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1. Introduction

It was realized long ago that supergravity theories have improved quantum behavior compared to ordinary gravity.
However, it was also found that three-loop counterterms exist for & 1 and N=2 supergravities, which entail
supersymmetrizations of quartic in Riemann tensor terms with suitable contraction of indices [1-3]. This meant that
divergences are not forbidden by local supersymmetry starting at 3-loops in these theories. Nonetheless, it was hoped
that supergravities with a higher degree of extended supersymmetry would have improved finiteness behavior. This led
to several studies of higher derivative superinvariants. For an early account of higher-order superinvariants in extended
supergravity theories, see [4]. These considerations have implications for attempts to build up an effective supergravity
theory as well. For a pedagogical introduction to the effective field theory treatment of quantum gravity, see [5].

Initially, the focus in the study of higher derivative supergravities was in four dimensions. However, with advances
made in string theory and their compactifications, their construction and study in diverse dimensions started to attract
attention as well. The interest in higher derivative supergravities began to evolve in a direction not necessarily restricted
to their relevance to higher loop divergences but also their properties in relation to higher derivative terms that arise in
the low energy limit of string theory. These properties notably include the powerful duality symmetries, and the role of
local supersymmetry in the organization of the higher derivative terms in the low-energy effective action.

Given that string theory is the prime candidate for providing a UV complete theory of quantum gravity, one may
question the wisdom of investing much effort in the construction and study of higher derivative supergravities in diverse
dimensions in their own right. However, it should also be kept in mind that it is not known if string theory is the unique
UV complete theory of quantum gravity. Indeed, it is one of the premises of the so-called Swampland program [6] to
determine the conditions imposed on a UV completion on the basis of physical considerations; see, for example, [7,8] for
a review. The criteria put forward are mostly motivated by string theory but not all of them. In any event, the criteria
inspired by string theory are natural to take into account while maintaining freedom in building up an effective theory
which is not necessarily identical to string theory. Among the universal criteria are the requirements of unitarity and
causality. These criteria have attracted much attention in recent years, and we shall come back to them briefly in the
conclusions. A property which is not necessarily essential but which may certainly be useful is local supersymmetry, and
the attendant duality symmetries. Indeed, requiring anomaly freedom of a chiral supergravity naturally requires higher
derivative extensions. Higher derivative supergravities, in turn, have led to investigations of their consequences for black
hole physics, AdS/CFT correspondence, and cosmology. There is a large body of literature already on the study of the
higher derivative corrections to black hole and string solutions, and consequences for the black hole entropy, mostly in
four and five dimensions. See [9-11] for a review, where an extensive list of references to earlier papers can be found.
In addition to their relevance to the black hole entropy, higher derivative corrections to supergravities, in the context of
holography, also provide information on the conformal anomalies of the dual CFT’s; see, for example, [12,13]. As to the
applications in cosmology, the possible shapes for non-gaussianity for gravitational waves in the de Sitter approximation
was computed in [14]. In a more general context, the cosmology of modified gravity theories has been reviewed in [15].
Allin all, there is an abundance of motivation for constructing and studying higher derivative supergravities.

Even though several reviews of two-derivative supergravities have appeared in the literature over the years, not that
many exist for their higher derivative extensions. Presumably, this is in part due to the fact that their explicit construction
is a very complicated task compared to the case of two-derivative supergravities. Our aim here is to remedy this to some
extent by providing a relatively extensive survey of presently known higher derivative extensions of supergravities in
diverse dimensions. Our focus will be on surveying the known results, rather than describing their detailed derivations,
which would deserve separate reviews by themselves. We also summarize briefly their applications.

We shall begin by summarizing briefly different approaches to their constructions, including the Noether procedure,
superconformal tensor calculus, (harmonic) superspace, superform method (ectoplasm), dimensional reduction and S-
matrix. We shall then start with D = 11 and work our way down to D= 1, though the focus will be on D= 10, 11
and 3 <D <6 as most results available are in these dimensions. We shall typically give the bosonic parts of the actions
and supersymmetry transformations of the fermionic fields. The latter is relevant in finding supersymmetric solutions.
Indeed, we shall also survey the known solutions to the Killing spinors equations in diverse dimensions. This will be done
for on-shell as well as off-shell supersymmetric theories. We shall give a concise summary of the existing results on the
R*, D*R* and D°R* invariants and their duality symmetries in diverse dimensions. The relevance of these invariants to
potential UV divergences and counterterms in supergravities in diverse dimensions will also be reviewed briefly.

Finally a word on conventions. We do not attempt to provide a universal set of conventions for all the supergravity
theories that will be reviewed. Instead, we will adhere to the conventions used in the original papers in each case, except
in a few cases where we may use slightly different notations. We refrain from listing the contents of all the sections, as
the Table of Contents provided serves that purpose.

2. Approaches to construction of higher derivative supergravities

Let us recall briefly the approaches that have been employed so far for the construction of higher derivative extensions
of supergravities.
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e Noether procedure: In this approach (see, for example, [16]), if an off-shell formalism exists, there is no need
to deform the supersymmetry transformation rules since the supersymmetry algebra closes without the need
to impose equations of motion that follow from the total action. Thus, the task is to find the partners of the
desired higher derivative term that will be supersymmetrized under the fixed off-shell supertransformations. If the
supertransformations are known only on-shell, life gets much harder since the closure will depend on the equations
of motion, and therefore any deformation of the action will require the deformation of the supertransformations
as well, and this will go on order by order in suitable expansion parameters. The difficulty in this case lies in the
fact that there are too many structures one can write down, and their variations under supersymmetry produce
an even much larger number of terms. This means a large number of variations grouped into a large number of
independent structures that need to cancel separately. That is why, even four-derivative extensions of supergravity
by this approach are rather rare, let alone the eight derivatives and beyond, as we shall review in the following
sections.

The Noether procedure is used in the construction of higher derivative corrections in 11D, type IIB and heterotic
supergravities in 10D, matter couplings of N = (1, 0), 6D supergravity, and N = 1, 4, 6, 8 supergravities in 3D.

e Superconformal tensor calculus: Instead of starting with off-shell supergravities, it turns out to be more convenient to
work with off-shell conformal supergravities (and their matter couplings) first, and then fix the dilatation, conformal
boost and R-symmetries to obtain off-shell Poincaré supergravity possibly coupled to matter. The convenience is
due to the fact that the off-shell conformal supergravity construction is based on the construction of curvatures
that follow the structure constants of the underlying superconformal algebra. Nonetheless, there is still quite a
bit of work to be done because the system is highly reducible to begin with, and in order to achieve maximum
irreducibility of the superconformal gauge field configuration, a maximal set of the so-called conventional constraints
need to be imposed on the superconformal curvatures. Final results emerge from the study of the consequences of
these constraints. This procedure has been explained in detail in the textbook [17], and summarized in the case of
D =6, N =(1, 0) in [18], which follows closely the case of N=2, D=4 dealt with in detail in [19,20]. For reader’s
convenience, we shall outline the procedure for obtaining off-shell N =1, 4D supergravity from the superconformal
tensor calculus.

The superconformal procedure is based on the SU (2, 2 1) superalgebra whose commutation rules can be found, for
example, in [17, (16.2)]. The construction procedure starts with assigning a gauge field to each generator of the
superconformal algebra

hy = h!T1 = €u'Pa+ WpMa + buD + fu'Ka+ AT+ §r yQ + @ .S (2.1)

Here Mw and P. are the usual Poincaré generators while D is the generator for dilatation, K. generate special
conformal boosts and T is the generator of the chiral U (1) symmetry. Furthermore, Q and S are the generators
of supersymmetry and special supersymmetry, respectively. The linear transformation rules and the curvatures for
these gauge fields can be obtained by using the structure constants of the superconformal algebra fi¥, i.e.

8hy' = 0ue' + € mlfi', R’ = 20’ + Nl i (22)

As certain curvatures depend linearly on specific gauge fields, it becomes possible to impose conventional constraints
on these curvatures. Solving these constraints allows for the determination of the corresponding gauge fields, leading
to an irreducible multiplet. In the case of four dimensional N= 1 supersymmetry, the conventional constraints are
given by

a W, ab n
Ry (P)=0,e aRyy (M)=0,Y Ruw(Q)=0, (2.3)

where in the second constraint a supercovariantization is employed (see [17, (16.23)] for the explicit formula) so
that this set of constraints close under supersymmetry. These constraints determine (wu®, f.°, @), respectively, in
terms of the independent fields (ey”, by, Ay, Yu). In particular, ones finds

I(

= - )
fe=— 12 R—-y ,y®ov . .4)

Noting that the field b, has a shift symmetry, these fields form the off-shell Weyl multiplet with 8 bosonic plus 8
fermionic degrees of freedom.

To construct a supergravity action, we now need a compensating multiplet to gauge fix the redundant symmetries
(D, Ks T, S). While K is fixed by utilizing the gauge field of dilatation, by, the remaining ones can be fixed by
considering various matter multiplets, giving rise to different off-shell formulations of supergravity. For simplicity,
here we demonstrate the procedure by using a chiral multiplet which consists of a complex scalar Z, a left-chiral
projection of a Majorana spinor Prx="' ¢l ws)X and a complex auxiliary scalar field F, whose supertransformation
rules can be found in [17, (16.33)]. Next, one constructs a superconformal invariant action for the chiral multiplet
coupled to the Weyl multiplet for which fixing the redundant symmetries yields off-shell Poincaré supergravity. A
suitable such aTtion is given by (see, for example, [17]) ]

_ _ 1 - 1 _ -
¢'L=Re FF +Zo¢Z =X PPx+ "yl y¥(PixF +ZIPPrex) +~ ZF W wywPely (2.5)
2
2

4
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where DX is supercovariantized derivative of X, and

oZ = et OuD.Z — 2buDaZ + WuabDYZ + 2fy,Z + iAuDaZ
1 A )
-+ W, PLD, + Na %YHPLX . (2.6)
2 2

Note that the term fi"Z contains the Ricci scalar in view of (2.4). One can now gauge fix this action to obtain an
off-shell Poincaré supergravity J

D-gauge and T-gauge : Z = E/K ,S-gauge: x =0, 2.7)

which gives riselto

( - ) -
e 'L= o R™ Uy e Dy (w)Wp + 6A.A7 + FF (2.8)

with the field content (ey”, As, F, Py), counting 12 bosonic plus 12 fermionic degrees of freedom.

