 
4

√
2  

µ µ ( 
2 

fνρ i 7 νρ i  j 

δχ = 
 1  

γ µ∂ φϵ − 
 1 

e
√

2φ γ H/ ϵ + 
 1  

γ µνe−
√

2φ 1 
δj + γ7F  ij)ϵj . (6.3) 

√
2 

µ 
12 2

√
2 

( 
2 

fµν i µν 

Coupling to an arbitrary number of vector multiplets was obtained in [201]. Type IIA string on K 3 yields N  (1, 1) 

supergravity coupled to 20 vector multiplets. Focusing only on the NS–NS sector, the effective action up to four- 

derivatives has been investigated in [98]. The K 3 compactification of the eight-derivative action for type IIA string (4.31) 

i j 
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6D (1 1) 

4 6 36 
4 4 

+ ∧ 

( 

+  ⏐ 

ab ab ab 

µν 
ρσ 4 σ  µρδ  νλ 

× 

µν 

± 

, , 
12 6 µν 36 µν 3 

+ + 

∧  = 

 

was reconstructed from the 5-pt string amplitudes, which upon the use of the lowest order equations of motion in 

six-dimensions, reads [98] 

e−1L = e−2φ α′

[  5 
H4 + 

1 
(H2 )2 + 

19 
(H2)2 − 8H2 ∂µφ∂ν φ + 

8 
H2∂φ2 − 16(∂φ2)2

] 

α′ + 
16 

[ 
(t4t4 + 

1 
ϵ4ϵ4)R(Ω )2 + 

1 
ϵ5ϵ5H2R(Ω ) + 

 1 
ϵ ϵ H4 

 

2B2 tr R(Ω )2 
evenin B2 terms 

) ] 
, (6.4) 

where in the formula above R(Ω+) is a shorthand notation for the Riemann tensor defined with respect to the torsionful 

spin connection 

1 Ω = Ω ±  H , (6.5) 
±µ µ 

2 
µ 

and various contractions are given by 

t4t4R(Ω+)2 = Rµν
αβ (Ω+)Rµν

αβ (Ω+) , 
1 

4 
ϵ4ϵ4R(Ω+ )2 = Rµν 

αβ (Ω+ )Rαβ 
µν(Ω+ ) − 4Rµ

α(Ω+ )Rα
µ(Ω+ ) + R(Ω+)2 

1 2 1 4 µνρσ α µν  2 2 2 

− 
6 

ϵ5ϵ5H R(Ω+) − 
36 

ϵ4ϵ4H  = −4R Rµρα Hνσ  + 4R  Hµν − 
3 

RH 
1 2 2 1  4 

 

in which we have defined 

+ 
18 

(H ) − 
3 

H , (6.6) 

Rµ
α(Ω+) = Rµρ

αρ (Ω+) ,  R(Ω+) = Rµ
µ(Ω+) , 

H2 = Hµνρ H
µνρ ,  H2  = Hµρσ Hν ,  H = Hµνσ Hρλ H H δ . (6.7) 

In arriving at the four-derivative couplings above, one focuses on the factorized (four derivatives) R2 terms in ten 

dimensions and makes use of the topological data of K 3 

 1  

24π 2 

  1  

36π 2 

 

R R 16 , 
K 3 

d4x
√

g (Rµνρσ 

K 3 

 

 

 

Rµνρσ − 4Rµν 

 
 

 

Rµν + R2) = 24 . (6.8) 

Note that the Riemann squared terms, which would naively come from the reduction of the quartic in Riemann curvature 

terms in 10D, have canceled out in the tree level part of the Lagrangian. Furthermore, the tree-level terms given in (6.4) 

are expected to be canceled by reduction of the eight-derivative action for 10D IIA, reconstructed from 6- and higher-point 

string amplitudes [98]. This is consistent with the expected duality between type IIA string on K 3 and heterotic string on 

T 4 [89], which maps the one-loop terms in the former to the tree level of the latter. However, to demonstrate the full 

cancellation of four-derivative terms in the tree level action requires knowledge of 6-pt and higher-point amplitudes in 

10D which are currently unavailable. 

 

 

6.2. N = (2, 0), 6D supergravity from type IIB on K 3 

 

The N = (2, 0) supergravity and tensor multiplets are 

(eµ
a, ψ I 

µ+ 

IJ ) , (Bµν, χ I , φIJ ) , (6.9) 
µν − 

where I = 1, . . . , 4 is the USp(4)R vector index, the 2-form potentials BIJ and the scalars φIJ are anti-symmetric, and 

denote chirality. The equations of motion of the two-derivative supergravity were given in [202]. Its coupling to an 

arbitrary number of tensor multiplets was obtained in [203,204]. In particular, higher derivative extensions of (2, 0) 

supergravity with or without matter couplings do not seem to be available. One may consider obtaining such extensions 

from the K 3 compactification of type IIB string. At the level of Kaluza–Klein spectrum, the K 3 compactification gives an 

anomaly-free model with 21 tensor multiplets. Some aspects of the reduction involving higher derivatives in which only 

∫ 

∫ 

, B 
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µ 

= = 

( ) 

∧ ∧ 

ab ab ab 

µ µ µ 

µ µ 
4 

µab 
2 

µ j µ j 
8 

µνρ 

µ ν] k 

a (1, 0) subsector, which furthermore keeps only the NS–NS fields (ea , Bµν, φ) are considered in [98]. The results for this 

sector resemble those in (6.4). 

 

6.3. N = (1, 0), 6D off-shell U (1)R gauged supergravity and curvature-squared invariants 

 

The 6D off-shell N = (1, 0) supergravity was constructed in [18] and the Poincaré supermultiplet consists of the fields 

( 
ea (15), V ′ij(12), Vµ(5), Bµν(10), L(1), Eµνρσ (5), ψ i (40), χ i(8) 

) 
, (6.10) 

where i 1, 2 and Vµ is a gauge field of the R-symmetry group U (1)R, while Vµ
′ 

ij Vµ
′ 

ji is traceless and it has no gauge 

symmetry. This multiplet is obtained by coupling the dilaton Weyl multiplet to a linear multiplet and making the gauge 

choices given in [18, Eq. (3.1)]. The off-shell supergravity obtained in this way was also coupled to an off-shell vector 

multiplet 

Aµ(5), λi(8), Y ij(3) , (6.11) 

where Y ij are the triplet of auxiliary fields. The bosonic part of the resulting Maxwell–Einstein supergravity Lagrangian is 

given by [18] 

e−1L = 
1 

LR + 
1 

L−1∂ L∂µL − 
 1 

LH Hµνρ + LV 
′ijV 

′µ − 
1 

L−1EµE  1  µ +  E V 

2 2 
µ 

1 µ ij 

24 
µνρ 

1 ij 1 
µ  ij 

µν 
4 

µ √
2 

µ 

1  µνρσ λτ 

where 

+ 
2 

gE Aµ + Y Yij + √
2 

gLδ Yij − 
4 

Fµν F − 
16 

ϵ Bµν Fρσ Fλτ , (6.12) 

 1 H = 3∂ B ,  F = 2∂ A  ,  Eµ = e−1εµν1···ν5 ∂  E . (6.13) 
µνρ [µ νρ] µν [µ ν] 

24 [ν1 ν2···ν5] 

The B-field is inert under the Maxwell gauge transformations, and therefore, the B F F term respects the gauge 

symmetry. The complete off-shell supersymmetry transformation rule for the supergravity multiplet can be found in [205]. 

Here we only give the supertransformations of the fermions which take the form 

δψ i = 

(

∂ + 
1 

ω γ ab

)

ϵi − 
1 

V δijϵ + V ′ i ϵj + 
1 

H γ νρϵi , 

δχ i = 
 1  

γ µδij∂ Lϵ − 
1 

γ µE ϵi + 
 1  

γ µV ′
(i 

δj)kLϵ − 
  1   

Lδijγ Hµνρ ϵ , 

2
√

2 µ  j 
4 

µ √
2 

µ k j 
12

√
2 

µνρ j 

δλi = 
1 

γ µνF  ϵi − 
1 

Y ijϵ . (6.14) 

8 
µν 

2 
j 

Using Noether procedure in which certain properties of the spin connection with H-torsion were utilized, the 

supersymmetric Riemann-squared action was obtained in [206]15 To present the results, we first define the torsionful 
connection 

1 ω = ω ±  H . (6.15) 
±µ µ 

2 
µ 

The bosonic part of the supersymmetric Riemann squared invariant takes the form [205]. 

e−1L 2 = Rµν 
ab(ω−)Rµν 

ab(ω−) − 2Fµν(V )F µν(V ) − 4F ij (V ′)F 
µν

(V ′) 
Riem 

1 µνρσ λτ ab 

µν ij 

where 

+ 
4 

ϵ Bµν Rρσ (ω−)Rλτ ab(ω−) , (6.16) 

F (V )µν = 2∂[µVν] + 2V ′ikVν 
′jkδij , F ij(V ′)µν = 2∂[µV 

′ij 
− 2δk(iV[µVν]

′j) 
. (6.17) 

Combining the Maxwell–Einstein supergravity with LRiem2 as 

1 
L = LME + 

8 
αLRiem2 , (6.18) 

 

15 The stated property was exploited in [139] where it was observed that the torsionful spin connection and the gravitino curvature transform 

like Yang–Mills supermultiplet. 

ME 
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= − 

µν 

µν 

= ⏐
A=0 

8 

µν 2 
µν 

2 2 2  2 µνρσ λτ 

4 2 
µν 

16 
µν ρσ 

8 
µν − ab − 

4 
µν ρσ − λτ ab − 

16 12 
□ 

4 
µ µ ν ν 

µ µ 

α,γ 
4 

µ 
12 

µνρ 

8 
− µνab − 

2 
µν ρσ − λτ ab − 

3 9 µν 2 
µν + 

4 

µνρ µ µ µ 

 
the elimination of the auxiliary field to go on-shell requires order by order in derivative solution for the vector auxiliary 

field, as explained in [205]. At the lowest order in α, the bosonic part of the resulting Lagrangian is [205] 

e−1L = 
1 

LR − 
1 

g 2L2 + 
1 

L−1∂ L∂µL − 
 1 

LH Hµνρ 

2 4 2 
µ 

24 
µνρ 

− 
1 
(

1 + 
1 

αg 2

) 

F  F µν − 
 1 

εµνρσ λτ B  F  F 

+
α [

R  ab(ω )Rµν  (ω ) + 
1 

ϵµνρσ λτ B  R  ab(ω )R (ω )

] 
. (6.19) 

Note that the critical coupling α 2/g 2 observed in [205] falls into the non-unitary regime. 

The off-shell Gauss–Bonnet invariant has been constructed by utilizing a gauged 3-form multiplet [207,208] in the 

intermediate steps. Using a gauged 3-form multiplet composed from the dilaton-Weyl multiplet, one can also obtain 
a new curvature-squared invariant. One can combine this invariant with LRiem2 to form the off-shell supersymmetric 
Gauss–Bonnet combination with the bosonic part given by [209,210] 

1 1 
e−1LGB = R Rµνρσ − 4R  Rµν + R2 +  RH2 − Rµν H2 +  R HµνλH

ρσ 

µνρσ 
5 

µν 
6 1 2 1 2 1 µν 2 µνρσ λ 

+ 
24 

H4 + 
144 

(
H2

) 
− 

8 

(
H2 

) 
−  ϵµνρσ λτ Bµν Rρσ ab(ω+)Rλτ 

ab(ω+) 

1 µνρσ λτ +  ϵ B  F (V )F (V ) + ϵµνρσ λτ B F ij (V ′)F (V ′) , (6.20) 

2 
µν ρσ λτ µν ρσ λτ ij 

where H2, H2  and H4 are as defined in (6.7). 

The bosonic part of the last four-derivative invariant we review here is given by 
e−1 = 

(
R + H Hµνρ + 2L−1 L − L−2∂ L∂µL + 4Z µZ¯ −  L−2EµE 

)2 

 1  1 1 

− 
1 (

2L−1Dµ(LZ ) − iL−1EµZ 

)(
2L−1Dν (LZ¯ ) + iL−1Eν Z¯ 

) 

+ 
1 

ε Bµν∂λ(V ρ + 
1 

L−1Eρ )∂σ (V δ + 
1 

L−1Eδ) 

8 
µνλρσ δ 

2 2 

− 
1 

∂[ (V ] + 
1 

L−1E ])∂µ(V ν + 
1 

L−1Eν ) , (6.21) 

2  
µ  ν 

2 
ν 

2 

where Zµ = V ′12 + iV 11. The field equations of auxiliary fields allow us to set them to zero. Once this is done, the action 

becomes proportional to the leading order equation of motion of L, and therefore it can be removed by a redefinition of 

the field L. If the auxiliary fields are not set to zero, it can be shown that when combined with two-derivative supergravity 

Lagrangian, the model still admits a maximally supersymmetric Minkowski vacuum, around which the spectrum consists 

of a massless supergravity multiplet and a massive vector multiplet which is unitary when the coefficient in front of the 

Ricci scalar squared is positive. 

6.4. N = (1, 0), 6D on-shell curvature-squared invariants and their dualizations 

 
Given that LR2 on-shell can be removed by field redefinitions, and putting aside the vector multiplet coupling, let us 

consider the two parameter Lagrangian 

1 1 
Lα,γ = LSG − 

8 
αLRiem2 − 

8 
γ LGB , (6.22) 

with LSG  LME  from (6.12), LRiem2 from (6.16), and LGB from (6.20). Going on-shell and redefining the appropriate 
fields as detailed in [158], the bosonic part of the resulting on-shell supersymmetric (up to order α and γ ) Lagrangian is 

given by16 

e−1L =e−2ϕ 
[ 1 

R + ∂ ϕ∂µϕ − 
 1 

Hµνρ H 

] 

− 
1 

α
[ 

Rµνab(ω )R (ω ) + 
1 

εµνρσ λτ B  R  ab(ω )R (ω )

] 

− 
1 

γ 
[ 

Rµνρσ R 
 
µνρσ 

 

− 4R  Rµν 

 

+ R + 2R 
 
µνρσ 

 

Hµν,ρσ − 4Rµν H2 
2 

+ 
3 

RH 

10 1 1 
+ H4 +  (H ) − 2(H  ) +  ϵ B  R 

 

ab(ω )R 

 

ab(ω )

] 
. (6.23) 

16 For convention changes compared to those of [205,208], see [158]. 

BCSV 

2 

λτ 

LR2 
4 

ρσ λτ + 
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→ = 

µνρ ab 

2 

2 2 2 

µν 

α 

µν 

= 

α,γ 4 
µ 

 
µνρ σ 

12 
µνρ 

2 

µνρ ab 

µ ν ρab 

1 µνρ L 1 µνρσ 1 µν 1 2 

6 µα νρ µν ρα ρα ρ α 

1 

 

It is useful to consider the dualization of Bµν to a dual potential Cµν. To this end, one adds to the Lagrangian Lα,γ a 

total derivative Lagrange multiplier term 

∆L(B, C ) = 
  1   

εµνρσ τλH ∂ C . (6.24) 

2 × 3! 
µνρ σ  τλ 

Dualization proceeds by treating H as an independent field and integrating over it. After a considerable amount of 

calculation, and at the end letting gµν gµ
′ 

ν e2ϕ gµν in order to pass to the string frame, to first order in α and γ 
one finds that [158] 

e−1Ldual = e2ϕ 

[ 
1 

R + ∂ ϕ∂µϕ − 
1 

Gµνρ G − 
1 

(α − γ )G ∂ (ω  G̃ ) 

+ (α − γ )G ∂µ(ϕ G̃ν ρ σ  ) + (α + γ )G ∂µ(ων eρaϕb) 

+ 
2 

(α + γ )G ωµνρ (ω) − 
8 

(α + γ )Rµνρσ R − 
4 

γ (−2Rµν R + 
2 

R ) 
1 µν,ρσ 1 µν  2 1 2 µ  ν 

− 
4 

(α − γ )Rµνρσ G + 
2 

αR  Gµν − 
12 

αRG − (α − 3γ )Rµνϕ ϕ 

+ (α − 3γ )Rµνϕµν + 
2 

(α + 3γ )Rϕ2 
3 µ 

+ 
2 

γ Rϕ µ − (α − γ )Gµνϕµϕν 

2 µν 5 1 2  2 1 2  µ µν 

− (α + γ )Gµνϕ + ( 
6 

α − 
2 

γ )G ϕ + 
3 

αG ϕ µ − 2(α − 3γ )ϕ  ϕµν 

1 µ 
− 

2 
(α + 12γ )(ϕ µ) + 4(α − 3γ )ϕµνϕµϕν − 2(2α + 9γ )ϕ ϕµ µ − 5(α + 3γ )(ϕ ) 

1 µ  νρσ 1 λ τµν 

+ 
6 

α(DµGνρσ )(D G ) − 
2 

α(D Gλµν)(Dτ G ) 
2 µνρ  σ ρ λµν 

− 
3 

αG 
1 

ϕ Dσ Gµνρ − αϕ Gρµν DλG 
1 1 2 

− 
12 

(−3α + 5γ )G Gµρ,νσ − 
4 

(α − γ )G  G − 
72 

γ 
(
G 

) 

µν,ρσ 2 2µν 2 
   

− 
1 

(α − γ ) G̃ µ ν ρ  
(
G2 G − 3G α

(
R − 4ϕ + 4ϕ ϕ 

))
] 

, (6.25) 

 

 

Gµνρ = 3∂[µCνρ] , G̃µν ρ  
1 

= 
3! 

ϵ 
µνρσ λτ Gσ λτ ,  G2 = Gµρσ Gν 

ρσ , 

G2 = Gµνρ G
µνρ ,  ϕµ = ∂µϕ ,  ϕµν = ∇µϕν ,  ϕ2 = ϕµϕµ . (6.26) 

While several terms can be removed by field redefinitions, such a step will modify the simple supersymmetry transfor- 

mations by introducing the corresponding α or γ dependent higher derivative terms. The supertransformations of eµ
a 

and ϕ remain the same in the dualized theory. In the supertransformations of ψµ and χ, the duality equation [158, Eq. 

(3.6)] needs to be used to replace Hµνρ in terms of its dual. Derivation of the supertransformation of Cµν, which is more 

involved, is given in [158]. 

It is interesting to note that if we set α  γ in the Lagrangian above, it gives the 6D BdR action up to field 

redefinitions [158]. Conversely, the dualization of the 6D BdR action as obtained from the dimensional reduction of 

the heterotic string on T 4 with the focus on the NS–NS sector was performed in [89] where the occurrence of the 

Riemann-squared and Gauss–Bonnet invariants with equal coefficients was noted. 

Turning to the two parameter dual Lagrangian (6.25), the question of whether the two invariants separately admit 

a lift to 10D was addressed in [158], with the motivation that this would give the 10D analog of the 6D Gauss–Bonnet 

invariant. It was found that there are obstacles in performing such a lift. This strengthens the expectation that the BdR 

action in 10D is the unique four-derivative extension of (1, 0) supergravity, up to field redefinitions. Finally, we note that 

a superspace approach to the higher derivative extension of heterotic supergravity in 6D, and its dualization have been 

analyzed in superspace in [211]. 

 

6.5. N = (1, 0), 6D on-shell supergravity coupling to higher derivative hypers from dimensional reduction 

 

The lack of an off-shell hypermultiplet with a finite number of auxiliary fields makes the construction of its higher 

derivative couplings directly by a Noether procedure a formidable task simply because there are many structures one 

can write down, and furthermore, the variation of multitudes of structures gives rise a much larger set of independent 

where 

2 
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+ ; 
; 

+ ; + ; 

supersymmetry from (1, 1) to

ˆ
(1, 0), we take 

ˆ
t h e  10D vielbein and the two-form potential to be 

r 

1  0 

T 

µνρ µνρ 

µ 

µνρ 

= ρ 
0 Eα 

a ρ , ρ = √
2 1 1 

4 4 

variations.17 Nonetheless, recently this task has been accomplished for the case of hyperscalars parametrizing the coset 

Sp(n, 1)/Sp(n)  Sp(1) [190]. We shall review these results in the next subsection. 

Another approach, which we shall review below, is the construction of higher derivative matter couplings by 

dimensional reduction of higher derivative invariants in 10D. In particular, the case of hyperscalars parametrizing the 

coset SO(n, 4)/(SO(n)  SO(4)) may be obtained in this way since it has been proven in [212] that the dimensional reduction 

of heterotic supergravity with gauge fields truncated to the Cartan subalgebra must exhibit at string tree level, and to all 

orders in α′, a continuous O(d, d  16 R) global symmetry, related to the O(d, d  16 Z ) T-duality of heterotic strings on 

a d-torus. At the two-derivative level, and in the bosonic sector, some time ago it was shown [213] that reduction on Td 

does give an O(d, d  16 R) invariant result. More recently, it was shown that the effective action for the bosonic string, 

as well as the bosonic sector of the heterotic string at the four-derivative level, in the absence of Yang–Mills fields, do 

yield O(d, d R) invariant action upon reduction on Td [197]. Soon after, the Yang–Mills were taken into account to obtain 

O(d, d  16 R) invariant result [214], where, however, the fermionic sector was not considered. The dimensional reduction 

of the BdR Riemann-squared action for heterotic supergravity, in the absence of Yang–Mills coupling, on T 4 and truncation 

to (1, 0) supersymmetry was carried out in [198], including the fermion terms and local supertransformations.18 Here shall 

summarize the main results of [198]. 

Let us consider the ordinary dimensional reduction on T 4. Putting hats on all the fields and indices of 10D fields, and 

decomposing the indices as µ = (µ, α) and r = (r , a) where µ, r = 0, 1, . . . , 5 and α, a = 1, . . . , 4. As we truncate 
 

 

êµ̂
ˆ = 

 

eµ
r 0 

, 
0 Eα 

 

B̂µ̂̂ν = 
 

(Bµν, 
 

Bµα = 0, 
 

Bαβ ) . 
 

(6.27) 

For the truncation of the fermions, see [198]. The ansatz (6.27) only gives manifest GL(4) symmetry but not the expected 

SO(4, 4) duality symmetry. To uncover this symmetry, it is convenient to introduce the SO(4, 4) valued field 

W 
T 

( 
Ea

α −2Ea
β Bβα 

) 
 1  

( 
1  −1 

)

 

 

(6.28) 

which satisfies WT ηW = η, where η = 

( 
0  1 

)

. The Maurer–Cartan form is 

W ∂ W −1 = 

( 
Q+µab −P−µab 

) 

, P ≡ P , P := P = P , (6.29) 

−P+µab Q−µab 
−ab µab +µab −µab µba 

where Q±µab = −Q±µba are the composite connections associated with SO(4)±. It is also important to note Pµab transforms 
under SO(4)± as 

δPµab = Λ+a
c Pµ cb + Λ−b

c Pµ ac . (6.30) 

Using the ingredients summarized above, after a considerable amount of computation, one finds that the dimensional 

reduction of the BdR action in 10D on T 4 yields (for the bosonic part) the result [198] 

e−1L = e2ϕ 
[ 1 

R + g µν∂ ϕ∂ ϕ − 
 1 

H Hµνρ − 
1 

P P µab 

4 
µ ν 

12  
µνρ 

1 4 
µab 

1 

+Hµνρ 
(
ωL  (ω) + ωQ  (Q−)

) 
−  Rµνmn(Ω−)Rµνmn(Ω−) −  Q+µνabQ+

µνab 

1 
− 

4 
Q−µνabQ− 

 

µνab 
 

− Dµ(Γ+)PνabD (Γ+)P 

 

νab 
1 µν 

− 
2 

Yµν Y 
1 

+ 
2 

ZµνabZ 

 

µνba 

 

 

where ωQ 

−P µabDµYab − XabYab

] 
, (6.31) 

(Q−) is the Chern–Simons form for the composite connection Q−µab, Q±µνab denote the standard curvature of 

the composite connections Q±µab, and 

Xµνab :=Pµa
c Pνcb , Yµνab :=Pµa

c Pνbc , Zµνab :=PµcaPν 
c
b , 

Xµν :=δabXµνab , Yµν :=δabYµνab , 

Xab :=g µν Xµνab , Yab :=g µν Yµνab . (6.32) 

 

17 In the superconformal tensor calculus approach explained in great detail in [18], the coupling of the on-shell hypermultiplets to conformal 

supergravity, which is off-shell by construction, is described, yielding a two-derivative action. However, the generalization of these results to higher 

derivative couplings has not been explored. 
18 In another approach, the α′ extended double field theories [48,52,215–217] were used to obtain the bosonic sector of O(d, d) invariant higher 

derivative couplings in [48]. 

( 

, 

a 

) 

µ 
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+ × + 

= 

4 
µ ν 

12 
µνρ 

4 
µab µνρ µνρ 

1 µνmn 1 µνab 1 µνab 

4 
µ ν 

12 
µνρ 

4 
µab 

1 2 

µνρ 

 
2µν 1 

µνρ − 

 
µρ,νσ 

4 
µνmn 

 

2µν T 1 
2 

T 

µνρσ 

µ T ν 

2 
µ ν 2 µ ν 2 µ ν 

2 12 

) 

 
A key point is that only the last two terms in the Lagrangian are not invariant under SO(4)  SO(4) , but rather they 
break that symmetry down to the diagonal SO(4) subgroup. These are removed by a field redefinition under which all 
but the last two terms in the Lagrangian (6.31) are invariant. The last two terms turn into the SO(4)+ × SO(4)− invariant 

result −ee2ϕ Z µνabZµνab. Thus the now manifestly duality symmetry invariant Lagrangian is given by [198, Eq. 6.2] 

e−1L = e2ϕ 
[ 1 

R + g µν∂ ϕ∂ ϕ − 
 1 

H Hµνρ − 
1 

P P µab + Hµνρ 
(
ωL + ω 

) 

 
− 

4 
Rµνmn(Ω−)R (Ω−) − 

4 
Q+µνabQ+ − 

4 
Q−µνabQ− 

−D (Γ )P Dµ(Γ )P νab −  Y µν Y +  Z µνab 
(
Z − 2Z 

)] 
, (6.33) 

1 
 

 
   

 
 

  

where Ω± = ω ± H and Γ± = Γ ± H with Γ representing the Christoffel symbol, and H is the three-form field strength 

H = dB. As shown in [198], this result can be written as 

e−1L =e2ϕ 

{ 
1 

R + g µν∂ ϕ∂ ϕ − 
 1 

H Hµνρ − 
1 

P P µab 

+ 
[
Hµνρ 

(
ωL  (ω) + ωQ  (Q )

) 
−  R (ω)Rµνmn(ω) + 

1 
R Hµν,ρσ 

 

+ 
2 

Hµν H − 
6 

Hµν,ρσ H + H tr(PµPν ) + 
2 

tr(PµPν ) tr(P P ) 

− 
1 

tr
(
P PT P µPT ν 

) 
+ 

1 
tr

(
PT P µPT P ν 

) 
− 

1 
tr

(
P µPT P ν PT 

)]
} 

. (6.34) 

 

This result is given in different forms in [48,197], but after some algebra and taking into account the convention 

differences, the results agree. The supertransformations of the fermions after appropriate field redefinitions are given 

by [198] 

δψµ = Dµ(Ω+)ϵ − 
1 

3 L 
 

2 µνρ 
1 

(Ω−) + ωQ 
1 

(Q−)
]
γ νρ ϵ − α′Pνa

c DµP ν 
bc Γ abϵ , 

µ µνρ ′
[ 

L Q 
] 

µνρ 

δχ =  γ ϵ∂µϕ − Hµνρ γ ϵ + 
2 

α ω (Ω−) + ω (Q−) γ ϵ , 

δψa = − 
1 

γ µΓ bϵP ba − α′γ µΓ bϵP c aYbc . (6.35) 

2 
µ µ 

 

6.6. Higher derivative couplings of N (1, 0), 6D on-shell supergravity to Yang–Mills and hypermultiplets by Noether 

procedure 

 

The construction of the higher derivative couplings of matter multiplets to supergravity is notoriously complicated 

due to the fact that many structures in the action and transformation rules are possible, and the number of independent 

structures that arise upon supersymmetry variations grows very rapidly. One may perform the dimensional reduction 

of the well-established Bergshoeff–de Roo extension of heterotic supergravity action on T 4 [197,198], and consistently 

truncate the result to N  (1, 0) supersymmetry which gives couplings of hypermultiplets parametrizing the quaternionic 

Kähler (QK) coset SO(n, 4)/(SO(n) SO(4)). In K 3 compactification of heterotic string, the low energy effective theory is 

also a 6D (1,0) supergravity coupled to vector and hypermultiplets, in which the NS–NS sector gives rise to scalars which 

parametrize the QK coset SO(20, 4)/(SO(20) SO(4)) [218–220].19 The same coset also arises from T 4 compactification of 

the NS–NS sector of heterotic supergravity and its truncation to (1,0). Note, however, that this leaves open the question 

of how to construct the higher derivative couplings of more general QK manifolds allowed by (1, 0) supersymmetry. 

In a rare such calculation that employs the Noether procedure, the higher derivative couplings of hypermultiplets that 

parametrize a quaternionic projective space Hp(n)  Sp(n, 1)/(Sp(n)  Sp(1)R) to N  (1, 0) supergravity were constructed 

in [190]. There are several details for which we refer the reader to [190, Eqs. (5.1) and (5.2)] where the final results are 

summarized. Here we shall give the bosonic part of the action, and the supertransformations of the fermions. To explain 

the notations, let us begin by noting that using the (2n  2)  (2n  2) matrix L of Sp(n, 1) as a representative of the coset, 

the Maurer–Cartan form can be written as 

L−1dL = 
Qa

b Pa
B 

P b Q B 
, 

 

(6.36) 
A A 

 

19 For a review where the YM sector is also discussed, see [220]. Embedding the instanton in one of the E8 groups in a way that E8 is completely 

broken, for example, gives a N  (1, 0) model with a single tensor multiplet, 492 hypermultiplets, and the remaining E8 gauge group. However, the 

nature of the QK manifold they parametrize apparently has not been determined. 

µ + νab + 
2 

µν 
2 

µνba µνab 

( 
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α α α 

] C 

H P P 

2 µν 2 

B a 

µ 
I 

following fu

˜

rther definitions: 

µνρ 
L Q 

A 

µ 

× 

= 

:= = − = = 

µνρ µνρ 

1 

2 

∈ + + × − 

+ × − = 
= 

µ α µ α µ α 

4 
µ 

12 2 4 

4 
µν − rs − µνAB 

4 
µνAB µν 

4 

∂ψa = γ µϵAPµaA + γ (γ µϵA)P ν 
aA (P 2)µν 

µν µ µν µ 

µνρ µ ν ρ 
3 

µ ν ρ 

µνρ µA ν ρB 
3 

µA νB ρC 
[µνρ] 

D νρ 

4 

 

where Qab = Qba, QAB = QBA, PAb = −PbA with a, b = 1, . . . , 2n, A, B = 1, 2 and 

PaA = ∂µφα V aA , Q AB = ∂µφα Q AB , Q ab = ∂µφα Q ab . (6.37) 

Here φα denote the hyperscalars, V aA is the vielbein, Q ab and Q AB are the Sp(n) and Sp(1) connections on Hp(n). 