The superconformal tensor calculus is also useful for studying matter couplings. For four-dimensional N =1
supersymmetry, one can begin with a chiral multiplet action along with the action for the desired matter multiplet.
The chiral multiplet can then serve as the compensator for the superconformal symmetries, leading to an off-
shell matter-coupled supergravity theory. In the context of extended supersymmetry, possible Weyl multiplets and
compensators for N =2 supersymmetry can be found in details in [17]. For N = 4, the conformal supergravity
framework is discussed in [21], although an off-shell formulation with a compensating multiplet, where the only
viable option is a vector multiplet, remains unknown. In higher dimensions, the Weyl multiplets of five-dimensional
N =2 supergravity were introduced in [22-24]. Possible constructions with a compensating vector or linear
multiplet were discussed in [25,26], while a construction involving hyper and vector multiplets can be found
in [23,27]. In six dimensions, with N = (1, 0) supersymmetry, the elements of superconformal tensor calculus,
possible Weyl multiplets, and the off-shell construction with a linear multiplet were discussed in [18,28].

The superconformal tensor calculus method is used in the description of the N= (1, 0), 6D, N=2, 5D, N=1, 2, 4D
and N= 1, (1,1),(2,0),3D supergravities.

e Ordinary superspace: As is well known, supergravity theories can be formulated in superspace in terms of suitably
chosen torsion and curvature constraints (see, for example, [29-31]). In 4D, for example, the N = 1 superspace has
in addition to the spacetime coordinates x¥, anticommuting coordinates 8% which have complex conjugates 6 ¢ , with
a, & = 1, 2, that are chiral SL(2, C) spinors. Denoting the entire set of coordinates by z*, and the supervielbein by
Em?, the supertorsion 2-form is the exterior derivative of the 1-form E4 = dzMEum4,

1
TA=DEA= ;EC N EBTpcA, (2.9)

where DE* = dE*+ EPA QsA and Q4P is a connection one-form. Denoting the flat indices by A = (a, a) its
nonvanishing components are the Lorentz algebra valued Q%, where Q8 = 19”b(0u1;)°‘8 and QB = ! Qgh((ﬂzb)aﬁ .

Differentiation (2.9) one finds the Bianchi identity
DTA = EB AR, (2.10)

where R4? = dQaB + QaC A QcB. In components, this reads

22 (

(ABC)

)
Rapc” = DaTsc” — Tas" Tec” =0, (2.11)

where %:BC) indicates the graded cyclic sum over ABC and Da=FE4™ Dum . These identities become nontrivial when
constrains are imposed on the components of the torsion and curvature. The description of the supergravity requires
the imposition of an appropriate set of constraints. Such a set which gives off-shell N =1,4D supergravity is given
by [32]

Tap =0,  Tpt=0,

Taa” = -2i88 ¢ ,  Raw™=0,
o

Ta' =0, Ta'=0. (2.12)

Recalling that Dq and D. have dimensions 1/2 and 1 respectively, possible dimensions of the superfield expressions
in (2.10) run from 1/2 to 5/2. A very useful strategy is to analyze them in the order of increasing dimensions.
Nonetheless this is still along and complicated calculation [33]; for a sketch, see, for example, Chapter 16 of [34].
In summary, Bianchi identities are solved in terms of the superfields R, GO(B' Wagy Wiagy ) in terms of which
all torsion and curvature components can be expressed, and they contain spacetime coordinate dependent fields
(ew Wy, Z, Ay) that form an off-shell multiplet in which the complex scalar Z and the gauge field A, are auxiliary

5
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fields, arising as the 8 = 0 components of the superfields R and Gag, respectively. Setting R = 0 and Gax = 0
gives the equations of motion of N =1, 4D supergravity. The framework outlined above can be extended to yield
conformal supergravity. In a subsequent step the conformal symmetry can be fixed to yield Poincaré supergravity.
For a detailed account of this procedure, see for example, [31], where matter couplings are also covered. For extended
supersymmetry in superspace see, for example, [29]. These can be generalized to conformal superspace to describe
conformal supergravities [35]. As to supergravities in higher dimensions, the most studied ones are in D =6, 10, 11,
for which we shall give appropriate references in the sections where we cover these dimensions.

In general, demanding the Bianchi identities in presence of a given set of torsion and curvature constraints may
or may not require the imposition of equations of motion. In the first case, one gets an on-shell supergravity,
while the latter case yields an off-shell supergravity, assuming that the solution is nontrivial. Often, the solutions
to the torsion Bianchi identities facilitate the construction of certain super p-form field strengths with their own
Bianchi identities, and these forms prove to be very useful. This framework is very powerful in determining the two-
derivative supergravities, and their matter couplings. In order to go beyond two derivatives, one needs to deform the
torsion and possibly the p-form constraints, as discussed further in Section 3.2. However, this complicates the matter
because solutions to the Bianchi identities bring in a number of new superfields whose relation to the supergravity
multiplet can involve a large number (e.g. thousands) of possible structures, which are hard to analyze; see for
example [36].

The superspace space approach is used in the description of type IIB and heterotic supergravities in 10D, N=1, 2, 4D
and N = 4, 6, 8, 3D supergravities.

e Harmonic superspace: The N -extended superspace has a useful extension known as harmonic superspace, introduced
in [37], which is the product of ordinary superspace with a coset space K = H\G where G is the R-symmetry
group and H is a suitably chosen isotropy group such that K is always a compact complex manifold [38]. This
framework makes it possible to construct action formulae that may not necessarily admit an ordinary superspace
formulation. While it is relatively straightforward to construct such actions with linearized supersymmetry, their
non-linear generalizations may not always exist, for example, due to the non-integrability of the chirality condition
on the integration measure caused by certain nonvanishing supertorsion components; see for example the case of
Type IIB supergravity [39]. However, in some cases, there may exist non-linear action formulae with appropriate
integration measures in which the integral is over the harmonic superspace. For a further discussion of harmonic
superspace and its application to the construction of N= 4,5, 6,8 supergravities in 4D, see Section 11.3.

e The superform method (ectoplasm): In a superspace of D-dimensional spacetime and n dimensional Grassmannian
coordinates, consider a closed superform J,

1
J= D!dzMD A AdzM v Mg di=0, (2.13)
where z™ are the superspace coordinates. Such a superform furnishes a supersymmetric action formula [40-42]
I
S_ i], (2.14)
Mp
where i : M — MP!" is the inclusion map and i is its pullback which effectively embodies the projections 6 = 0 and

d0 = 0. A more explicit formula is given in (2.16) below. The fact that this action is invariant under supersymmetry
can be seen as follows. Under the superdiffeomorphisms generated by the superfield § =% M dm, in which the
fermionic part is the local supersymmetry transformation, one has

8¢] = Lg] = igd] + dig] , (2.15)

and the first term vanishes due to the closure d] = 0, and the second term gives a surface term in the variation
of the action, which we neglect. Denoting the supervielbein by Ew #, and identifying the spacetime vielbein and the

gravitino fields by en" = Ex" |and Ym® = Ex® | where the bar denotes evaluation of a superfield at 8 = 0, the action
formula reads

I (

= D, gmi-mp ... a1 ... az aq e
S= dxe enp em; " Jayap + D emp, ey Wiy Jaqageap +

e+ lme “ ... lpml “ ]0(1...0(D » (216)

where each of the Js is evaluated at 8= 0. Since S is invariant under the replacement Jo— Jp +Kp 1, the
mathematical problem at hand is to compute the d’th de Rham cohomology group. It is understood, however, that
Jp is to be constructed out of the physical fields of the supergravity theory at hand. In the case of D= 10, pure
spinors in the sense of Cartan, namely those obeying the condition A% (y“)qg AP =0, appear in the construction.

In the closed superform method, there are two cases to consider: strict invariants and Chern-Simons invariants. In

the first case, the nonvanishing components of the closed form Jp are tensorial. In the latter case, they may involve
the gauge potentials and possibly Os. These lead to Chern-Simons terms in addition to tensorial terms. In that case

6
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Jo can be constructed as follows [40-44]. Let W be a closed (D+ 1)-form in the (0 n) dimensional superspace that
can be written as dZ where Z is a local D-form that involves gauge potentials. If W can also be written as dK where
K is a tensorial D-form, then

p=K-2Z (2.17)

is a closed D-form that can be used to form invariants using the superform method. In this construction, Z gives the
Chern-Simons term while K gives the rest of the terms that go with it. We refer the readers to [43] for a review.
The ectoplasm approach is used in the description of higher derivative couplings in maximal supergravities in
D=17,89 N=(1,0),6D and N= 4, 4D supergravities.

e Dimensional reduction and hidden symmetries: Given a higher derivative extension of a supergravity theory in D-
dimensions, it is straightforward to perform a dimensional reduction on T? to obtain higher derivative extensions
of supergravity in (D— d)-dimensions. At the two-derivative level, the resulting theories are known to possess
hidden symmetries, see Table 8 in Section 11.1. In the case of N=1, 10D supergravity coupled to nv abelian vector
multiplets compactified on a torus T?, the hidden symmetry is O(d, d + nv). A construction of the theory in which
this symmetry is manifest by doubling the 10D spacetime and introducing additional nv coordinates is known as
double field theory, reviewed in [45-47]. A four derivative extension of this theory where a 2d+ nv dimensional
group is gauged has been provided in [48]. Dimensional reduction of this result, in particular on tori, gives rise to
four-derivative extension of half-maximal gauged supergravities coupled to Yang-Mills.

The dimensional reduction method is used in the description of the higher derivative couplings of 10D type IIB
supergravity and supergravitiesin D= 1,2,3,6,7,8,9.

e The S-matrix and holography: The S-matrix method relies on extracting the supergravity effective action from the
scattering amplitudes. For a textbook treatment of this subject, see [49]. If such amplitudes are available from an
S-matrix approach, which is a situation encountered in string theory, but less robust in supergravity as a field
theory, one can look for an action modulo field redefinitions that produces those amplitudes. Combinations of terms
that give vanishing contributions to a given n-point amplitude may require the knowledge of (1# 1) or higher
point amplitudes, which increases the complexity of the problem. See, for example, [50] for the situation arising
in the context of four graviton amplitudes in 11D supergravity. Quantization of the two-derivative supergravity
and computation of loop amplitudes instead give information on local higher derivative functionals in terms of
divergences that depend on a cut-off. Adding counterterms to remove these divergences leads to undetermined
coefficients in front of them. If the theory is a low energy limit of string theory in some background, these
coefficients are determined by string theory. Regarding the fate of hidden symmetries in higher derivative extensions
of supergravity, at least the order o corrections in the O(d, dr nv) covariant setup has been achieved [51-53].
Whether this construction can be carried out to higher orders in &' remains to be seen. Indeed, doubt has been cast
on whether the a%{(3) correction in heterotic string theory effective action can be captured in a supersymmetric
double field theory framework [54].