Furthermore, we have the curvatures 

Qµνa
b := 2∂[µQν]a

b + 2Q[µ|a
c Q|ν]c

b = 2P[µ|a
C P|ν 

b  , 

QµνA
B := 2∂[µQν]A

B + 2Q[µ|A
C Q|ν]C 

B = 2P[µ|
c 

AP|ν]c 
B . (6.38) 

The bosonic part of the Lagrangian is given by [190] 

e−1L =e2ϕ 
[ 1 

R(ω) + ϕ ϕµ − 
 1 

H 
µνρ 1 µaA 

− 
1 

−  βF F I µν 

+ α 

(

− 
1 

R  rs(Ω )Rµν (Ω ) + Q µνABQ 

) 

+ γ 

( 
1 

Q µνABQ − (P )  (P ) + 
1 

(P 2)2

)] 
, (6.39) 

 

and the supertransformations by [190] 

∂ψµA = 
1 

µϵA + 
4 

Hµνρ γ ϵA − 8αϵB(PDP ) 
 

µAB 

 

+ 8αϵ Pµ (A| Ẽa|B) , 

1  µ  1 
A A 

µνρ 
A 

4 µ B (PDP ) AB − 4αγ µϵBP a
(A Ea B) , 

∂χ = 
2 

γ ϵ ∂µϕ − 
12 

Hµνρ γ ϵ + αγ ϵ µ µ  |˜| 
 

 1 µ A 2 1 µν  ρ A B 

− 
4 

γ (γ ϵ )PµaAP − 
4 

γ (γ  γ ϵ )Pρa QµνAB , 

δAI = − ϵ¯γµλ , 

δλI = 
1 

F I γ µνϵ , (6.40) 

4 µν 

where α, β, γ are arbitrary constants, P 2  := PaAPνaA , P 2 := g µν P 2 , (PDP )AB := P νa(ADµPνa
B), the hyperscalar equation 

of motion EaA := e−1(∂L0/∂φα)V αaA with L0 representing the two-derivative part of the Lagrangian, and we have the 

 

Hµνρ = 3∂[µBνρ] − 6βωYM − 6α ωµνρ − 6γ ωµνρ , 

ωYM = tr
(
A[ ∂ A ] + 

2 
A[ A A ]

) 
, 

 
L 
µνρ 

= tr
(
Ω 

 

−[µ∂ν Ω 
 
−ρ] 

2 
+ 

3 
Ω 

 
−[µ 

 

Ω−ν 
Ω−ρ]

) 
, 

ωQ = 
(
Q  B∂ Q + 

2 
Q  BQ C Q  A

) 
, 

Ω±µrs = ωµrs ± Hµrs , (6.41) 

where Aµ AI T I with tr(T I T J ) δIJ , r , s 0, 1..., 5 is the Lorentz vector index, and H dB. 

It is instructive to truncate the Hp(n) model summarized above to Hp(1), in which case the QK coset is Sp(1, 1)/(Sp(1) 

Sp(1)R), and compare it with the result obtained from the BdR higher derivative heterotic supergravity on T 4 followed by 

a consistent truncation to N (1, 0). The result for the bosonic part of the four-derivative terms obtained by the Noether 

procedure described above is given by [190] 
 

e−1LBos. 
α,γ = e2ϕ 

[

Hµνρ 
(
α ωL 

 

(Ω− ) + γ ωQ 
) 

− 
4 

α Rµν 

 

rs(Ω− 

 

)Rµνrs(Ω−) 

− (2α + 
2 

γ )(P )µν(P 2) + (2α +  γ )(P 2)2

] 

. (6.42) 
3 µν 3 

On the other hand, the 10D BdR heterotic supergravity on T 4 gives N (1, 1) supergravity with hyperscalars 

parametrizing the coset SO(4, 4)/(SO(4)   SO(4) ). Truncation to N  (1, 0) was carried out in [190] where it was 

observed that while Sp(1)R  SO(4) , there are two distinct ways of embedding the other Sp(1) factor in SO(4)  SO(4) . 

Each of these two embeddings gives a result consistent with the general Noether procedure result (6.42) for particular 

values of the constant parameter γ . In one case we embed Sp(1) ⊂ SO(4)+, and truncate by setting the SO(4)− vector 

I 

ω 

⏐ 

µνρ µaA µν 
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= → ≡ − → 

⏐ µνρ − 

4 
≡ ≡ + = 

µνρ µνρ 

2 

= 

= − 

α 

α 

× 

= 

abc a 

f ,  L = C e e 5 e 

index to one value, say a 1.20 Then Pµab Pµa1 Pµa and Q µab 0, and as shown in [190] the bosonic part of the 

order α Lagrangian obtained from the truncation of the reduction on T 4 becomes 
 

e−1LBos. 
α 

= αe2ϕ 
[
Hµνρ ωL 

 

(Ω− ) 
1 

R 

4 
µν 

 

rs(Ω− 

 

)Rµνrs(Ω− ) + Q 2
] 

, (6.43) 

where Q 2 QµA
BQ µB

A with QµA
B 1 Q µab(σ ab)A

B . This result agrees with the general Noether result (6.42) for γ 0, 
upon using the second identity in [190, Eq.(6.1)]. 

In the second way of truncation, again Sp(1)R ⊂ SO(4)+ but the remaining Sp(1) factor is now embedded into 
SO(4)−, instead of SO(4)+ considered above. Using van der Wardeen symbols, the vector indices of SO(4)+ and SO(4)− 
are converted into spinor indices (A, A′) and (Ā , Ā ′ ) respectively, for instance, Pµab = √1 (σa)AA′ (σb)A¯ A¯′ PA

′AA¯′A¯ 
. It turns out 

√ 2 

that what survives the truncation is Pµ
1′A1¯′A¯ 

= Pµ
2′A2¯′A¯ 

≡ −Pµ
A¯ A / 2. In this case, as shown in [190], the bosonic part of 

the order α Lagrangian obtained from the truncation of the reduction on T 4 now becomes 
 

e−1LBos. 
α = αe2ϕ 

[ 
Hµνρ 

(
ωL (Ω−) − 2ωQ (Q AB)

) 

1 
− 

4 
R 

 

µνrs (Ω− )Rµνrs(Ω− ) + (P 2)µν (P 2)µν + 
1 

(P 2)2

] 
. (6.44) 

For notational details see [190]. This result agrees with the bosonic part of the Noether result for the Hp(1) model displayed 

in (6.42), for γ 2α. Thus, perhaps not surprisingly, we see that the direct Noether construction in 6D gives a more 
general result for higher derivative couplings compared to that obtained from dimensional reduction. 

6.7. N = (1, 0), 6D off-shell superconformal curvature-cubed invariants from ectoplasm approach 

The curvature-cubed terms are known to be absent from superstring effective action [61]. There is no proof but 

is likely that algebraically they cannot accommodate 16 or more supercharges. However, they do exist in 6D, N 

(1, 0) supergravity with 8 supercharges [208]. The construction was motivated by supersymmetrizing type B conformal 

anomalies in six dimensions. Denoting the leading term in each of the 6D type B anomalies as 
 

L1 = CabcdC 

 

aefdCe
bc 

2 ab 

 

cdCcd
ef Cef 

ab ,  L3 = Cabcd(δa□ − 4Ra + 
6 

δaR)C 

 

abcd , (6.45) 

where Cabcd is the Weyl tensor, it is claimed that there exist only two superconformal invariant curvature-cubed 

terms [208]. Schematically, one of them is the superconformal completion of21 

1 
− 

8 
ε 

 

abcdef 
 

εa′b′c′d′e′f ′ Cab 
a′b′ 

 

Ccd 
c′d′ 

 

Cef 
e′f ′ 

 

= 8L1 + 4L2 , (6.46) 

while the other one contains L3. Apparently L1 and L2 do not admit separately supersymmetric completions [207]. The 

results are obtained by using the ectoplasm approach in off-shell superconformal superspace and the invariants are based 

solely on standard Weyl multiplet with the field content [207] 

(ea , bµ, V ′ij, Vµ, T −  , D, ψ i , χ i) . (6.47) 
µ µ µνρ µ 

We now briefly explain how the two curvature-cubed superinvariants were obtained by using this technique. The 

supersymmetric completion of L1 + 1 L2 utilized a primary superfield Aijk of dimension 9/2 obeying the constraint 
2 α 

(i  jkl) 

∇(αAβ) = 0 . (6.48) 

The components of the superfield Aijk consist of the bosonic fields 

(S+ ij, Eij, F , C[ab], Aijk, Aaijk) . (6.49) 

Using Aijk, a closed 6-form superfield J was constructed in [207] whose nonvanishing components are22 

J 
ijk 

, J 
ij
, Jabcde 

i, Jabcdef . (6.50) 
abcαβγ abcdαβ α 

The explicit form of these components can be found in [207]. In particular, one has [207, Eq. (4.15)] 

Jabcdef = −εabcdef F . (6.51) 

 

20 See (6.29) for the notations of different components of Maurer–Cartan form associated with the coset SO(4, 4)/SO(4) SO(4). In the rest of this 

subsection, a, b label the SO(4) vector indices. 
21 This is not in contradiction with the result of [1] where it is shown that N 1 supersymmetry in 4D does not allow a Riemann-cubed invariant. 

Reduction of (6.46) from 6 to 4 dimensions leads to curvature-cubed terms, composed of Ricci tensor and Ricci scalar but not the Riemann tensor, 

which can be removed by field redefinitions. 
22 The pair of indices (αi) label a symplectic Majorana spinor in 6D, where α = 1, ..4 is chirally projected spinor index, which cannot be raised 

and lowered, and i = 1, 2 labels the doublet of the R-symmetry group Sp(1)R, which can be raised and lowered by the antisymmetric ϵij and ϵij. 

⏐ 

µ 
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α 

3 

a 

a 

= 

µ 

= 
= − = 

C 
2 

α Si K 

□ e e 5 e 

 
Using this form in (2.14) yields the superconformal invariant action, whose bosonic part is thus given by 

IA = 

∫ 

d6x e F . (6.52) 

Next, substituting into this action an expression for F built out of the standard Weyl multiplet, one obtains the invariant 

I 3 = 

∫ 

d6x
√

−g 

(

L1 + 
1 

L2 + susy completion

) 

. (6.53) 

 
The supersymmetric completion of L3 utilized a different primary superfield, B ij = B (ij), of dimension 3, satisfying the 

reality condition (B ij)⋆ 
 

= Baij 

a a 

and the constraint 

∇(i|Bβγ |jk) = 
2 

δ[β ∇(i|
Bγ ]jk) . (6.54) 

α 3 α  δ 

The bosonic components of B ij are 

(B ij, C ijkl, C ij, Cab, E ij, F ) . (6.55) 
a ab a 

Again, a closed super 6-form can be constructed using B ij and takes the form [207] 

J = J0 + ω(S)i ∧ J α + ω(K )a ∧ Ja 

 

 

(6.56) 

where ω(S)i  and ω(K )a are the connection 1-forms associated with special supersymmetry and the special conformal 
symmetry, respectively. The explicit form of the 6-form J0 and 5-forms J α, Ja were given in [207]. The superconformal 

Si  K 

invariant action is given by the spacetime component of the 6-form J , whose bosonic part takes the form 

IB = 

∫ 

d6x
√

−g 

(

F + 4Baij∇bR(V )abij + 
2 

CabijR(V )abij − 16f abCab

) 

, (6.57) 

where in the notation of [208], the bosonic part of f ab is given by 

f b = − 
1 

Rb + 
 1 

δbR 
1  c T − b − 

1 
T − T cdb − 

 1 
δbD . (6.58) 

a 8 a 80 a 
+ 

4 
∇  ca 

8 acd 60 a 

One can then form a composite Bij using standard Weyl multiplet and substitute to the action above resulting in the 

supersymmetric completion of L3, namely 

IC C = 

∫ 

d6x
√

−g 

(

Cabcd(δa□ − 4Ra + 
6 

δaR)Cebcd + susy completion

) 

. (6.59) 

 

If the composite Bij is constructed by using vector multiplet instead, one obtains the supersymmetric completion of F □F 

denoted by IF□F . 

Based on the supersymmetric completion of conformal anomaly preserving (1,0) supersymmetry, it was proposed that 

the conformal anomaly of (2,0) theory denoted by A can be decomposed into a combination of the (1,0) invariants [208] 

1 
A = IC□C + 

2 
IC3 + IF□F , (6.60) 

where F is the field strength of an extra SU(2) gauge vector, and the N  (1, 0) gravitino multiplets have been truncated. It 

should also be interesting to obtain curvature-cubed invariant under local Poincaré supersymmetry. This requires coupling 

the superconformal curvature-cubed invariants with certain compensating matter multiplets and fixing redundant gauge 

symmetries, which has not been worked out so far. 

 

6.8. Killing spinors in N = (1, 0), 6D supergravity with higher derivatives 

 
The Killing spinors in the off-shell (1,0) supergravity were analyzed in [221,222], and on-shell in [223]. Assuming the 

fields respect a U(2)×R2 isometry, the most general ansatz with vanishing auxiliary fields is given by 

ds2 = −a2(r )(dt + ωσ3)2 + a2(r )(dz + A(1))2 + b(r )2dr2 + 
1 

c2(r )(σ 2 + dθ 2 + sin2 θ dφ2) , 
6 1 2 4 3 

B(2) = 2P ω2 + d(r )dt ∧ dz + f1(r )dt ∧ σ3 + f2(r )dz ∧ σ3 ,  A(1) = A0(r )dt + A3(r )σ3 , 

L = L(r ) ,  Vµ = V ′ij = 0 , (6.61) 

where in our notation σ3  dψ  cos θ dφ and dω2  Vol(S3). We have turned off the auxiliary fields since the solutions we 

are interested in have vanishing auxiliary fields. The structure of N  (1, 0) off-shell invariants also allows us to truncate 

the auxiliary fields that appear quadratically in the action. Thus the solution to the off-shell Killing spinor equations is 
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valid beyond the two-derivative supergravity even if the auxiliary fields are set to zero. Supersymmetry of the solution 

requires the undetermined functions in (6.61) to obey certain relations that follow from the Killing spinor equations 

1 1 
0 = (∂  +  ω γ αβ )ϵi +  H γ νρ ϵi , µ 

4  
µαβ 

8  
µνρ 

0 = 
 1  

γ µδij∂ Lϵ − 
  1   

Lδijγ Hµνρ ϵ . (6.62) 

2
√

2 
µ  j 

12
√

2 
µνρ j 

For convenience, we introduce the complex Weyl spinor 

ϵ = ϵ1 + iϵ2 , (6.63) 

and assume the Killing spinor to have the form 

ϵ = Π(r )ϵ0 , (6.64) 

where ϵ0 is the standard Killing spinor on a round 2-sphere embedded in the 6D spinor obeying the projection conditions 

 

γ 012345ϵ0 = −ϵ0 ,  γ 01ϵ0 = −ϵ0 . (6.65) 

Plugging the ansatz for the bosonic fields and Killing spinor into (6.62), the necessary and sufficient conditions for the 
existence of a Killing spinor are given in a set of 9 equations that can be found in [222], where they are fully solved 

provided the following relations are satisfied 

A 
a1 

a2 
= 0 ,  d + a1a2 = 0 ,  c = r + P ,  c = br , 

|d|Lc2 = r 2 ,  f1 = 0 ,  f2 = −dω ,  A3 = A0ω ,  Π(r ) = 
√

a1 . (6.66) 
 

Thus the solution is determined up to three undetermined functions which we choose to be d, ω and A0. Furthermore, 
the equation |d|Lc2 = r 2 indicates that the horizon value of L is determined by the near-horizon behavior of d. 

6.9. Exact solutions of N = (1, 0), 6D higher derivative supergravities 

Next, we consider solutions of an off-shell theory described by the Lagrangian 

L = LME ⏐ 
 1 

+ αL 
 1 

2 + βLGB , (6.67) 

with LRiem2 and LGB from equations (6.16) and (6.20), respectively, and admitting Killing spinors discussed above. The 
field equations coming from LRiem2 are given in [205], and those of LGB in [210]. In summary, we describe the following 
solutions: 

• There exists an AdS3 × S3 solution preserving full supersymmetry, which can be put in the form [205] 

Rµν
ρσ = −2c2δ

ρ 
δσ ,  Rµν

ρσ = −2c2δ
ρ 

δσ ,  L = L0 , 

Hµνρ = 2cϵµνρ,  Hmnr = 2cϵmnr . (6.68) 

This solution is well studied in the two-derivative case and retains the same form when the supersymmetric 
Riemann-squared and Gauss–Bonnet invariants are added. Note that the constants c and L0 are arbitrary. 

Next, we consider the supersymmetric rotating string solution preserving half of supersymmetry. This solution 

possesses a U(2) R2 isometry and is captured by the ansatz (6.61). We saw in the previous section that the solution 
to Killing spinor equations boiled down to three undetermined functions, namely, A0, d and ω. Solving the field 
equations coming from the Lagrangian (6.67) determines these functions. Up to first order in α and β, they are 
given by 

Q1 Q 2r 2 P 2r 2(r 2 − Q1) − 2PQ1r 4 
d = (1 + 

r 2 
)−1 − 

(Q 
1 

r 2)4 
α +  

2(P r 2)2(Q r 2)3  
(β − α) , 

J  JQ 
1 + 

+ 1 + 
(β + α) , 

ω = 
2r 2 

+ 
2r 2 

(
Q + r 2

) 
2 

A 
Q2 −1 PQ2(Q1 + r 2) − 2J 2 

2 

0 = (1 + 
r 2 

) + 
(P + r 2)(Q1 + r 2)2(Q2 + r 2)2 

r (β + α) . (6.69) 

The near horizon geometry of the solution is extremal BTZ S3, in other words, locally AdS3 S3, with full 
supersymmetry. Plugging the above solution back to (6.66), one finds that near the horizon, namely as r   0, 

the value of L is given by 

Q1 + 1 (α + β) 

L → L0 = 2 . (6.70) 

• 

A=0 Riem 
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Non-supersymmetric solutions of the form M1 M2 were studied in [205], with β  0. These solutions either have no 

fluxes turned on, or they have either the 2-form or 3-form fluxes turned on. The split of 6D spacetime is of the form 

4 2, 3 3 or 2 4 in these solutions. Non-supersymmetric dyonic black string solutions with curvature-squared 

corrections originating from K 3 compactification of IIA string theory have also been constructed in [224,225]. These 

solutions possess interesting applications in Weak Gravity Conjecture [8]. For instance, in [226], it was found that 

the leading higher derivative corrections to the rotating dyonic black string entropy at fixed conserved charges can 

be negative, which contradicts the standard expectation. 

Let us next consider a half-BPS solution of the Riemann-squared extension of the U (1)R gauged N (1, 0) 

supergravity, which has the Lagrangian (6.19). The solution has the form Mink4 S2 with a constant dilaton, and a 

nonvanishing 2-form flux as follows [205] 

R = 0,  R 1 =  g L g ,  L = L , 
µν mn 

2 
0 mn 0 

Fmn(W ) = ± 
gL0 

ϵmn,  Fmn(V ) = ∓ 
1 

g 2L0ϵmn . (6.71) 
√

2 2 

The spectrum of perturbations around this vacuum was studied in [227]. 

 

7. D = 5 

 

In this section, we shall review off-shell Poincaré supergravity and its coupling to vector multiplets, the curvature- 

squared invariants, as well as the procedure for going on-shell. We shall also discuss the off-shell Killing spinors and 

exact solutions in the presence of off-shell curvature-squared invariants. A convenient method for constructing these 

invariants in component expressions turns out to be the superconformal tensor calculus. Thus in this section, we will 

mainly focus on results obtained from this approach. Readers interested in superspace expressions of curvature-squared 

invariants are referred to [228–230]. In the case of constructing a Riemann-squared invariant, a convenient trick is to 

dimensionally reduce the Yang–Mills multiplet on a circle from 6D, and then using the analogy between supergravity and 

Yang–Mills [231]. Invariants with higher than four derivatives are discussed in Section 11. 

 

7.1. Superconformal approach 

 

In five dimensions with N 2 supersymmetry, it is possible to realize curvature-squared invariants off-shell. 

Superconformal tensor calculus, which is based on the exceptional superalgebra F 2(4) [232]23 has been one of the main 

techniques for the construction of the five dimensional higher derivative models [22]. It is important to note that on 

dimensional grounds, in five dimensions the curvature-squared terms do not have the right dimension to be scale invariant 

on their own, and therefore their constructions require a compensating scalar field with scaling dimension 1. There exist 

two types of off-shell Weyl multiplets in N = 2, 5D supergravity with the following field contents: 

Standard Weyl Multiplet : {eµ
a , ψ i , Vµ

ij , Tab , χ i , D , bµ} , 

Dilaton Weyl Multiplet : {eµ
a , ψ i , Vµ

ij , Cµ, Bµν , ψ i , σ , bµ} . (7.1) 

Here, eµ
a is the fünfbein, bµ is the gauge field for dilatation, Vµ

ij is the SU (2) R-symmetry gauge field and ψ i is the 

gravitino, which gauges the Q  supersymmetry. These fields are common to both Weyl multiplets. The matter content of 
the standard Weyl multiplet includes a real auxiliary scalar D, an anti-symmetric tensor Tab and a symplectic Majorana 

spinor χ i. For the dilaton Weyl multiplet, the matter content is given by a vector field Cµ, a two-form gauge field Bµν, 

a dilaton field σ and a dilatino field ψ i. While the dilaton Weyl multiplet has a scalar field σ which can be used as a 
compensator, the Standard Weyl multiplet lacks such a field (the conformal weight of D is 2). Thus, the curvature-squared 

models may not need an extra compensating multiplet when the dilaton Weyl multiplet is utilized. However, a vector 

multiplet, which contains a weight-1 scalar field ρ is essential if the Standard Weyl multiplet is used. Finally, as shown 

in [25] that while gauged supergravity models based on the standard Weyl multiplet can be constructed by combining 

certain off-shell models [26], the same procedure cannot be accomplished in the dilaton Weyl basis without extending it 

with an additional matter content given by the linear multiplet 

Linear multiplet: {Lij , Ea , N , ϕi} . (7.2) 

In the rest of this section, we will investigate the five-dimensional N  2 higher derivative invariants separately, 

depending on the choice of the Weyl multiplet. 

 
23 In the notation of [232], Fp (4) is a real form of F (4) with bosonic subalgebra SO(7 − p, p) ⊕ SU (2). 



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1–95 

38 

 

 

µ 

µ ≡ ∇ = 
= := 

j ab ab 

k k  ik  ik l ik j 

c [ ] 

I 

ij 

µ ij µ ij 

3 
√

2 
√

2 
a 

φ
[µψν] ψ[µγ χ ψ[µγ ψν] , T 

µ µ 2 
µ µ 

 

7.2. N = 2, 5D off-shell invariants from the standard Weyl multiplet 

7.2.1. Off-shell (and on-shell) Poincaré supergravity and couplings to vector multiplets 

The off-shell Poincaré multiplet can be constructed by coupling the standard Weyl multiplet to a vector multiplet and 

a linear multiplet, and fixing the redundant gauge symmetry. It has the field content [22,25] displayed in Table 2. 

In the case of two-derivative supergravity, the on-shell multiplet fields are simply (eµ
a, ψ i , Aµ). Note that it is not 

known how to construct a healthy two-derivative supergravity model based on the standard Weyl multiplet in six 
dimensions [18,28]. Thus, the off-shell matter content provided here is not related to the six-dimensional field content 

(6.10). The off-shell multiplet can be coupled to n off-shell vector multiplets, each containing the fields (Aµ, λi, ρ, Y ij). 

Defining (ρI , AI , λIi, Y I ) where I = 0, 1, . . . , n with ‘‘0’’ representing the fields {ρ0 ≡ ρ, A0 ≡ Aµ , λ0i ≡ λi , Y 0 ≡ Yij} 
coming from the off-shell Poincaré multiplet, the bosonic part of the off-shell gauged Poincaré supergravity coupled to n 

vector multiplets is given by [26] 

e−1L0 S = 
1 

(C + 3)R + 
1 

(104C − 8)T 2 + 4(C − 1)D − N 2 − E Eµ + V ′ijV 
′µ 

, 
8 3 µ µ  ij 

− 
√

2V Eµ + 
3 

C 3 
ρI F J F µν K +  C ρI ∂ ρJ ∂µρK 

µ 
4 

I  J  ij K 

IJK µν 2 
IJK 

I  J K  µν 

µ 

1 µνρσ λ I  J K 

− 3CIJK ρ Yij Y − 12CIJK ρ ρ Fµν T + 
8 

ϵ CIJK AµFνρ Fσ λ 
3 I ij µ I I 

− √
2 

gI Yij δ − 3gI E Aµ − 3gI ρ N , (7.3) 

where I  0, 1, . . . , n and T 2 TabT ab. The constant coefficient CIJK is symmetric in I, J , K and determines the coupling of 

n vector multiplets, C  CIJK ρI ρJ ρK , Eµ is a constrained vector  µEµ  0, N is an auxiliary scalar and V ′ij is the traceless 

part of the SU (2) R-symmetry gauge field Vµ
ij. Note that the SU (2) R-symmetry is broken to U (1) due to the gauge fixing 

from superconformal to super-Poincaré, and it is gauged by Vµ defined by 

V ij = V ′ij + 
1 

δijV , with V ′ijδij = 0 . (7.4) 

The supersymmetry transformation rules of the fermionic fields are given by 

δψ i = (∂ 1 ab 
+  ω γ )ϵi − V ijϵ + iγ · T γ ϵi − iγ ηi , 

µ µ 
4  

µ ab µ j µ µ 

δχ i = 
1 

ϵiD − 
 1 

γ · Rij(V )ϵ + 
1 

iγ a b D/ T ϵi − 
1 

iγ aDbT ϵi 
4 64 8 8 

δλiI = − 
1 

γ · F I ϵi − 
1 

iD/ρ I  ϵi + ρI γ · T ϵi − Y ijI ϵj + ρI ηi , (7.5) 

4 2 

where the parameter ηi is defined in terms of the Q -supersymmetry parameter ϵi as 

η = 
1 (

γ · T ϵ − 
 1  

N δ ϵi + 
 1  

iE/δ ϵi + iγ aV ′(i δj)lδ ϵ 
) 

. (7.6) 

The supercovariant curvatures and composite fields are defined as 

Rµν 
ij(V ) = 2∂[µVν]

ij − 2V[µ
k(iVν] k

j) − 3i ̄  (i  j) 
− 8 ¯ 

(i  
ν]  

j) − i ¯ 
(i  

· 
j) 

D T = ∂ T − 2ω T 1 − iψ¯ γ  3 χ + iψ  ̄ R (Q ) , 
µ ab µ ab µ  a b c 2 

µ ab
 32 

µ ab 

1 
F I = 2∂[ A − ψ¯ 

[ γ ]λI +  iρI ψ¯ 
[ ψ ] , 

µν µ ν] µ ν 2 
µ  ν

 
D ρI = ∂ ρI − 

1 
iψ¯ λI . 

µ µ 
2 

µ 

R  i(Q ) = 2∂ i 1 
ψ  +  ω abγ ψ i − 2V ψ − 2iγ φi + 2iγ · T γ ψ i , 

µν [µ  ν] 2 
[µ

 ab  ν] [µ  ν]j [µ  ν] [µ  ν] 

φ  = 
1 

iγ aR′  i(Q ) − 
 1 

iγ γ abR′ i(Q ) , (7.7) 
µ 

3 µa 24  
µ ab 

where we used the notation R′ (Q ) to indicate that the expression is obtained from Rab(Q ) by omitting the φi term. 
ab µ 

The supersymmetry transformation rules for the bosonic fields can be found by imposing a gauge fixing condition in 

superconformal transformation rules [26, Eqs. (2.1), (2.11) and (2.14)]. See also in [26, Eqs. (6.2) - (6.4) ] for the gauge 

fixing condition and the decomposition of the superconformal transformation parameters. 

This construction of Poincaré supergravity utilizes the vector and the linear multiplets. Alternatively, one may replace 

the linear multiplet with a hypermultiplet, which gives rise to an off-shell supergravity with a different field content [24]. 
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 3  
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8 3 9 3 

 
Table 2 

The field content of N 2, 5D off-shell Poincaré supergravity multiplet based on the standard Weyl multiplet. The degree of freedom count is 

off-shell. 
 

µ µ µ 

 
 
 
 
However, there is no known off-shell higher curvature model with a hypermultiplet compensator, therefore, this option 

will not be discussed here. We refer to [23,233,234] for the technical details of the construction of five-dimensional N  2 

off-shell supergravity with vector and hypermultiplets. If we consider the Lagrangian L0,S by itself, going on-shell amounts 

to eliminating the auxiliary fields by means of their algebraic equations of motion. These are given by (see [20] for a 

review). 

0 = V ′ij 

0 = V  3  +  g A 
µ √

2 
I  µ 

0 = C − 1, 
0 = 

2 
(104C − 8)Tab − 4cI F I , 

3 ab 
0 = 2N + 3gI ρI , 

 

 

where 

ij √
2 

C = CIJK ρ
I ρJ ρK ,  CIJ = 6CIJK ρ

K . (7.9) 

The equation C  CIJK ρI ρJ ρK  1 defines the so-called Very Special Real manifold; for a textbook exposition, see [20]. 

Substituting the results above into L0,S gives the following result, which agrees with that obtained long ago by the Noether 
procedure [235,236], and reads 

Lon−shell = 
1 

R + 
1 

(CIJ − CI CJ )F I F µν J + 
1 

CIJ ∂
µρI ∂µρJ 

0,S 2 8 1 µνρσ λ 

µν 4 
I  J K 

where 

+ 
8 

ϵ CIJK AµFνρ Fσ λ − V , (7.10) 

V = − 
9 

(gI ρI )2 − 
9 

CIJ gI gJ , CI = 3CIJK ρJ ρK , (7.11) 

4 2 

and CIJ is the inverse of CIJ . Note that ρI s are no longer independent fields due to the constraint C = 1. In summary, this 

Lagrangian describes on-shell N = 2, 5D supergravity coupled to n vector multiplets. 
I I 1 J 

The on-shell model can be truncated to a minimal model by setting ρI = ρ¯ I =const, Aµ = ρ¯ Aµ and gI = 
6 
g CIJ ρ¯ with 

CIJK ρ¯ I ρ¯ J ρ¯ K = 1. In this case, we obtain the standard minimal on-shell supergravity in five dimensions 

e−1Lmin = 
1 

R − 
3 

F  F µν + 
1 

ϵµνρσ λA F  F + 3g  . (7.12) 

2 8 
µν 

8 µ νρ σ λ 

7.2.2. Off-shell curvature-squared invariants and going on-shell 

When the standard Weyl multiplet is utilized, the off-shell models that have been constructed so far are the 

Weyl-squared [237] and the Ricci scalar-squared [26] invariants. The bosonic part of the Weyl-squared action is given 

by [237] 

e−1L 2 = c2I 

[ 1 
ρI C µνρσ C 

64 1024 32 
+ ρ D + ρ T D − D T F µν I 

16  I µν  ρσ µν  ρσ I 
1  µνρσ λ I τδ 

− 
3 

ρ Cµνρσ T T + 2Cµνρσ T  F + 
16 

ϵ AµCνρτδ  Cσ λ 

1  µνρσ λ I ij 16  I ij µν 1 I ij  µν 

− 
12 

ϵ AµVνρ Vσ λ ij + 
3 

Yij Vµν T − 
3 

ρ Vµν V  ij 

64  I µ  νρ 128  I ν µρ 256 I νρ µ 

+ 
3 

ρ ∇ν Tµρ∇ T −  
3 

ρ Tµν∇ ∇ρ T −  
9 

ρ R  Tµν T ρ 

32  I 2 64 I µ  νρ I  4 2816  I  2 2 

+ 
9 

ρ RT − 
3 

ρ ∇µTνρ ∇ T + 1024ρ T − 
27 

ρ (T ) 

W µνρσ µν 

Field ea V 
′ ij Vµ Tab Eµ D N Aµ Yij ρ ψ i χi λi 

D.o.fs 10 10 4 10 4 1 1 4 3 1 32 8 8 
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T  F ρ ϵ 

Y = 
 1  

δ 
(
− 

3 
R − N − E E + 

8 
T + 4D − V  V 

) 

(  ) 

6 

4π 

[  ] = 

√
2 8 3 a kl 

− T  F 

µν 
8 

µνρσ λ 

64 
 

 

9  
µν 

 

µν I T 2 − 
256 

T  T 
3 

µρ 

 
ρλTνλF 

 
µν I 

32 ρτ 

3 
ϵµνρσ λT 

 

∇τ T 

 
σ λF 

 
µν I 

− 16ϵ µνρσ λT ρ 
τ 

σ  λτ  µν I 128  I 

∇ −  
3 

 
µνρσ λ T µν T ρσ ∇τ T λτ 

] 
, (7.13) 

where c2I are arbitrary constants and the five-dimensional Weyl tensor reads 

 

Cµνρσ = R 
 
µνρσ 

1 

1 
− 

3 
(gµρ Rνσ 

 

− gνρ Rµσ 

 

− gµσ Rνρ 

 

+ gνσ Rµρ) 

+ 
12 

(gµρ gνσ − gµσ gνρ )R . (7.14) 

We have also introduced the following notations, 

T 4 ≡ TabT bc TcdT da, (T 2)2 ≡ (TabT ab)2. (7.15) 

The bosonic part of the off-shell Ricci-scalar squared action is given by [26] 

e−1L 2 = cI 

(
ρI YijY ij + 2ρY ijY I − 

1 
ρI ρ2R − 

1 
ρI F  F µν − 

1 
ρ F µν F I 

R 

1  I µ 

ij 8 
I 

4 
µν 

I  2 26 2 
2 µν 

2 I µν 

+ 
2 

ρ ∂µρ∂ ρ + ρ ρ□ρ − 4ρ ρ (D + 
3 

T ) + 4ρ Fµν T 

+8ρ ρ F  T µν −  ϵ AµI F νρ F σ λ
) 

, (7.16) 
1 

where (ρ, Y ij, Fµν) represent the following composite expressions 

ρ = 2N , 

ij ij 2 a  2 ′kl ′a 
a 

+ 2EaVa
′ ij − 

√
2∇aVa

′ m(iδj)
m, 

Fµν = 2
√

2∂[µ Vν] + 
√

2Eν]  . (7.17) 

For the time being, an off-shell Gauss–Bonnet invariant coupled to n vector multiplets in the standard Weyl basis has not 

been constructed. 

It is worthwhile to note that the model 
 

L
SG+ 1 W 2 = 

1 
 

 

16π G5 

 

LSG |g =0 + 
1 

96π 2 
LW 2 (7.18) 

is expected to arise from M-theory compactified on Calabi–Yau threefold where CIJK denotes the triple intersection number 

of 4-cycles and c2I s are the second Chern class numbers of the Calabi–Yau threefold. 

The Weyl-squared action (7.13) has been utilized in AdS/CFT correspondence and black hole physics. In particular, 

it was found that [238] the four-derivative interactions modify the value of η/s, namely the ratio of shear viscosity to 

entropy density, such that the classical bound η/s ≥ 1  is violated. Applications of the Weyl-squared action (7.13) in 

black hole physics will be discussed in Section 7.5. 

We conclude this subsection with remarks on how to obtain the on-shell versions of the higher derivative invariants 

added to L0,S . Schematically, the off-shell action takes the form 

Soff-shell[φ] = S0[φ] + αS1[φ] . (7.19) 

where S0 and S1 denote the two- and four-derivative actions, respectively, and α is a constant with mass dimension -2. It 

follows that the auxiliary field equations must receive corrections proportional to α. The solution to those equations can 

be expressed in terms of a series expansion in α 

φ = φ0 + αφ1 + α2φ2 + · · · , (7.20) 

where φ0 is the solution to the zeroth order equation given in the previous section. As a consequence, the on-shell action 

has the form 

Son-shell[φ] = S0[φ0] + α
(
S1[φ0] + φ1S0

′ [φ0]
) 

+ · · · . (7.21) 

In the above equation, S0
′ φ0 0 when φ0 is an auxiliary field or a Lagrangian multiplier. Thus, we eliminate the auxiliary 

fields by plugging their zeroth order solutions into the action. For the Lagrangian L0,S , these equations are listed in (7.8). 

I 

− 
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 1  

i∂/Lδijϵ − 
 1  

iV ′ (i δj)kLϵ − 
1 

iE/ϵi + 
1 

N ϵi + 
 1  

Lγ · Gδijϵ 

δλiI = − 
1 

γ · F I ϵi − 
1 

iD/ρ I  ϵi + ρI γ · T ϵi − Y ijI ϵj + ρI 

(

−γ · T + 
1 

γ · G

) 

ϵi 

8 48 

µν 

 
Table 3 

The field content of N 2, 5D off-shell Poincaré supergravity multiplet obtained from the dilaton Weyl multiplet. The degree of freedom count is 

off-shell. 
 

µ µ µ 

 
 

 

7.3. N = 2, 5D off-shell invariants from the dilaton Weyl multiplet 

 

7.3.1. Off-shell gauged Poincaré supergravity coupled to vector multiplets and going on-shell 

The off-shell Poincaré multiplet based on the dilaton Weyl multiplet has the field content [22] displayed in Table 3. 

As we shall see below, on-shell this multiplet is reducible, consisting of the supergravity multiplet (eµ
a, ψ i , Cµ), and a 

vector multiplet (C˜µ, ϕi, L) where dC˜ is dual to dB. Unlike the standard Weyl multiplet, the Poincaré supergravity multiplet 

obtained from the dilaton Weyl multiplet originates from its six-dimensional counterpart. The bosonic part of the off-shell, 

gauged Poincaré supergravity coupled to n off-shell vector multiplets, (AI , ρI , λiI , Y Iij ), where I = 1, . . . , n (unlike the 

index I used in the previous subsection), is given by [26]24 

e−1L0 DW = L 

(

R − 
1 

GabG
ab − 

1 
Habc H

abc + 2V 
′ijV 

′a

) 

+ L−1∂aL∂aL − 2L−1EaE
a 

− 2
√

2EaV a − 2N 2L−1 − 4 gCaEa − 2gNL − 4gN − 
1 

g 2L3 + 2g 2L2 

+ aIJ 

[

Y I Y Jij − 
1 

D ρI DµρJ − 
1 

(F I − ρ Gab)(F − ρ G ) 
ij 2 

µ 
4  ab 

1 abcde  I I J J 1 abcde  I I J 

− 
8 

ϵ (Fab − ρ Gab)(Fcd − ρ Gcd)Ce − 
2 

ϵ (Fab − ρ Gab)Bcd∇eρ 

− 
 1  

g ρI Y J δij − g ρI ρJ N − 
1 

g 2ρI ρJ L2

] 

, (7.22) 

 

where the bosonic part of supercovariant curvatures are defined as 

F I  = 2∂[ A  , G = 2∂[ C ], H = 3∂[ B 3 
] +  C[ G 

1 
] + gE . (7.23) 

µν µ ν] µν µ ν µνρ µ νρ 2  
µ νρ 

2 
µνρ 

The constrained vector Ea and the three-form gauge field Eabc are related to each other via Ea = −  1 ϵabcde∇bEcde. The 

supersymmetry transformation rules for the fermionic fields, up to cubic fermions, are given by 

δψ i = 

(

∂ + 
1 

ω abγ 

) 

ϵi − V ijϵ − 
1 

iG  γ ν ϵi + 
 1  

gLγ δijϵ , 

 

2
√

2 
√

2  
µ 

1 ij 3 2 i 

2 2 4
√

2 

− 
6

√
2 

iLγ · Hδ ϵj + 
4 

gL ϵ , 

 

4 2 4 
1 I ij 

− 
2

√
2 

gLρ δ ϵj , (7.24) 

where Tab = 1 Gab +  1 εabcdeHcde and ω±µab = ωµab ± Hµab. The off-shell supersymmetry transformation rules for the 

bosonic fields can be found in [26, Eq.(2.44)]. The transformation rules for the vector multiplet can be found by imposing 

the gauge fixing condition [26, Eq.(4.3)] in the transformation rules given in [26, Eq.(4.11)]. 

To go on-shell, we eliminate the auxiliary fields by using their equations of motion given by 

N = − 
1 

gL(2 + L) − 
1 

gLaIJ ρI ρJ , Ea = 0, V ′ij = 0 , 

2 4  √ 
Y Iij = 

 1  
g ρI δij , V = −  2gGµν − 

  2 
g ϵ Hρσ λ , (7.25) 

6 
µνρσ λ 

 
24 Generalization to Yang–Mills couplings has been obtained [231] in the absence of U (1)R gauging, i.e. for g = 0. 

µ 

Field ea V 
′ ij Vµ L Cµ Bµν Eµ N ψ i ϕi 

D.o.fs 10 10 4 1 4 6 4 1 32 8 
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+ ρ V V 

0,DW 2 3 

2 
µ 

4 ab 

Riem 4 
µν + µν + 

where Vµν = 2∂[µVν]. Substituting (7.25) back into the Lagrangian L0,DW we obtain 

e−1Lon−shell = L 

(

R − 
1 

GabG
ab − 

1 
Habc H

abc 

) 

+ L−1∂aL∂aL 

+ aIJ 

[

− 
1 

D ρI DµρJ − 
1 

(F I − ρ Gab)(F − ρ G ) 

 
1 abcde  I − 

 
− ρ Gab)(F − ρJ Gcd)Ceρ

J 

] 

8 ab cd 

1 abcde  I I J 

 

where 

− 
2 

aIJ ϵ (Fab − ρ Gab)Bcd∇eρ − V , (7.26) 

V = 2g 2L(1 + 2L) − 
1 

g 2(1 − 4L − L2)aIJ ρI ρJ . (7.27) 

In summary, this Lagrangian describes N 2, 5D supergravity coupled to a single tensor multiplet and n abelian vector 

multiplets. Note that the scalars ρI are not constrained, unlike the vector scalars described in the previous subsection. 

Presumably, there is an underlying n 2 dimensional very special real geometry in which the (L, ρI ) are the intrinsic 
coordinates. 

Truncating the n vector multiplets, and dualizing Bµν to Cµ with field strength G dC , one obtains the on-shell 
Einstein–Maxwell theory 

−1 −1 µ 1 µν 1 −1 µν 

e  L = LR + L  ∂µL∂ L − 
2 

LGµν G − 
4 

L  G̃ µ ν G̃  

1 
+ 

4 
ϵ 

µνρσ λ CµGν ρ G̃σ λ + 2g L(1 + 2L) , (7.28) 

where, as mentioned earlier, (eµ
a, ψ i , Cµ) are the fields of the supergravity multiplet while (C˜µ, ϕi, L) comprises the 

Maxwell multiplet. To compare with (7.16), one first passes to the Einstein frame and then makes the identification 
1 (1) − 

1 
(2) 

2 
1 2 

C112 = C121 = C211 = 
3 

,  ρ = L 3 ,  ρ = L 3 ,  Aµ = Cµ,  Aµ = ̃ C µ  . (7.29) 

The model can be further truncated to the minimal theory by setting L = 1, C˜µ = Cµ which is identical to (7.12) with 

Aµ and Fµν now replaced by√Cµ and Gµν. To recover the standard convention of minimal supergravity, we need to rescale 

the graviphoton Cµ → Cµ/  3. 

 

7.3.2. Off-shell Riemann-squared, Ricci-squared, and Ricci Scalar-squared invariants and going on-shell 

When the dilaton Weyl multiplet is utilized, all off-shell curvature squared invariants are known in the literature. In 

fact, these invariants exist in two forms: the minimal actions with no external matter couplings and the models that 

are coupled to n-vector multiplets. Here, we provide the n-vector multiplet coupled models. The off-shell Weyl-squared 

action coupled to n-vector multiplets was constructed in [26], and it has the same form as (7.13) but with the following 

definitions for Tab and D [25] 

D = − 
 1 

R − 
 1 

GabG  − 
26 

T abT  + 2TabG  + 
1 

gN + 
 1 

g 2L2 + f.t. , 
32 16 3 4 16 

T  = 
1 

G  + 
 1 

ϵ Hcde + f.t. . (7.30) 

8 48 

Note that as D contains the Ricci scalar, the Weyl-squared invariant in dilaton Weyl multiplet is modified by an R2 

contribution, and the leading curvature-squared term is given by Cµνρσ C µνρσ  1/6R2. Similarly, the Ricci-scalar squared 
action constructed in [26] has the same form as (7.16) where the composite fields are as defined in (7.30). 

While the Weyl-squared and the Ricci scalar-squared action can be combined with (7.22), the third invariant, namely 

the Riemann-squared action, requires that we set g  0. The construction of this invariant is based on a map between 

the Yang–Mills multiplet and the off-shell, ungauged Poincaré multiplet [231]. When coupled to n-vector multiplets, the 

bosonic sector of the Riemann-squared action is given by [26] 

e−1L 2 = αI 
[
− 

1 
ρI (R  ab(ω ) − G  Gab)(Rµνab(ω ) − 3Gµν Gab) 

− 
1 (

Rµνab(ω  ) − Gµν Gab
)
FI  G I  µν  ij − 2G  V µν Y ij I 

2 
+ 

I µ ab 

µν ab 

1 I 

ij µν 

 ab  µ 

µν ij 

+ρ Gab∇µ(ω+)∇ (ω+)G + 
2 

ρ ∇µ(ω+)G ∇ (ω+)Gab 
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abcd ab 2 abcde fg 

12 

ab 

c 2 c 4 2ab 2 

4 
2 L RL H L 

2 2 2 a 
a 

1 

= 

6 

4 

( ) 

( ) 

( ) 

12 µν µν ρσ λ ab 
6 

µνab + 

1 1 8 1 4 1 

ab 

3 3 

ab  cd 

+ 
 1 

ϵµνρσ λ
(
FI  − 2ρ G  

)
H G Gab + 

1 
ρI ϵµνρσ λR (ω )GabH 

1 µνρσ λ 

− 
8 

ϵ R 

 

 

µνab 

 

(ω+ 
 

)Rρσ 

 

ab(ω+ )A
I 

]
. (7.31) 

The Riemann-squared invariant can be combined with the two-derivative action (7.22) and the other curvature-squared 

models as long as g  0. 

The minimal Weyl-squared and the Ricci scalar-squared models for the gauged dilaton Weyl multiplet are obtained by 

considering a single vector multiplet, (Aµ, ρ, λ, Yij), and mapping these fields to the fields of the dilaton Weyl multiplet 

according to [239], 

ρ → σ ,  A 1 g → C ,  λ → ψ ,  Y →  iσ −1ψ¯ ψ −  σ −1Lij . (7.32) 
µ µ ij 

4 
i  j 

2 

Upon fixing the redundant superconformal symmetries by choosing σ = 1 and ψ i = 0, the bosonic sector of the 

Weyl2 + 1/6R2 invariant is given by [240] 

e−1L  2 

1 1  1 1 
1 2 = −  RabcdR +  RabR  − R −  ϵ CaRbcfg Rde (7.33) 

W + 6 R 

1 
+ 

6 
ϵ 

4 

abcdeCaVbc 
ij 

3 

Vdeij + 
2 

V abij 

12 8 

Vabij + 
1 

Rabcd(G
abGcd 

 

− 2H  H 

ab  cd 
4 

ac  b 
16 ab  2 

1 ab 4 2 2 2 

−3H G ) − 
3 

RabH G c + 
3 

R Hab + 
3 

RHabG  − 
3 

RH − 4(H ) 

4 16  2 cd 40  2  a  cd 8  2 2 2 ab  cd 

−8H − 
3 

H HcdG  − 
3 

HadH c G  + 
3 

H G + 
3 

HabHcdG G 
1 2 2 16  2 2ab 

4 ac  bd 
1 

ab 2 2ab  c 

+ 
12 

(G ) − 
3 

HabG − 
3 

HabHcdG G  − 
3 

HabG G + 2G G bHca 
1 a bc 8 a bc 1 4 4 abcde f 

− 
3 

(∇ Gbc )∇aG  + 
3 

(∇ Hbc )∇aH  − 
2 

G + 
3 

ϵ HabHcd∇ Gef 

abcde f 2 abcde f 1  abcde f 

−2ϵ Hbf (∇aHc )Gde − 
3 

ϵ Hab(∇ Gcf )Gde − 
24 

ϵ (∇ Gaf )Gbc Gde 
4 4 4 2 2 

−g 
(
− 

3 
NHabG

ab + 
3 

NG2 − 8NH2 + 
3

Vab
ijLijH

ab − 
3 

Vab
ijLijG

ab − 
3 

RN 
) 

+g 2
( 

3 
L2HabGab − 

3 
L2G2 + 2L2H2 − 

3 
N 2 + 

6 
RL2

) 
− 

3 
g 3NL2 − 

6 
g 4L4, 

where Vab
ij = 2∂[aVb]

ij − 2V[a
k(iVb]k

j) and Hab is defined as Hab = −  1 ϵabcdeHcde, and we have used the notations, 

H2 = HabHab , G2 = GabGab , H4 = H2abH2 

2 = Ha Hbc , Gab = Ga Gbc , G = G Gab . (7.34) 

Similarly, the bosonic part of the Ricci scalar-squared action is given by [239] 

e−1L 2 = YijYij − 2∇a(NL−1)∇a(NL−1) − 
1 

ϵabcdeC
aGbc Gde 

R 8 

+ 
1 

Gab

(
Gab − 4ϵabcdeBde∂c (NL−1)

) 
+ 

1 
g ( 

4 
L 

ij  a 1  2 2 2 

∇ ∇a ij − 
4 

− 

1 5 1 +  G L −  N −  E Ea 
1  aL∇ L) − 4 gN 3L−2 + 

 1 
g 4L4 , (7.35) 

where 

8 2 2 
− 

2 
∇ 

16 

Gab = 4∇[a(L
−1Eb]) + 8L−1Lij(Vabij) − 2L−3Lij ∇[aL

ik ∇b]Lkj − 2NL−1Gab , 

Yij = L−1 4∇a∇aL
ij − 2RLij − 8H2Lij + G2Lij 

+ L−3  −N 2Lij − EaEaL
ij − 2EaLk(i∇aLk

j) − Lkl∇
aLk(i∇aL

j)l . (7.36) 
 

The minimal, ungauged Riemann-squared action can be obtained by using the map (7.32) with g  0 in (7.31) with just 

one vector multiplet and fixing the redundant superconformal symmetries. For the gauged model, the Riemann-squared 

action can be obtained as 

LRiem2 = LW 2+ 1 R2 + 2LRic2 , (7.37) 

H 

ρσ λ 
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+ R  = R R − 4R  R + R 
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− 
24 

2RL − L (G − 4G Hab − 24H ) + 4N + 6∇ L ∇aLij 

kinetic term for Cµ one also rescales Cµ → Cµ/ 

Ric2 

6 2 
a bc de 

6 
− − 

2 
ϵ a bc de 

3 ) 

where the Ric2 invariant is only obtained recently and takes the form [239]25 

e−1L  2 = − 
1 

ab 
ab + 

 1  
2 + 

1 
ab 2 + 

1 
RHabG  − 

4 
RabH  G c − 

1 
RH 

Ric 6 24 1  abcde ij 
6 ab 3 1  abij 

3 
2 2 16  2 

3 
ac  b 4  2 ab 

− 
12 

ϵ 
2 

CaVbc Vdeij + 
6 

V Vabij − 2(H ) + 
2 4 3 

HabH G c − 
3 

H HabG , 
1 

+ 
3 

HabHcd

(
GabGcd − 2Gac Gbd

) 
+ 

3 
H2G2 − 

3 
H2abG2 − 

3 
HabG G 

2  ac  b 1 2 2 1  4 1 ac b [a  bc] 

+ GabH G c − 
48 

(G ) − 
24 

G − 
6 

∇cG ∇ Gab + 2∇aHbc ∇ H 
1  abcde  f 2 2 3 5  4 4 

+ 
48 

ϵ ∇ Gef (4Hab − Gab)(4Hcd − Gcd) + 
3 

NL g  + 
24 

L g 

+ 
g (

RN − 4NHabGab − 2NG2 + Vab ijLij(Gab + 4Hab) + 12NH2 − 6∇a∇aN 

) 

g 2 ( 
2 2  2 ab 2 2 a ij 

) 
 

In Summary, for the ungauged theories, there are three independent higher derivatives invariant actions described above, 

which can be chosen from the set including LRiem2 , LW 2+ 1 R2 , LRic2 and LR2 . In the case of U (1)R gauged theory, the 

invariants given above are the last three in this list. 
6 

We conclude this subsection by describing the procedure for going on-shell in the presence of the higher derivative 

invariants. As explained at the end of Section 7.2.2, we need to apply the auxiliary field equations of motion (7.25) in 

the four-derivative part of the total action. In what follows, we shall give the on-shell result for the higher derivative 

extension of U (1)R gauged minimal N = 2, 5D supergravity. To this end, one dualizes the two-form Bµν to a vector field 

C̃ µ .  Next, one truncates the extra vector multipl√et  by setting L = 1 and C˜µ = Cµ. As explained before, to get the canonical 

When higher-derivative terms are considered, using (7.33), and after some field redefinitions applied to the metric and 

Cµ, the on-shell Weyl-squared action can be recast into the following form [239] 

e−1L
W 2 

µνρσ µν 2 
1 2 µνρσ µν 
6 1 ab  cd 1 4 1 abcde fh 

− 
2 

WabcdG  G  + 
8 

G + 
2

√
3 

ϵ CaRbc Rdefh 

8g 2G2 14g 2R 50g 4 g 2 
abcde 

− 
9 

+ 
3 

+ 
3 

− 
2

√
3 

ϵ CaGbc Gde . (7.39) 

The on-shell Weyl-squared action (7.39) is identical for both the standard and the dilaton Weyl multiplets when the vector 

multiplet couplings are truncated. 

In the ungauged case, i.e. g  0, the on-shell Riemann-squared action based on the dilaton Weyl multiplet is equivalent 

to the on-shell Weyl-squared action [241]. For the gauged supergravity, the difference between these two actions is 

proportional to the on-shell Ricci-squared action of the form 

e−1L = g 2
( 23 

G2 − 10R − 28g 2 − 

√
3 

ϵabcdeC G G 

) 
. (7.40) 

The Ricci-scalar squared actions based on different Weyl multiplets are also equivalent on-shell and they can be eliminated 

by using the lowest-order field equations in the ungauged case when the vector multiplets are truncated. If gauged 

supergravity is considered, the on-shell Ricci-scalar squared action is given by 

e−1 g 2
(
52g 2 

19G2 

 
 

√  

2R abcdeC G  G 

 

(7.41) 

which shifts the coefficients of various terms in the two-derivative action. While the on-shell results are compatible with 

those of [242], they do not match with the results presented in [241] for g  0. This is due to the fact that [241] neglected 

the g -dependent parts in the map between the standard and the dilaton Weyl multiplets (7.30), leading to missing terms 

and erroneous coefficients. 

7.4. Off-shell Killing spinors in N = 2, 5D supergravity in standard Weyl formulation 

The off-shell Killing spinors in N 2, 5D supergravity were classified by [11,243] where the multiplets involved are the 

standard Weyl multiplet (ea , V AB , bµ, Tab, D, ψ A, χ A), and abelian vector multiplets (ρI , AI , Y I , ΩI ). For the purpose of 
µ µ µ µ AB A 

 
 

25 This is also referred to as the Log invariant in the literature for reasons explained in detail in [239]. 

. (7.38) 

3. 

LR2 = + , 
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ij 

I 

= 

this section, to avoid confusion with the index notation that will be used below, we have denote the R symmetry doublet 

index by A   1, 2. We also use the conventions of [11,243] for convenience. The full map between the conventions 

of [11,26,243] can be found in the Appendix B of [26]. In the ungauged case, the structure of all known curvature- 
squared invariants allows one to set SU(2)-triplet fields V AB and Y I  equal to zero. Once this is done, the supersymmetry 

µ AB 

transformations agree with those in the on-shell theory [244]. On the other hand, in the gauged case, not all the auxiliary 

fields can be consistently set to zero. We will thus separate these cases. 

In the ungauged case, one can again separate the discussions into two cases based on the property of the Killing vector 

built from Killing spinor bilinear. 

• When the Killing vector is time-like, the metric can be parametrized as 

ds2 = e4U (dt + ω)2 − e−2U g˜mndxmdxn , (7.42) 

where U is a time-independent function. Accordingly, one can introduce the fünfbeins 

e0 = e2U (dt + ω),  ei = e−U e˜i ,  i = 1, . . . , 4 , (7.43) 

where e˜i is the vierbein of g˜mn. For timelike Killing vectors, it was shown in [243] that the Killing spinor equations 
provide a solution for Tab, D, V AB and the self-dual field strength F I in terms of U and the scalars ρI , and that all 

µ µν+ 

equations of motion follow from the integrability of the Killing spinor equation except the following ones: 

ED = 0,  EV−AB = 0,  EMI = 0 , (7.44) 

where the field equation of VµAB is projected to the lightcone direction. 

• When the Killing vector is null, the metric can be parametrized as 

ds2 = e2U (F(dy−)2 + 2dy+dy−) − e−4U δij(dxi + aidy−)(dxj + ajdy−) , (7.45) 

where all the functions are independent of y+. Choosing the fünfbeins 

e+ = eU (dy+ + 
1 

Fdy−),  ei = e−2U (dxi + aidy−) ,  i = 1, 2, 3 , (7.46) 

the Killing spinor is of the form 

γ+ϵ = 0,  ϵ = eU/2ϵ0 . (7.47) 

In this case, the Killing spinor equations determine T+i, T+−, Tij, F I , D in terms of U and the scalars ρI , and the only 

equations of motion which need to be solved are 

ED = 0,  E−I = 0,  E−i = 0,  E++ = 0 , (7.48) 

which are the equations of motion for D, A−I , T −i and g ++, respectively. In the ungauged case, it is shown by [243] that 

the Ricci scalar-squared invariant does not modify supersymmetric solutions. 

In the gauged case, Killing spinor equations together with the integrability condition coming from the vanishing 

gravitino supertransformation turn out to imply that 

NTab = 0 . (7.49) 

Taking into account all Killing spinor equations and their integrability conditions, one finds that it suffices to solve the 

following field equations, 

E (D) = 0,  E (Pa) = 0,  E (Y )AB = 0 . (7.50) 

In the case Tab = 0, from the same integrability condition it also follows that [243] 

N 2 

Rabcd = − 
9 

(ga[cgd]b) . (7.51) 

On the other hand, when Tab is non-zero, N must be zero and the integrability condition of the Killing spinor equation 

coming from the gravitino supertransformation reduces to that of the ungauged minimal supergravity [244] with Vµ 0. 

In the gauged theory, unlike the ungauged case, the Ricci scalar-squared invariant does not vanish on the supersym- 

metric configurations, modifying both the very special geometry satisfied by the real scalars from the vector multiplets 

and the AdS5 radius [26]. Consequently, 5D Ricci scalar-squared invariant plays a role in black hole physics and AdS5 

holography [13,241,242,245]. 

7.5. Exact solutions of N = 2, 5D higher derivative supergravities 

For the ungauged model described by supergravity plus a Weyl-squared invariant in the standard Weyl formulation, 

solutions preserving maximal supersymmetry are as follows: 
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µν 

= ∧ 

× 

6 

2 2 

A 

IJK 2I 

× 

4 

6 6 

 
Five-dimensional Minkowski space. All the gauge fields and auxiliary fields vanish. The very special real (VSR) 

geometry condition remains to be26 

1 
CIJK MI MJ MK = 1 . (7.52) 

• The Gödel-type solution [244]. All the auxiliary fields vanish, and the metric is of the form 

 
ds2 −2 kr2  (i) 

 (i) 2  2 2 2 

= k  (dt + 
4 

c σL ) − k(dr + r dΩ3 ) , (7.53) 

where k and c(i), i = 1, 2, 3 are constants and σ (i) are the left invariant one-forms on S3. The scalar fields MI = const, 

the U(1) field strength F I and v 
L 

µν are anti-self dual and proportional to a linear combination of the hyper-complex 

structure of the base manifold R4. The VSR condition is modified to be [243] 
1 

C  MI MJ MK 
I c

(i)c(i) 

6 
IJK = 1 − c2I M 

12k2 
, (7.54) 

where c2I is the coefficient in front of the Weyl-squared invariant. 

• AdS2×S3, in which the metric and electric fluxes are 

ds2 r 4 
2 2k 2 2 2 

= 
4k2 

dt − 
r 2 

[dr + r dΩ3 ] , 

F I 
 1 

MI dt dr , (7.55) 
2k 

where scalar field MI is constant and all the other fields vanish. The VSR geometry condition is modified to be [243] 
 

1 
C  MI MJ MK 

1 
c2I MI  (7.56) 

6 
IJK =  − 

144k 
. 

AdS2 S3 arises as the near horizon limit of electrically charged supersymmetric black holes. The black hole entropy 

can be computed by extremizing the entropy function and the result turns out to be [11] 

 

Sbh = 2π
√

Q 3(1 
c2I qI 

+ 
16Q 3/2 

+ · · · ) , 

 

(7.57) 

where qI is the electric charge and Q 3 := 1 CIJK qI qJ qK . 

• AdS3×S2, in which the metric and fluxes are [246] 

ds2 = ℓ2ds2 1 + ℓ dΩ  ,  ℓS =  ℓA , 
A 

F I 
pI 

AdS3 S 2 2 
3 

= 
2 

ϵ2,  v = − 
8 

ℓAϵ2 , 

MI PI 12 
= 

ℓA 

,  D = 
ℓ2 

, (7.58) 

where the modified VSR geometry condition can be expressed as 

ℓ3 = C  pI pJ pK + 
 1 

c pI . (7.59) 
A 12 

AdS3 S2 arises as the near horizon limit of supersymmetric black strings and captures their entropy. When the 

excitation energy of the black string is large, the entropy is given by the Cardy formula, 

Sbs = 2π 

[√ 
cL 

hL + 

√ 
cR 

hR 

] 

, (7.60) 

where hL, hR are eigenvalues of the AdS3 energy generators L0, L¯
0 and cL,R are the central charges associated with the 

CFT residing on the boundary of AdS3. Thus computing black string entropy boils down to deriving the two central 
charges. The sum of the central charges c = 1 (cL + cR) can be obtained by extremizing the on-shell action over all 

2 
I 

the parameters in the solution while keeping the magnetic charges p fixed [11]. The result is given by 

c = 6P 3 + 
3 

c2I pI ,  P 3 := 
1 

CIJK pI pJ pK . (7.61) 

4 6 

26 In this section, we set ρI = −MI and Tab = 1 vab, in order to follow the notation and conventions of [243]. 

• 
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36 k 
+ 

k2 (i) 

 
The difference of the two central charges is obtained from the coefficient of the induced 3D Lorentz Chern–Simons 

term from S2 compactification of the supersymmetric Weyl-squared action. Using pI  = − 1 
∫

S2 F I , the term 

A ∧ Tr(R ∧ R) yields the following Lorentz Chern–Simons term in the 3D effective action 

c2I pI 

 
 − 

192π 

∫

M3 

Tr(Γ dΓ 
2 

Γ 
3 

 
3) . (7.62) 

From this formula one can read off cL − cR using the formula derived in [247] 

cL − cR = − 
1 

c2I pI . (7.63) 

Combining (7.61) with (7.63), one finds 

cL = 6P 3 + 
1 

c2I pI ,  cR = 6P 3 + c2I pI . (7.64) 

As pointed out in [11], the central charges obtained from the gravity side match with those expected from the dual 

CFT [248]. 

The near horizon geometry of the rotating BMPV black hole [249] itself turns out to be a maximally supersymmetric 

solution, in which the metric and fluxes take the form 

ds2 
r 4 

2k (i)  (i) 2 
2k 2 2 2 

= 
4k2 

(dt + 
r 2 

c σR ) − 
r 2 

[dr + r dΩ3 ] , 

F I 
1 I 

I c
(i) (i) 

= 
2k 

M dt ∧ dr + M 
r 2 

σR ∧ dr , (7.65) 

where MI const and all the auxiliary fields vanish. For c(i) 0, it becomes AdS2 S3. The very special geometry 

condition is modified to be [243] 

1 
C  MI MJ MK 1 

c2I MI 
( 

1 3 
c(i)c 

) 
(7.66) 

The entropy of the BMPV black hole is governed by its near horizon geometry above and was studied in [250]. The 

result is of the form 

Sbh = 2π
√

Q 3 − J 3(1 
c2I qI 

+ 
16Q 3/2 

+ · · · ) , (7.67) 

where J is the angular momentum and the ellipsis denotes corrections from higher derivative terms beyond the 

current setup. 

The half-BPS black holes with Weyl-squared correction have been studied in [251,252] where the full solution is given 

numerically. One feature is that for singular supersymmetric black string or black hole solutions with vanishing entropy 

in the two-derivative theory, the four-derivative corrections yield a non-zero entropy and shield the singularity behind a 

smooth event horizon [253]. Finally, it is noted that the relation between 5D/4D supersymmetric solutions with higher 

derivative corrections has been studied in [250,252]. 