Remarkably, a super conformal field theory in 3D known as the ABJM model [55], which is a 3D Chern-Simons
theory with gauge group U(NX U(N) and level k = 1, 2, coupled to bifundamental matter, has been employed
to compute successfully the coefficients of the R* [56] and D*R* [57] terms in 11D low energy effective action of
M-theory. This is a remarkable result because it provides a framework for going beyond 11D supergravity, as can
be seen by the fact that it fixes the coefficient of the R* term which cannot be fixed by 11D supersymmetry alone.
The approach used in [56] is based on studying the flat spacetime limit of the Mellin amplitude associated with the
four-point correlation function of scalar operators in the stress tensor multiplet of ABJM theory [55]. In this way,
the momentum expansion of the M-theory four-graviton S-matrix elements is obtained. In practice, however, so
far this approach has been tractable for four-point graviton amplitudes. Similarly, the relation between the large-N
expansion of the integrated correlators in N =4 supersymmetric Yang—Mills theory and the scattering amplitudes
in type IIB superstring theory in AdSs %S> has been reviewed recently in [58].

The S-matrix and holography approach is used in the description of the higher derivative couplings of supergravity
in 11D, type IIA and type IIB supergravities in 10D, and N = 8, 4D supergravity.

3. D=11

The 11D supergravity multiplet consists of a metric guv, a 3-form potential Cyyp and a Majorana gravitino Yu. The
bosonic part of the Lagrangian is given by [59]

H1...H11
1442 € Flim

where Fyps = 4a[qupf]~ The supertransformation of the gravitino, up to leading terms in fermions, is given by

( )
SYyu =Dye + 8 P - 88‘13/ P°T" Fypot - (3.2

_ 1
e 'L gs = R(w) — 4 Fhveo FHPO — Fys.us Croopns » (3.1)
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Table 1
On-shell massive multiplets in D = 4 super-Poincaré algebra without central charge up to N =5 [62].
Spin N=1 N=2 N=3 N =4 N=5
5/2 1
2 1 1 1 1 10
3/2 12 14 16 8 44
1 121 146 6 15 27 110
1/2 121 464 14 20 48 165
0 21 541 14 14 42 132

Since 11D supergravity emerges in the strong coupling limit of Type IIA string theory, and string theory admits a derivative
expansion in its low energy effective action, it is natural to expect a higher derivative deformation of 11D supergravity
as well. Let us also recall that 11D supergravity admits the fundamental membrane and solitonic M5-brane solutions.
Studying the local symmetries on the M5-brane worldvolume, one discovers that freedom from anomalies requires the
presence of the CsA R* term in the 11D action and the attendant anomaly inflow mechanism that ensures the cancellation
of the anomalies, as will be discussed further below. The presence of this term in 11D supergravity calls for the restoration
of supersymmetry order by order in the Planck length £p, and hence the need for uncovering the higher order in derivative
terms in the action. The need for the higher derivative terms is also clear from the consideration of loop corrections to
11D supergravity. On the account of its nonrenormalizability one needs to put a cut-off and introduce higher derivative
counterterms. Despite all these motivations for getting a handle on the higher derivative terms in the effective action,
their determination turns out to be an extremely complicated problem. In what follows we shall review those which have
been obtained so far, starting with the eight-derivative deformations.'

3.1. Eight-derivative deformations

In 11D supergravity, the first non-topological deformation of the two-derivative action appears at the eight-derivative
level. There exist no quadratic curvature terms in 11D maximal supergravities, as can be seen by the following argument.
Assuming that quadratic curvature terms exist in 11D supergravity, their reduction on a torus T ® yields quadratic curvature
terms in 4D, N =8 supergravity. This theory admits a maximally supersymmetric Minkowski vacuum about which the
modes of perturbations are arranged into irreducible representations, with smax< 2, of the N= 8 Poincaré superalgebra.
In particular, there will be massive spin-2 modes generated by the combination of the Einstein—Hilbert term and Riemann
curvature-squared term. However, from Table 1, one observes that when Nz 5, the massive spin-2 state must live in a
multiplet with smax > 2, yielding a contradiction.? As for the cubic in curvature terms, it is known they are incompatible
with the 10D maximal supersymmetry [61]. Therefore, there should not be cubic curvature terms in 11D either, since
their circle reduction would generate such terms. For these reasons, we will first review attempts to construct the
eight-derivative superinvariant in 11D.

Noether procedure approach
The most extensive Noether procedure approach to the construction of the eight-derivative extension of 11D super-

§ravi%ty was carried out in [63-65]. The ansatz considered by these authors has 1544 terms which take the schematic
orm” [

s© = {’i dx"e [R*]7 + [CR*]2 + [R®F?]s0 + [R*(DF)*]24

+[RoY 2Dyr2]s + [RY Yzlon + [ROF Y Ylar
+[R2F Y 2 P2]190 + [R2DF Y5 Y2]ers + [RDFY 2D Y2113 (3.3)

where [X}: schematically denotes the structure of the terms where the indices need to be contracted in various ways, n
denotes the number of independent such terms and 2 denotes the gravitino curvature. The explicit form of the terms
R3F 2}y can be found in [63, Eq. (15)], and the terms R%DF )24 in [50, Eq. (A.5)].4 In this ansatz only a subset of eight-
derivative terms are considered because the following assumptions have been made: (1) Terms with covariant derivatives
of the Riemann tensor are not considered; (2) the covariant derivative of the gravitino appear only as a field strength; (3)
the terms involving F are considered only up to second order; (4) parity invariance under which x'* - -x'%, A - -A

1 m [60], a five derivative deformation has been discussed but it can simply be obtained from a field redefinition of the 3-form potential.

2 The massive modes generated by higher derivative terms are different from the KK modes. Owing to the presence of the central charge, if the

mass term originates for the two-derivative action, then smax < 2 even in the case of N = 8. However, if the mass is generated by the presence of
the Riemann-squared term, then smax > 2 can arise.

3 Some of the RSLIJ_ Y2 terms were obtained by lifting higher derivative corrections of type IIA theory in [66].

4 The basis for the R%*(DF)? terms in [50,67] differ from each other. We have determined the exact relation between these two bases but we
refrain from giving it here.
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and Yy —y Yy is assumed; (5) terms proportional to the field equations resulting from So are left out; (6) higher
derivative deformations of the supersymmetry transformation rules are not considered at all, and only the lowest order
supersymmetry variations, namely those of ordinary two-derivative 11D supergravity, are implemented and (7) only
cancellations of terms containing at most one factor of F are sought in [67]. The 5th and 6th assumptions are connected in
the following sense. Supersymmetric variation of terms in the action that contain the lowest order field equations can be
canceled by modifying the transformation rules in a way that can be deduced from the variations proportional to the stated
field equations [63]. However, the variation of the higher derivative action with respect to the lowest order supersymmetry
transformations 8o, cannot be canceled in this way, and achieving the cancellations by fixing the parameters is highly
nontrivial.

Even under the assumptions listed above, the Lagrangian still has 1544 parameters, and the subset of variations

mentioned above give rise to 4643 structures that have the schematic form [67]
2 2

[e” ljJR ]116 , [€Y2R DRJss , e DIIJZR Is1, [€YR (DR)F]15632, [e lIJR Fls3,
[EW2R D Fleia, [€WR DF]Joos, [€W2RDRDF]371, [€ Dy2R DF]s32 . (3.4)

The F -independent terms in (3.3) and (3.4) are spelled out in [63]. Partial results were obtained in [63,64], while a fuller
analysis was carried out in [67], where it was found that the bosonic part of the Lagrangian (3.3) is completely fixed in
terms of two paxjameterf, a(and b, as follows )

1
S© = fl? dlx a t8t8€R4—2 € €, _eR* 6€13|t8CR4

4 11 711
24 > > 30 3 2
+  cia,b)[R (DF) )i + di(a,b)[R F | , 3.5)
i=1 r=1

in which the coefficients c¢i and di have been determined in [67] and the symbols €11€11, €11ts and tsts are defined in the
appendix. It is natural to expect that further variations in the Noether procedure would relate the parameters 4 and b to
each other. Another way to fix them is to reduce the result on a circle and compare it with the results obtained long ago
in [68] in the NS-NS sector.

Finally, we note that the €11tsCR* term is related to anomaly inflow in the presence of M5-brane as follows [69].
The M5-brane which supports chiral fermions and a chiral 2-form has gravitational anomalies which can be obtained by
descent from the following anomaly polynomial

Xs = —(trR?)2 + 4trR* . (3.6)
@ ) 7ds

The descent equations Xs — dI7, 8I7 = dAs determine the anomaly As. It turns out that this anomaly is precisely canceled
by the variation of the bulk term e11tsCR* ~ C aAXs under the 11D local Lorentz transformations restricted to SO(5, 1). In
other words, in the prefence of an M5-brane, we have the so-called anomaly inflow

I
) CAXs= FAOSI; = - dE A As , (3.7)

Miq OM11 We
where we have used the relation dF = 2m85 with 85 representing a 5-form which integrates to one in the directions
transverse to the M5-brane and has delta function support on the M5-brane. Thus the anomaly inflow from the bulk
cancels precisely the M5-brane worldvolume gravitational anomaly As. For more details, including the cancellation of
R-symmetry related anomalies, see [70,71]. The C AXs term has also been utilized to compute the Weyl anomaly on the
worldvolume of multiple M5-branes using holography [72]. It was shown that the leading order coefficient 4N ® [72] in
the Weyl anomaly is shifted to 4N 3— 3N [73] which for N= 1 indeed matches in the case of a single free tensor multiplet
theory.

Superparticle approach

As mentioned above, an alternative approach to computing the higher derivative extension of 11D supergravity is
to compute the loop corrections. Instead of employing the usual BRST quantization, it turns out that an equivalent but
more efficient way to proceed is to use the superparticle vertex operators [74]. To this end, we recall that K-invariant
superparticle propagating in 11D target superspace requires 11D supergravity field equations. However, since K-symmetry
is infinitely reducible, its covariant quantization is problematic. This problem is bypassed by quantizing the superparticle
in the lightcone gauge. The resulting superparticle vertex operators for the supergraviton were used in [50] to determine
the (DF)’R? and (DF)* terms from the four-graviton amplitude. The result schematically takes the form

[ 4 24 1
SO =45 dixe atstsR* +~ B[RADEY + ~ y[(DF)r (3.8)
i=1 r=1

5 We thank Y. Hyakutake for making his unpublished work available to us, in which the counts for the 3rd and 6th structures given in [64], have
been corrected.
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where the coefficients a, (3i, yr and all the tensorial structures are given in [50, Egs. (3.1-3), (A.2) and (A.5)]. Furthermore,
as noted in [50], there are 6 linear combinations of (DF )?R? terms and 9 linear combinations of (DF )* terms in the
effective action which lead to vanishing 4-pt amplitudes. These combinations are given in [50, Egs. (A.3) and (A.7)]. Note
also that the e11e€11R* does not contribute to the four-graviton amplitude. Its determination requires the five-graviton
amplitude [50].

Comparing the results of [50] with those of [67], the a tstsR* terms agree. As to the R*(DF )* terms, not only do
they agree by relating (o, i) to (a, b), but the results of [67] also provide the coefficients for the 6 linear combinations
mentioned earlier that are not fixed by the 4-pt supergraviton amplitude.

It is useful to note that the R* term in the Lagrangian discussed above also arises as a one-]pxg
e

four-graviton amplitude [75]. Introducing a momentum cut-off A the divergence is given by 4~
3

of [76]. This can be eliminated by adding the counterterm AL = (a - 4—131A3 )etstsR ‘t thereby obtaining the action (3.5).
In [76], the coefficient a is fixed to be a = 2m® by comparing the result with the finite 4-pt graviton amplitude in type II
string theory. It has been argued that the R* term we are discussing does not receive corrections beyond one-loop [77,78].

Considering higher loops in 11D supergravity, one expects divergences of the form D*R* arising in the four-graviton
amplitudes. It turns out that the D’R* term vanishes on-shell, and at two-loops, D*R* and D°R* terms may arise [75]. If
nonvanishing, these terms would suggest the existence of their supersymmetric completions. The two-loop amplitude has
been studied in detail in [75]. Consistency with string theory indicates that the renormalized value of the D*R* term should
vanish and the D°R* interaction, together with other terms of the same dimension, are the first nontrivial corrections to
the eleven-dimensional M-theory effective action after R* [78]. Higher loops in 11D supergravity and their consequences

for D°R*, D®R* and D'’R* counterterms have also been discussed in [78].

divergent part of the
tstsR™, in conventions

3.2. Superspace approach

The equations of motion of the 11D supergravity [59] were reformulated in superspace in [79,80]. The key to superspace
formulations is the nature of the constraints imposed on the superspace torsion. Some of these are called the conventional
constraints, which amount to field redefinitions, while other physical (non-conventional) constraints put the theory on-
shell in 11D. For a self-contained succinct review of these points, see, for example, [36]. In the original superspace
formulation, the minimal set of constraints that put the theory on-shell were not studied. In addition, there is the
additional issue of whether to introduce a super 4-form field strength into the formalism from the start, as opposed
to working in what is referred to as the geometrical part of the theory, entailing the supervielbein and connection. For
a discussion of the relationship between the two approaches, see [36], where it has been argued that while they are
equivalent in the formulation of the standard two-derivative 11D supergravity, it is not known whether that is the case
in the higher derivative extension of the theory discussed below in a geometric framework. In the superspace formalism,
there is also a choice to be made as to whether to enlarge the structure group to include a Weyl(scale) transformation.
This entails the introduction of a connection which takes its values in the Lie algebra of Spin(1, 10 R*, and superspace
with such a connection is called Weyl Superspace [81].

In [81], working in Weyl superspace, Howe showed to obtain the 11D supergravity equations of motion, it is only
necessary to consider the geometric part of the theory and to take the dimension-0 component of the supertorsion to be

Top® = =i(Y ap » 39)

wherea, B, . . ., 32 are the spinor indices, and ¢=0, 1, . . . , 10is the Lorentz vector index. In a later work [82], it
was shown that taking the lowest components of the closed superspace four-form to vanish, one obtains the standard
supergravity equations of motion.

A geometrical framework

Higher derivative extensions of 11D supergravity, referred to as the deformed theory, call for a new set of superspace
constraints. This problem has been studied in the geometrical framework, that is, without introducing the superspace
four-form and its Bianchi identities, in [36,83,84]. The deformation problem, which deals with the question of which
torsion components are to be subject to physical constraints, very beneficially has been mapped to a problem in spinorial
cohomology introduced in [85,86], and developed further in [82]. In this approach, it has been pointed out that the
deformations in question can be understood perturbatively in the cohomology of a supersymmetric spinor derivative
followed by a projection onto the highest weight representation. For a succinct review of this procedure, see, for
example, [82]. There also exists a closely related pure spinor cohomology approach [87,88]. For a discussion of the relation
between the “spinor’” and ““pure spinor” cohomologies, see [82].

To summarize the results of [36], it was found that by using the conventional constraints, with the structure group
taken to be the Lorentz group, the torsion can be brought into a form in which, in particular, the dimension-0 components
are given by

T ¢c=2 c 1 didz c 1 dids C)

R I O R Sl VLR (3.10)
where X and Y tensors are in the (11000) and (10002) representations of the 11D Lorentz group. The remaining
components of the torsion can be found in [36, Eq. (2.10)]. They span dimensions 1/2 to 3/2 and contain 31 more

10
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representations! It has been argued that these representations are general enough to account for any deformation allowed
by supersymmetry, and when substituted to the superspace Bianchi identities (SSBI’s), they will contain components of
the most general stress tensor multiplet. In [36], all SSBI's of dimensions 1/2 and 1 are solved to linear order in tensor
superfields X and Y, and the solution is used to obtain the deformed equations of motion at dimensions 3/2 and 2.
However, to find the explicit form of the equations of motion in terms of physical fields requires the determination of the
X and Y tensors in terms of the physical gauge covariant fields such as the Riemann tensor and gravitino curvature. This
is a very complicated, and yet to be cracked problem, since there are thousands of possible independent combinations of
fields that can be harbored in the representations of X and Y, as has been noted in [36], and as can be glimpsed from the
discussion of the Noether procedure results summarized in the previous section.

3.3. Lifting from 10D, amplitudes and duality

There have been proposals for the construction of the higher derivative deformation of 11D supergravity by lifting the
corresponding results in Type IIA theory in 10D. The lifting ansatz takes the form

2 —2¢/3
dsy, = e @/ ds3 +e2® (dx! + Apdx")

Buv = Cuvi, Cuvp = Apvp (3.11)
where |, v =0,...,9. The 10D/11D physical parameters are related via v
22 = QUygrat, 2k2 = (2m)sbe , _ K, Ru=g &, (3.12)
10 s 11 1, Ko™ 5T Ru

where Rui is the period of x', ie. ¥ ~ x + RM. Using this ansatz, the eight-derivative terms in the type IIA
one-loop effective action were lifted to 11D, thereby obtaining the purely bosonic eight-derivative corrections to 11D
supergravity [89, Eq. (6.17)]. The reduction of the 11D action to 10D apparently gives rise to an expression with
complicated dilation dependence. However, one can show that it is on-shell equivalent to the standard one-loop term
without the dilaton, as discussed in [90].

The eight-derivative terms in the type IIA tree-level effective action do not survive the M-theory limit (g5 — ©0) and
therefore it gives no contribution to the effective action of 11D supergravity [91]. When M-theory is compactified on a
circle of finite radius, one recovers the eight-derivative terms in IIA tree-level effective action, upon the inclusion of the
contributions from the KK modes [91].

The bosonic action of the eight-derivative deformation of 11D supergravity, is partially obtained by lifting the
deformations of type IIA supergravity [89] and partially from the four-point superparticle correlators in 11D in the light-
cone gauge [50, Eq. (3.1)-(3.3)], or from the four-point amplitudes in 11D supergravity [92-94]. Taking into account all

this information, the eight-derivative deformation of 11D supergravity, up to an overall constant, is given by® [89]

_ pb [ 4 8 213 1 2p3
A52| =¥f (tsts — —€11€11)R"+ C A X (R) — tgtsF"R” — —€11€11F°R
1D P 24 96

+ EF A (thh /\Rhc Ache ADFdﬂe +2Rnb AFbce ARcd ADque
3

1
+R® AR A DF** A P — ﬂIR2 AE™ A DFh”j_,
1
)

—3Rab A Fae A Red A Fdee’ 4+ L, [(DF)ZRZ] + L [(DF)4] T (3.13)

where the (DF)* and (DF)?R? terms are the ones in (3.8), and F™ = dxMFt /(4m)% and the ellipsis denotes yet
to be determined couplings, including those of the form (DF )R which are not accessible in the light-cone gauge. For
the definitions of tstsR® and erienF 2R® see the appendix. A different method based on the four-point tree scattering
amplitudes in 11D supergravity was used in [92-94], where (DF )*, (DF )*R* and R* terms were compu’ced.7 For one-loop
computations in 11D supergravity, see [74,91,95,96]. Note that the F 2R> terms obtained via lifting from IIA supergravity
have not been compared to those obtained by Noether procedure [67], although we expect them to match modulo field
redefinitions.

4. D =10

In ten-dimensions, the higher derivative deformation of supergravity theories has been studied in the case of N = (1, 0)
supergravity coupled to Yang-Mills from supersymmetry alone, and the results have been compared with the a’ expansion

6 Prior to [89], partial results on the eight-derivative deformations of 11D supergravity were also derived by lifting certain deformations of type
IIA supergravity in 10D in its NS-NS sector [66].
7 According to [50] their results for the (DF)?R? terms do not agree with those of [93].
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of heterotic and type I string effective action, as we shall review below. In the case of N= (1, 1) and N= (2, 0)
supergravities, also known as type IIA and type IIB supergravities, respectively, a direct Noether procedure has not been
pursued, with the exception of the study of a limited sector in type IIB supergravity in [97], where compatibility with the
SL(2, Z) duality symmetry is discussed in detail, as we shall review briefly below. In the case of type II supergravities, the
higher derivative extensions have been deduced to some extent from the string amplitudes, mostly from the computation
of the four-point graviton amplitude. Less is known about higher point amplitudes in general [98], with the exception of
the gravitational 5-pt and 6-pt amplitudes worked out in [99].

4.1. Type 1IB

To begin with, let us consider the string theory amplitude approach for finding the higher derivative effective action.
Using the pure-spinor formalism [87,88], the full four-point tree amplitudes of both type II strings to all orders in o
were computed in [100]. The result was found to be derivable from the Lagrangian given in [100, Eq. (1.2)]. Suppressing
the terms containing the RR five-form field strength and truncating the result at order a’®, this result was cast into a
manifestly SL(2, Z) invariant form in [101]. In this subsection, we shall begin by writing down the two-derivative action,
Then, we shall review the work of [97] which uses supersymmetry and SL(2, Z) duality to get information on the scalar
field dependent couplings at order 3. Next, we shall turn to the amplitude considerations in type IIB and certain relations
with 11D supergravity on T2

The bosonic part of the two-derivative classical type IIB effective (pseudo)action in Einstein frame, and including the
RR five-form fifld.rstr(ength only here, is given by [)102] 1

— 2

5O Rooppt G|z B 7 € G .G ‘ 1)
BT g0 TR Toua 45 T g
where '
T=Co+ie®, P = Yo'V, Gi=(r2)V?(Fs—TH>),
23 2 23 1 1
Hsz=dB2, Fs=dC2, Fs=dCa— HsANC2+ F3AB:2, “4.2)
2 2

and T2 = (T — T )/(2i). The equation of motion Fs= *Fs is to be imposed by hand after varying the action. Strictly from
the point of view of supersymmetry, the computation of a higher derivative extension of this action by employing the
Noether procedure is notoriously complicated.