In the gauged case, there is the maximally supersymmetric AdS5 solution, on which the VSR receives corrections from 

the Ricci scalar-squared invariant [26]. The half-BPS solutions of the form AdS3 Sg with Sg being a genus-g Riemann 

sphere were studied in [13]. 

 

8. D = 4 

 

There are several results that have been obtained in the construction and study of higher derivative supergravities in 

4D over the years, the ones on N  1 supergravity going back to the mid-eighties [254–256]. We shall survey the existing 

results for 1  N  8, most of which are for the R-symmetry ungauged supergravities. While explicit higher derivative 

invariants have been constructed for N  4 conformal supergravity, and N  1, 2 supergravities, thanks to the existence 

of their off-shell formulations, such results are very difficult to come by for N > 4. In this section we shall primarily 

survey the cases of N  4, and their four derivative extensions. As a six derivative extension involving Riemann-cubed 

term, it was shown long ago that it does not exist for N  1, 4D supergravity [1]. Regarding 4D supergravities with N > 4, 

we shall make one exception by considering [257] on the D2kR4 invariants for N  8 ungauged supergravity, in view of 

the fact that it is one of the rare papers in which the superpartners of D2kR4 are constructed. In this section, we shall also 

survey the construction of Killing spinors, and discuss the cosmological applications of R + R2 type supergravities. 

• 

= . 
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M4 = 
256 ⟨12⟩4 

, (8.1) 

µ1...µ 1 

µν 
4 

µ ν α̇ β αβ αβ α̇ β 

4 4 4 

̇ 

8.1. D2kR4 invariants for N = 8, 4D supergravity from superamplitudes 

8  
In the spin-helicity formulation, the 4-point maximum helicity violating (MHV) superamplitude in ungauged N = 

, D = 4 supergravity, corresponding to supersymmetric completion of R4, is of the form [257] 

8 4 

MHV  1  ∏( ∑ ) [34]4 

 

  
where i 1, . . . , 8 labels the SU (8) fundamental representation, a 1, . . . , 4 labels the scattering particles, ηai are 
Grassmann bookkeeping variables and 

(a) (a) (a) αβ (a) (b) α̇  β̇ (a) (b) 

Pαα̇ = λα λ̃ α̇ , ⟨ab⟩ = ϵ λα λβ , [ab] = ϵ λ̃ α̇  λ̃
β̇  . (8.2) 

From the superamplitude, one can extract the matrix elements of all independent 4-point amplitudes which carry certain 
irreps of SU (8). The matrix element for any desired set of four external particles is obtained by applying a specific 
Grassmann derivative of order 16, see [258]. The bosonic part of the action constructed in this way is found to be [257] 

1 L  4    = R  ̇ 
̇ R

α̇ β̇ γ̇ δ̇ R Rαβγ δ + 
 1 

R R ∂α̇ α∂β̇ β φijkl∂γ̇ γ ∂δ̇δ φ 
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1 
R ̇ ̇ F F ∂α̇ α∂β̇ β ∂γ̇ γ ∂δ̇δ φijkl 

2 α̇ βγ̇ δ αβγ δ ij 8 α̇ βγ̇ δ αβij γ δkl 

+ 
1 

R F 
ij 

F kl ∂α̇ α∂β̇ β ∂γ̇ γ ∂δ̇δ φ + 
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F 
ij ∂ ∂ F α̇ β̇ kl∂µ∂ν F 

αβ 
F 

8 
αβγ δ α̇ β̇ γ̇ δ̇ ijkl 

2 α̇ β̇ µ ν ij αβkl 

+2F
ij ∂ ∂ F α̇ β̇ kl∂µF 

αβ ∂ν F 
 1  ij  µ ν − F  ∂ ∂ F φklmn∂α̇ α∂β̇ β φ 

α̇ β̇ µ ν ik αβjl 
24 α̇ β̇ αβij  µν klmn 

1 ij  ν − F  ∂ F φklmn∂µ∂α̇ α∂β̇ β φ 
1 ij −  F  F φklmn∂α̇ α∂β̇ β φµν 

3 α̇ β̇ αβjn  µν iklm 
4 α̇ β̇ αβmn  µν ijkl 

1  ijkl  mnpq  µρ  νσ 1  ijkl  mnpq  νρ µσ 1 ijkl  mnpq  µν ρσ 

+ 
8 

φµσ φνρ φ
ijmn

φ
klpq 

+ 
9 

φµ φνρσ φ
ijkm

φ
lnpq 

+ 
288 

φµν φρσ  φ
mnpq

φ
ijkl 

, (8.3) 

where φijkl 
n 

:= ∂µ · · · ∂µn φ
ijkl, α, β and α̇ , β̇ are the indices of the 2-spinors, and Rαβγ δ is the linearized Weyl tensor, 

and Yang–Mills curvature is decomposed as, 

F = 
(
σ  ̄

)α̇ α 
(σ  ̄ )β̇β 

(
ϵ ̇ F + ϵ  F ̇ 

) 
. (8.4) 

There are 30 additional terms that are quadratic in fermions in the Lagrangian above, and 8 more terms that are quartic 

in fermions. The R4 invariant in N  8 supergravity was also obtained using the linearized on-shell superspace formalism 
in [259]. 

For the D2kR4 superinvariant the corresponding superamplitude can be conveniently written as [257] 

Mk = Pk(s, t, u)MMHV , (8.5) 

where Pk is a totally symmetric kth order polynomial in Mandelstam variables. For instance [260] 

P2 = (s2 + t2 + u2),  P3 = (s3 + t3 + u3),  P4 = (s2 + t2 + u2)2 , (8.6) 

where s, t, u are the standard (dimensionful) Mandelstam variables. Using (8.5) one can build the linearized D2kR4 

invariant by distributing the partial derivatives on the four fields involved in the R4 invariant. To be more specific, denoting 

any term from the R4 invariant as A(x)B(x)C (x)D(x), one applies the replacement rule [257] 

sMMHV → 2∂µA∂µBCD,  tMMHV → 2∂µAB∂µCD,  uMMHV → 2∂µABC ∂µD, 
s2MMHV → 4∂µ∂ν A∂µ∂ν BCD,  stMMHV → 4∂µ∂ν A∂µB∂ν CD , (8.7) 

4 4 

and so on. 

Note that although allowed by maximal supersymmetry, the R4 term does not appear in N 8 supergravity because 
otherwise its nonlinear supersymmetry completion leads to nonvanishing 6-pt matrix element in the single soft limit [261] 
which is incompatible with the continuous E7(7) symmetry at the perturbative level [258,262–264]. On the other hand, 

the R4 term does appear in the low-energy effective action of string theory, with the continuous E7(7) symmetry broken 
down to its discrete version by non-perturbative effects. Consequently, constraints on the matrix element implied by the 

low energy theorem associated with the continuous E7(7) no longer hold. Similar statements apply to the D4R4 and D6R4 

in N = 8 supergravity versus string theory.  2k 4 

The low energy effective action of string theory implies that the D  R  invariants should come with scalar dependent 

functions which are invariant under E7(7)(Z). In particular, the moduli dependent functions in front of R4 and D4R4 satisfy 

Laplace equations (11.2) and (11.3) on E7(7)/SU (8), 
 

(∆(4) + 42)E 
(4) 70 = 0, (∆ + )E 

 
= 0 . (8.8) 

(0,0) 3 (1,0) 

i=1 a,b=1 

⟨ab⟩ηaiηbi 
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= 

2 2 2 

E 
2 

(0,0) 

= 
= 

= 

= × 

) 
α 

2 
µνρσ µν j 4 

The field content of N 4 superconformal Weyl multiplet. 20c denotes the 20-dimensional complex representation of SU(4) while 20r refers to the 

real one. 
Field ea ψ i bµ V i j φα Λi Eij T − ij χij

k Dij
kl 

µ µ µ [ab] 
 

SU(4) 1 4 1 15 1 4 10 6 20c 20r 

Weyl weight −1 - 1 0 0 0 1 1 1 3 2 
 

 

 

 

Solutions to these equations are [265,266] 

R4 : E 4 
0) = E

E7 
3 , 

(0, 

 

D4R4 : E 
(4) 

[1000000]; 2 

1 E7 = 
 

. (8.9) 
(1,0) 2 [1000000]; 5 

These functions are defined in Section 11.1. The expression for E 
(4)  

has a perturbative part in 4D string coupling constant 

expansion, and a nonperturbative part. The perturbative part consists of a tree level and an one-loop level term. The D4R4 

coupling also has a similar expansion but this time the perturbative parts consist of tree-level, one-loop, and two-loop 

contributions. On the supergravity side, explicit computation [267] shows that the 4D maximal supergravity is finite at 

four-loop level. Analysis based on continuous E7(7) symmetry rules out UV divergences at five and six loops [261]. It is 

expected that the first divergence appears at seven loop level and is of the form D8R4 [4]. 

 

8.2. N = 4, 4D off-shell conformal supergravity in ectoplasm approach 

 

Off-shell N  4, 4D Poincaré supergravity is not expected to exist. The two-derivative on-shell version exists [268–270] 

but its higher derivative extension has not been studied, to the our best knowledge. On the other hand, N  4, 4D off- 

shell conformal supergravity has been constructed [21], and it turns out to be of considerable interest (see [271] for a nice 

review). To name a few, off-shell N 4, 4D conformal supergravity coupled to SU(2) U(1) or U(1)4 gauge theory was 

conjectured to be finite to all loop orders and free of conformal anomaly [271]. The model also arises from the twistor 

string theory according to Berkovits and Witten [272]. 

The complete N   4, 4D conformal supergravity was obtained recently in [273,274] using the ectoplasm approach. 

The fields in the superconformal Weyl multiplet are summarized in Table 4. 

The complex scalar field parametrizes the SU (1, 1)/U (1) coset 

φαφα = 1,  φα = ηαβ (φβ )∗,  ηαβ = diag(1, −1) . (8.10) 

The construction of the conformal supergravity action is carried out in ectoplasm approach based on a closed super 4- 

form J . The lowest Weyl weight term Jαβδγ is restricted to contain only Lorentz scalars. The other fields that appear in 

the spacetime component of the closed super 4-form are listed in Table 5. Readers are referred to [274] for the detailed 

properties satisfied by these fields. The superconformal invariant action is given by the spacetime component Jabcd whose 

bosonic part is simply 

S = 

∫ 

d4x eF . (8.11) 

One can then construct a composite F using Weyl multiplet and substitute the result into the action above to obtain the 

action for the N = 4 conformal supergravity [273] 

e−1LCSG = H(φ )

( 1 
C C µνρσ + F  (V )iF µν(V )ji + 

1 
EijD2Eij − 4TabijDaDc T cbij 

− P¯µDµDν P ν + · · ·  + c.c. . (8.12) 

The complete bosonic action was given in [273] and the fermionic terms can be found in [274]. Here we only give kinetic 

terms of fields, so that one can see which of them are dynamical. Pµ and P¯µ are given by 

Pµ = φαεαβ Dµφβ ,  P¯µ = −φαεαβ Dµφβ . (8.13) 

In terms of three left-invariant vector fields associated with the group SU (1, 1), defining 

D0 = φα 
∂  

− φ 
∂ 

,  D+ = φ εαβ  
∂ 

,  D− = φαε 
∂  

, (8.14) 
 

 

∂φα 
 

 

α ∂φ 
 

 

α ∂φβ 
 

 

αβ 
∂φ 

H(φα) is homogeneous of zeroth degree in the holomorphic variables so that it satisfies 

D+H = 0,  D0H = 0 . (8.15) 

α β 
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2 

µ µ 

= 
= 

= 

= 

= = 

• = 

= = = 

ij ij √
2 

i 

= 

2
=
7 

ij 

T 

µ 

µ 

e−1L = 
1 

R + D + E Eµ + |G|2 + 
 1  

E V µ − 
1 

V ′ijV 
µ′ 

+ gX (G + G¯ ) − 
g 

E W µ 

2 2 2 

µ 

1 

 

Table 5 

Fields that appear in the spacetime component of the closed 4-form. 
Field Aij

kl C ijkl Eij E(ab) 
ij Ei 

j F ρk 

 

 

 

 

κij
k Ωi Ωi 

a ij a 

SU(4) 20r 20r 10 6 15 1 20c 20c 4 4 

Weyl weight 2 2 3 3 3 4 5 5 7 7 

 
Table 6 

The field content of off-shell N = 2, 4D Poincaré supergravity obtained from the standard Weyl multiplet. 
 

Field ea 
′ ij 
µ Vµ Aµ Tab D X Wµ Y ij G Eµν ψ i χi Ωi 

D.o.f.s 6 8 3 4 6 1 1 3 3 2 3 24 8 8 

 

 

In the previous sections, we have discussed how to obtain models preserving Poincaré supersymmetry from those 

which are invariant under superconformal transformations. One has to couple the conformal supergravity to a certain 

compensating matter multiplet. In N  4 supersymmetry, the only matter multiplet is the vector multiplet. At this stage, 

an off-shell formulation of N 4 vector multiplet is still unknown. However, we can still discuss how many vector 

multiplets are needed at the linearized level [271]. It turns out that six N  4 abelian vector multiplets with a rigid SO(4) 

group are needed to fix the dilatation, local SU(4) and special supersymmetry [275]. 

The N  3 conformal supergravity can be obtained from the N  4 case by decomposing the N  4 supermultiplets 

under N  3 superconformal group and truncating out a N  3 gravitino multiplet. We refer to [276,277] for the details 

of this truncation. 

8.3. N = 2, 4D off-shell supergravity invariants from the standard Weyl multiplet 

Off-shell N 2, 4D Poincaré theory 

The first way to construct N    2, 4D Poincaré supergravity is via coupling standard Weyl multiplet to suitable 
compensating matter multiplets, followed by fixing redundant gauge symmetries including local conformal boosts, 
dilatation, SU(2), U(1)A and special supersymmetry. In this case, it is well known that in order to write down a meaningful 
two-derivative action, at least two compensating multiplets are needed which are chosen to be a Maxwell multiplet 

(X , Ωi, Wµ, Yij) and a tensor multiplet (Lij, ϕi, G, Eµν). After choosing the gauge fixing conditions, 

SU(2) : L = δ 
 L  

,  D : L = 1,  K : b  = 0,  U(1)A : X = X¯ ,  Sα : ϕ = 0 , (8.16) 

one obtains the off-shell N 2, 4D Poincaré supergravity multiplet displayed in Table 6. The two-derivative Poincaré 

supergravity Lagrangian is the following sum 

e−1LSG = e−1LV − e−1LT , (8.17) 

where LV and LT are the Lagrangians which describe off-shell N 2, 4D Poincaré supergravity coupled to a vector [278] 

and a tensor multiplet [279], respectively, and they are given by 
 e−1LV = − 2 µ 1 −  µν− 

1 + µν+ 

4X ( 
6 

R − D) + 4DµXD X + 
2 

Fµν(W )F (W ) + 
2 

Fµν(W )F (W ) 

− 
1 

X (F + (W )T µν+ + F − (W )T µν−) − 
1 

Y ijY − 
 1 

X 2(T + T µν+ + T − T µν−) , 
4 µν µν 2 32 µν µν 

 

3 
µ 

g ij 
2

√
2 

µ 
 

4 µ  ij 2 
µ 

 

 

where 

− 
2

√
2 

Y δij , (8.18) 

D X = (∂ µ 1 µνρλ − iA )X ,  E  =  ϵ ∂ E ,  V ij = V 
′ij + 

1 
δijV . (8.19) 

µ µ µ 2 
ν ρλ µ µ 2 

µ 

The equations of motion for D, X , G, Yij, Eµ, Vµ, V ′ij and Tab lead to 

1 1 g 

X = 
2 

,  Aµ = 0 ,  G = G¯ = − 
2 

g ,  Yij = 
2

√
2 

δij , 

Eµ = 0 ,  Vµ = 
√

2 gWµ ,  V ′ij = 0 ,  Tµν = −8Fµν . (8.20) 
 

27 Here we use the notations of [280]. 

V 
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µν 

[ ±] ± 
± ≠ 

± 

j 

2 

2 3 3 6 

Dµ ν 
2 8 

µν 
2 µν µν 

64 
µν µν Dµ [µ ν] µ 

 

Substituting the solutions back to LSG, one obtains the on-shell two-derivative minimal supergravity 

e−1LSG = − 
1 

R − 
1 

F  F µν + 
3 

g 2 . (8.21) 

2 2 
µν 

8 

Weyl-squared invariant 

The first curvature-squared invariant was constructed in [21] using superconformal tensor calculus. We denote it by 

LW 2 as it contains the Weyl-squared term. After gauging fixing, the bosonic part of the complete invariant is given by 

1 1 e−1L  2 = C C µνρσ + 2F  (A)F µν(A) + 6D2 +  F ij (V ′)F 
µν

(V ′) +  F  (V )F µν(V ) 
W µνρσ µν 

2 µν ij 4 
µν 

− 
1 

T µν−∇ ∇ρ T + − 
1 

T µν+∇ ∇ρ T − − 
 1  

T − T µν−T + T ρσ + , (8.22) 

4 
µ ρν 4 

µ ρν 512 µν ρσ 

where Fµν(V ) and F ij (V ′) are defined as in (6.17). 

Gauss–Bonnet invariant 
The second curvature-squared invariant was obtained in [281] using superconformal superspace technique. The 

construction utilizes a pair of chiral and anti-chiral superfield Φ  of weight w  0. Then one builds the nonlinear version 

of the kinetic multiplet denoted by T ln Φ . It is of weight 2 and it is obtained by acting on ln Φ with four superspace 
derivatives. The density formula for the kinetic multiplet gives rise to 

∫ 

d4x L 

 

 

Ric 

 1 

2 = − 
2w 

∫ 

d4x d4θ E+ 

 

T[ln Φ+ 
 1 

] − 
2w 

∫ 

d4xd4θ E− 

 

T[ln Φ− 
 

] , (8.23) 

where E± are (anti)chiral measures, and 

e−1L 
2 

2 = R Rµν − 2R2 − 2F (A)F µν(A) − 6D2 − 
1 

F ij (V ′)F 
µν

(V ′) 
Ric 3 

µν µν 
2 µν ij 

− 
1 

F  (V )F µν(V ) + 
1 

T µν−∇ ∇ρ T + + 
1 

T µν+∇ ∇ρ T − 

4 
µν 

4 
µ ρν 4 

µ ρν 

+ 
 1  

T − T µν−T + T ρσ + − 
 1 

∇ Sµ . (8.24) 

512 µν ρσ 2w 
µ 

The dependence on Φ  only appears in the total derivative term. Using the expression for Weyl tensor in four 
dimensions, one can see that the Gauss–Bonnet invariant is given by 

LGB = LW 2 + LRic2 . (8.25) 

Ricci scalar-squared invariant 

The supersymmetric Ricci scalar-squared action has been constructed by employing superconformal tensor calculus, 

and the bosonic part of the result is given by [279,280] 
e−1 = −  

( 
R + D

)2 

+ E2

( 
R + D

) 
+ |G|2

( 
R + 2D

) 

1  1 1 1 

− E 

[
F (V )µν − 

1 (
T −µν G + T +µν G¯ 

)] 
+ 

1 [
F (V ) − 

1 (
T − G + T + G  ̄

)]2 

− 
1 (

T − G + T + G¯ 
)2 

+ | G|2 + 2 (∂ E )2 − 4 
(
|G|2 + E Eµ

)2 
. (8.26) 

and the supertransformations of the fermions by 

δψ i = 2(∂ 1 ab 
+  γ  ω − 

i 
A )ϵi − V ijϵ − 

 1 
γ · T −γ ϵi − γ ηi , 

µ µ 
4 

µab 
2 

µ µ j 
16 

µ µ 

δχ i = − 
 1 

γ · D/T −ϵi − 
1 

γ · F (V )ijϵ + 
i 

γ · F (A)ϵi + Dϵi + 
 1 

γ · T −ηi , 
24 6 3 24 

δΩi = 2D/X ϵi + 
1 

γ · F−ϵi + Yijϵj + 2X ηi , (8.27) 

where 

F−  = F 
 
− 

1 
XT − 

 
, η = 

 1  
Gϵjδ 

 
− 

 1  
E/ϵjδ + V/ 

 
 

 
(jδk)mϵ δ 

 

 . (8.28) 
µν µν 

2 µν 
i √

2 
ij √

2 
ij m k ji 

In the expressions above, the i , j indices are raised and lowered using εij and εij. 

The four-derivative supergravity invariants have been applied to study holography and black hole physics in [280,282– 
284]. To be specific, [280,284] considered the model 

LHD = (16π GN )−1LSG + (c1 − c2)LW 2 + c2LGB . (8.29) 

• 

• 

• 

LR2 
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bh 2 1 1 

+ 
= 

= = 

= 

µ 

µ 

HD = 
ℓ2 

1 
2G 

π 

ℓ2 4GN 

A a a A 

 

It was found that every solution of the two-derivative theory also solves the field equations derived from the four- 

derivative Lagrangians. Nonetheless, the four-derivative Lagrangians do contribute to the on-shell action and to the black 

hole entropy. For asymptotically AdS4 solutions listed in Table 2 of [284], the on-shell Euclidean action takes the form 

I 

[

1 
64π GN 

(c c )

] 
πℓ2 

 

32 2c 

 

(8.30) 

where ℓ denotes the AdS4 radius, F is a constant resulting from the evaluation of the two-derivative action on M4 

and χ is the Euler characteristic of M4, whose values are given in Table 2 of [284]. If the theory (8.29) arises from 

S7 compactification of 11D or CP 3 compactification of 10 IIA supergravity with higher derivative corrections, it is 
conceivable that (8.29) provides a gravitational description of the dynamics involving only the stress tensor sector of ABJM 

theory [284]. So far, coefficients c1 and c2 are not determined from the gravity side since the S7 compactification of 11D 

or CP 3 compactification of 10 IIA supergravity with higher derivative corrections has not been worked out. However, they 
may be computed via a combination of holography, conformal bootstrap and localization techniques [285,286]. In [284] 

some attempts for fixing c1 and c2 were carried out by comparing the gravitational on-shell action to the free energy of 
ABJM theory on squashed 3-sphere. Furthermore, one also requires that the stress tensor 2-pt function computed from 

the gravity side matches with those in the CFT side. In this way, it is possible to fix just the coefficient c1 due to a possible 

unknown shift in the relation between ℓ2/GN and N . 

In [284], the entropy of black hole is also computed. Although the solutions are not modified by the four-derivative 

interactions, the entropy does receive corrections. Using the Wald entropy formula, one obtains [284], 

S  = 

[

1 + 
64π GN 

(c − c )

] 
 A  

− 32π 2c χ(H) , (8.31) 

where A and χ(H) denote the area and Euler number of the horizon. 

 

Quartic in Weyl tensor invariant 
An off-shell Weyl4 invariant was introduced in superspace in [287] with the Lagrangian 

L = 

∫ 

d4θ¯ E
{
∇Aa ∇b 

(
∇B ∇Bb + 16Xab

) 
− ∇Aa ∇B 

(
∇b∇Bb − 16iYAB

)}
W 2W 2 + h.c. , (8.32) 

where a  1, 2 is the U (2) R-symmetry index, A  1, 2 is the Weyl spinor index, and the superfields Xab and YAB are 

certain components of the torsion and curvature in superspace. The off-shell N  2 Poincaré supermultiplet involved is 

the 40  40 component multiplet displayed in Table 6. We will not present the details of the superspace construction 

here, as they can be found in [287]. It is pertinent to mention, however, that [287] focuses exclusively on the superspace 

formulation, and does not present the component formulation of the Weyl4 invariant. Nevertheless, it has been shown 

that the above action does provide the off-shell supersymmetric completion of the C 2 C 2 , where C± is the (anti)self-dual 

part of the Weyl tensor. 
+  − 

 

8.4. N = 2, 4D off-shell supergravity invariants from the dilaton Weyl multiplet 

 

• Off-shell supergravity 

Another formulation of off-shell N 2, 4D Poincaré supergravity can be obtained by coupling the dilaton Weyl mul- 
tiplet to a tensor multiplet [288]. After fixing local SU(2), U(1)A, dilatation, conformal boosts and special supersymmetry, 

the off-shell supergravity multiplet is given in Table 7 in which the auxiliary fields are V ′ij, Vµ, C , Eµν. This multiplet can 
also be obtained by reducing the 5D off-shell supergravity multiplet and truncating out a vector multiplet. The bosonic 
two-derivative supergravity action based on the multiplet above is given by [288] 

−1 1 1 −1 µ 1 µν 1 µν 

e LLR = 
2 

LR − 
2 

L ∂µL∂ L + 
8 

LFµν(W )F  (W ) + 
8 

LFµν (W̃ )F  ( W̃ )  

+ 
 L 

H Hµνρ + |C |2L−1 − E EµL−1 + 
 1  

ϵµνρλE  F  (V ) + LV ′ijV 
′µ 

, (8.33) 

where 

24 
µνρ µ 

2
√

2 
µν ρλ µ  ij 

Eµ = 
1 

ϵµνρλ∂ E  ,  H = 3∂ B . (8.34) 

2 
ν ρλ

 µνρ [µ νρ] 

On-shell, the field equations imply that the auxiliary fields can be set to zero, and the off-shell multiplet decomposes 

into the on-shell supergravity multiplet plus the on-shell vector multiplet. One of the scalars in the vector multiplet is 

obtained by dualizing the massless two form Bµν to a pseudoscalar. We shall consider the coupling of n off-shell Maxwell 

multiplets to the off-shell N = 2, 4D supergravity. The n vector multiplets will be denoted by 
(
AI , λiI , XI , Y ijI 

) 
, I = 1, . . . , n , (8.35) 

• 

+ 2 − 
N 

F + 1χ , 
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µνλ µ 

= 
= = 

µν ab 

16 

√
2 

j j j 

I 

= 

Tµ
−

ν = Kµ
−
ν , Kµν := F (W )µν + iF (W̃ )µν  , P := Tµ

−
ν T −µν , 

2 
µν µν − 

−µ µ 2 

abcd abcd 3 128 

µν µν 

1 
4 

µ 

µν 4 

νρσ 

µν 

1 µν 

√
2 

ij 

with the following definitions 

 
Table 7 

The field content of off-shell N = 2, 4D Poincaré supergravity obtained from the dilaton Weyl multiplet.  
a ′ ij i i 

Field eµ Vµ Vµ Wµ W̃ µ  Bµν L Eµν C ψµ φ 
 

 
 

 

 

 

where XI are the complex scalars and Y ijI are the auxiliary scalars. Further useful ingredients are defined as follows 

 

 1  µν 
A := − 

16 
K  Kµν , B := C ∗L−1 − 

 1  
φ¯ iφjδ L−2 . (8.36) 

 

• Riemann-squared invariant and coupling to n vector multiplets 

Off-shell N = 2, 4D supergravity coupled to n Maxwell multiplets is described by the Lagrangian [288] 

e−1L = 4D G DµX¯ I + 
1 

ϵ HνρλG 
←→
D µXI + 4D (G K µν)DλK¯ 

µ  I 
3 

µνρλ I µ  A λν 

+ 
1 

ϵ Hνρλ(G  K σ δ)
←→
D µK + 32D (G T −µλ)Dν T + 

3 
µνρλ A σ δ µ  P νλ 

− 8H (G T − )
←→
D σ T + 

+ 4D G 1 
D B¯ + ϵ HνρλG 

←→
D µB¯ 

P νλ σ µ 
I 

B µ 
3 

I 

µνρλ B 

IJ 

+ GL0 + GI L1 + GAL2 + GP L3 + GAI L4 + GPI L5 + GIJ L6 + GAAL7 

+ GAP L8 + GPP L9 + GBL10 + GBBL11 + GBI L12 + GBAL13 + GBP L14 + h.c. , (8.37) 

where G(XI , B, A, P) is a prepotential, GI  ∂G/∂XI , GAI  ∂2G/∂XI ∂A and similar notation is used for the derivatives 

of G with respect to other fields. Expressions for Li can be found in [288]. In particular, choosing G A, one obtains the 

Riemann-squared invariant 

e−1LRiem2 = 16Rabcd(ω−)Rabcd(ω−) + 4Dµ(ω−)KabDµ(ω−)Kab 

+ 
1 

ϵabcdHbcdKef 
←→
D a(ω )K¯ ef − F (V ′)ij F (V ′)

µν 
− 

1 
F  (V )F µν(V ) 

3 
− µν ij 2 

µν
 

+ 
1 

KabK¯
ab(F (W )F µν(W ) + F (W̃ ) F (W̃ ) )  − 4K Rcdab(ω )K¯ cd+ + h.c. , (8.38) 

where ωab = ωab − 1 Hµ
ab. A more general curvature-squared invariant can be obtained by noting that L2, L3, L11 contain 

independent curvature-squared structures, and therefore, as a special case, choosing the prepotential as 

G(XI , A, P, B) = 
 1 

α A + βP + γ B2 (8.39) 

gives 

e−1L := αR−abcdR−  + 8βC −abcdC −  + 

( 
2 

β − 
 1  

γ 

) 

R2 + · · · + (h.c.) , (8.40) 

 

where Cabcd is the Weyl tensor and the ellipsis denotes the remaining bosonic terms which can be read off from (8.37). 

Up to cubic fermions, the supersymmetry transformation rules of fermions are given by [288] 

i i 1  ν ij 

δψµ = 2Dµ(ω+)ϵ − 
2 

γ (Fµν(W ) + iFµν (W̃ ))ε ϵj , 

δφi = 
 1  

D/Lδijϵ + E/εijϵ − Gϵi + 
√

2Lδijη , 

 δλI = I 1  µν 
i 

 I − 
ij 

j I j I 
i 

i 2D/X ϵ + 
2 

γ F̂ µ ν  ϵ ϵ + Yij ϵ + 2X η , (8.41) 

1 I  + 1 I  − 

F̂ = F −  X T − X¯ T , 

ηi = − 
12 

γ ϵµνρσ H ϵi − 
8 

γ  (Fµν(W ) + iFµν (W̃ ))ϵi . (8.42) 

The N 2, 4D supergravity coupled to n vector multiplets, extended by Weyl-squared invariant, has been employed to 

derive the higher derivative corrections to the near horizon geometry of asymptotically flat supersymmetric black holes. 

D.o.f.s 6 8 3 3 3 3 1 3 2 24 8 
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These results, when combined with the Wald formula [289], yield the macroscopic entropy of these black holes [290–297]. 

For models arising from type IIA string theory compactified on a CY3, the prepotential, up to linear order in P, takes the 

form [290] 

 G(XI 1 XI XJ XK 1  1 XI 

, P) = − 
6 

CIJK 
X 0 

− 
24 64 

c2I 
X 0 

P , (8.43) 

where CIJK is the intersection numbers of the four-cycles of the CY3 and c2I s denote its second Chern-class numbers, with 
I = 1, . . . , b2 where b2 is the second Betti number. The resulting macroscopic entropy of the supersymmetric black holes 

carrying electric/magnetic charges (q0, qI , p0 = 0, pI ) is given by 
 

 

 
q q + 

 1 
D qI qJ ,  D = − 

1 
C  pK . (8.44) 

ˆ = 
12 6 

This result is in agreement with the microscopic entropy formula computed in [248,298]. A comprehensive review of 

D 4 supersymmetric black holes with stringy higher derivative corrections can be found in [9]. 

A special class of supersymmetric black holes in N 2, 4D supergravities arising from Calabi–Yau compactifications 

satisfies 

CIJK pI pJ pK = 0 , (8.45) 

corresponding to the so-called small black holes with vanishing classical horizon area, indicating the existence of a null 

singularity. However, when higher derivative corrections are taken into account, analysis based on near horizon geometry 

suggests the singularity is smoothed out by a horizon with a non-vanishing area arising at order α′ [299,300], 

 

A = 8π 

√ 
|̂q0|c2I pI 

 

 

(8.46) 

which is proportional to α′. Therefore this class of black holes are given the name ‘‘small black holes’’. From (8.44), its 

entropy is deduced to be 

S 4 

√ 
|̂q0 |c2 I  pI A 

 

(8.47) 

differing from the Bekenstein–Hawking entropy formula obeyed by the large black hole by a factor of 2. This difference 

is natural given that this result for the entropy is not merely a leading order result but encodes significant contributions 

from α′ correction. 