A no-go at the nonlinear level
Superspace approach may be simpler but unfortunately, it runs into an obstacle at the nonlinear level as follows. In the
type IIB superspace described in [39], it is known that one can construct an analytic superfield whose lowest component

is related to the axion—dilaton T satisfying the constraint D ® = 0. As highlighted in [39], this constraint is integrable
even at theInon—linear level. A natural ansatz for an action formula has the form

S=  doxde@EW(WV,U", 4.3)
C D)

u v
where V, U* are the analytic superfields whose lowest components are v, u* that make up the SU(1, 1) element —

and E is the integral measure which is required to be an analytic superfield as well, but with lowest component being
equal to the vielbein determinant e. It was shown in [39] that such a measure does not exist at the nonlinear level, due
to the non-integrability of the analyticity constraint on E at the nonlinear level.

The use of linearized supersymmetry and SL(2, Z) duality

There are useful building blocks for the higher derivative terms that can be deduced by considering superspace
formulation at the level of linearized supersymmetry. To ensure the linearized equations of motion, one works with the
analytic superfield ® whose lowest component is the axion-dilaton that satisfies the constraints

D®d =0, DD =0, (4.4)
which are integrable at the linearized level. In view of these constraints, ® has the component expansion
OP=T1+0OA+02G+---+04(W+ 0F5) + ---+ 080 , 4.5)

where G = dB and W is the linearized Weyl tensor. Using this superfield, one can write down the following action

I

S® = a®  doxdie0 F(P) + c.c.

( )
= A% OO 4 G ke FOWE g @IS (4.6)
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where f(t ) are functions related to F (T ) through the Taylor expansion needed in the action formula, and g denotes the
U (1) charge such that each term in the expansion is U (1) invariant, recalling that A and G have U (1) charges 3/2 and+1,
respectively. This action, however, is not invariant under SL(2, R) or SL(2, Z), and f (T ) is an arbitrary function. Nonetheless,
it motivates the following procedure as a step towards the construction of the nonlinear higher derivative extension of
type IIB supergravity. Firstly, all functions fP(t) can be replaced by the non-holomorphic modular forms f}lw'_w)(‘t, T)
that carry weight w = 4/2, to ensure SL(2, Z) covariance. These are also discussed further below and defined in (4.14).
These forms are expected to receive contributions from string amplitudes up to h-loops. It turns out that the relevant
contribution for the o® arises for h = 1, due to the properties displayed in (4.16). Thus, in (4.6), we let

Foey = 2,y 4.7)
This step in general does not preserve supersymmetry. To restore it, one natural step is to replace the linearized field
strengths with their nonlinear and supercovariant forms. Next, one can examine a subset of variations of the supergravity

action S© plus S® under (possibly o' deformed) supersymmetry transformations. This is what was achieved in [97] who
considered the following action (in Einstein frame)

[L( - )(C -, ) , ( -12) -11) ( ) ]
S= dox e A yuvp}\* A Y A+ 4+a3 f(lz' Al — 432f(11' 7\15Y pq,* + e . 4.8)
256 Hvp 1 1 i

It was shown in [97] that introducing the following order a® variation of the dilatino
i

. G« ) (
8GO = _160( (T, T) Al od y ey © de Ywp€* o, 4.9)

where ¢(T, T7) is a to be determined function, the zeroth order in « variation of the o terin (reviewed in [97]), and the
order o® variation of the quartic fermion term in (4.8), give rise to the following €*y lll]JlI A6 and (eA*) A'® terms

, ( )
8L = 8ieal® (e'*y ”\Lu*) 8\16 AT 4 108D,

)
—2ia3 €A A6 D _pof 02712 4 3240fr7 "V —90 ¢, (4.10)
where
( )
p =it 2 ¥ (4.11)
w 2 a-[ > ’

and D y is the complex conjugate of Dyw. It was also shown that the closure of the supersymmetry algebra on A* at order
a®, modulo the A* equation of motion, requires that

1 12
Dug = 02 (4.12)
This relation, together with two equations that follow from the requirement of the vanishing of (4.10) give
27 - - - 525 - - - 525 _
8= __gf(l]L ", D 12D11f1(“, W=- 4f(1n, ", DuD 12/5(12' P=- 4 ?2' , (#.13)

where one uses the fact that Di1g =0 has no solution. These are Laplace equations whose solutions involve representation
functions of SL(2, R) in general. However, motivated by the fact that the low energy effective action of type IIB string has
SL(2, Z)instead, we are more interested in properties of the solution under the discrete subgroup SL(2, Z)C SL(2, R). For
general weight w, such solutions are the non-holomorphic Eisenstein series defined as

Layp
)2
i) e - (4.14)

Wew) oy
f;'( (T,T )_

w00 (M+Tn) 2 (m+Tn) 2
Under SL(2, Z) transformation T — (aT + b)(cT + d)™" with ad — bc = 1, a field ® with weight (g, —q) is

D — (ct+d)i(ct +d) P . (4.15)
It is useful to note that expanding fl(w'_w) in the large T2 > 1, i.e. small string coupling, regime gives
2
21 ( )
VW, 1) =20B) T2+ ———— T2+ 0 T2, 4.16
N R G Rl (4.16)

where the first term is associated with closed string tree level [68], the second term with the 1-loop effects [95,103], and
the last terms encode the contributions from non-perturbative D-instanton states [104]. While the Noether procedure at

the nonlinear level has not been carried out to determine the coefficient of R* term, strong arguments, including the use
of linearized supersymmetry, have been given in [97] for its being f© (see also [105]). It is ‘also useful to noté’that the
function f @ is often denoted by (9 1

E as discussed in Section 11.1.

1 0,0y
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16, 4

The same idea has been applied to the analysis of the modular property of the function in front of the A G term,
where G is the supercovariantized three-form field strength [106], which appears in the IIB low energy effective action
at order o®. To be specific, the tensorial structure of the G* term considered in [106]is G* = (Guvp G*V? )% There are two
other terms mixing with the 1'% “erm under the supersymmetry transformation. Thus to explore the consequences of
supersymmetry on the A16G* term, the first three terms in the following action at O(«®) are considered

SO = 5 dmxef<124’_14)7\166; +f(13’_13’?35y * +u7(13é—13))L16626uvpauvp ...
[FE +f‘2(0:0)l)11§ +eee (417)

’r

where ... indicates other O(a®) terms in the effective action which are beyond the discussion of [106]. We have added
the D'R* term to emphasize that it is expected to arise from a fuller analysis of supersymmetry. Assuming the modified

supersymmetry transformation rules for the dilatino and gravitino at order a® to be of the form
8O = o(’5‘18'1,\(34(7\14)ub(Y MO aYup €, 89Uy, = (X’ngxréGGvrm (v P ywe", (4.18)

the 8® variation of the following two terms from the two-derivative action
(1 _ 1 ~ )

SO = Jloxe ;5% yuvp}\*l*ywp A- gp :yvp?\*G”"" (4.19)
cancels the 8© variation of the terms in (4.17) provided that the undetermined functions in the effective action
and modified supersymmetry transformations obey certain linear differential relations. Requiring also the closure of
supersymmetry algebra at O(®), one obtains

713 11

4DD %f(14,—14) = 241 Dlsé(ls,—w) _ == 2(14,—14) ,
astis) (4,-14) 2 . (13,-13)
2i(g1+191g2) = f, , 192D1sg1 = if, , 108g1 =f, . (4.20)

It follows that f ™ js an eigenfunction of the Laplacian defined on the fundamental domain of SL(2, R) transforming as

ioht (14, 2 4 4 4

a weight (14, —14) modular form. Regarding the coefficient of the D R term, as for the case of R term dﬂgscussed earlier,

at the nonlinear level the requirement of SL(2, Z) symmetry suggests that it should be proportional to f(*"”, which is often
2

denoted by E((llloo)) as discussed in Section 11.1. In the weak coupling limit, i.e. T2 > 1, one finds that it gets contributions
from tree level, two-loop and D-instantons [107].

Type IIB supergravity has an anomaly in composite local U (1) symmetry which also implies an anomaly in the global
SL(2, R)transformations; this means that SL(2, R) is not a symmetry of the theory. For a detailed discussion of this anomaly,
its cancellation, and restrictions on spacetime background, see [108].

The use of duality symmetry is a powerful approach to studying the higher derivative extensions of supergravity
theories, not just in 10D but in other dimensions where duality groups Euw are present. These are the Cremmer—Julia
groups listed in Table 8 in Section 11.1, where we summarize the basic aspects of this approach. For a textbook exposition
of this subject, see [105].

11D on T? and decompactification of type IIB string

Another avenue for using supersymmetry and duality to get a handle on the higher derivative extension of type 1IB
supergravity is to reduce the higher derivative extensions of 11D supergravity (to the extent they are determined by
Noether procedure discussed in the section on 11D above) on T2 and compare to an appropriate decompactification limit
of type IIB string. We shall come back to this point briefly in Section 11. 11D supersymmetry may also be exploited at
the level of amplitude computations at one-loop and beyond, and this approach has been successfully implemented in a
series of papers pioneered in [109].

String theory amplitudes

Using supersymmetry and duality alone, the story unfortunately does not go much further for type II theory, and
there are a large number of terms in the effective action even at the eight derivative level, let alone the higher derivative
corrections to the supersymmetry transformation rules, that have not been determined as yet. Given the difficulties in
deforming the superspace constraints to accommodate the higher derivative terms, and the obstacles in dealing with the
RR sector in the beta function method, the most promising approach that remains is the computation of sting theory
amplitudes, and the construction of the effective action that produces them. The pioneering work along these lines was
done long ago in [109] where 4-pt amplitudes in the NS-NS sector of heterotic string theory, which constitutes a universal
sector in all string theories, were computed. In [99], 5- and 6-pt graviton amplitudes were computed as well. In what
follows we shall summarize various results for the higher derivative corrections at order o® obtained so far from the
computation of the various string theory amplitudes at the tree and one-loop level.

14
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e The tree-level 4-point amplitudes to all orders in of

Using the pure-spinor formalism, the complete four-point effective action of both type II superstrings to all orders in
o, at tree level in string loops was computed in [100]. The result, which includes the fermions as well, is given in [100,
Eq. (5.36)]. The explicit tensorial structures are to be deduced by employing a procedure described in [100] but the result
is not provided. Furthermore, in the case of type IIB, the SL(2, R) invariance (at tree level) is not manifest. In a subsequent
paper [101], putting aside the RR 5-form, the terms at order a® were put into a form with manifest SL(2, R) invariance

(in Einstein frame) as ftjllows [1?1, Eq. (3.3)]8 ) ]
L™ = ca®tsts R4+ 6R? |oP|* + |8Gs|* +6|0P|*|0G3|* + 6R SP(a Ga)2+ ce)
pt,tree
+a34(3) O1((|0P )2 + Ox(19Gs|*?) (4.21)

where, ¢ = {(3)/(3 - 2%), and in the linear approximation [101]

—( )
8Gs = 2 ¢ P/?9H - ieP/*9F; (0H) apea = a[aHbcd] ’

(0P) = 00D +iePddy , Fs =dCz,
with (D, X) representing the (dilaton, axion), (39)a* :=

(4.22)
le 1 4l and O1 and 02 are operators that are complicated
b

combination of the products of Kronecker deltas, for which we refer the reader to [101]. The dilaton exponentials in the
above definitions are put in accordance with the field’s conformal weights, but the overall dilaton factor in the action
has been omitted. The terms involving the Riemann tensor are deduced by general covariance, and therefore they do
not require the computation of higher point amplitudes. Note also that the expected esesR* term is not visible in the
linearized approximation.

The effective action at order o in the NS-NS sector has been computed in [110,111] solely from the bosonic gauge
symmetries, and the requirement that a circle reduction produces a T -duality invariant result. The action at order o
found in this way in 10D schematically takes the form,

1IB ’
Sns—Nspee = ca® dx'% [RY]2 + [RP°H2]2 + [RA(VH) ]2z + [R*°HY],

+[R(VH)2H2J1w6 + [RH®|1 + [(VH)412 + [(VH)2H*]77 + [H8]2 , (4.23)

where [X]» denotes n number of structures with different index contractions of the fields X. The structures denoted by
[X] can be found in [111]. However, a comparison of the result above with that of [100] discussed above remains to be
carried out. Given that the action (4.23) is for the NS-NS sector, it should be the same for the heterotic string [112].

e The one-loop 4-point amplitudes at order o

The dependence of the type IIB effective action on the three-form and five-form RR field strengths at order a® was
obtained in [113] from the 4-pt amplitude at the one-loop level. The result for the R*(DFs)* terms, upon choosing suitably
the 4 parameters that cannot be determined from the 4-pt amplitude at the linearized level, comes out to be compatible

with the result (4.21). In other wards, the ¢(3) term from (4.21) and the one-logp term from 5.1131 are compatible wjth the
SL(2, Z) invariant structure jl' O R*(DGs)". The first two terms in the weak string coupling limit expansion of f] @ given

in (4.16) describe the tree-level and one-loop contributions. As for the R*(DFs)” terms, 58 structures with the maximum
number of contractions between the indices of Ra ., Ra ., and those of (0Fs)? , are given explicitly in [113, egs.

1 4 5 8 ai...ag
(2.13), (A.12-15) and (A.17-18)].

e The R3G? terms at order of3
3

2

2 3
The GZR® and |Gs| E{3 term at OEder o have been given in [1)14, Eq. (3.36) ] as
1

Lyg | = ca? fl(O'O)(T’ AR 6969 N Zts ts - *6868 - t13 |G3|2R3
G2R3 (3 . 3 )] 2
+ = 2f<11' (T, T)HsG2R? + e, (4.24)
where
1 1 ~ ~ Hp-lg
BGRY = HHGR = e LR =240 d Gy Gy 9 , (4.25)

i=1
and Q~,- are eight independent R® structures listed in_[114, Eq. (A.13) ]. Furthermore,
1 1 1 1

d1,...,dg)=4 1,-7,0 ~ 1,1 =~ -2, . (4.26)
4 '3 4’ 8

8 The fourth term has been corrected in [98].
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The definitions of various contractions of the symbols in (4.24) are given in the appendix. In view of the definition of the
functions f ©” and f @™ the Lagrangian above contains both tree-level, one-loop and instanton contributions.
1 1

e The tree level 5- and 6-point graviton amplitudes
The 5- and 6-point graviton amplitudes at tree level were computed in [99] where the absence of R® terms and certain
higher derivatives of R* R® and R® terms with zeta valued coefficients was shown.

e One loop 5-pt amplitudes and B \ Xs terms
The one loop 5-pt point amplitude involving NS-NS B-field and gravitons were studied in [115,116]. The result includes
the term, which is of the Green—SChwarz) type, though the type IIB theory is anomaly-free, given by

Les=BA Xs(R(w+)) — Xs(R(w-)) . (4.27)

Despite the progress that has been made so far, the eight derivative terms still have not yet been completely determined.
For further references in which partial results are obtained, see [114]. In particular, for a treatment of the usefulness, as
well as limitations, of the Lorentz connection with bosonic torsion Hs, see [89]. As for the use of supersymmetry, a study
of a particular set of variations, to wit, those involving the 16th and 14th power of the dilatino, have been considered
to discover that the modular function fo(t , “t ) is needed in the R* term [97]. However, linearized supersymmetry, while
predicting the existence of certain higher derivative terms, cannot produce them all, including the fi(t , T ) factors. A fruitful
approach to obtaining more detailed information is to consider 11D superparticle on T? of vanishing volume, and integrate
out the winding modes [74,95,96]. Doing so, in [114], for example, a conjecture is made for specific types of terms, namely

L~ a3 afi(t,T)GEG," 'R + hec., (4.28)
h=0

where the coefficients cr are specified.
4.2. Type IIA

The bosonic part of the classical two-derivative action jfor the type IIA string is given by

a __ 1
SH<§> = - diox =g e ’? R-40@)2+ H?
Ko L 2 13
1 1 1
+7G?.GP+7"G"W.GY —x TACOAICOAB (4.29)
2 2 2
where
G® =ac®, GH=dc® +aBac? . (4.30)

From tree and one-loop level 5-pt point amplitudes, and considerations of known dualities, it is conjectured in [98] that
the 8-derivative terms in the bosonic part of the type IIA string effective action, not taking into account the RR fields and
the du@ terms (and taking into account some terms that were missing in [89]) takes the form,

515[3‘) = ca3e 2 tstsR(w )* — _46868R(u)+ )4 — 2tstsH2R(w, )®
1 ~ _
— _eveoH2R(w )P +8-41  dHWAHPCT Qi e
6 + WApo T

i

]

2 [ 1
+ ST T ksR(ws) 4 + éesegR(o}a,) 4y gegegHZR(w+)3

— edd9H (DH) R(w )+ - & + -
é 2 2

+

9
—(2—;‘fa’33/\ (Xs(R(w+)) + Xs(R(oo-))) , (4.31)
where ¢ := {(3)/3 - 211, and ( )
w =wE)x H, X (R) = —1— R4 — l(Rz)2 , (4.32)

I+

2 s (2m)*3 - 26 4

See the appendix for the definitions of various symbol contractions. The terms with the overall e™*? factor are tree level,
and the remaining terms are one-loop contributions. In the tree level Lagrangian the ellipsis inside the round brackets
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refers to the terms that have the structure H?(VH)’R which can be computed from 5-pt amplitudes, and terms such
as H'R? that contribute to 6-pt amplitudes which have not been computed so far. In the one-loop level Lagrangian the
ellipsis in the round brackets refers to terms of the form HR? and possibly other terms that would contribute to six-
and higher point amplitudes. The tree level contribution in (4.31) is obtained by the four graviton amplitude and the
sigma-model computation [68,117]. The first two terms of the one-loop contributions in (4.31) are found in the sigma
model beta function approach in [118-123], and by making use of the four graviton amplitude in [124], while the last
term is introduced to ensure the string-string duality between type ITA on K3 and heterotic string on T * [125-128]. Under
this duality, the last term is related to the Green-Schwarz anomaly cancellation term in the heterotic string effective
action [69,129].

It should be noticed that when restricted to the NS-NS sector, the type IIA tree level effective action at order o® shares
the same form as the one for type IIB [89]. Thus, as noted before, the N =(1, 0) truncation of the NS-NS sector of Type
IIA effective action at tree level is also the same as that of the heterotic effective action [112]. At one loop level, the terms
contracted with two ts tensors are also the same for IIA and IIB. However, terms involving two epsilon tensors, as well
as the B A Xs terms appear with opposite signs.

4.3. N = (1,0), 10D supergravity coupled to Yang—Mills

We begin by reviewing a particular deformation of N=(1, 0) supergravity coupled to Yang-Mills up to quartic in
Riemann curvature terms, strictly from the point of view of local supersymmetry as was obtained by Bergshoeff and de
Roo (BdR) [130,131]. Next, we shall review another deformations that are quartic in Riemann curvature but only in the
gravitational sector [132-134]. In a subsequent section, we shall compare these results with the low energy limits of
Es x<Es and SO(32) heterotic string. Note that higher derivative terms in type I effective action can be obtained from those
in SO(32) heterotic string via suitable field redefinitions [135-137].

R + Riem? + (Riem?)? from Noether procedure
The supergravity multiplet and the Yang—Mills multiplet have the fields (e,", Buv, @, Wy, X) and (A, A) respectively.
The bosonic part of the higher derivative extension of the coupled system up to the fourth power of the Riemann tensor

is given by [131]: [ 1 ( ]
Lret = —ee™?® R(w(e)) +40 @dv@ —~ H H™P — 1T+ a 3T T™P°+T TV , (4.33)
BdR H 12 Hvp 2 2 Hvpo [0Y
where
H=dB+aX(w )+BXs(A), ® w=wawE)iHa, (4.34)
- p p o K
and

Tpvpo‘ = tr(R[uv(w‘)RPG](w‘)) + B tr(F[HVpPU]) ’

Ty = & tr R(w-)RY (w-) + B tr F Fay T=g¢""Tw,

X3(A) = trym(ANdA+ "ANANA), X3(w) =tre(wAdo+ " WAWA®). (4.35)
3 3

The deformation parameters are o and 3, and 8 = 1/, 83 One can solve for H recursively from (4.34) in powers of (a, B),
the first few terms taking the form

HO = dB,
HY = a X3(w-)? + B X3(A),
Hm = o Xa(w-)D n=2. (4.36)

It is worth noting that the BdR action at first order in (a, B) is complete including the four-fermion terms, though, it is
understood that supersymmetry holds up to the same order.

The action (4.33) is invariant up to order O(a3, o3, af3?) with the supersymmetry transformations up to that order
taking the form

83& = e_y“\pu.;. cee,

B = Dyu(w)e+ -+,
8Buv = 2€ yuiv + %O( tr(w-pdéw-vi) + 2B tr(AjpSAvy) + -+,

S = (y"0 @ — 7 ywPH Je+---,

H 12 wvp
1
8 = TY e .. ,
P ;E X
SAHZ E_YH}\-'_ cee,

1
SA = —;y WE €+ -+, (4.37)
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where the ellipsis for the supergravity multiplet transformations denotes the order O(a3, o?3) terms [131, Eq. (4.19)], and
in the case of Yang-Mills multiplet the order O(a?, af3?) terms [131, Egs. (4.13) and (4.14)]. At order O(a3, o?f3, af3?),
the quartic fermion terms as well as terms in which du@ and H may possibly arise have not been determined
in [131]. In obtaining the result (4.33), the convenient trick [131,138] (employed previously in off-shell 6D conformal
supergravity context in [139]) that uses the fact that (A, A) transform under supersymmetry at lowest order in («, ) as
(wu_™, P “(wy )) do, is employed. In the Lagrangian and supersymmetry transformation rules obtained in this way, the
dependence on the parameters (a, [3) arises either explicitly, or implicitly through the expansion (4.36). It is understood
that only terms of order O(a?, of3, a?, a?B, af3?) are to be kept.