The resolution of the singularity, however, has been questioned in [301–303] for certain two-charge black hole solution 

arising in the 6-torus compactification of heterotic string which is S-dual to IIA on K 3 T 2. First of all, general four-charge 
black holes with Riemann-squared corrections were constructed in [301,302] which illustrated that the two-charge black 
holes still contain a curvature singularity. Based on these solutions, [303] further argued that the small black holes are 

in fact already regular in the zeroth-order supergravity approximation and CIJK pI pJ pK 0 does not necessarily imply 

a singular horizon of vanishing area. The reason is that the charges pI in (8.44) were obtained from the near horizon 
geometry and can differ from the genuine conserved charges in the presence of higher curvature couplings. Thus in the 

context of supergravity with stringy corrections, from pI  0 one cannot deduce that the corresponding conserved charges 
vanish. However, it is the vanishing of the genuine conserved charges that leads to a singular horizon. Further discussions 
of small black holes in heterotic string can be found in [304,305]. 

8.5. N = 1, 4D off-shell supergravity in U (1) extended superspace and four-derivative invariants 

The construction of higher derivative off-shell N 1, 4D supergravity was carried out long ago within frameworks 

employing different sets of auxiliary fields. A convenient way to list possible sets of auxiliary fields is to start from a 

20 + 20 off-shell multiplet consisting of [306] 

{eµ(6), M(2), bµ(4), Aµν(3), C (1), aµ(3), D(1); ψµ(12), χ(4), λ(4)} , (8.48) 

where M is a complex scalar, bµ is a non-gauge vector field, C and D are real scalars, Aµν and aµ are 2-form and 1-form 
gauge fields, and ψµ, χ, λ are Majorana spinors. Setting to zero the fields (Aµν, C , χ) gives the off-shell 16 16 multiplet, 
which we refer to as Type I [307], 

16 + 16 , Type I: {ea (6), M(2), bµ(4), aµ(3), D(1); ψµ(12), λ(4)} . (8.49) 

Setting to zero (aµ, D, λ) in (8.48) instead gives another off-shell 16 + 16 multiplet, which we refer to as Type II, 

16 + 16 , Type II: {ea (6), M(2), bµ(4), Aµν(3), C (1); ψµ(12), χ(4)} . (8.50) 
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Setting to zero (Aµν, C , χ; aµ, D, λ) in (8.48) instead gives an off-shell 12 + 12 multiplet, known as ‘‘old minimal’’ [308], 

Old minimal: {ea (6), M(2), bµ(4); ψµ(12)} . (8.51) 

Finally, setting to zero (M, bµ, C , D; χ, λ) gives another off-shell 12 + 12 multiplet known as ‘‘new minimal’’ [309,310], 

New minimal: {ea (6), Aµν(3), aµ(3); ψµ(12)} . (8.52) 

Here, we shall begin by reviewing the known curvature-squared invariants in the framework of the Type I off-shell 

formalism [311]. Later, we shall consider its truncation to the old minimal off-shell framework, and separately we shall 

also consider certain higher derivatives invariants in the new minimal off-shell framework [312]. 

In Type I off-shell formalism, the bosonic part of the off-shell invariants discussed in [311], where references to earlier 

literature can be found, are 
1 1 

e−1L1 = − 
2 

R − 
3 

(
M M̄ − baba

) 
+ 2gD , 

e−1L2 = 
1 

D2 + f µν f , 

e−1L 2 = 
1 abcd 

abcd + 
1 µν , 

W 8 3 
µν 

1 1 1 1 

e−1LRic2 = − 
8

R̃  R̃ a b  + 
96 

R2 − 
6 

D2 − 
 (

F µν Fµν + 2f µν fµν

) 
, 

e−1L 2 = − 
3 

(R − 2D)2 + 

(

bµb 
1 

M|2

) 

R − 2 
(
bµb  + 2|M|2

) 
D 

 

µ 

1 ( 4 
a  µ µ µ 

2 µ µ 2
) 

− 
3 

|M| + |M| b bµ + (b bµ) , (8.53) 

1 

where Rab = Rab − 
4 
ηabR and 

fµν = 2∂[µaν] , Fµν = fµν + i∂[µbν] , 

DµM = ∂µM + 2 gaµM , Dµba = ∂µba − ωµacbc . (8.54) 

The off-shell supertransformations of the fermions, up to cubic fermionic terms, are 

1 i 1 δψ = 2(∂ −  ωabγ  + ga )ϵ − ib γ ϵ −  γ b/γ ϵ −  γ (ReM + iImMγ )ϵ , 
µ µ 

4 µ  ab µ µ 5 
3 

µ  5 
3 

µ 5 

δλ = ifµνγ µνϵ + iγ5Dϵ . (8.55) 

It is worth noting that the combination 2LRic2  LW 2 gives the Gauss–Bonnet term, which is a total derivative in D  4. 

Considering L1  L2 alone, it has unusual properties [313]. Firstly, the gauge field aµ couples not only to the gravitino but 
also to the gaugino λ. Furthermore, eliminating the auxiliary field D using its field equations gives a positive cosmological 
term with a fixed value proportional to the square of the U (1) coupling constant. The elimination of D also gives a 

homogeneous supersymmetry transformation of the gaugino, thereby triggering a super-Higgs effect [313]. 

One can truncate the Type I multiplet to the old minimal formulation by setting 

aµ = 0 ,  D = 0 ,  λ = 0 . (8.56) 

This is a consistent truncation at the level of supersymmetry transformations, and it is to be implemented in the off-shell 
action. Performing this truncation, one obtains off-shell invariants in the old-minimal formulation from (8.53). In this case, 

given that we need not worry about the local U (1) symmetry gauged by aµ, a new off-shell invariant becomes possible, 
and it is given by 

e−1L3 = M + M¯ − ψ¯ µγ µνψν . (8.57) 

Considering the combination L1  L3, the elimination of M generates a negative cosmological constant. The spectrum of 
the model L1 aL3 bLW 2 aµ 0 was studied in [314]. For generic choices of the coefficients a and b, it was found that 

excitations of the theory around an AdS4 background consist of the massless supergravity multiplet, and a single massive 
spin 2 multiplet. The latter one consists of the following AdS4 irreps 

1 3 3 1 5 

D
(
E0 + 

2 
, 2

) 
⊕ D

(
E0, 

2 

) 
⊕ D

(
E0 + 1, 

2 

) 
⊕ D

(
E0 + 

2 
, 1

) 
, E0 > 

2 
, (8.58) 

with 

E = 1 + 
1 
√

1 − 
 1  

> 
5 

H⇒ − 
 1  

< b < 0 . (8.59) 
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Here D(E, s) denotes a UIR of AdS4 with the lowest weight state with energy E, and spin s. The condition E > s 1 is 
needed for the unitarity of the representation. However, this does not guarantee ghost-freedom for the massive spin 2 
state. Indeed, assuming that the parameters a and b satisfy the condition (8.59), one finds ghostly kinetic terms for the 
massive spin 2 multiplet [314]. For further properties of this model, see [314] where possible ways of evading the ghost 
issue by imposing certain boundary conditions [315] is also discussed. 

8.6. N = 1, 4D off-shell supergravity in the new minimal formulation and four-derivative invariants 

In the new minimal formulation, the auxiliary fields are an antisymmetric tensor gauge field Bµν and a vector gauge 
field Vµ which gauges the chiral U(1) symmetry in the supergravity multiplet [310]. The bosonic part of the off-shell 
supergravity Lagrangian, in conventions of [312], is given by 

e−1L1 = − 
1 

R − 
1 

Hµνρ H 2  µνρσ +  iε V ∂ B , (8.60) 

2 2 
µνρ 

3 
µ ν ρσ 

where H = dB. The supersymmetry and gauge transformations are given by 

δea 
1 a 

= 
2 

ϵ¯γ ψµ , δψµ = Dµ(Ω+ , V+ )ϵ + iγ5Λψµ , 

3 δB = ϵ¯γ ψ , δV 1 =  iϵ¯γ γ γ ψ + ∂ Λ , (8.61) 
µν 

2 
µ  ν] 

where 

µ 
8 

5 µ ab µ 

Ω = ω (e, ψ) ± H , V 1 = V  +  iε H . (8.62) 
µ± µ µ µ+ µ 

6  
µ abc 

Further definitions are 

ψµν = 2D[µ(Ω+, V+)ψν] , Hµνρ = ∂[µBνρ] , 

D (Ω , V )ϵ = 

(

∂ − 
1 

Ω abγ  − iγ V 

) 

ϵ . (8.63) 

The new minimal set of auxiliary fields makes it possible to use the analogy between supergravity and Yang–Mills to 
construct higher derivative invariants. Indeed, three off-shell curvature-squared invariants are constructed in [312], with 

bosonic parts given by28 

e−1L2 = − 
1 

R  ab(Ω )Rµνab(Ω ) − 2F  (V )F µν(V ) , 

4 
µν − 

1 
− µν  + + 

1 

e−1L3 = − 
4 

Fµν(V )F µν(V ) − 
 (

R(ω) + H2
)2 

, 

e−1L4 = 
1 

R ab(Ω− )R
µνab(Ω− ) 

1 
iεµνρσ DλH 

2 
λµν Fρσ (V+) 

µν 1 
µ  νρσ 

−Fµν(V+)F  (V+) − 
6 

DµHνρσ D H . (8.64) 

Once again using the analogy between supergravity and Yang–Mills, the off-shell supersymmetrization of tr(R R) has 
also been found in [312] and its bosonic part takes the simple form 

e−1L5 =  i∂µ

[
εµνρσ tr

(
Ων−∂ρ Ωσ − − 

3 
Ων−Ωρ−Ωσ −

)] 
, (8.65) 

where tr(ΩµΩν ) ΩµabΩνba. Integrating this over a manifold M with boundary ∂M, it yields action for supersymmetric 
Lorentz–Chern–Simons on ∂M. 

The coupling of a scalar multiplet, A, B, ψ, F , G , and Yang–Mills multiplet, Aµ, λ, D), to new minimal supergravity has 
been given as well in [312]. The pseudoscalar appears everywhere in the action under a derivative as ∂µB, and therefore it 
can be dualized to a two-form potential Aµν. The resulting action, including the Lagrangians L1 and L2, is given by [312] 

L = L1 + A
(
L2 + LYM 

) 
− e 

(
∂ A∂µA + F 2 + G2

) 
− 

3 
eF F µνρ , (8.66) 

where 

F 1 = ∂  A −  X 

µ 
 

 

1 −  βX 

 

 
2 +  A∂ B 

2  
µνρ 

 

 
, 

µνρ [µ νρ] 
4 µνρ 4 2 

µνρ 3 
[µ νρ] 

L 
µνρ 

 
YM 
µνρ 

 

= tr
(
Ωµ−∂ν Ωρ− − 

3 
Ωµ−Ων−Ωρ−

) 
, 

= tr
(
A[µ∂ν Aρ] − 

3 
A[µAν Aρ]

) 
, (8.67) 

28 For an on-shell construction of a curvature-squared invariant, we refer the reader to [312]. 

L YM 

X 

X 

µν 
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and the bosonic part of the supersymmetric Yang–Mills action is given by 

e−1LYM = −g −2tr
( 

 Fµν F µν − 
2 

D2
) 

. (8.68) 

8.7. Off-shell Gauss–Bonnet and its higher derivative scalar couplings in old minimal formulation 

The couplings of matter to N 1, 4D higher derivative supergravity were initiated in a series of papers [254–256], 

motivated by the low energy effective theory of heterotic string compactified on Calabi–Yau three-folds. Let us first 

recall the coupling of off-shell scalar multiplets to supergravity in the old minimal formulation without higher derivative 

corrections. Denoting the fields of the old-minimal multiplet by (ea , u, bµ, ψµ), the Lagrangian is given [316]29 

e−1L = 
 1 

φR − 
1 

φ′′ ∂ Z i∂µZ j∗ + 
i 

b φ′∂µZ i + 
 1 

φ(uu∗ − b bµ) 

12 2 1 
ij∗ µ 

1 3 
µ i 18 

µ 
1 3 

+ 
2 

φi
′
j
′ hihj∗ + 

2 
Wi

′hi + 
3 

u∗
(
φi

′hi + 
2 

W ∗
) 
+ h.c. , (8.69) 

where φ(Z , Z ⋆) := −3e−K (Z ,Z ⋆)/3 with K (Z , Z ⋆) representing the Kähler potential and W (Z ) is the holomorphic superpo- 
tential. The primes denote differentiation with respect to Zi or Z ⋆i, and in particular φi

′
j
′ means the second derivative of 

φ with respect to Zi and Zj∗. The vector field bµ, and the complex scalar u S iP a
∗

re the auxiliary fields in the old 
minimal supergravity multiplet, and hi is the auxiliary field of each the scalar multiplet. 

Next, let us consider the coupling of the off-shell Gauss–Bonnet invariant to the off-shell scalar multiplets. This was 

achieved in [256] with the Lagrangian given by 

e−1LGB = 
9 

f (Z )(⋆R ⋆ R − R ⋆ R) + 
{
f (Z )DµL + f ′hi

[ 
Ru∗ −  u∗(uu∗ + 5b bµ) 

+ iu∗Dµbµ + 2ibµ∂µu∗ + h.c. , (8.70) 

where f (Z ) is an arbitrary function of the scalar fields Zi and 

L  = u∗(∂ 
i ν ν −  )u + D (b b ) + 2ib B 

2 ν 3 µνρσ −  ib b b +  ϵ b D b , 
µ µ 

3 
ν  µ νµ 

3  
µ ν 

2 
ν  ρ σ 

3 1 i 1 1 
B = (R −  g  R) +  F  (b) −  (uu∗ + b bρ )g +  b b , (8.71) 

µν 
2  

µν 
6 

µν 
2 

µν 
6 

ρ µν 
3 

µ ν 

with Fµν(b)  2∂[µbν]. 

A higher derivative coupling of the chiral multiplets to old minimal supergravity has also been constructed [317,318]. 

Its construction utilizes the superspace method and demands absence of propagating ghosts. In the notation of [317], the 

bosonic part of the Lagrangian is given by 

e−1Lhds =  ∂µZi∂µZj∂ν Zk∗∂ν Zl∗ − 2hihk∗∂µZj∂µZl∗ + hihjhk∗hl∗  Tijk∗l∗| , (8.72) 

where Tijk l  is the lowest component of the tensor superfield Tijk l which is chiral and it is required to be hermitian 

and symmetric in pairs of indices i , j as well as k , l 30 We can now consider a linear combination of all three off-shell 
super-Poincaré invariant Lagrangians, 

L = LSG + αLGB + βLhds , (8.73) 

from which one can deduce that the auxiliary field hi obeys the cubic equation 

0 = φ′′ hj∗ + 
1 

W ′ + 
1 

u∗φ′ + αf ′
( 1 

Ru∗ − 
1 

u∗(uu∗ + 5b bµ) + iu∗D Aa + 2iDµ∂ u∗
) 

+2β(−hk∗∂µZj∂µZl∗ + hjhk∗hl∗)Tijk∗l∗| . (8.74) 

In the absence of Gauss–Bonnet coupling and restricting to a single chiral superfield, the auxiliary field equation was 

analyzed in [317]. It was found that when a superpotential is present, the auxiliary field h admits three distinct solutions, 

which lead to three distinct theories. One of these solutions is related to the usual solution for h that one obtains in 

two-derivative chiral supergravity, while the other two solutions correspond to new branches of the theory. 

The Lagrangian L  LSG  βLhds was generalized in [318] to include the coupling of Yang–Mills multiplets such that 
the Yang–Mills fields gauge an isometry group of the Kähler sigma model parametrized by the scalars Zi. The cubic field 

equation for the auxiliary field hi, encountered in this case as well, was analyzed by considering a single scalar multiplet. 
We refer the reader to [318] for further details. 

 

29 Here we are using the notation and conventions of [256]. 

30 Examples given in [317] are Tijk⋆ℓ⋆ = gik⋆ gjℓ⋆ + gjk⋆ giℓ⋆, and Tijk⋆ℓ⋆ = Rik⋆jℓ⋆. 

SG 
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8.8. Weyl4 tensor invariant in old minimal formulation from superspace 

In the context of the old minimal formulation, an off-shell Weyl4 invariant was introduced in superspace in [319] 

L = − 
 1  

∫ 

E 

[
3 

(

∇¯ 2 + 
1 

R¯

) 
(
αW 2 W̄  2 + 1

)]
d2θ + h.c. , (8.75) 

 

where α is an arbitrary constant. This Lagrangian has been worked out in components in [319]. While the terms involving 

the fermions are very complicated, the bosonic part turns out to be remarkably simple given by 

e−1L = −  R −  (M2 + N 2 − AµAµ) −  α 
[(

C+µνρσ C 
µνρσ )(

C−µνρσ C 
µνρσ ) 

+ · · · 
] 

, (8.76) 

where C±µνρσ are the (anti)self-dual part of the Weyl tensor, and ellipsis represents the terms involving the auxiliary 
fields (M, N , Aµ). 

 

8.9. N = 1, 4D supersymmetric extension of Starobinsky type R + R2 models 

The R2 extension of general relativity, known as the Starobinsky model [320], is one of the most studied and successful 

inflationary models. At the bosonic level, the Starobinsky model is given by 

e−1L R 
 1  

R2 . (8.77) 
6M2 

Its supersymmetric completion in the off-shell Type I multiplet formulation is given by the combination of L1 and LR2 

action from (8.53) [311]. In the new minimal setting, the off-shell Starobinsky model is given by the combination of (8.60) 
and L3 from (8.64). Note that in both the Type-I and new minimal settings, auxiliary fields can be consistently set to zero, 
leading to an identical on-shell result. 

The R  R2 Starobinsky model can also be expressed as a scalar–tensor theory, which is its most convenient form in 

cosmological applications, by considering the following Lagrangian [321] 

e−1L = Λ + 
 1  

Λ2 − ϕ(Λ − R) , (8.78) 

which, upon integrating out the ϕ, takes us back to (8.77). Varying this action with respect to Λ, im√posing the resulting 
field equation, performing the Weyl rescaling gµν ϕgµν and finally introducing a scalar field φ 3/2 ln ϕ, the action 
reads 

e−1L = R − ∂µφ∂µφ − 
3 

M2 

2 

(

1 − e 
−
√ 

2 φ 

)2  

. (8.79) 

This action is known as the scalar–tensor form of the Starobinsky model. Its supersymmetric version has been obtained 
in [322]. Following the same logic that leads to (8.79), the following result has been obtained for the bosonic part of the 

supersymmetrized R + R2 action in the old minimal formulation [323]: 

e−1
L = 

1 
R − K ¯∂ Z (I)∂µZ¯ (J¯) − V , (8.80) 

2 IJ µ 

where I, J = 1, 2 and 

V = eK 

(
KIJ̄ DI WD J̄ W̄ − 3 W W̄ 

) 
, 

K = −3 log 
(
Z (1) + Z  ̄(1) − Z (2)Z  ̄(2)

) 

 

2 

and KI := K,I KIJ¯ := K,IJ¯ and DI W = W,I + KI W . Parametrizing the complex scalar Z (1) as [322] 

Z (1) = 
1 

e

√ 
2 φ 

+ ib , (8.82) 

2 

the action is invariant under b b and Z (2) Z (2), so that one can set both b 0 and Z (2) 0 consistently. Doing 

so yields the scalar–tensor formulation of the Starobinsky model (8.79). 

The Lagrangian (8.78) can be generalized by replacing Λ2 with M2−2nΛ2n. This gives R Rn, upon elimination of Λ, 

and the potential 

 (n − 1) 
√ 

2 
( √ 

2 n 
n 

1 

V (φ) = . (8.83) 
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Note that the vector Vµ eats up the scalar a, so that this Lagrangian describes th∑e bosonic coupling of on-shell N = 1 
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i ν ν 

The supersymmetric completion of R + Rn model, in the off-shell old-minimal formulation is given by [322,324],31 

e−1L = 
1 

R − |S|2 + 3A Aµ 

2 
µ 

+αRe

[(
R + 6AµA + 6i∇ Aµ + 2|S|2

)n−2 

× 
(  1 

R2 + RAµA + 
n − 1 

R|S|2 

+3(AµA )2 + 
2n − 3 

|S|4 + (n − 1)AµA SS¯ + 3(∇ Aµ)2 + (n − 1)S¯□S 
µ 

3 
µ µ 

+(3n − 5)i|S|2(∇µAµ) + (2n − 2)iAµS¯∂µS

)] 

. (8.84) 

 

This was constructed in [322] in superspace, and in [324] by using superconformal tensor calculus in which the Weyl 

multiplet is coupled to a chiral multiplet compensator. In the latter approach, upon fixing the redundant symmetries, 

one obtains the off-shell Poincaré theory, in which the scalar S of the chiral multiplet ends up being an auxiliary field. 

Note that in the Lagrangian above, the complex scalar S has developed a kinetic term. If we do not treat the Rn as a 

small perturbative extension of the Einstein term, then the scalar S is unstable during the inflationary phase [325,326]. 

To avoid this problem, one can take the compensating chiral multiplet to be nilpotent [327–329]. In that case, the scalar 

S becomes bilinear in the fermions, and the bosonic part of the action turns out to be (8.84) with S set to zero. The dual scalar–

tensor model can then be constructed by following the steps spelled out in action [324], the resulting bosonic action 

being L  e(R  ∂µφ∂µφ  V ) where the potential V is given by (8.83). 

In the case of the new minimal supergravity, one can again start with the supersymmetric completion of R  R2 theory, 

which is now given by the lowest order in derivative Lagrangian (8.60) and the Lagrangian L3 in (8.64) that contains the 

R2 term. Next, one considers the analog of (8.78) in the new minimal formulation. This is done in [323] by introducing a 
linear multiplet playing the role of the Lagrange multiplier, and a vector multiplet, which upon the use of the Lagrange 

multiplier equation of motions becomes equal to a composite vector multiplet whose highest component contains the 
Ricci scalar. In the conventions of [323], integrating out the Lagrange multiplier gives a solution in which a chiral scalar 

multiplet with scalars (φ, a) arises. The resulting on-shell Lagrangian is given by [323] 
1 i 

e−1L = R − F µν(V )F  (V ) + ϵµνρσ F  (V )F  (V ) − 2e4/
√

6φ 
(
∂ a + V 

)2 

− 
1 

∂ φ∂µφ − 
9 

g 2 

(
1 − e

√
2/3φ 

)2 

. (8.85) 

supergravity to a single massive vector multiplet. Analogous construction of R + n ξnRn can be found in [330]. 

8.10. Off-shell Killing spinors in N = 1, 4D supergravity 

Motivated by constructing supersymmetric field theories on curved manifolds, off-shell Killing spinors in four- 

dimensional N  1 and N  2 supergravities with Lorentzian or Euclidean signature have been studied extensively. 

Here, we will focus on the off-shell N  1 supergravity with Lorentzian signature. Readers interested in the Euclidean 

case are referred to [331–336]. Supergravity backgrounds preserving certain amount of supercharges in off-shell N 2 

(conformal) supergravity with Lorentzian and Euclidean signatures can be found in [335–337]. 

Off-shell Killing spinors in N  1, 4D old minimal supergravity 

Off-shell Killing spinors in the N  1, 4D old minimal supergravity were first studied by [338] in pursuit of supergravity 

backgrounds preserving maximal off-shell supersymmetry. Later on, more general supergravity backgrounds preserving 

less supersymmetry were investigated in [339]. Here our presentation will closely follow [339]. In the old minimal 

supergravity, the vanishing of supersymmetry variation of the gravitino gives the Killing spinor equation 
[

∇  −  (γ − 2δ )γ V + 
1 

γ (S + iγ P )

] 

ϵ = 0 . (8.86) 

 

From the integrability of the Killing spinor equation, one can deduce the following conditions for a supergravity 

background to preserve maximal supersymmetry [338,339] 

SVµ = PVµ = 0,  ∂µS = ∂µP = 0 , 

∇µVν = 0,  Cµνρσ = 0 , 
2 1 R =  (V V − g  V 2) −  g  (S2 + P 2) . (8.87) 

µν 
9  

µ ν µν 
3 

µν 

 

31 The first line is obtained from (8.53) by setting g = 0 and letting bµ → 3Aµ, M → 
√

3S, R → −R. 
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= 
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∇ = 

n  m n 

= 

= 
∧ = 

ds2 = H−1 
(
Fdu2 + 2dudv + ̂gmn dym dyn

) 
, (8.88) 

m n 1/2 np n p 

µ 5 µ 
2 µ µ 5 ν 

− − 

1 

m 
2 m n + 

2 
+ 

2 m u 

m 

2 

Exploring the consequences of Killing spinor equation leads to the solutions for auxiliary fields [339], 

When Vµ 0, and S, P are non-vanishing constants, the background is AdS4 with the radius 3/
√

S2 P 2. If instead, Vµ is 

a non-vanishing covariantly constant vector, and S P 0, the background turns out to be R S3 or AdS3 R [338,339]. 
In general, the background preserves only a fraction of maximal supersymmetry. Assuming there exists a spinor 

satisfying the Killing spinor equation, one can show that its bilinear Kµ ϵγµϵ is a null Killing vector. Assuming K µVµ 0, 

one can show that Kµ is hypersurface orthogonal. One can choose special coordinates (u, v, ym) so that K µ∂µ ∂v, and 

thus the metric admitting such a Killing vector can be parametrized as 

 

 

where H, F and gmn depend only on coordinates (u, ym). To proceed, one introduces the vierbein basis 

e+ H−1du,  e− = dv + 
1 

Fdu,  ea = H−1/2ea dym . (8.89) 

= 
2 

ˆm 
 

3/2 2 mn −3/2 

S = −H ∇̂ (H− Xm),  P = H ϵ̂  ∂m(H Xn) ,  V− = 0 , 

V+ = −H ϵ̂ m n X ∂uX ,  Vm = H [−Xm (̂ϵ ∂nXp) + ϵ̂mn X ( ∇̂  Xp)] . (8.90) 

Thus the general supergravity background admitting at least one Killing spinor is characterized by H(u, ym), F(u, ym), gmn(u ym) and a unit spacelike vector Xm(u, ym) obeying XmXm = 1. The Killing spinor satisfies the projection conditions 
, 

γ +ϵ = 0,  Xaγ aϵ = ϵ . (8.91) 

When K µVµ 0, the geometric meaning of the background is unclear and deserves further study. It should be noted 

that so far, one has not employed field equations that are model-dependent. In N  1, 4D old minimal formulation 

of Einstein-Weyl and more general curvature squared supergravities, various supersymmetric solutions were studied 

in [340–342]. 

 

Off-shell Killing spinors in N  1, 4D new minimal supergravity 

In the convention of [339], vanishing of supersymmetry variation of gravitino leads to the Killing spinor equation in 

N = 1, 4D new minimal supergravity 
[

∇ + iγ A − 
i 

(γ ν − 2δν )γ V 

] 

ϵ = 0 , (8.92) 

where Aµ, and Vµ satisfying µVµ 0, are auxiliary fields. Combining the integrability of the Killing spinor equation with 

the requirement of maximal supersymmetry gives rise to the conditions 

∇µVν = 0,  ∂[µAν] = 0,  Cµνρσ = 0 , 

Rµν = 2(VµVν − gµν Vρ V ρ ) . (8.93) 

A solution to the equations above is given by R × S3 or AdS3 × R with 

Vi = Ai = 0,  V0 = 
1 

,  A0 = const , (8.94) 

where r is the radius of S3 (AdS3), and subscript ‘‘0’’ labels the component in the R-direction. 

Supergravity backgrounds preserving less supersymmetry were also analyzed in [339]. Using the same metric (8.88) 

and vierbein (8.89), the existence of at least one Killing spinor is guaranteed by taking the vector fields to be 

1 3 1 
A  = V  = 0,  V =  H −1 / 2 ϵ̂  n∂ H,  A +  V  = − H ϵ̂  X ∂ X , 

Am =  H2 
[
−Xmϵ̂np∂n(H−3/2Xp) + ϵ̂mn X n∇̂ p(H −3/2Xp)

] 
, (8.95) 

where A± and V± are lightcone projections of the vectors, and H, Xm are described in the previous subsection. Different 

from the old-minimal case, here, the Killing spinor obeys one projection condition γ +ϵ 0. Thus a generic off-shell 

background in new minimal supergravity preserves two of the four supersymmetries. As noticed in [339], this solution 

contains AdS4 with non-trivial auxiliary vectors breaking the AdS isometry. The background discussed so far corresponds 

to the untwisting case, meaning that the Killing 1-form Kµdxµ built from a bilinear of the Killing spinors satisfies 

K  dK   0. More general backgrounds for which the untwisting condition is violated can be found in [343]. There 

is also a close relation between N 1 conformal Killing spinors and Killing spinors in new minimal supergravity as 

described in [343]. 

 ̂
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e−1L = σ 
(
R − 2S2

) 
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1   1 
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1 2 3 4 5 6 7 

1 2 3 4 5 6 7 8 

= 

m2 
µν 

8 2 2 

8m̃ 2 m̌ 2 10 

+ 
1 

(

S3 + 
1 

RS

) 

+ 
1 

εµνλΓ ρ 

(

∂ Γ σ + 
2 

Γ σ Γ τ 

) 

, (9.1) 

8 
µν 

32 4 

32 4 
µν 

64 8 2 
µ 

512 2 4 64 16 

16 2 
µ 

256 2 32 8 22 

32 4 2 

9. D = 3 

 
Ungauged N  8 and N  16 supergravities were coupled to scalar multiplets in [344]. Generalizations to other 

ungauged N < 16 cases were provided in [345]. The most general gaugings of these theories were achieved in [346], 
which also provides references to earlier works. We shall review results for higher derivative invariants in the case of 

off-shell N  1, 2 supergravities in 3D. In the case of N  8 supergravity in 3D, higher derivative extensions have been 

obtained in [197] from the ordinary dimensional reduction of N  1, 10D heterotic supergravity on torus T 7, and in [48] 
from its double field theory formulation. 

We shall first review the higher derivative superinvariants for the off-shell N  1, 2 supergravities in 3D, and their 
salient properties, including the issue of ghost freedom and the (non)unitarity of their holographic duals as certain 2D 
CFTs. In the case of N   2 supergravity in 3D, there exist two distinct off-shell supergravities. They are also referred 

to as N   (1, 1) and N   (2, 0) supergravities, because they admit vacuum solutions with super AdS symmetry, 

OSp(2, p)  OSp(2, q), with (p, q)   (1, 1) and (p, q)   (2, 0), respectively. Since this terminology is associated only 
with the nature of the vacuum solution, we shall refer to the total amount of supersymmetry N  p q instead, in 

characterizing the supersymmetry of the actions in what follows. 

Beyond N  2, we shall review off-shell N  6 conformal supergravity coupled to matter, in which the gravitational 

sector contains the Lorentz Chern–Simons term. Its consistent truncations easily yield such models for N < 6. On-shell 
similar couplings will be reviewed for N   8. We shall also comment on superspace formulations for 4   N   8. 

Beyond four-derivative extensions, linearized results are available in [347]. Finally, we will also summarize results on 

exact solutions of higher derivative extensions of 3D (conformal) supergravities. 

It  is  worthwhile  to  mention  that  three-dimensional  higher-derivative  supergravity  only  makes  sense 

non-perturbatively. Indeed, if treated perturbatively, they can always be reduced to (cosmological) Einstein–Hilbert 

supergravity and a gravitational Chern–Simons supergravity by means of field redefinitions and truncations [348]. 

9.1. N = 1, 3D higher derivative supergravities 

9.1.1. Off-shell invariants from superconformal tensor calculus 
The off-shell N  1, 3D supergravity multiplet consists of a vielbein, a Majorana gravitino, and a real scalar auxiliary 

field. A general Lagrangian up to four-derivatives, has been constructed in [349] by using superconformal tensor calculus. 