It was also shown in [131] that no a2R® and afRF? arise but order O(oZ af) terms do arise and they involve
fermionic bilinears multiplying the (Buv, Wy, X) field equations. These terms [131, Eq. (3.17)] arise as a result of putting
the supersymmetry deformations in a form without a differentiated supersymmetry parameter.

The dilaton factor e™? appears as an overall factor, and therefore the BdR action is to be compared with the tree-
level contributions to the heterotic string low energy effective action. Since tr F * terms, for which these two groups have
different properties, do not arise in the BAR action discussed above, it can be compared with the heterotic string effective
action with either gauge group. The results from heterotic string theory can be extracted from the amplitude computations,
some of the earliest ones being [109,140,141], or from the beta function calculations carried out in [142]. Comparisons
are not straightforward due to the complicated consequences of the field redefinitions. However, putting aside the Yang—
Mills couplings, we can see from the work of [142] that the effective action at order o' obtained from the beta function
calculations does agree with the BAR action.

Riem* invariants from Noether procedure

There are three independent eight-derivative extensions of the two-derivative action for N = 1,10D supergravity.
Two of thejse were constructed in [133] where an action with the generic form

(R+YR4+...) (4.38)

S = diox =g
was considered. Here R* refers to terms that are fourth order in Riemann tensor with indices contracted in all possible
ways allowed by supersymmetry. In [133], only terms independent of, or linear in, H and 0. were considered.
Consequently, in the variation of the action, only terms in which H and du¢ are absent were studied. A combination
of the two invariants constructed in [133] and a third one found in [134] can be expressed as suitable combinations of
the following invariants, in the notation of [66], taking the schematic form

1
Ix = (ts + _261OB)t8R4 +e-,

1
by = (ts+  ewB)(trR 3% 4HRDR + ---,

Iz = —€10€10R* + 4€108BR* + - - -, (4.39)

where €10B denotes the Levi-Civita symbol with two of its indices contracted with those of B. These are independent of
the 8-derivative invariant expressed in terms of T2 terms in (4.33). Up to quadratic fermions, the invariant Ix is given
in [66, Eq. (3.8)]. It should be noted that in the expressions above the terms involving bare B-field are not invariant
under Yang—Mills gauge transformations. Since the commutator of two supersymmetry transformations involves a Yang—
Mills gauge transformation as well as local Lorentz transformations, anomalies in these transformations are also expected
in a manner in which the Wess—Zumino consistency conditions are satisfied. We are not aware of a detailed study of
this phenomenon in 10D, but it has been displayed in (1, 0), 6D supergravity coupled Yang-Mills in considerable detail
in [143,144]. Note, however, that there is just one combination of the invariants listed above which has no bare B-field,
and therefore manifestly gauge invariant. As we shall see below, it turns out that it is that combination which appears in
the heterotic tree-level effective action, with the celebrated {(3) dependent coefficient.

The invariants (modulo the anomalies just discussed) I1, I> obtained by de Roo and Suelmann [133] are related to

Ix, Iv;, Iz by9

41 3 1
I=—"(d+"1), I =-"1 . (4.40)
148 X g7 2 o4
As noted above, the combination Ix — 1512 does not contain the term €10tsBR* and appears in string theory at arbitrary
loop order. According to [66],

- et C 11
ey = Lh% + e x="Iz 4+ a3, (4.41)
3.214 8
9 In comparing the results in the literature, we map the two-potential as B'RS = 2BPVW = -1 BzT, where dRS, PVW and T refer to the

papers [66,133,136].
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with LE‘;‘R from (4.33) and ]1 is a one-loop term explained below. Note that I*;;Ralready contains the overall dilaton factor

¢*? . Demanding the O(d)x O(d) symmetry to be present in tree-level string action compactified on d-torus, Ref. [145]
has obtained the B-field dependent couplings in the eight-derivative term proportional to {(3) up to fifth order in H. As
discussed below (4.38), Ix and Iz are partially determined by supersymmetry. At order o® at the tree level the Yang—Mills
dependent terms come solely from Isir [109,146-149]. J1 is the one loop term [136,150-152] involving the B A Xs required
by the GS nzechanism. It)s bosonic part is given by

Ji= ts+  €10B Xs(R,F)+---, (4.42)
2

where Xs(R, F) has different forms for Esx Es and SO(32) invariant models. 10 In the first case, tr F* factorizes as (tr F?)?
but for SO(32) this factorization does not occur. Therefore, an invariant including tr F* is needed to make up Xs. Finally
Xs can be expressed as a combination of Ix, Iv1 and 3 other separate invariants involving the Yang—Mills field strength
F [133,134,153]"!

1
I = (ts + _€0B)UrF + -,

1
Ia = (ts + _ZeloB)trR2trF2 +---,
1
Is = (ts + 2eloB)trF4 +oeee (4.43)
The first two invariants in the equation above can be obtained by replacing R? in Iv, with F2and F2 # Kk R® respectively.
In the Es model, tr F* factorizes into (tr F?)>. In that case, Xs(R, F) and the bosonic part of its supersymmetric completion

can be obtained as a suitable combination of Ix, Iv1, Izand Ii. For completeness, we recall here the well-known expressions
for X (R, F), in conventions of [154]:

S0(32): X = Loriet (trR2)? — L RuwF 4T i L(mfz)2 ,
8 8 32 2 24, 7200
ExE: X = trRé+ " (trR)2— " trR2rF2 — — (trF2)2. (4.44)
& 8 0 g 32 12 ® 36090 @

At leading order, the low energy effective action of the heterotic string admits a class of Minks CYs solutions [155]
which play an important role in phenomenological applications of string theory. Whether such solutions continue to exist
when o' corrections are switched on was partially investigated in [156]. It was found that for tree-level stringy corrections
up to order & the metric of the internal six-dimensional Kahler space satisfies

3

o
Rj = —-LB)(ViViS = 1 Vivis) (4.45)
where ]]’ is the complex structure and
g = Rijklelmannij _ 2Riklekml anzl' jn ) (4.46)

The corresponding Ricci form Pj:=JRx is an exact form implying that the first Chern class is still vanishing. Thus the
internal six-dimensional K&hler space is still a Calabi-Yau manifold [156]. The 3-form flux remains vanishing while field
equations determine the dilaton to be
o’

@ = constant + ZZ(?))S . (4.47)
The spin connection is embedded in the Yang-Mills gauge group as in the two-derivative case. The first corrections to
the embedding condition begin at a® which comes from the o part of the action which is currently unknown. For
(4.46) and (4.47) to naturally arise from the integrability condition of the Killing spinor equation, the 10D supersymmetry
transformation rules of gravitino and dilatino must be modified to include terms proportional to the gradient of S [156].
Based on this analysis, it was concluded that with the tree level a® terms taken into account, the E< Es heterotic string

still admits compactification on a six-dimensional Calabi—Yau which gives rise to four-dimensional models that have an
Es gauge group with four standard generations of fermions.

4.4. Dualization of the Riemann-squared action

Starting from the BAR Lagrangian in 10D, the dualization of the two-form to a six-form was achieved in [157], and
it was investigated in greater detail in [158]. Earlier results were also obtained in superspace [159], on which we shall
comment further below.

10 Note that in the absences of the Yang-Mills field, J1 = T+ .-

192 16 1
11 The last invariant is given in [134].
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Here we shall describe the bosonic sector of the Lagrangians involved, and the supertransformations, up to quadratic
fermions terms. The bosonic part of the BdR Lagrangian, already given above, but in a slightly different notation, is given

by [158] [ . ’
Lhet = ee2® “R(w)+ g0 dpd p—— G G"P-"aR (0 R (w ), (4.48)
BdR 4 poov 12 WP 4 wvab - -
where
Wapgy =Wpgp GHal; ’ Guvp = 3a[ucvp] ’
Guvp =Gpyp = 60 Xpvp (w-(G)) ,
¢ )
X w)=trw  dw  + o o o . (4.49)
pp V= —[1 v -p]

5 v opl

It is understood that the term proportional to a? coming from G2 is to be dropped, since we are considering the Lagrangian
to first order in . The action of the Lagrangian (4.48) is invariant under the following supersymmetry transformation
rules up to O(') and higher order fermion terms,

Sey =€y Yy, Yy = Du(‘*)"(G))e) ’

rs
SCuv =~ € YuPv + 20 W-[p Sw-virs ,
8x ="yred ¢ -7 G ywre,
2 Moo P
5 =€y . (4.50)
To dualize the two-form potential, one adds the following Lagrange multiplier term to the Lagrangian
1 Wvpo1...07 1 ~uvp( ’ )
ALWD(B,C) = 76 ” 7'6 ““"Hgy..op Guvp = geH Guvp + 60 Xpyp (w-) 4.51)
where
7 uvp 1 WUVpo1...07
Hyopy = 7a[u1Bp.2...p.7] ’ H = ;8 """ Hoy..o7 » (4.52)
and integrates over Gpyp. To this end, it is convenient to write the total Lagrangian as
Lpar + AL1D(B,C) = Lo1 + &'L1, (4.53)
1 1 ( ~uvp)
Lot =ee® “R(w)+¢"a g ¢ — —G,,, G™P —2:72PHHP" (4.54)
4 " 12 "

1 —
Li == ee 2 R ywap(W-)RY (w-) + ¢ HYP Xyyp (w-) (4.55)

The O(a) terms are collected in L1 where the dependence on G arises through the torsionful connection w-. We are
treating G as an independent variable, while H = dB. Thus, the field equation for B gives the re J’lation dG = - tr(R AR),
which can be solved to yield G given in (4.49). The field equation for G at O(«') following from d™x(Lo +a'L1) is given
by

b soce20 2L (4.56)
Gup =€ "Hup + 5GP .
This equation is readily solved for G in terms of H, again at O(«'), as
—_ ' SL
_ 2 -2¢p 91
Gup = e P Hpyp + 60e SGup |G=e_2¢~H . (4.57)

As shown in [157], the term 8L1/8w _uab is proportional to field equations. Substituting for G in the action (4.53) by using
this equation, and going over to the brane frame [160] by rescaling the metric as