Its bosonic part is given by 

1 
1 

(

R Rµν − 
3 

R2 − 
1 

RS2 − 
3 

S4

) 

+ 
  (

R2 + 16S□S + 12RS2 + 36S4
) 

+ 

(

S4 + 
 3 

RS2

) 

 

µˇ 2 µ λσ µ  ρν 3  µτ  νρ 

where (σ , M, m, m, µ, µ) are independent coupling constants. Thus, there are six independent off-shell invariants. The 
fermionic parts of Lσ , LM and Lµ can be found in [349, Eqs. (2.8) and (2.10)], and the fermionic part of the Lm2 

can be found in [349, Eq. (2.39)]. The supersymmetric completion of a specific combination of Lm2 and Lm2 , namely 

Lm2  1/8Lm2 is given in [349, Eq. (2.24)]. The bosonic part of the most general six-derivative supersymmetric Lagrangian 
is given by [350] 

e−1L2 = a1Rµν R
νρ Rρ 

µ + a2RRµν R
µν + a3R3 

+
(
− 

3 
a1 + a6

)
R  ∂µS∂ν S + 

( 31 
a1 + 8a2 + 32a3 − 

1 
a6 + a7

)
RS□S 

+
( 123 

a1 + 4a2 − a5 − 
1 

a6

)
S2R  Rµν − 

( 117 
a1 + 2a2 + 

5 
a6 − 

1 
a7

)
R∂ S∂µS 

+
( 223 

a + 
7 

a + 14a + a + 
1 

a + 
 7 

a − 
 1 

a 

)
R2S2 

+
(
− 

309 
a1 − 104a2 − 384a3 − 16a4 + 2a5 + 

3 
a6 − 10a7

)
S2∂ S∂µS 

+
( 2357 

a + 27a + 80a + 
19 

a − a + 
 5 

a − 
1 

a + 
 5 

a 

)
RS4 

+
( 527 

a1 + 52a2 + 160a3 + 25a4 − 3a5 + 
1 

a6 + 
1 

a7 + a8

)
S6 , (9.2) 

where ai with i 1, . . . , 8 are free parameters. The fermionic parts of these 8 independent invariants have not been 

provided in the literature. The following special cases of L1 have been studied extensively in the literature: 

N = 1 : Topological Massive Gravity (TMG): σ , M, µ , 
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N = 1 : New Massive Gravity (NMG): σ , m̌ 2 = 3m /5 , 

N = 1 : Generalized Massive Gravity (GMG): σ , µ, m̌ 2 = 3m /5 , (9.3) 

where the specified parameters are kept and µˇ = ∞. The fermionic parts of the Lagrangians LRS and L(6) can be 

straightforwardly obtained from the ingredients provided in [349–351]. Off shell, the supertransformation of the sole 

fermionic field is 

δψ  = 
(
∂ + 

1 
ω abγ 

)
ϵ + 

1 
Sγ ϵ . (9.4) 

The supersymmetric completions of these massive gravity models admit a maximally supersymmetric AdS3 vacuum. Thus 

they are holographically dual to supersymmetric 2D CFTs. With their higher derivative extensions, the left and right central 

charges for the CFT duals are given by [349] 

cGMG = 
3ℓ 

(

σ + 
  1  

∓ 
 1 

) 

, (9.5) 

 

which reproduces those of NMG in the µ limit while TMG is obtained in the m limit. The central charges for 

extended NMG (ENMG), corresponding to the following choice of free parameters in (9.2) 

a = 1 , a = − 
9 

, a = 
17 

, a = − 
 3 

, 
8 64 32 

a = − 
3 

, a = 
3 

, a = − 
3 

, a = − 
 33 

, (9.6) 

4 8 

are of the form 

8 160 

cENMG = 
3ℓ 

(

σ + 
  1  

− 
  a   

) 

. (9.7) 

 

It is important to note that GR in three dimensions with or without a cosmological constant, has no propagating degrees 

of freedom and local dynamics may be generated by adding higher-curvature terms at the price of introducing potentially 

ghost-like excitations. The special combinations listed in (9.3) are meticulously designed to avoid non-unitary perturbative 

degrees of freedom. Amongst them, TMG contains a single massive helicity-2 state where the mass is sourced by the 

gravitational Chern–Simons term, hence acquiring the name Topologically Massive Gravity. For NMG and GMG, their 

spectrum contains a pair of helicity-±2 states. 

 

9.1.2. On shell minimal massive supergravity from third way consistency 

Finally, in three-dimensions, there exist bosonic higher-derivative gravity models based on the third way consis- 

tency [352,353]. The landmark of these models is that the integrability of the metric field equation requires the metric 

field equation itself rather than being a geometric identity. Although the third way field equations cannot arise from 

the variation of a diffeomorphism invariant functional involving only the metric and its derivatives, a local Lagrangian 

formulation can be achieved by introducing a number of auxiliary fields whose elimination by field equations gives rise 

to the higher-derivative gravitational equations of motion. So far the only supersymmetric third way consistent model 

was given in [354,355] 

L = ϵµνρ 

[

e aR + λϵ e ae be c + τ e aD (ω¯ )e a + κ
(

ω̄ a∂ ω¯ + 
1 

ϵ ω  ̄ a ω̄ b ω̄ c 
)
] 

. (9.8) 

 

Here, Ra dωa 1 ϵabcωbωc with ω ω(e) and ω is an independent (torsionful) spin connection. D(ω) denotes the 

covariant derivative with respect to ω and τ , κ, λ are free parameters. The bosonic part of this model is known as the 

Minimal Massive Gravity (MMG) [356]. In [354,355], the N 1 MMG model was derived up to and including quartic 

fermions. Up to cubic fermion terms, the supersymmetry transformation rules for the fermionic fields are given by 

δψ = D (ω)ϵ − 
1 
(

ητ + 
 1 

) 

γ ϵ, δΨ = D (ω¯ )ϵ − 
1 

ητ γ ϵ , (9.9) 

 

where the constant η satisfies 

 1 
( 

 1 
)2 

τ 
( 

 1 
) 

 

For the time being, the fully supersymmetric completion of the MMG is yet to be obtained and possible ways of completing 

the model beyond the quartic-fermion level were suggested in [355]. 

. (9.10) 
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9.2. Off-shell N = (1, 1), 3D higher derivative supergravities 

 

The field content of the off-shell N = (1, 1), 3D multiplet is 

{eµ , ψµ, Vµ, S} , (9.11) 

where the gravitino is a Dirac spinor, the auxiliary vector Vµ is not associated with any gauge symmetry, and the auxiliary 

scalar S is complex. Recall that the terminology of N (1, 1) means that there exists a Lagrangian which admits an AdS 

vacuum with OSp(2, 1) OSp(2, 1) symmetry. The bosonic part of off-shell N  (1, 1), 3D supergravity up to and including 

four-derivative terms is given by [357] 
 

+ 
1 

[  
1 

− 
4 

ε 
µνρ 

(

Rµν 

 

ab(ω) ω + 
2 

ω 

 

 

ab ωνb
c ωρca

)  

µνρ Fµν Vρ 

] 

+ 
 1 

[

R 

 

Rµν − R 
7 17 

V V +  RV + R |S| 
23 

S|4 − F 

 

F µν 

+ 6 
(
∇ V µ

)2 
+ 

3 
(V 2)2 + 

11 
V 2 |S|2 − 6∂ S∂µS∗ − 

7 
iV µ S ∗ ←

∂
→

S

]  

+ 
 1 

[

R2 + 16 |S|4 + 4(V 2)2 + 6R |S|2 + 4RV 2 + 12 |S|2 V 2 

− 16∂ S ∂µS∗ − 8iV µ S ∗ ←
∂
→

S  + 16 
(
∇ V µ

)2

] 

+ 
 1 

[

RS2 + 
10 

S2|S|2 + 2S2V 2 − 4iS2∇ V µ + h.c.

] 

. (9.12) 

m̌ 2 3 

The fermionic part of the Lagrangian proportional to σ , M and 1/µ can be found in [357]. The fermionic terms of the four 

derivative action have not been given in component form explicitly, but it is straightforward to write them down using 

the ingredients provided in [357]. The supersymmetry transformation rules for the gravitino is given by 

δψ  = (∂ 1 ab 
+  ω γ )ϵ − 

1 
iV γ ν γ 1 ϵ −  Sγ (Bϵ)∗ . (9.13) 

µ µ 
4  

µ ab 
2  

ν µ 
2 

µ 

Special cases of the N = (1, 1), 3D model arise as follows: 

N = (1, 1) : Topological Massive Gravity (TMG): m = m̃ = m̌ = ∞ , 
2 8  2 2 2 

N = (1, 1) : New Massive Gravity (NMG): µ = ∞, m̃  = 
3 

m , m̌  = 8m , 

2 8  2 2 2 

N = (1, 1) : Generalized Massive Gravity (GMG): 

9.3. Off-shell N = (2, 0), 3D higher derivative supergravities 

m̃  = 
3 

m , m̌  = 8m . (9.14) 

 

Next, we summarize the off-shell N = (2, 0), 3D higher derivative couplings. The field content is 

{eµ, ψµ, Cµ, Vµ, D} , (9.15) 

where the gravitino is a Dirac spinor, Cµ is the gauge field, the auxiliary field Vµ is non-gauge and the auxiliary field D is 

real. Note that the notation N = (2, 0) means that there exists an AdS vacuum solution with OSp(2, 2) ⊕ O(2, 1) symmetry. 

The bosonic part of off-shell N = (2, 0), 3D supergravity up to and including four-derivative terms is given by 
 

+ 
1 

[

− 
1 

εµνρ 

(

R 

 

 

ab(ω) ω 

 
2 ab c 

+  ω ω ω 

) 

+ εµνρ F  V 

] 

+ 
 1 

[

R Rµν − 
1 

R2 + 4RD2 + RG2 − 2R Gµ Gν + 48D4 + 8D□D 

+ 8D G + (G ) − 2(F + ∇  G )2 − 
(
∇ G + 4DG  

)2

] 

 1 
+ 

m̃ 2 

[
(R + 24D2 + 2G2)2 − 8 

(
Fµν 

 

+ 2∇[µ 

 

 

Gν] 

 

+ 4DGµν 

)2 
+ 64D□D

] 
, (9.16) 

µν µν + µν 

µν ρab ρca 

+ ε 

µ 
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where 

Gµ := ϵµνρ Gνρ , G2 := GµGµ . (9.17) 

The fermionic part of Lσ , LM and Lµ can be found in [357]. The fermionic terms of the four derivative action have not 

been given in component form explicitly, but it is straightforward to write them down using the ingredients provided 

in [357]. The supersymmetry transformation rules for the gravitino is given by 

δψ = 
(
∂ + 

1 
ω ab γ  − iV 

)
ϵ − 

1 
i γ γ νλG  ϵ − γ Dϵ . (9.18) 

 

9.4. Off-shell N = 4, 3D higher derivative supergravities 

 

Off-shell N  4 topologically massive supergravity was constructed in [358] in superspace by coupling the N  4 

conformal supergravity [359] to a compensating hypermultiplet. Upon fixing the conformal symmetries, the resulting 

20B + 20F Poincaré supermultiplet consists of 
a IJ I I 

{eµ, Bµ, w, y ; ψµ, w } , (9.19) 

where I 1, . . . , 4, the vector fields are in (3, 1) (1, 3) of SO(4), w, y are real scalars, the rest are Majorana spinors. The 

vector fields in (3, 1) are gauge fields, and the spinor wI is in (2, 1) of SO(4). The degrees of freedom are 3, 15, 1, 1 16, 4 . 

The off-shell topologically massive supergravity Lagrangian is given by [358] 

e−1L = −
[
R + 

1 
Ba Bij + 2y + 2w2

] 
+ 

1 [
εabc tr

(
Rabωc − 

2 
ωaωbωc 

) 

−εabctr

(
FabBc − 

2 
BaBbBc 

) 
− 2wy

] 
, (9.20) 

where Bij = − 1 (γ IJ )ijBaIJ is the self-dual part of the vector fields. Note that going on shell gives ω = −µ and y = −2µ2, 

thereby leading to 

2 1 
L = −e(R + 2µ ) + 

µ 
LCS , (9.21) 

which admits an AdS vacuum with µℓ  1, where ℓ is the AdS radius. This is the critical point at which the bulk gravity 

mode disappears, and a single helicity 2 boundary graviton arises [360]. Aspects of the coupling of the model above to 

matter have been studied in superspace in [361]. 

A higher derivative extension of N  4, 3D supergravity beyond the Lorentz CS term has been constructed, albeit at 

the linearized level, by using superconformal tensor calculus [347]. After fixing the conformal symmetries, the resulting 

off-shell supergravity multiplet consists of the following 24B + 24F fields 
ij i i i 

{hµν, Vµ , E, D, Φ ; ψµ, χ , ψ } (9.22) 

where i 1, . . . , 4, the scalars D, E, Φ are real, and the spinors are Majorana. The degrees of freedom are 

3, 18, 1, 1, 1 16, 4 . Up to and including five derivatives, the linearized level Lagrangian constructed in [347] has the 

following schematic form: 

e−1L = 
(
hµν G(lin) + · · · 

) 
+ 

 (
hµν C (lin) + · · · 

) 
+ 

(
−  ϵµτρ hµ

ν ∂τ C (lin) + · · · 
) 

+ 
(
R

µν 
C (lin) + · · · 

) 
, (9.23) 

where G(lin) is the linearized Einstein tensor, and 

C (lin) = ε τρ ∂ S(lin) , S(lin) = R(lin) − 
1 

η 

 
 

 
R(lin) . (9.24) 

µν µ τ ρν µν µν 4 
µν 

For further details, including the supertransformations, see [347]. 

The part of the Lagrangian proportional to 1/µ in (9.23) constitutes the bosonic part of conformal supergravity. Its 

superconformal coupling to the so called Chern–Simons matter is of considerable interest. In what follows we shall 

review such couplings for N 6, 8 (denoted by N below to save N for flavor groups) from which couplings with less 

supersymmetry can be obtained by consistent truncations. We shall comment briefly on their superspace formulations in 

Section 9.7. 
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= 

= = 

× −  −  − 

a 

ij  ij kl mn 

cd a b 

µ 
i i 

ϵ D γ ϵ D E ϵ ϵ E E η E , 

Aa  AB  BC AB 

ij ij ik kj ik kj 

× 

2 µ ρ 3 µ ν ρ 

+ 
 1  

ieEijf ab (Z Γ ijZ¯ ) c (Z Z¯ ) d + 
 1  

ieDij tr(Z Γ ijZ¯ ) − 
1 

eEijEij|Z |2 , (9.27) 

Aa c d A A c D d a 

a A a 

δχ ijk = − 
 3  

γ µνϵ[iGjk] + 
1 

ϵijklmnϵl Dmn + 
1 

ϵijklmnγ µϵl D Emn − 
 3  

ϵl E[ijEkl] 

δψ = − 
  1   

γ µϵi(Γ i)  D ZB + 
  1   

ϵi(Γ i)  Y BC − 
1 

iϵk(Γ ijΓ k)  ZBEij 

µν ν µ µ ν ν µ 

µ µ 

1 2 2 

 

9.5. N = 6, 3D higher derivative conformal supergravity coupled to matter 

 

The on-shell N 6 conformal supergravity including the Lorentz–Chern–Simons term coupled to ABJM matter was 

constructed in [362] by employing Noether procedure. The complete off-shell version was constructed later in [363] also 

by means of Noether procedure. The off-shell field content of N = 6, 3D conformal supergravity is [363,364] 
r A ij ij i ijk i 

{eµ, Bµ B , Cµ, E , D ; ψµ, χ  , χ } (9.25) 

where i 1, . . . , 6, A 1, . . . , 4 label the vector and spinor representations of the R-symmetry group. The i, j 

indices are anti-symmetrized and the spinors are Majorana, Bµ
A

B and Cµ are the gauge fields of the R-symmetry group 

SU (4)R U (1)R. The fields Eij, Dij, χijk, χi, which have conformal dimensions 1, 2, 3/2, respectively, thus satisfy 

algebraic field equations. This multiplet was coupled to on-shell SU (N ) gauge invariant ABJM model32 which has the 
field content 

A a 

{ Za , Aµ b; ψaA} , (9.26) 

where Aµ
a
b is the SU (N ) gauge field, ZA and ψaA are the scalars and fermions. The bosonic part of the Lagrangian is given 

by [363] 

L = ϵ tr
(
ωµ∂ν ωρ +  ωµων ωρ

) 
− ϵ tr

(
Bµ∂ν Bρ +  BµBν Bρ 

) 
− 2ϵ Cµ∂ν Cρ 

µνρ µνρ µνρ 
   

−2eD Eij + 
  1   

ϵijklmnE E E − eD Z¯ aDµZA − 
2 

e|Y BC 2 
1 

R|Z |2 

3
√

2 1 
µ A a 

2 3 
Aa | − 

8 

−  ϵµνρ 
(
f ab

cdA
c 

b∂ν A
d 

a +  f ac
dhf 

hg 
ebA

b 
aA

d
c A

e 
g 

) 

√
2 

where 

√
2 4 

Y BC =f cd
ba

(
ZBZC Z¯ b + δ

[B
Z

C ]
Z¯ bZD 

) 
, (Z Γ ijZ¯ )a

b = ZA (Γ ij)A
B Z¯

B 
b , 

(Z Z¯ )ab =ZAZ¯
A 

b , |Z |2 = Z¯ aZA . (9.28) 

Up to leading order in fermions, the model is invariant under the following superconformal transformations of the 

fermionic fields 

δψ i = Dµϵ + γµη , 

4
√

2 µν 2 4 
µ √

2 
1 

− 
2 

ϵ 
ijklmn ηl Emn , 

δχ i = − 
 1  

γ µνϵiG j  ij 1  µ j ij  1  ijklmn j kl mn j ij + − +  + 

4
√

2 
µν 

2 
µ 

8
√

2 

2
√

2 
1 i 

µ a 
2
√

2 
i B 

Aa 8 a 

+ 
2

√
2 

(Γ )ABη Za , (9.29) 

where 

Gij = ∂µB − ∂ν B + B B − B B , Gµν = 2∂[µCν] . (9.30) 

Here, Bij = BA 
B (Γ ij)A

B , and the gauge covariant derivative Dµ contains the SO(6) × U (1) gauge fields. The closure of the 

superconformal algebra on the matter fields requires their field equations and therefore while the conformal supergravity 

sector is off-shell, the total Lagrangian is invariant on-shell in the matter sector, as observed in [363]. The field equations 

 
32 The allowed gauge groups in the absence of coupling to supergravity were classified in [365] (see also [366]). Upon coupling to supergravity, 

new possible groups arise, and their superspace formulation has been discussed in [361]. In the case of coupling to supergravity, there exists a 

model with gauge group SU (N ) U (1) and matter fields in the fundamental representation. The model discussed here corresponds to that model in 

which the U (1) is decoupled by setting its charge to zero. 

2 3 3 
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8
√
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AB 

× 
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= − 
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= ! 

= { } = = 

8 2 64 2 
a 

µ 2 
µ ν ρ 

3 
µ ν ρ µ ν ρ 

3 
µ ν ρ 

3 2 a b c 

2 a b + 
4 

| a b 

48 
+ 

32 
| 

12 · 64 

i i B 

δψaA = γ µΓ i ϵ i D̃µ Z B + f cdab

[
− 

(
Z¯

c Γ iZd

) 
Z¯ bϵi + Γ i ZB 

(
Z Z¯ 

)
d 

bϵi
] 

1 1 

with λ an arbitrary constant, and tα the generator of SU (N ) [367]. The scalar potential takes the form 

AB a A AB c 

 

of the auxiliary fields are algebraic and can be readily solved to express them in terms of the ABJM fields as 

Dij = √ iµf ab
cd(Z Γ ijZ¯ )a

c (Z Z¯ )b
d + √ iµ2(Z Γ ijZ¯ )b

a
[
(Z Z¯ )a

b − δb|Z |2
] 

, 

Eij = 
 1  

iµ tr(Z Γ ijZ¯ ) . (9.31) 

Using these expressions in (9.27) yields the on-shell model obtained earlier in [362], and the Lagrangian in convention 

of [362] takes the form,33 

L = 
1 [ 1 

ϵµνρ tr 

(

ω ∂ ω + 
2 

ω ω ω 

) 

− ϵµνρ tr 

(

B ∂ B + 
2 

B B B 

) 

(9.32) 

+ 
1 

ϵµνρ C ∂ C 

] 
− 

1 
e|Z 2|R − | D̃  ZA 2 

1 
ϵµνρ tr 

(

A ∂ A + 
2 

A A A 

) 

− V , 
 

 

where 

2 
µ ν ρ 

8 

A A A  B b A 

µ a | + 
2 

A 

µ ν
˜

ρ 

3 
µ
˜

ν
˜

ρ 

and 

D̃ µ Z a  = ∂µZα + Bµ BZb + ̃A µ  aZb + qCµZa , (9.33) 

ac
bd  µ

d
c 

ab
cd = λ (tα [a

c  
α b]

d Ã µ  b = f A , f ) (t ) , (9.34) 
 

V = 
2 (

f ab
c′dfa′b′ 

cd − 
1 

f ab
b′dfa′c′ 

cd
) (

Z Z¯ 
) 

a′ (
Z Z¯ 

) 
b′ (

Z Z¯ 
) 

c′ 

+ 
1 

µf abcd

[ 
− 

(
Z Z¯ Z Z  ̄

) 
c 
(
Z Z  ̄

) 
d Z |2 

(
Z Z  ̄

) 
c 
(
Z Z  ̄

) 
d
] 

+µ2

[
− 

 1 
tr

(
(Z Z¯ )3

)  1 
Z 2| tr

(
(Z Z¯ )2

) 
− 

  5  
(|Z |2)3

] 
. (9.35) 

The on-shell supersymmetry transformations of the fermionic fields, in convention of [362], are given by 

δψ i  1  = ±   D (ω, B)ϵ + γ η , 
µ √

2 
µ µ 

 

 

 

where Γ i 

+ΓAB η Za , (9.36) 

are the chirally projected SO(6)R gamma matrices. 

9.6. N = 8, 3D higher derivative conformal supergravity coupled to matter 

The off-shell field content of N = 8, 3D conformal supergravity is 
r ij ijkl ijkl A ABC 

{eµ, Bµ , E  , D  ; ψµ, χ } (9.37) 

where i  1, . . . , 8 and A  1, . . . , 8 label the vector and spinor representations of the R-symmetry group SO(8), Bµij 

are the gauge fields and anti-symmetrizations in SO(8) indices are understood. The scalars Eijkl and Dijkl have opposite 

SO(8) dualities. Writing Dijkl ηϵijklmnpqDmnpq/4 , it was shown in [368] that there are two distinct off-shell conformal 

supergravities for η  1 and η 1. As far as the Lagrangians are concerned, in the case of η  1 the coupling of 
BLG matter with SU (2) SU (2) gauge symmetry [369,370] to off-shell conformal supergravity background was achieved 
in [368] but neither the Einstein–Hilbert Lagrangian nor the Lorentz Chern–Simons conformal supergravity action exists 

in this off-shell setting. This is due to the fact that this would require a term of the form EijklDijkl, which is not possible due 

to opposite duality properties [347].34 Interestingly enough, it was shown in [368] that the coupling of N 8 conformal 
supergravity background to Chern–Simons matter was not possible for η  1 unless one puts the conformal supergravity 
on-shell. 

Focusing on the coupling of N   8 on-shell conformal supergravity to BLG matter in the presence of Einstein–Hilbert 
and Lorentz Chern–Simons terms, we turn to the construction of [371,372]. In the absence of coupling to supergravity the 

allowed gauge group is SU (2) × SU (2) [369,370] but in the presence of supergravity more groups, and in particular SO(N ), 

are possible [361,372]. Following [372], we shall summarize the bosonic sector of the coupled system with SU (2) × SU (2) 

 

33 According to [362] the matter fields carry U (1)R charge q = ±1/4, as fixed by supersymmetry, while in [363] it is ±1/2. 

Decomposing the index i I, 8 with I 1, . . . , 7 gives an N 7 off-shell supermultiplet and a linearized off-shell action in which the 

Lorentz Chern–Simons term is present since the required term of the form DIJKLEIJKL now exists. See [347] for further details. 

34 
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12 
b c d 32 · 64 a a b b 
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δψa = γ µΓ i ϵ D̃  Xi − 
1 

λϵabcdΓ ijkϵXi Xj Xk + 
1 

µΓ iϵ
(
Xi X

j 
Xj − 

1 
Xi X 2
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2 µν m2 2 
µ τ ρν M4 (lin) µν 

µ µ 

µ µ 

µ a 6 b c d 8 b b a 4 a 

 

gauge symmetry, which brings in new couplings, just as in the N  6 case summarized in the previous subsection. It will 

be straightforward to deduce the case of SO(N ) gauge symmetry from these results as will be explained below. The fields 

of the on-shell supergravity and matter multiplets are 
r A i A ab 

{eµ , Bµij, ψµ} , {Xa, ψa , Aµ } , (9.38) 

where a 1, . . . , 4 labels the vector representation of the gauge group SO(4) SU (2) SU (2). The bosonic part of the 

Lagrangian constructed in [372] is of the form 

L = 
1 [ 1 

ϵµνρ tr
(
ω ∂ ω +  ω ω ω 

) 
− ϵµνρ tr

(
B ∂ B + 

2 
B B B 

)] 

−  eX R − ̃Dµ X D̃ X −  ϵµνρ tr
(

Aµ∂ν Ãρ +  A µ Ã ν Ã ρ  

) 
− V , (9.39) 

where D is the supergravity covariant derivative (see [372, Eq.(2.12)] for its definition) and 

Ã a b  = 
(
λ ϵabcd − 

4 
µ δab

)
Acd , (9.40) 

and the potential is given by 

V = 
 1 

eλ2 
(
ϵabcdXi Xj Xk

)2 
+ 

  1  
eµ2 

(
X 2Xi − 4Xj Xj Xi 

)2 

, (9.41) 

with X 2 = Xi Xi and λ a constant. The supertransformations of the fermionic fields, up to cubic fermions, are [372] 
a a 

1 
δψµ = ±√

2 
Dµ(ω, B)ϵ + γµη , 

 

+XaΓ η . (9.42) 

It was observed in [372] that setting λ 0 gives a result which can be readily extended to an SO(N ) invariant one by 

simply declaring the range of the index a to be 1 to N . 

Models summarized above accommodate topologically massive gravity. A massive gravity version is known at the 

linearized level. The linearized N = 8 off-shell supergravity multiplet consists of the following fields 

{hµν, Bµ , Eijkl, Dijkl, Φijkl ; ψµ, χ ijk, ψ ijk} (9.43) 

where i, j  1 . . . , 8. All but ψ ijk and Φijkl constitute the Weyl multiplet, with triality used to replace the SO(8) spinor 

indices on the fermions with the bosonic ones. The extra fields arise from taking eight copies of N  8 scalar multiplets, 

each containing 8B 8F degrees of freedom, and imposing certain constraints on them in order to fix the redundant local 

symmetries, as detailed in [347]. At the linearized level, the bosonic part of the Lagrangian is given by [347]. Schematically, 

it takes the form 

e−1L = 
1 (

hµν G(lin) + · · · 
) 

+ 
 1 (

− 
1 

ϵµτρ h ν ∂ C (lin) + · · · 
) 

+ 
 1 (

C 
µν 

C (lin) + · · · 
) 

. (9.44) 

The linearized supertransformations of the fermionic fields are given by 

δψ i = − 
1 

γ ρσ ∂ h  ϵi − Bij ϵj + 
1 

γ γ ρ Bij ϵj , 
µ 4 

ρ µσ µ 2 
µ ρ 

δχ ijk = − 
3 

γ µF [ijϵk] + γ µ(∂ Eijkl)ϵl + Dijklϵl , 
4 

µ µ
 

δψ ijk = − 
3 

γ µB[ijϵk] + Eijklϵl + γ µ(∂ φijkl)ϵl , (9.45) 

4 µ µ 

where F µij = εµνρ∂ν Bij . 

 

9.7. Comments on superspace formulation for matter coupled 4 ≤ N ≤ 8 models 

 

So far we have focused on N  1, 2, 4, 6, 8. On-shell N  3, 5, 7 models can be obtained by suitable truncations of 

the N  8 model summarized above. Off-shell, on the other hand, one can start from the N  6 model that describes 

the coupling of conformal supergravity to Chern–Simons matter and perform consistent truncation as follows [363] 

N = 5 : eµ
r , ψ i , Bij , χ ijk , χ6 , Ei6 , Di6 , 

N = 3 : eµ
r , ψ i , Bij , χ123 . (9.46) 
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There exists a large body of literature on superspace formulations of these theories which go beyond the scope of this 

review. In particular, Chern–Simons matter coupled N  6, 8 models were treated in [372], while more extensive studies 

covering the range 4  N  8 were conducted in [361].35 In terms of on-shell superfields, the spinor derivative of the 

scalar is 

DαiQ = iΓiΛα , α = 1, 2,  i = 1, . . . , N . (9.47) 

The lowest component of Q represents the matter scalars, which in general carry the spinor index of the R symmetry 

group and flavor indices for fundamental or bifundamental representations. The derivative of Λ takes the form 

i µ i 1 i 

Dα Λβ = γαβ Γ DµQ + 
2 

ϵαβ H , (9.48) 

where Hi = Hi i  with constraints 
1 

[j i] 
SG = − 

2 

(
W ijklΓkl + 4K Γ ij

)
Q , 

[j  i] 
CS 

= F Q + QG , (9.49) 

where F ij and Gij correspond to the field strengths of gauge fields associated with gauging a flavor group of the form F  G. 

The constraints on Hi are solved cases by case for 4  N  8, and the field equations for the matter fields are presented 

in superspace in [361]. It is also found that on-shell, the super Cotton tensor satisfies 

W ijkl = − 
µ 

Q¯ Γ ijklQ . (9.50) 

Imposing Q to be constant, supersymmetry requires that 

4K Γ ijQ = −WijklΓklQ . (9.51) 

Using (9.50) in this equation, K can be solved for, and it turns out to be the cosmological constant, as can be deduced 

from the commutator [Dµ, Dν ] = 4K 2Mµν. 

 

9.8. Higher derivative N = 8, 3D supergravity from higher dimensions 

 

Ungauged N 8, 3D supergravity coupled to scalar multiplet whose scalars parametrize the coset SO(n, 8)/SO(n) 

SO(8) was constructed in [344]. We are not aware of a direct construction of its higher derivative extension. However, 

such an extension can be obtained from ordinary dimensional reduction of heterotic supergravity extended by Riemann- 

squared term on torus T 7. In the resulting action, the scalar fields parametrize the coset SO(n 7, 7)/(SO(n 7) 

SO(7)) [48,373]. A detailed construction in which the SO(7, 7)/(SO(7) SO(7)) coset is enlarged to SO(8, 8)/(SO(8) SO(8)) 

upon dualization of the 7 7 vectors coming from the metric and Kalb–Ramond field, was achieved in [373] at least in 

the bosonic sector. This construction also incorporates the dilaton into the parametrization of the enlarged coset. Here 

we shall summarize this result, without specifying the embedding into the heterotic supergravity, the details of which 

can be found in [373]. 

An essential ingredient in describing the action in 3D is the scalar current defined in terms of the O(8, 8) scalar matrix 

M, as follows 

Jµ = ∂µM M−1 . (9.52) 

The O(7, 7) invariant metric ηMN and projector PMN are defined as 

⎛ 
0 δmn 0  0

⎞ 

0 0 0  1 2 

0 0 1  0 

It is also useful to define the O(8, 8) compensating vector 

u = {0, 1, 0} . (9.54) 

 

35 For purely conformal supergravity sector, earlier work existed; see, for example, [359] where new results for off-shell N 3, 4, 5 supergravity 

actions were given. 

η MN = ⎜ (η MN − MMN ) ,  m, n = 1, . . . , 7 . (9.53) 
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Given that the field equation for the 3-form field strength implies that it is a constant, and choosing that constant to be 

zero, the bosonic sector of the Riemann-squared extended heterotic supergravity on T 7 gives the action [373] 

I = 

∫ 

d3x 
√

−g 

(

R + 
1 

Tr ∂ M∂µM−1

) 

− 
α′ 

e−2Φ 
[
− 

 1 
Tr 

(
J J J µJ ν 

) 
− 

 1 
Tr 

(
J J µJ J ν Mη

) 

− 
64 

Tr 
(
JµJν 

) 
Tr (J µJ ν ) + 

128 
Tr 

(
JµJ µ

) 
Tr (Jν J 

ν ) 

+ e−2Φ 

(

− 
1 (

uP ηJ J J µJ ν P u
) 

+ 
1 (

uP ηJ J µJ J ν P u
) 

− 
1 (

uP ηJ J J ν J µP u
) 

− 
1 

Tr 
(
J J 

) 
(uP ηJ µJ ν P u) + 

1 
Tr 

(
J J µ

) 
(uP ηJ J ν P u)

) 

+ e−4Φ 

(

−2 uP ηJµJν P u (uP ηJ µJ ν P u) + uP ηJµJ µP u (uP ηJν J 
ν P u)

)] 
, (9.55) 

 

where Φ is the dilaton field. While the O(8, 8) symmetry is manifest in the two-derivative action, it is clear that the 

four-derivative part breaks that symmetry due to the presence of the compensating vector u, and the appearance of the 

dilaton. In describing the lift of this theory to 10D, the required formulae that give the expression for the coset scalar 

matrix M in terms of the 10D heterotic supergravity fields are provided in [373]. 

A massive deformation of the theory above is obtained by switching on the three-form field strength [373]. The mass 

parameter arises from the dualization of the two-form field Bµν. At the two-derivative level, the massive deformation 

results in a topological mass for the vectors and a potential for the dilaton which breaks O(8, 8) to O(7, 7) [374]. A four- 

derivative extension of this theory is worked out in [373] where it is also shown that a novel Chern–Simons term based 

on composite connections arises and that remarkably it is O(8,8) invariant to leading order in the deformation parameter. 

 

9.9. Killing spinors and exact solutions 

 

In what follows, we shall review the solutions to the Killing spinor equations for N  1, 2, 3D supergravities. While 

there is an extensive literature on the solutions for these theories, we shall focus on the review of those of topologically 

massive supergravities. Exact solutions of N  (1, 1) and NMG theory can be found in [375], and those of N  (1, 1) and 

GMG theory in [376,377]. 

 

9.9.1. On-shell Killing spinors in N   1 TMG and exact solutions 

In N 1, 3D supergravity, all fermions are two-component Majorana spinors. This severely restricts the structure of 

supersymmetric background configurations, that is, only planar-wave type solutions with a null Killing vector as well as 

maximally supersymmetric AdS3 and Minkowski background solutions are possible. For TMG, the Killing spinor equation 

is given by setting S  m and δψµ  0 in (9.4). In this case, K µ  ϵγ µϵ is a null Killing vector for commuting Killing 

spinor ϵ, i.e. 

K µKµ = 0 , ∇µKν + ∇ν Kµ = 0 . (9.56) 

The integrability condition for the Killing spinor 

Gµν − m2g µν γν ϵ = 0 , (9.57) 

implies that the only maximally supersymmetric configurations are the Minkowski space with m  0 and the anti-de 

Sitter space with Gµν  m2gµν. The most general local forms of the supersymmetric solutions are classified depending on 

the value of gravitational Chern–Simons coupling µ [378] 

µ ≠ −1 : ds2 = dρ2 + 2e2ρ dudv + e(1−µ)ρ f (u)du2 , 

µ = 1 : ds2 = dρ2 + 2e2ρ dudv + ρf (u)du2 , 

µ = −1 : ds2 = dρ2 + 2e2ρ dudv + ρe2ρ f (u)du2 , (9.58) 

where f (u) is an arbitrary function of u, and we have set m  1. The Killing spinor equation is solved by a single, v- 

independent Killing spinor for all these plane-wave solutions [378]. If f (u)  0, however, there is a supersymmetry 

enhancement with two Killing spinors and the solutions become the AdS3 in the Poincaré patch. There is also an extremal 

BTZ black hole solution with a single, globally defined, Killing spinor. 
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9.9.2. Off-shell Killing spinors in N (1, 1), 3D theory and 1/4 exact supersymmetric solutions of TMG 

In the case of N (1, 1) supersymmetry, the off-shell Killing spinor equation is given by setting B 1 and δψµ 0 

in (9.13). The consequences of this equation are described in detail in [379]. Here we shall summarize the exact and 

supersymmetric solutions that use the properties of the Killing spinors. 

For the time-like Killing vector, and focusing on the solutions with 

S = m , V0, V1 constants , V2 = 0 , (9.59) 

where the indicated components of the vector are in the tangent space, the solutions can be summarized as follows [379]. 

• Round AdS3: The solution is given by 
2 

ds2 
ℓ 

y2 

(
−dτ 2 + dx2 + dy2

) 
, ℓ ≡ m−1 . (9.60) 

For this solution, the components of the vector field are Vµ = 0. 

• AdS3 pp-wave: The solution is given by 

 

ds2 
du2 dx+dx− 

= ℓ 
u2 

2 

µℓ+2) 
 

u 

 

, (9.61) 

and the vector field V in this coordinates takes the form 

V = (µℓ + 1) uµℓ dx− . (9.62) 

The limit µℓ → −2 leads to the ‘‘minus’’ null warped AdS3 metric. 

• Null warped AdS3: If the non-vanishing components of the vector field are set to 

V0 = 
µ 

,  V1 = m = −ℓ−1 , (9.63) 

and |µℓ| = 2, indicating that V2 = 0, then the following metric is a solution to the equations of motion 

ds2 = −e−4mydt2 ∓ 2e−2mydtdx + dy2 . (9.64) 

Upon change of coordinates 

y = ℓ log u , t = ℓ x− , x = ∓ ℓ x+ , (9.65) 

one recovers the ‘‘minus’’ null warped AdS3 metric, which is the µℓ 2 limit of (9.61). 

Spacelike squashed AdS3: Imposing the components of the vector fields to be (9.63) and setting µℓ < 2, the 

following metric is a solution to the equations of motion 

2 ℓ2 
[ 

−dt′2 + dz2 
2 

( 
dt′ 

)2
] 

 

This is a spacelike squashed AdS3 with squashing parameter ν2 given by ν2 1/4(µℓ)2. The terminology of 

‘‘squashed’’ is due to ν2 < 1. 

Timelike stretched AdS3: Imposing the components of the vector fields to be (9.63) and setting µℓ > 2, the 

following metric is a solution to the equations of motion 

2 ℓ2 
[ 

2 

( 
dt′ 

)2 
dt′2 + dz2 

] 

 

This is a timelike stretched AdS3 with squashing parameter ν2, again defined as ν2 1/4(µℓ)2. The terminology of 

‘‘stretched’’ is due to ν2 > 1. 

All these background solutions, except for the AdS3 metric, preserve 1/4 of the supersymmetries. 

 

9.9.3. Killing spinors in N  (2, 0), 3D theory and exact solutions in TMG 

In the case of N  (2, 0) supersymmetry, the Killing spinor equation is given by setting δψµ  0 in (9.18). In N  (2, 0) 

four-derivative gravity (9.16), the presence of the RD2 term is problematic for ghost-freedom on AdS background, and the 

combination that cancels RD2 term is not the NMG combination, again leading to ghost-like fluctuations around AdS 

vacua. This problem does not exist in N  (1, 1) theory owing to the existence of an off-diagonal RS2 action that cancels 

out the RS2 term in the supersymmetric NMG action [357]. Consequently, the existing literature on the supersymmetric 
backgrounds and black hole solutions only focuses on N = (2, 0) topological massive gravity, which is equivalent to 

setting m = m̃ = ∞ in (9.16). 

ds 
4 z 

. (9.66) 

ds 
4 z z2 

. (9.67) 
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, (9.69) 

= 
= 
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0 
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= ≠ = → − 
= 

= ≠ 
= 

= ≠ 

1  

κ 

= − dt − 
|κ| x 

dy + 
|κ|x2 

dx + dy 

= −e x κ1 dt + Γ − 1, x dy + 
2 

. (9.77) 

 
In the case of a null Killing vector, the analysis is identical to the N  1 theory [378]. For a timelike Killing vector, 

it is possible to make a weaker ansatz compared to N  (1, 1) theory, i.e. the components of the vector field Vµ can be 
non-constant in the flat basis. In fact, if the metric is assumed to be of the form [380] 

ds2 = −f 2 (dt + A)2 + e2σ  dx2 + dy2  , (9.68) 

in the adapted coordinates 
(
t, x1 ≡ x, x2 ≡ y

)
, then the solutions can be classified by the following ansatz [380] 

 

8 

where ρ  e−2σ ∂[1A2] and M is constant. Based on the ansatz for the metric and the equations of motion for the vector 
fields Cµ and Vµ, the ansatz (9.69) can be further split into two sub-cases: (i.) f and ρ are separately constant and (ii.) f 
and ρ are not necessarily constant. 

Taking ρ and f to be constants, all solutions are characterized by the constant values of two parameters; ρ  ρ0 
const. and κ which is defined as 

κ ≡ 2 (−µ + 2D + ρf ) 

( 
ρf 

− D

) 

− f 2ρ2 . (9.70) 

If f is not constant, choosing a special form f ρ = −2µ for the ansatz (9.69), the solutions are classified in terms of four 

parameters, {κ1, κ2, c1, d1}. In this case, f and ρ are given by 

f = ehx−κ2/κ1 , ρ = −2µe−hxκ2/κ1 . (9.71) 

where h  c1x  d1. 
The consequences of the Killing spinor equation are described in detail in [380], where several supersymmetric 

solutions of TMG can be found, and which we list below. 

• Fully supersymmetric solutions: 

In this category, only the first two solutions have f = constant. 

Round AdS: For κ < 0 and ρ2 = |κ|, the solution is given by a round AdS metric (9.60) as long as M = ̸0. In this 
f = constant and κ is defined in (9.70). 

Warped timelike flat: For κ = 0 and ρ0 = ̸0, the solution is given by the warped timelike flat metric 

ds2 = − (dt + ρ0 x dy)2 + dx2 + dy2 . (9.72) 

z-warped null flat: For κ1 = ̸0 and c1 = 0 along with κ1 = −κ2, the solution is given by 

ds2 = −e2w/µdt2 − 2dtdy + dw2 . (9.73) 

Spacelike squashed AdS: For κ1 κ2, c1 0 and c1 > 2µ, the solution is identical to (9.66) with the squashing 
parameter ν 4µ2/c1

2 < 1. 

Timelike warped AdS: For κ1 κ2, c1  0 and c1 < 2µ, the solution is identical to (9.67). In this case, the 
deformation from AdS3 is stretched, i.e. ν 4µ2/c1

2 > 1. 

Null warped AdS: For κ1 κ2, c1 0 and c1 2µ, the metric is null warped AdS given by the µℓ 2 limit of 
the AdS3 pp-wave metric (9.61). 

• The half-supersymmetric solutions: 

In this category, only the first two solutions have f = constant. 

Warped timelike AdS: For κ < 0, ρ2 = ̸|κ| and ρ0 = ̸0, the solution is a warped timelike AdS. 

2 

( 
ρ0 1 

)2 
  (  

2 2
) 

 

For ρ0 = 0 and µ = −M/4, the solution is given by Rt × H2. 

Lorentzian Sphere: For κ > 0 and ρ0 = −µ − 2D, the solution is given by the Lorentzian sphere 
1 

ds2 = − (dt + A)2 + 

where 

(
dθ 2 + sin2 θ dφ2

) 
, (9.75) 

A = −
ρ0 

cos θ dφ . (9.76) 

 

Γ -Metric: For κ1 = ̸0 and c1 > 0, the solution is given by 

2 2x −2 
κ2 

( 
2µ 

( 
κ2 

) )2 
dx2 + dy2 

 

which is referred to as the Γ -metric [380] due to the appearance of the gamma function. 

ds . (9.74) 

ds 
κ1 κ1 κ1 x 

κ 
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⎪ 25 
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a    

= 

a 

2 2 

≤ ≤ × 

= 

p 

= = = 

⎪µ2 for N = 4 

2⏐ 5p2 − 24p + 16 ⏐ 

Λ = µ2⏐  
− 1

⏐ 
, p = 1., . . . , 4 . (9.85) 

+ 

z-warped null AdS: For κ1 = ̸0 and c1 = 0 along with κ1 = ̸κ2 and κ2 = ̸0, the solution is given by 

 

ds2 
16D2 

= 
(2D − µ)4 

(

−w 
 

2z du2 + 
dw2 2dudv 

w2 
, 

 

(9.78) 

which is an AdS pp-wave metric. Nevertheless, the solution has the following non-relativistic rescaling symmetry 

u ↦→ Λ−zu,  w ↦→ Λw,  v ↦→ Λ2+z v . (9.79) 

Hence, (9.78) is also referred to as null z-warped metric [380]. 

9.9.4. Exact solutions of higher derivative conformal supergravity coupled to matter 

For models describing N 4, 5, 7 conformal supergravity coupled to matter, when the scalar compensator acquires a 

vev of form 

Q = diag (v, 0, . . . , 0) , (9.80) 

and choosing v that gives the canonical Einstein–Hilbert term, the potential gives rise to a cosmological constant whose 

value is listed below [358,361] 

 

Λ =  9 µ2  for N = 5 
⎩
4µ2 for N = 7 . 

(9.81) 

Given that the gravitational part of the Lagrangian relevant for determining the propagating degrees of freedom is given 

by 

1 
L = e(R + 2Λ) + 

µ 
LCS , (9.82) 

it follows that the case of N = 4 has chiral gravity sector with Lagrangian (9.21) discussed earlier. 

The case of N  6: 

In the model reviewed in Section 9.5, the µ dependent terms in the potential are due to coupling of supergravity to 

the ABJM model, and they play a role in finding an AdS vacuum solution. It has been noted in [381] that in this model, 

upon setting 

ZA = diag (v, . . . , v, 0, . . . , 0) , p = 1, . . . , 4 , (9.83) 

p 

and choosing v that gives the canonical Einstein–Hilbert term, the potential gives rise to a cosmological constant 

 
p = 1, . . . , 4 . (9.84) 

Λ = µ ⏐ 
3p2 

⏐ , 

In particular for p   1, in the gravitational sector, one gets the so called chiral gravity Lagrangian, displayed in (9.21), 

as observed in [362]. As was mentioned in the previous footnote, there are other possible gauge groups. The couplings 

to supergravity have not been spelled out in components in those cases but they have been formulated in superspace 

in [372] for 4  N  8, following the framework laid out in [361]. In particular, SU (N )  U (1) is among the possible 

gauge groups, where the U (1) is not to be confused with U (1)R, and the coupling constants depend on a single parameter. 

For a particular choice of this parameter, taking ZA as in (9.83), and choosing v that gives the canonical Einstein–Hilbert 

term, the potential gives rise to a cosmological constant [361] 

⏐ 
p 

⏐ 

In this case, p = 1 gives chiral gravity, as discussed above. 

The case of N 8: 

The vacuum solutions of the SO(N ) model were considered in [372,381]. Taking the scalars to have the form (9.83), and 

choosing v2 = 16/p to get the canonical Einstein–Hilbert term, the potential gives rise to the cosmological constant [381] 

Λ = µ2

( 4 
− 1

)2 

, p = 1., . . . , 8 . (9.86) 

In this case p 2 gives the chiral gravity. Furthermore, it has been noted in [381] that in the case of p 3 and p 6, 

the model admits null-warped AdS3 solution. 
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A2
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(

2A2R + 2R2 − 2(∇A)2 − 
1 

A4

) 

, (10.6) 

 
10. Lower dimensions 

 

10.1. D = 2 

 

In 2D, there exists (p, q) type of supersymmetry where p and q refer to the number of left- and right-handed 

supersymmetry generators. There are subtleties in the characterization of supermultiplet structures in this case, as 

explained, for example, in the appendix of [382]. We shall focus on (p, p) supergravities below. 

Supergravity in 2D is topological. In the case of N  (1, 1), 2D supergravity, its particular coupling to a single scalar 

multiplet gives rise to the Jackiw–Teitelboim (JT) supergravity, see, for example, [383] for a review. This model is much 

studied due to the fact that it is a soluble quantum gravity model, and holographically dual to the so-called SYK quantum 

mechanical model. To begin with, we shall briefly recall the N  (1, 1) super JT model. The off-shell N  (1, 1) 

supergravity multiplet consists of a graviton eµ
a, a gravitino ψµ and an auxiliary scalar field A. The N  (1, 1) super 

JT model was constructed in [384], by using a curvature multiplet superfield S, a scalar superfield Φ, and the determinant 

of the supervielbein E. In the convention of [385], their expansions are given by 

S = A + iθαΣα + θ 2C , 

Φ = φ + iθαπα + θ 2F , 

E = e(1 − 
1 

iθαθ A2 + ferms) , (10.1) 

2 
α 

where θα is a two-component Majorana spinor, θ 2 = θαθα, C = −R− 1 A2 +ferms, and Σα = −2γ 5β ϵabDaψbβ − 1 γ aβ ψaβ A. 
  

The action is given by [384] 
2 α 2 α 

I = 

∫ 

d2xd2θ EΦ(S − K ) , (10.2) 

where K is a constant. In components, this readily gives 

I = 

∫ 

d2x e φ (R − 
1 

KA) + F (A + K ) + ferms . (10.3) 

 

Substituting the algebraic field equation of F into the action gives the well-known JT action I   d2x e φ(R  Λ) where 

Λ  1 K 2. The off-shell action (10.2) can be extended by elevating K to be a scalar superfield, and introducing two new 
off-shell invariants involving two arbitrary functions of the superfield K , namely f (K ) and g (K ), as follows [385], 

I = 

∫ 

d2xd2θ E Φ(S − K ) + f (K ) + ig (K )Dα KDα K . (10.4) 

Integrating out Φ this time gives 

I = 

∫ 

d2xd2θ E f (S) + ig (S)Dα SDα S . (10.5) 

In components, the bosonic part of this action takes the form [385] 

 

2 2 

and the supertransformation of the gravitino is given by 

1 
δψµ = 2Dµϵ + 

2 
γµϵA . (10.7) 

Despite the presence of R2 in the model (10.6), this is JT supergravity coupled to an extra scalar multiplet in disguise. The 

vacuum solution of the model (10.6) has been analyzed in [386], where it was shown that by choosing f and g suitably, 

one can have nontrivial extremum of the potential breaking supersymmetry spontaneously. 

The N  (2, 2) and N  (0, 4) dilaton supergravities and their matter couplings are known [387,388]. Here N  (p, q) 

refers to p left-handed and q right-handed Majorana–Weyl spinors. The case of N  16, 2D supergravity, where N counts 

the number of Majorana spinors, can be obtained from circle reduction of N  16, 3D supergravity, and it has been a 

subject of several studies, in part owing to its infinite-dimensional symmetries [389,390] and integrability [391,392]. We 

are not aware of higher derivative extensions of the dilaton supergravities discussed so far, apart from the fact that a 

dimensional reduction of Bergshoeff–de Roo heterotic supergravity on torus T 8 which gives higher derivative extension 

of N = 8, 2D supergravity. So far, the bosonic sector of the general result obtained from the reduction on torus Td 

has been worked out in [48,197], as discussed in Section 5. To express the action in 2D, it suffices to set d = 8 in 

(5.5), taken from [48]. In the resulting four-derivative extended N = 8, 2D theory, the scalars parametrize the coset 

SO(8, 8 + nV )/(SO(8) × SO(8 + nV )), where nV is the dimension of the Yang–Mills group in 10D heterotic supergravity. 
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D (p,q) 

The functions 
(D) 

depend on the coordinates on the moduli space E K , where E 
D 

fourth order polynomial t8t8R4 in the Riemann tensor. The p = 0, q = −1 term is the Hilbert–Einstein term ℓ2 dDx
√

−g R. 

 

10.2. D = 1 

Reduction of heterotic string on 9-torus leads to a half-maximal supersymmetric mechanics model with higher time 

derivatives. The heterotic string tree level effective action up to and including order α′3 terms, as discussed in Section 4.3, 
is given by 

I 

∫ 

d10x
√ 

g 
[ 

het 
e−2φ ζ(3)α′3 

(

t t R4 1 
R4

) 
( ′4)

] 
(10.8) 

where Lhet is from (4.33) in which both α and β are understood to be proportional to α′. It has been shown that setting 

Bij to zero, where i, j = 1, . . . , 9, and parametrizing the 10D metric Gµν and dilaton φ as 

φ = 
1 

Φ + 
1 

log 
√

g ,  G = diag(−n , g ) , (10.9) 

2 2 
µν ij 

the action (10.8) reduces to (up to field redefinitions) [393] 

I = 

∫ 

dt ne−Φ 
{
−Φ̇ 2 − 

1 
Tr(Ṡ2) + 

 1  
α′Tr(Ṡ4) 

 
 1 

α′3 15Tr(S4)2 128ζ(3) 3Tr(S8) Tr(S4)2 , (10.10) 
219 

where S is given by 

S = 

(

g
0 g 

) 

. (10.11) 

The terms in the first line are straightforwardly obtained from the dimensional reduction of (5.3), followed by field 
redefinitions of n, Φ and g along the lines described in [393, Eq. (2.31)]. Restoring the Bij dependence by duality 

transformation rules, the action becomes manifestly O(9, 9) invariant, as explained in [393]. The eight-derivative terms 

appearing in (10.10) also arise in type IIA string on torus T 9, and they are given in [394] with Bij dependence retained as 
well (see also [395]). 

11. R4 , D4 R4 and D6 R4 invariants and duality symmetry in diverse dimensions 

 

So far we have mostly discussed the four-derivative extensions of supergravities, with few exceptions. Here we shall 

turn to eight and higher derivative extensions. Even though they are very difficult to construct explicitly, if one assumes 

the existence of a hidden symmetry, such as those listed in Table 8 for maximal supergravities, the terms of the form 

R4, D4R4, D6R4 multiplied by the so-called modular functions of the moduli have been studied, in which the focus is on 

the construction of these moduli dependent functions. These functions carry information about duality symmetries, as well 

as nonperturbative contributions of branes to the effective action. In the next section we shall review briefly the modular 

functions in dimensions 3  D  10, mostly obtained from the analysis of the four-point supergraviton amplitudes, 

and their various limits.36 We shall then recall the relevance of these results to the UV divergences and counterterms 

in supergravities. Finally, we shall review, again briefly, the construction of the higher derivative actions as integrals in 

ordinary or harmonic superspace, and in the ectoplasm approach. 

11.1. Eisenstein series in leading gravitational part of the invariants 

A great deal of information can be obtained on string theory effective actions, and thus higher derivative extensions of 

supergravities that describe their low energy limits, by studying the four-point supergraviton amplitude. This amplitude 

has analytic and non-analytic parts. The analytic part has a low energy expansion in Mandelstam variables, and it can be 

expressed in terms of a local effective action, which schematically takes the form (in Einstein frame) 

S = 
∑  

ℓ4p+6q+8−D 

∫ 

dDx 
√

−g E 
(D) ∂4p+6qR4 , (11.1) 

where ℓD is the Planck length, p and q denote powers of σ2 and σ3, where σk := 
( 

ℓD 

)k 

(sk +tk +uk), with s, t, u representing 

the standard Mandelstam variables built out of the external momenta in the corresponding amplitude, and R4 denotes the 
 

E
(p,q) MD = 11−D /  

11−D 11−D is the duality group 

in D dimensions and K11−D is its maximal compact subgroup. These functions must be invariant under the left-action of 

 

36 In the case of maximal supergravity in 1D, the expected duality symmetry E10 has been utilized in [396] (see also [397–400]) to find restrictions 

on the higher derivative corrections to 11D supergravity. 

− , 
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Table 8 

U duality groups Gd(R) = Ed+1(d+1)(R) and their maximal compact subgroups.    

d Gd(R) K Gd(Z) D 

 

 

SL(3, R)  SL(2, R) SO(3)  SO(2) SL(3, Z)  SL(2, Z) 

3 SL(5, R) SO(5) SL(5, Z) 7 

4 Spin(5, 5, R) (Spin(5)  Spin(5))/Z2 Spin(5, 5, Z) 6 

5 E6(6)(R) USp(8)/Z2 E6(6)(Z) 5 

6 E7(7)(R) SU (8)/Z2 E7(7)(Z) 4 

7 E8(8)(R) SO(16)/Z2 E8(8)(Z) 3 

the discrete subgroup E11 D(Z) E11 D(R) on MD [104,125]. Moreover, they must also satisfy differential equations from 

supersymmetry for 4p 6q < 8 [78,97,265,401–408] that can also be understood representation-theoretically [409–411]. 

These are Poisson-type equations of the form [265,266] 
(
∆ − 

3(11 − D)(D − 8) )
E 

(D)  
= 6πδD 8 . (11.2) 

(
∆ − 

5(12 − D)(D − 7) )
E 

(D)  
= 40ζ(2)δD 7 + 7E δD 4 , (11.3) 

(
∆ − 

6(14 − D)(D − 6) )
E 

(D) 
55 

= −(E ) + 40ζ(3)δD 6 + E δD 5 

85  (4) 

+ 
2π 

E(1,0)δD,4 . (11.4) 

The scalar Laplace operator ∆ is defined on MD, and in a convenient parametrization of MD, it can be found, for example, 

in [105, p. 513]. 

We recall that the string amplitudes contain analytical part and non-analytical part. The latter is due to massless 

thresholds meaning that the internal lines of massless particles are on mass-shell. The Kronecker delta terms in D 

6, 7, 8 arise from the non-analytic part of the string amplitude roughly as follows [266,412,413]. The massless threshold 

contributions to string amplitudes contain logarithmic terms of the form log( ℓ2sf (x)) where f (x) is a complicated 

function of x t/s. In going to Einstein frame, this term gives rise to an additional term which is analytic and 

it involves a proportionality factor log yDL , where DL is the lowest dimensions in which L-loop maximal supergravity 

has ultraviolet divergences, and yD = ℓdg 2/V(d) = (ℓD/ℓs)D−2 where V(d) is the volume of d-torus. The delta terms in 

D  6, 7, 8 in (11.2)–(11.4) arise from the action of the Laplace operator on these log yD terms [412]. Turning to the log s 
dependent terms in maximal supergravity, they arise after the subtraction of the ϵ pole in the amplitude evaluated at 

D  DL  2ϵ in a dimensional regularization scheme. More specifically, the single pole in ϵ arises as (  s/µ)2ϵ /ϵ, where 
µ is an arbitrary scale introduced in dimensional regularization. It can be removed by adding a counterterm so as to give 

(  s/µ)2ϵ  1 /ϵ, which gives the finite result log(  s/µ) in the limit ϵ 0.37 In D  6, 7, 8, the counterterms are of the 

form D6R4, D4R4, R4, respectively. In general, in DL dimensions, logarithmic divergence can appear at L loop, associated 

with ∂nRm, 

∂nRm : n + 2m = (DL − 2)L + 2 . (11.5) 

Turning to Langlands–Eisenstein series (often referred to as Eisenstein series), which are associated with the maximal 

parabolic subgroup Pβ ∈ G, they are defined as [409] 

EG (g ) := 
∑ 

e2s⟨ωβ ,H (γ g )⟩ , (11.6) 

γ ∈Pβ (Z)\G(Z) 

where β is the simple root labeling the maximal parabolic subgroup Pβ and ωβ is a basis vector in the space dual to the 

root space obeying ⟨ωβ , β⟩=1. H(g ) resides in the Cartan subalgebra of G(R) and is defined via the Iwasawa decomposition 

of an arbitrary group element g ∈ G according to 

g = neH(g)k,  with n ∈ N (R) ,  k ∈ K (R) , (11.7) 

where N is the unipotent subgroup of G, and K is the maximal compact subgroup of G. The convergence of EG (g ) requires 

that the complex parameter s satisfies the condition ⟨sωβ −ρ, ωβ ⟩ > 0; see, for example, [105]. In the normalization chosen 

above, EG (g ) = 1. 

 
37 If one uses UV momentum cut-off Λ instead, it will manifest itself as the divergence log( s/Λ2). Thus, the terminology of ‘‘logarithmic 

divergence’’ refers to the Λ cut-off scheme. 

+ 
− ⊂ − 

(0,0) 

0 SL(2, R) SO(2) SL(2, Z) 10 

1 
2 

SL(2, R) × R+ SO(2) SL(2, Z) × Z2 9 
8 
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2 

2 

− 4E E 
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2 

⊂ 

(0,0) 

(1,0) 

= 

(p,q) (p,q) 

(p,q) 

1 α (0,0) 

2 
[ D = 7 : E(1,0) = 

2
Ê

[1000]; 5 + 
3 0

Ê  0001];3 , (11.16) 

 

 
 

Fig. 1. Bourbaki (on the left) and standard Dynkin diagram labeling conventions for the group Ed+1 . 

 

 

We shall now summarize the existing results for EG (g ) for the U duality groups displayed in Table 8. To begin with, 

it is convenient to define 

E
Ed+1 

[0α 10d−α ];s 
:= 2ζ(2s)E

Ed+1 , (11.8) 

where [0α 10d−α] is the Dynkin label associated with the simple root β in Bourbaki conventions; see Fig. 1. In the case of 

SL(d) with β = [0α 10d−α], it can be expressed as (see, for example, [412,414]) 

 

ESL(d) 

[0α−110d−α−1];s 

= 

{mi }

∑

∈Zd /{0} 

 

(
ci1...iα gi1 j1 

1 

· · · giα jα c
j1...jα 

) 

 

, (11.9) 

where the sum is over all values of mi with the values m1 = m2 = · · · = 0 omitted, gij is the metric on SO(d)\SL(d), 

and ci1...iα = m[i1 · · · miα ]. The ones for Ed+1 with d ≥ 4 are more subtle; see, for example, [105,412]. The results for ED 

are [95,265,409,410,414–416] 

3 ≤ D ≤ 7 : E 
(D) 

(8) 

Ed+1 

[10d ]; 3 

SL(3) 

, (11.10) 
SL(2) 

D = 8 : E(0,0) = ̂E 3 + 2Ê[1];1 (U ) , (11.11) 

 

(9) 

(0,0) 

[10]; 2 

= ν−3/7ESL(2) (τ ) + 4ζ(2)ν4/7 , (11.12) 
 

D = 10 : E 
(10) 

= ESL(2)(Ω) , for IIB supergravity , (11.13) 
(0,0) 1; 3 

where ν parametrizes R+ and (τ , U , Ω) parametrize the SL(2, R)/SO(2) coset. The results for E 
(D)  

are [107,265,409,417] 

3 ≤ D ≤ 5 : E 
(D) 

= 
1 

EEd+1 , (11.14) 
(1,0) 

 (6) 
2 [10d ]; 5 

1 SO(5,5) 
 

4  SO(5,5) 

D = 6 : E(1,0) = 
2

Ê
[10000]; 5 + 

45
Ê[00001];3 , (11.15) 

(7) 1 SL(5) 
 

 

π  SL(5) 
 

 
 

 

D = 8 : E 
(8) 1 SL(3) =  E 

 

SL(2) SL(3) , (11.17) 
(1,0) 

2 [10]; 5 [1];2 [10],−1/2 

D = 9 : E 
(9)  

= 
1 

ν−5/7ESL(2) + 
 2 

ζ(2)ν9/7ESL(2) + 
4ζ(2)ζ(3) 

ν−12/7 , (11.18) 
(1,0) 2 [1]; 5 15 [1]; 3 15 

D = 10 : E 
(10) 

= ESL(2) for IIB supergravity , (11.19) 
(1,0) [1]; 5 

where the hats indicate the finite part of the series after subtraction of an ϵ pole as in [265], and ν is an element 

of GL(1)  GL(2, R). Note that the perturbative contributions to R4, D4R4 and D6R4 are identical in type IIA and type 

IIB [266]. Since there are no D-instantons in type IIA, there are no non-perturbative contributions in that case. In 

general, the expression for E 
(D)  

has perturbative part in string coupling constant expansion in D dimensions, and a 

nonperturbative part. The perturbative part consists of a tree level and one-loop level term. In the case of E 
(D) 

, the 

perturbative contributions consist of tree-level, one-loop (vanishing in D 10), and two-loop contributions. 

In obtaining many of the results above, the following three limits have been used in [265]: 

• The decompactification limit from D to D + 1 dimensions: This is the limit in which the radius rd of one compact 

dimension becomes large. In this limit E
D)  

leads to a finite term which is required to produce E 
(D+1)

. 

• Perturbative string theory limit: This is the limit in which the D-dimensional string coupling constant becomes small, 

and in this limit, the expansion of E
D) 

in powers of the D-dimensional string coupling is required to reproduce the 

known perturbative string theory results. 

= E 

D = 9 : E 

s 
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α̇ β̇ 

 

The semiclassical M-theory limit: This is the limit in which the effects of wrapped p-branes are suppressed and 

the Feynman diagrams of compactified eleven-dimensional quantum supergravity should give a valid expansion 

in powers of the inverse volume of the torus. 

For more details, see [265]. Note also that the explicit forms of these couplings can also be obtained by direct calculation 

from exceptional field theory loops [418]. In the case of type II string theory, the analytic contribution to the low 

energy expansion of the amplitudes at genus-one has been treated as a power series in space–time derivatives with 

coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet 

torus [419,420]. 
(D) 

(0,1) which cannot be represented as an Eisenstein series, apparently no closed form expression is known for it 

as yet. Nonetheless, an implicit expression for it as a two-loop Schwinger integral can be found in [421]. See also [266], 
where its weak coupling and decompactification limits have been explored. 

11.2. Relevance to UV divergences and counterterms in supergravity 

From the point of view of supergravity divergences appearing in explicit loop computations in diverse dimensions, it 

is also useful to note the following points, which are essentially summarized in Table 9. 
(D) (D) 

In D 9, E(0,0) and E(1,0) cannot be deduced from supergravity divergences in maximal theory using dimensional 

regularization. This is due to the fact that these two functions receive contributions from tree and one-loop levels. 
However, divergences in maximal 9D supergravity start showing up at two-loop (one-loop divergences are absent in 

odd dimensions when using dimensional regularization) which would contain information on the D8R4 term [422]. 

D  8 is the lowest dimension where the R4 term first appears in one loop UV divergences, both in the maximal 

and half-maximal cases. In addition, there is a two-loop divergent D6R4 counterterm in the maximal theory. 

• D = 7 is the lowest dimension where the D4R4 term first appears in two-loop UV divergences in the maximal theory. 
• In D = 6, maximal supergravity admits a logarithmic divergence at three-loop level, which is related to the 

logarithmic term in the weak coupling expansion of E 
(6)  

[412], namely the function in front of the D6R4 term which 

we have not discussed so far. In the N  (1, 1) theory, there is also a D2R4 divergent term appearing at two-loop 

level. 

In D 5, maximal supergravity is finite at four-loop level [422,423]. It is likely that the first divergence in 4-pt 

supergraviton amplitude appears at six-loop level and is of the form D12R4. 

In D  4, pure N  4 supergravity is divergent at four loop [424]. The recent five-loop computations show that 

maximal supergravity possesses a UV divergence at D   24 [425], corresponding to the operator D8R4 which is 

the same operator that may appear in the seven-loop divergence of D  4 maximal supergravity. D  4, N  5 
supergravities are finite up to and including four loops [423], and D  4, N  1, 2 supergravities are finite up to 
and including two loops [1]. 

As discussed earlier in more detail, it is also worth recalling that the logarithmic divergences are related to the dimension 

dependent source terms in (11.2)-(11.4) [266,412,413]. 

The UV divergences in supergravities summarized above are based on the loop calculations that have been carried out 

explicitly. These results suggest that there exist fully nonlinear supersymmetric extensions of the D2kR4 terms that arise in 
the local counterterms, assuming that the quantization schemes employed respect supersymmetry. Turning this argument 
around, in cases where loop calculations are not available as yet, if one can construct the (nonlinear) supersymmetric 

completion D2kR4, it would potentially imply the existence of divergences at appropriate loop order. For example, in 

D  4 the maximal theory seems to allow a D8R4 invariant, which means that potentially a seven-loop divergence may 
arise [4]. As to duality symmetries, their fate at the quantum level deserves scrutiny separately. 

11.3. Invariants in D = 4 supergravities in ordinary and harmonic superspace 

Here we shall summarize known constructions of invariants in 4D maximal, as well as N 4, 5, 6 supergravities, in 

ordinary and mostly harmonic superspace approaches. The leading curvature terms will be of the form D2kR4 for various 
values of k. We shall first recall the two maximally supersymmetric nonlinear invariants in ordinary superspace. Next, 

we shall summarize the number of invariants with maximal as well as N  4, 5, 6 supersymmetry in the harmonic 
superspace approach. Some of them will be available only in linearized harmonic superspace, and those which are known 
at the nonlinear level may not exhibit the full duality symmetry, as shall be summarized below. 

In ordinary curved superspace, R4 and D4R4 invariants can only be realized at the linearized level. On the other hand, 

there exist nonlinear D10R4 and D8R5 actions in ordinary superspace, as given in (11.20) and (11.21), which also preserve 
the full duality symmetry. Finally, there exist also nonlinear invariants in harmonic superspace with the leading term 

f (φ)  kR4 in 4D, N  4, 5, 6, 8 supergravities preserving only the maximal compact subgroup of the full duality group. 
In [4,259], the following two nonlinear invariants have been provided: 

I1 = 

∫ 

d4x d32θ E(x, θ) εαβ εα̇β̇ 
χα ijkχ¯ 

ijk
χβ mnpχ¯ 

mnp 
∼ 

∫ 

d4x e
(
(∇5R2)2 + · · · 

) 
, (11.20) 

• 

As to E 
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= = 

∫ 

 ̄
α̇ 

= −  − 

̇ 

= 
= = 

4,4 

α̇ β̇ 

α̇ 

2 

 
Table 9 

This table exhibits supergravity divergences in four-point supergraviton 

amplitude obtained by explicit computations in D dimensions using di- 

mensional regularization, with the exception of D 4, N 8 at 7 loops, in 

which case an acceptable invariant has been put forward. See next section 

for further remarks. 

Local operator D L N Refs. 

R4 8 1 Max [422] 

 8 1 Half max [426] 

 

D2 R4 
10 
6 

1 
2 

Half max 

(1,1) 
[426] 
[427] 

 4 4 Half max [424] 

D4 R4 7 2 Max [422] 

D6 R4 8 2 Max [422] 

 6 3 (2,2) [428] 

9 2 Max [422] 
D8 R4 4 7 Max [429] 

24 
5 5 Max [425] 

D9 R4 7 3 Max [428] 

D10 R4 10 2 Max [422] 

D12 R4 11 2 Max [92,422] 

D15 R4 9 3 Max [428] 

D21 R4 11 3 Max [428] 

 

I2 = 

∫ 

d4x d32θ E(x, θ) εαβ εα̇ β̇ 
χα i[jkχβ lmn]χ¯ 

i[jk
χ¯ 

lmn] 
∼ 

∫ 

d4x e(∇8R5 + · · · ) , (11.21) 

where χαijk is a spinor superfield whose lowest component represents the spin 1/2 fields in the 56-plet of SU (8). These 

invariants are fully E7(7) invariant because they are constructed from a full superspace integral of a superfield entering the 

superspace torsion. It is also worth mentioning that a dimension 16 invariant starting with D8R4 as an ordinary superspace 
action integral does not exist because it may come from the integral  E, which, however, vanishes [430]. 

We now turn to the summary of invariants that have been constructed in harmonic superspace in 4D. There exist 

linearized supersymmetric action integrals for N -extended supergravities in 4D which can be written as integrals in 

harmonic superspace, some of which admit a nonlinear extension [37]. Denoting the N -extended superspace by MN , the 

(N , p, q) harmonic superspace is defined as the direct product MN × Kp,q where [431] 

Kp,q = S(U (p) × U (N − p − q) × U (q))\SU (N ) . (11.22) 

It is convenient to define the following projections of the spinorial covariant derivatives 

DαI := uI iDαi , DI := (u−1)iI D¯ i , (11.23) 

where uI i (ur i, uR
i, ur′ 

i) with the indices (r , R, r ′) labeling the fundamental representations of SU (p), SU (N p q) and 
SU (q), respectively. In terms of these derivatives, analytic fields in harmonic superspace are defined to be those which 
are annihilated by (Dαr , D¯ r ′ ). They can also be harmonic analytic, which means they are holomorphic with respect to the 

α 

∂¯ operator on Kp,q, see, for example, [429, Eqs. (3.1) and (3.2)] and [432] for further details. Invariant action integrals in 

harmonic superspace are constructed by integrating analytic fields with respect to an appropriate measure. For (N , p, q) 

harmonic superspace, such a measure at the linearized level in 4D is given by [431,432] 

N 
p,q := d4xdu[Dp+1 · · · DN D¯ 1 · · · D¯ N −q]2 , (11.24) 

where du is the standard Haar measure on Kp,q. 

 

D 4, N 8 

To construct the linearized N 8 supersymmetric action integrals, we need the superfield Wijkl which is in the 70-plet 

of SU (8) with the appropriate reality condition, and satisfying the constraint 

DαiWjklm = Dα[iWjklm] . (11.25) 

With the above ingredients, the following three linearized supersymmetric SU (8) invariant action integrals have been 

constructed [432] 

I 1 = 

∫ 

dµ8 W 4 ∼ 

∫ 

d4x t8t8R4 , (11.26) 

dµ 
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2,2 

1  R S 

(0,0) 

6 

1 

β̇ 

α 

J J 

p,q 

1 2 3 4 ijkl 

1 2 R 

88 6 

88 8 8 

β̇ 
where B ̇ = χ¯ 

1ij
χα 8ij. It can be shown that this invariant reduces to 

∫ 
d4xd32θ (W i jk l W̄ ijkl)2 ∼ 

∫ 
d4x

(
∇8R4 + · · · 

) 
in the 

2 αβ 6i βα̇ 6 j 
3 

αβ 6 j βα̇ 6 i 

3 66 4 

4 

αβ 

I 1 = 

∫ 

dµ8 
(
ϵRSTU WRS WTU 

)2 
∼ 

∫ 

d4x D4R4 , (11.27) 

I 1 = 

∫ 

dµ8  ϵR1...R6 ϵS1...S6 WR R R WR R S WR S S WS S S  ∼ 

∫ 

d4x D6R4 , (11.28) 
 

 

8 

where 

1,1 1 2 3 4 5 1 6 2 3 4 5 6 

W : = u iu ju ku l W , (11.29) 

WRS := u iu ju kuS l Wijkl , (11.30) 

WRST := u iu ju kuT l Wijkl . (11.31) 

These are the only ones that can be written down. However, it has been shown that the first two do not have a 

generalization to curved superspace. A nonlinear version of the first invariant in the superform (ectoplasm) approach has 

been considered in [429] where it has been shown that it does not have E7(7)(R) symmetry. It has also been shown [429] 

that the dimensional reduction of the R4 term in 11D on seven-torus gives the leading term fR4 in 4D where f is a scalar- 

dependent function which satisfies the Laplace equation (∆ + 42)f = 0, in agreement with (11.2), and therefore it is 

consistent with E7(7)(Z). Note that in terms of the notation introduced in (11.1), f = E 
(4) 

, which is given in (11.10). 

The invariant given in (11.28) admits a nonlinear extension with the measure Eq. (11.24), denoted by dµ(N,p,q), given 

in [430] for dµ(8,1,1).38 However, it turns out that this invariant does not have E7(7) symmetry. Another invariant that has 
SU (8) but not E7(7) symmetry is given by 

I1
′ 
/8 = 

∫ 

dµ(8,1,1) F11(V) ∼ 

∫ 

d4x e

(

f 8(φ)∇3R2 · ∇3R2 + · · · 

) 

, (11.32) 

where f 8(φ) is the (appropriately normalized) SU (8) invariant function of the 70 scalar fields discussed in [261,429] and 

F11(V) := u1iu1juk ul V¯ imIJ V¯ jnKLVkmKLVlnIJ , (11.33) 

where V imIJ is a superfield whose lowest order component is the representative of the coset E7(7)(R)/SU (8). Note that 

this invariant differs from (11.28) by having a scalar dependent function in front of the leading gravitational term. 

Finally, it is worth noting that an E7(7)(R) invariant and nonlinear action integral in full superspace which integrates 

to D8R4 is known to exist and it is given by [4] 

I = 

∫ 

dµ(8,1,1) Bαβ̇ B
αβ̇ 

, (11.34) 

 

linearized approximation. 

 

D = 4, N = 4, 5, 6 

All results summarized below for the D = 4, N = 4, 5, 6 superinvariants are taken from [430]. An analog of the 

invariant (11.34) exists also for D = 4, N = 4, 5, 6 and it takes the form 

IN := κ2(N−2) 

∫ 

dµ(N,1,1) Bαβ̇ B
αβ̇ 

, (11.35) 

where 

 
B ̇ = 

 

 

{
χ  ̄

1ij
χα Nij for N = 4, 5 

 

 

 
(11.36) 

χ̄ 1ijχ + 1 χ1ijklχ  ̄ for N = 6 , 
β̇ α 6ij 3  α β̇ 6ijkl 

where χ1ijkl, χ¯β̇ 6ijkl are defined in [430, Eq.(4.14)]. Schematically, these invariants contain D2(N−4)R4. It is stated in [430] 

that these have the full duality symmetries, namely SO⋆(12), SU (5, 1), SU (4) × SU (1, 1) for N = 6, 5, 4 supergravities, 

respectively. For N = 6 there are two other invariants given by 

I6 := 

∫ 

dµ 
εαβ εα̇ β̇ 

(

J ̇ 
1iJ 

1j 4 1i 

+ ̇ 1j 

) 

, 

I6 = 

∫ 

dµ(6,1,1) F11(V) ∼ 

∫ 

d4x e

(

f 6(φ)∇R2 · ∇R2 + · · · 

) 

, (11.37) 

 

38 Note that the linearized measure is denoted by dµN , while its nonlinear extension is denoted by dµ(N,p,q). 

(6,1,1) 

αβ 
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D 

= ≥ 

66 6 6 

I5 = 

∫ 

dµ(5,1,1) F11(V) ∼ 

∫ 

d4x e
(
f 5(φ)R2 · R2 + · · · 

) 
, (11.39) 

55 5 5 

combination of and its complex conjugate is proportional to ESL(2)ESL(3) and ′ 
2 

functions E(2,2,0) and its complex conjugate E(2,0,2) is related to ̂E [ 1] ; 1  , the function E(2,1,1) is proportional to ̂E
[ 1 0 ] ;  3 , a 

( 
4n 

 

where 

J ̇ 
ij 

= χ¯ 
ijm

χα klm , 
αβ kl β̇ 

F11(V) := u1iu1juk ul V¯ iI V¯ jJ VkI VlJ , (11.38) 

and ViI is a superfield whose lowest component is the representative of the coset SO⋆(12)/U (6), and f 6(φ) is a function on 

that coset. It is stated in [430] that both of these invariants have only the U (6) symmetry. Similarly, there is an additional 

D = 4, N = 5 invariant given by 
 

 

2 55 3 

 

where 

F11(V) := u1iu1juk ul V iV jV¯
kV¯

l . (11.40) 

Here Vi is a superfield whose lowest component is the representative of the coset SU (5, 1)/U (5), and f 5(φ) is a function 
3 

on that coset. It is stated in [430] that this invariant has only U (5) symmetry.39 

11.4. Invariants in ectoplasm approach in 4 ≤ D ≤ 8 

Here we shall summarize briefly the results of [405] for the action integrals in ectoplasm approach in harmonic 

superspace and in the linearized approximation. The formulae below refer to the integrands for the action (2.14), in 

which the closed superform is defined in (D|32) superspace extended by harmonic variables as described in the previous 

subsection, and its pull back to the D dimensional spacetime is evaluated at θ = 0. 

• D=8, maximal 

 

R4 : 
∑ 

U  ̄−2n 
(
D  ̄nE(2,2,0)

) 
L(4n) , 

12 

n 
[4n] E (2,1,1)

) 
L[4n] , (11.41) 

 
∇ R  : 

n 0 

∑14 
( 

2∑0-n 

 

 

Ū −2k 

 

 

k  n 
[4n] 

 
 

 

E(2,1,0) 

n=0 

) 
L(4k)[4n] + U −2 

 
DDn 

[  ] 

 

E(2,1,0)

) 
L(−4)[4n]

) 

, 
n=0 

14 

k=0 

n 
[4n] E ′1 L[4n] , (11.42) 

4 

n=0 

In 8D, maximal supergravity has the duality group SL(2) SL(3), and the scalar fields parametrize the symmetric 
space SL(2)/SO(2) SL(3)/SO(3). The Kähler derivative on SL(2)/SO(2), parametrized by the complex scalar U , is 

denoted by D, while the SU (2) isospin 2 tangent derivatives on SL(3)/SO(3) are defined as Dijkl, with i, j, k, l running 

from 1 to 2 of SU (2). The L(4k)[4n] are SL(2)  SL(3) invariant eight-superforms in the isospin 2n representation of 
SU (2) with U (1) weight 4k. In particular [405] 

L(0)[0] ∝  t8t8∂a∂bR∂a∂bRRR  + · · · (11.43) 

The indices of the function E (n, p, q) refers to the harmonic superspace construction of the associated invariant 

in the linearized approximation, whereas the notation E1
′ 

/4 indicates that the corresponding invariant cannot be 

written as a Lorentz invariant harmonic superspace integral in the linearized approximation. A combination of the 
SL(2) SL(3) 

 
 

E(2,1,0) 

ESL(3)5 as specified in [405]. 
[10]; 2 

• D = 7, maximal 

E(2,0,1) 
 

[1];2 

 
[10],−1/2 E1/4 is proportional to 

 

R4 : 

12 

n 
[0,2n] E(4,2)

) 
L[0,2n] , (11.44) 

 
∇ R  : 

n=0 

n+2k≤20 

 

n,k=0 

 

 

Dn+2k 

[4k,2n] 

 

E(4,1)

) 

 

 

L[4k,2n] , 

 

20 

n 
[0,2n] 

n=0 

 

 

E ′1 
 

4 

 

L[0,2n] , (11.45) 

 
 

39 In a recent paper [433], it has been asserted that in the D 4, N  4 actions discussed above, the Grassmann analyticity constraint on the 

harmonic superspace fields breaks the composite local H symmetry, where H refers to the stability subgroup in the G/H cosets, with G representing 

the duality symmetry group. 

) 
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4 4 
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D + 

[ ] 

[1000]; 2 1/4 

proportional to E
[10000]; 3 . A combination of the functions E(4,2,0) and E(4,0,2) is related to ̂E

[ 10000 ] ;  5 . The function E(4,1,1) 

 
In 7D, maximal supergravity admits the duality group SL(5), and the scalar fields parametrize the coset SL(5)/SO(5). 

The covariant derivative Dn+2k acts on this coset and it denotes (n + 2k)-fold product of the [0, 2] representation 
of Sp(2) [4k,2n] 4k 2n irreps. [4k,2n] denotes SL(5) invariant superform in the 4k 2n of Sp(2), 

≈ SO(5) projected to the [ , ] L [  , ] 
i.e. traceless tensors of SO(5) with 2k pairs of antisymmetric indices and 2n additional symmetrized indices. The 

indices of the function E (n, p) refer to the harmonic superspace construction of the associated invariant in the 
linearized approximation. The function E(4,2) is related to ESL(5) 3 , and E(4,1) and E1

′ 
4 are proportional to ̂E S L ( 5)  3 

and Ê 

[1000]; 2 
(7) 

5 , respectively. A combination of the last two functions defines E 
 

/ 

. The notation E ′ 

[0001]; 

denotes that the 

corresponding invariant cannot be written as a Lorentz invariant harmonic superspace integral in the linearized 

approximation. It was noted in [408] that in D 7 the D6R4 type invariants cannot be defined in the linearized 
approximation as harmonic superspace integrals. 

• D = 6, maximal 

 

R4 : 

12 

n 
[0,n],[0,n] E(4,2,2)

) 
L[0,n],[0,n] , (11.46) 

 
∇ R  : 

n=0 

n+2k≤20 

 

n,k=0 

n+2k≤20 

 

 

n 2k 

[0,n],[0,n+2k] 

 

E(4,2,0)

) 
L[0,n],[0,n+2k] , 

n

∑

, k = 0  

n 2k 

[2k,n],[2k,n] E(4,1,1)

) 
L[2k,n],[2k,n] , (11.47) 

In 6D, maximal supergravity admits the duality group SO(5, 5), and the scalar fields parametrize the coset SO(5, 5)/(SO(5)× 
SO(5)). The covariant derivative Dn+2k acts on this coset and it denotes (n +2k)-fold product of the [0, 1] ×[0, 1] 
representation of Sp(2) Sp(2) [2k,n],[2k,n] SO(5) projected to the 2k n 2k n irreps. [2k,n],[2k,n] denotes the 

× ≈ SO(5) × [  , ] × [  , ] L 

SO(5, 5) invariant superform in the ( 2k, n , 2k, n ) of Sp(2) Sp(2). The indices of the function E (n, p, q) refer to the 

harmonic superspace construction of the associated invariant in the linearized approximation. The function E(4,2,2) is 
SO(5,5) SO(5,5) 

is proportional to ̂E SO(5
2 

. At the linearized level, the D6R4 

 
 

2 
invariant was given in [408, Eq. (3.27)]. Its nonlinear 

00001 3 

version was suggested in [408, Eq. (3.28)]; see, however, [433] for a recent discussion on this problem. 

• D = 5, maximal 

 

R4 : 

12 

n 
[0,0,0,n] E(8,4)

) 
L[0,0,0,n] , (11.48) 

 
∇ R  : 

n=0 

n+2k≤20 

 

n,k=0 

 

 

n 2k 

[0,2k,0,n] 

 

E(8,2)

) 
L[0,2k,0,n] . (11.49) 

In 5D, maximal supergravity admits the duality group E6(6), with the maximal compact subgroup USp(8) ≈ Sp(4)/Z2. 
The scalar fields parametrize the coset E6(6)/USp(8). The covariant derivative Dn+2k acts on this coset and it 
denotes (n 2k)-fold product of the 0 0 0 1 [0,2k,0,n]

0 2k 0 n 
irreps. [0,2k,0,n] 

+ [ , , , ] representation of Sp(4) projected to the [ , , , ]
E 

L 
denotes E6(6) invariant superform in the [0, 2k, 0, n] of Sp(4). The function E(8,4) is proportional to E 6(6) 3 , and the 

function E(8 is proportional to EE6(6) 

[100000]; 2 

5 . At the linearized level, the D6R4 invariant was given in [408, Eq. (3.7)]. 
100000 

Its nonlinear version was suggested in [408, Eq. (3.8)]. 

• D = 4, maximal 

 

R4 : 

12 

n 
[0,0,0,n,0,0,0] E(8,4,4)

) 
L[0,0,0,n,0,0,0] , (11.50) 

 
∇ R  : 

n=0 

n+2k≤20 

 

n,k=0 

 

 

n 2k 

[0,k,0,n,0,k,0] 

 

E(8,2,2)

) 
L[0,k,0,n,0,k,0] . (11.51) 

In 4D, maximal supergravity admits the duality group E7(7), with the maximal compact subgroup SU (8)/Z2. The 
scalar fields parametrize the coset E7(7)/SU (8). The covariant derivative Dn+2k 

acts on this coset and it denotes 

(n + 2k)-fold product of the [0, 0, 0, 1, 0, 0, 0] 
0,k,0,n,0,k,0 

representation of SU (8) projected to the [0, k, 0, n, 0, k, 0] irreps. 

L[0,k,0,n,0,k,0] denotes E7(7) invariant superform in the [0, k, 0, n, 0, k, 0] of SU (8). The function E(8,4,4) is proportional 

to E
E7(7) 
[1000000]; 3 , and the function E(8,2,2) 

is proportional to EE7(7) 
[1000000]; 5 . At the linearized level, the D6R4 invariant was 

given in [408
2 

, Eq. (2.17)]. Its nonlinear version was suggested in [4
2

08, Eq. (2.18)]. 

SL(5) 

(1,0) 
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D  4, non  maximal N  5, 6 supergravities in 4D have also been investigated in [429]. Explicit expressions 
for the attendant closed super four-forms have not been constructed but their analyses at the linearized level are 

sufficient to show that the R4 invariant with N 6, 5, and D2R4 invariant with N 6 are not invariant under 

linearized duality transformations of SO⋆(12) and SU (5, 1), respectively, which involve constant shifts in scalars. 
This is not surprising since there are no appropriate functions of the scalars in front of the leading terms in these 
invariants, which preserve the continuous duality symmetry. See [429] for further details. 

12. Concluding remarks 

 
There are several open problems in the construction and analysis of higher derivative supergravities. We have 

summarized a number of approaches to their construction in Section 2, but we also saw, especially in the example of 
11D supergravity, the enormity of the complications in the construction of even the leading higher derivative terms. 
The situation is more manageable for four derivative extensions when they exist. But beyond that, for example in the 
case of much studied eight derivative extensions, complete results even in the bosonic sector are very rare, let alone the 
fermionic terms. Taking into account duality symmetries turns out to have profound consequences but its implementation 
has challenges as the number of derivatives grows, and even when the remarkable functions of the moduli needed for the 
duality symmetries are known, it is always a challenge to go beyond the leading terms in curvature. In filling the several 
existing gaps in the landscape of higher derivative supergravities, it is not entirely clear which methods among those 
surveyed in Section 2 are the most promising ones, and if they are even feasible, say beyond eight derivatives. Ultimately, 
it may be necessary to develop new and extremely powerful computer-based techniques. 

Putting aside the problem of finding more extensive results on higher derivative extensions of supergravities, one 
may focus on the analysis of those which have been already constructed, and investigate further their applications in 
black holes, cosmology, holography and the Swampland program, as mentioned in the introduction. In studying higher 
derivative extensions of matter coupled gravity, it is of course essential to ensure that unitarity and causality principles 
hold. Here we shall summarize very briefly some of the key conclusions drawn so far from the criteria of unitarity and 
causality, and we shall do so in chronological order. 

First, in [434] it was shown that in the context of AdS5/CFT4 correspondence, the requirement of the positivity of the 
energy on the CFT side puts restrictions on the conformal anomaly coefficients, which are related to the coefficients 
a and c of the Euler and Weyl-squared invariants in CFT4, respectively. This, in turn, implies a restriction on the 
coefficient of quadratic curvature corrections to the bulk action, the relevant one being equivalently the Riemann-squared, 

or Weyl-squared or Gauss–Bonnet term [435]. These results were generalized to AdS7/CFT6 in [436]. Subsequently, 
using a relationship between the positivity of the energy flux in CFT and the causality in the bulk theory, and under 
certain assumptions, a range in which λ is constrained to lie was found in any dimensions in [437]. Next, a different 
setting for causality considerations involving the scattering of gravitons was considered in [438]. In the context of 
AdS5/CFT4, as well as bulk gravity that admits Minkowski vacuum, it was shown that an infinite tower of states with 
J > 2 are needed to restore causality. Furthermore, the unitarity and analyticity of graviton amplitudes were shown to 
constrain the coefficients of quartic in Riemann curvature terms [439]. A constraint on the coefficient of the Riemann- 
squared term was found later in [440] which simply requires that it is positive. Further advances were made in [441] 
where constraints imposed by causality and unitarity on the low-energy effective field theory expansion of four-particle 
scattering amplitudes were studied in flat space. The constraints found on the amplitudes can be translated to restrictions 

on the coefficients of R4, D4R4 and D8R4 terms. In [442], again in flat space, using S-matrix and dispersion relations, it 

was derived that in 10D maximal supergravity, the coefficient in front of R4 term, denoted by g0, resides in the region 

0  g0  3(8π G/M6) where M is the scale beyond which the EFT breaks down. In string theory, this constraint is satisfied 
as g0M6/(8π G)  2ζ(3)  2.4. These computations were generalized to maximal AdS supergravity in 5D in [443], where 
similar bounds were found. Finally, the consequences of the causality, analyticity and IR divergence obstructions to UV 

completion were sharpened further in [444], where more comprehensive references are provided as well. 
In conclusion, it is well motivated to pin down the role of supersymmetry, duality symmetries, and the physical require- 

ments such as unitarity and causality in determining the structure of the higher derivative extensions of matter coupled 
quantum gravity, and much remains to be done. These considerations may provide a sound framework for effective field 
theory approach to quantum gravity up to an appropriate cut-off energy scale. More ambitiously, contemplating a UV 
completion, given that the need for introduction of an infinite tower of massive higher spin states is widely appreciated, 
it would be interesting to understand the nature of such states in comparison with those arising in string theory. In 
the context of studying the constraints on the coefficient of the Riemann-squared term, a general UV completion of the Gauss–
Bonnet term, which involves the coupling of massive higher spin states, were considered, for example, in [440]. In a more 
general setting, the important question of whether UV complete theory of quantum gravity is uniquely determined by string 
theory has been addressed in many works, see, for example [445] and references therein. If the bottom to top approach turns 
out to yield results that differ from those in string theory, it will be natural to study if such results can offer a progress 
in addressing some of the challenging problems in matter coupled quantum gravity, such as the very early universe 
and black hole physics. 
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Appendix. Notations 

 

Given matrices Mi, i = 1, . . . , 4, the t8 symbol is defined as 

ta1...a8 M1a a M4a a 2 tr M1M2 tr M3M4 tr M1M3 tr M2M4 tr M1M4 tr M2M3 

+8 tr M1M2M3M4 + M1M3M2M4 + M1M4M2M3  . (A.1) 

Definitions specific to 11D and 10D used in Sections 3 and 4 are as follows: 

Definitions in D = 11 

 

ϵ11ϵ11R
4 = ϵµ1...µ8 abc ϵν1...ν8 abc Rµ1µ2 

ν1ν2 · · · Rµ7µ8 

ν7ν8 , (A.2) 

t8t8 (ABCD) = ta1...a8 tb1...b8 Aa1 a2 b1 b2 Ba3 a4 b3 b4 Ca5 a6 b5 b6 Da7 a8 b7 b8 , (A.3) 

t8t8 F 2R3  = ta1...a8 tb1...b8 Fa1 b1 cdFa2 b2 

cdRa3 a4 b3 b4 . . . Ra7 a8 b7 b8 (A.4) 

ϵ11ϵ11F 2R3 = ϵaµ1···µ10 ϵaν1···ν10 Fµ1µ2 

ν1ν2 Fµ3µ4 

ν3ν4 · · · Rµ9µ10 

ν9ν10 . (A.5) 

Definitions in D = 10 

 

ϵ10ϵ10R
4 = ϵµ1...µ8 abϵν1...ν8 abRµ1µ2 

ν1ν2 · · · Rµ7µ8 

ν7ν8 , (A.6) 

ϵ9ϵ9|G3|
2R3 = ϵabµ1...µ8 ϵ

acν1...ν8 Gµ1µ2 
c G¯ ν1ν2 

bRµ3µ4 
ν3ν4 . . . Rµ7µ8 

ν7ν8 , (A.7) 

t8t8|G3|
2R3 = tµ1...µ8 t

ν1...ν8 G[µ1 
ν1 aG

¯ µ2]a
ν2 R

µ3µ4 
ν3ν4 . . . R

µ7µ8 
ν7ν8 , (A.8) 

ϵ8ϵ8|G3|
2R3 = − 

1 
ϵabµ1...µ8 ϵab

ν1...ν8 G[ aḠ 
]
a  R · · · R , (A.9) 

2 
µ1|ν1 µ2  ν2 µ3µ4ν3ν4 µ7µ8ν7ν8 

ϵ9ϵ9H
2R3 = − (ϵ10ϵ10)

ν0...ν8 Hµ1µ2 
ν Hν ν 

µ0 Rµ3µ4 
ν ν · · · Rµ7µ8 

ν ν , (A.10) 

ϵ9ϵ9H
2(∇H)2R = − (ϵ10ϵ10)

ν0...ν8 Hµ0µ1µ2 Hν ν ν ∇µ3 Hµ4 
ν ν · · · Rµ7µ8 

ν ν  . (A.11) 
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