Suv =8y v =¢ gy, (4.58)

the following dual Lagrangian is obtained

G ua. - l ; e
phebdual — ,,=2/3 4R - S x 7,Hu1--~u7 2SR
AL B 3
+ae — R R + 6H2 RW —3H2R — ~ Rwpo H
4 Hvpo ny 2 Hv,po

- 2H2 Hopw — 1H4 + ﬁ(Hz)z + 2 (D H YDHHVT"Y7
3 W 6 3 70w Y
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n > 4, TR 16 , v 22 5,
"6b DL+ gl & b GG

nov uv 1 ) 16 nov
~ gRwd & = SRwb * GRY - dud ¢
uv 4° 5, 16 , M no2
[E— - + -
9¢uV¢ §(¢ ) 2?13 ¢4u 94‘1) w |
2 ~ —_ —_
T D, = ™ 4 Hupo + TR X (@) (4.59)
where 1
H = 1y Mers gp o= LH HM e, H2i= TH2 gWV (4.60)
uv,po 51 HVA7--As %0 ’ uv 6! pA1de v 7 W

Using the duality relation (4.57) and performing the rescaling (4.58), the supersymmetry transformations take the form

Sey’ =€y Yy,
T ( )
SYu =Dy(w)e + EHnbc 3y @y + yuy %¢” € + EOMs,

8By, =3$_Y[u1---u5‘|1u6]1+ EOMs,
8x =5V " edup - uﬁwpy““" €+ EOMs,
8¢ =€’y . (4.61)

4.5. Superspace approach

In a superspace approach to the construction of the higher derivative extension of heterotic supergravity in 10D, the
key equations are the superspace Bianchi identities

DTA=RAs AEF, DG=do tr(RAR). (4.62)

With a particular set of constraints these were solved in [161-168], where the consistency of the BI's was proven to
all orders in o. In this approach, the dimension zero torsion component is taken to be Teg = Y but certain other
components are deformed by o dependent terms. In particular, the following relation (in our notation) arises

Gave = € 2P Tave + O Ware(T) , (4.63)

where Wac is a nonlinear function of the torsion superfield Tae which can be found in papers referred to above. To obtain
the deformed equations of motion, one solves for Tw: in terms of Guwe order by order in o, and uses the result in the
supertorsion BI’s. The resulting equations of motion were obtained at O(a') in [167,168]. These equations apparently have
not been compared with those which arise from the BdR action. While they are expected to agree at O('), it is an open
question whether equivalence holds to all orders in a'. This approach has been updated in [169] where the relationship to
another approach by [170,171] which focuses on order by order in & analysis (without addressing fully the question of the
consistency of the entire procedure) was clarified. Interestingly, the formulation of [169] is such that the Gauss—Bonnet
action appears as part of the bosonic action. The full four-derivative action in this framework has not been worked out
but it is expected to be related to the result that follows from [161-166] by field redefinitions.

The solution of the Bianchi identities (4.62) will yield the deformed equations of motion to any order in a'. However,
this framework does not capture the most general supersymmetric deformation of heterotic supergravity. For example,
at order O(a®), deformations involving (tr R%)?, but not tr(R*), will arise. To get the latter, one can either deform the
constraint on T%, to include a tensor in 1050 dimensional representation of SO(9,1) [172-178] or take Gagy to be
nonvanishing [179].

Heterotic supergravity in the six-form formulation in superspace including o’ corrections was studied in [180-184]
where partial results were obtained. A more complete treatment which builds especially on the results of [184] appeared
in [159,185-188], where the dualization phenomenon in superspace, suggested in [189], was spelled out. Here we shall
focus on the key results of [159] where the equations of motion deduced from superspace were also integrated into an
action for the bosonic fields, and we shall compare the result with ours.

The super Bls for supertorsion T4, and the super seven-form H7 = DBs are given by

DT4 =RAs NEE, DH7=0. (4.64)

Note that the BI for H7 does not acquire o’ deformation, unlike the BI for G in (4.63). The BI's (4.64) are solved by (see [159]
and references therein)

bed.

1 )
Tap =Yg, Tp'= ——Toa YY" ¥, Tw' =0, Tap’=0,

(722
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1
abc T ,
( ) 1o 7 a 1o 7
Hul...nsotﬁ =~ Yaj.as ap ’ H, ., = 7€ , abc
other components of H7 =0, (4.65)
together with a scalar superfield ¢ satisfying ) ( )
De=x, Dx =py*De+ — o + A vy, (4.66)
a [od a B ; aB 4 3_6 abe abc o

where D. is the covariant derivative with bosonic torsion, and Aa. is a crucial superfield which governs the o deformation
given by [159]'2
L

- _4 4 _1 __5
abe 18 DTubc + 36 ldeﬂ,bC 36 TdEanTCdE 1944 szgbg
- i T> Tvai + é Tz _— LE a1-a7 T a Du Tu a
108 da ( 54 e 3888 abe a1..3 4 5w 7 , |

1
=T Zyahgulblnuzbz +yTy iy vipabz 4 ogyay yt! 5:1251;2 T P i (4.67)
48 !

2 off 12 [abc]
where Tae = T[ac] and Ta® is the gravitino curvature, and

Tav,ed = Tav' Tede Tib = TaCdThcd » stf = Tw d 2'1"17'712'713 Tea 3d1 ’ T?:= Tabe T . (4.68)

a

It is noteworthy that the solution is an exact one, even though there is an & dependent deformation. The EOMs that result
from the analysis of the superspace BI's are also given in [159] in terms of superfields whose lowest order components
in @ expansion are the supergravity multiplet of fields. For a more detailed explanation of how the EOMs are obtained
in superspace, see [186]. These equations imply an action with a'Riem? term, and yet their supersymmetry is realized
exactly. No higher than first order in &' terms arise in supersymmetric variations of these EOMs since, as can be seen
in [159], the o' dependent terms do not involve the dilatino X which is the only field that develops a' deformation; see
(4.66).

A bosonic Lagrangian which yields these EOMs can only be determined up to terms proportional to the lowest order
(i.e. two-derivative) EOMs. Such terms can always be removed by field definitions (see, for example, [190] for a detailed
explanation). With this understood, the resultinﬁ bosonic Lagrangian is found to be [1591%3

_2 o) 1 1
ee 3 R - H
4 2 x 7l HITH7

Myl

L STZ

1, )
+ 460( R Riyps +2R™ Ry + 4R“VHW - 4RF?
— ‘_L(D H )DpHvl...v7 + 1_6H2 2R ZH _ @(th

v el 3 uv] 34 3
+ 4HYPDO Hyy 00 + 4 1P Wl (W) - (4.69)

The supertransformation resulting from the constraints (4.65) are [187] (up to cubic fermions here)

Sey’ =€y Yy,
1 ( )
abc abc
SYu=Dpe — —~Tac 3y Yu+ Yuy €,
5 - 72
Bul---ue =3€ Yiu..us lljust ’ )
yabce ,

1 41 .
SX = Zy Heaucp + - 36(‘)’1;% + aA:zbc

S =€y, (4.70)

where it is understood that ¢ — e2/% and X — e 20/ 3. These are also understood to be valid up to the lowest order
EOMs. It has been shown in [159] that the algebra closes on-shell, and that the closure functions are o' independent.
Thus, the closure of the algebra is not a statement up to order a' but an exactly valid statement. The fact that Awc obeys
the relation DAwc = Yabc™Xse where Xa® is an arbitrary function [159] is behind this property.

Comparison of the Lagrangian Lsrz with the bosonic sector of the dual of the BdR Lagrangian in 10D (4.59), which was
obtained by solving the duality equation to order o, was carried out in [158]. It was shown that the difference amounts
to field redefinition of the dilaton. However, it was argued that a full comparison of the action as well as supersymmetry

12 Certain terms for Aamc and their implications for the o corrections were considered in [180-184].
13 1 converting the conventions of [188] ours, we first let wu® — —u)‘ff” , and then let Nw — —Mab, €ay..ay9 —> —€ay.ag, Mpvp — Z’pr,

q)~—> 87%‘1), ks = o, and L — 4L. Note also that the term 1;; (M 3?2 term in [188, Eq. (4.10)] should be absent, as noted later in [159] as well.
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transformations require the dualization of the BAR action in the two-form formulation to all orders in o, and it was
conjectured that a solution may be obtained as follows.

In superspace, leaving the solution of the Bls reviewed above intact, one can also construct a super three-form G which
obeys the super BI (4.62) as [159]

Gapy =0,

Gapa =@ (Yd)op + &' Uapa ,

Gave == (YoX)a + & Uate ,

Gue = = @Tape + A& U, @.71)
where [159]

Uae = ~20Tae = 6D Tagpe = 6T*sDyTeae = 6R wpTeae = 6RaaToc” +4T°
(
= To 0, Yare NN 4y Tyaey T2 + 12y Ty, y 115282
a
) ]
+12878" N2y, + 65787182y T, , P , @.72)
a b a b ¢
aB [abc]

the expressions for Uqaps and Uap, which are functions of Tawe and Ta%, can be found in [159], and Ra is the
supercovariant curvature (calculated with the torsion full spin-connection). The last equation in (4.71) is expected to
be equivalent to (4.63) upon field redefinitions, and it also represents the duality relation between the two-form and
six-form formulations as can be seen by substituting Tac = Have from (4.65) into this relation, which now takes the form

Gape = =@ Hype + 0 Ugpe |T " 4.73)
def = def

Solving for Hae order by order in & and substituting the result into the EOMs obtained by STZ in [159] is expected, though

not proven, to generate the EOMs of BdR to all orders in o, just as solving for Tac in (4.63) is expected, but not proven,

to lead to the same result up to field redefinitions, as explained above. For a further discussion of these issues, see [158].
4.6. Killing spinorsin N = (1,0), 10D supergravity with higher derivatives
The Killing spinor equation in the heterotic string with leading o corrections was analyzed in [191]. These corrections

come from the Chern-Simons modification of the three-form field strength, as in (4.36). Up to the first order in o, the
supersymrrketric solutions of this theory imply the existence of a Killing spinor € satisfying

1
— - = ab
0= Vu 4u)+wby €,
( 1 )
0= %) -~ H wpe e,
Y u‘P 1p Y
0 = FuvyWe, 4.74)

where H = dB + o'X (w+), with w+ = w + dB, and F = dA, thus switching on only one vector field. Using the Killing
spinor, one can build spinor bilinears

‘gp = e_yue, Wllr"us = €_y”1...|_15€ y (4.75)
which satisfy

LM =0, Wypops 1= 5810 Qpypeeeps] - (4.76)
Since £y is null, one can pair it with another null vector ny obeying nyf#* = —1. Using the Killing spinor equations above,
one can show that €y is a Killing vector of the solution. Thus one can choose a coordinate system in which €49, = 0v.

The fact that the metric admits a null Killing vector alone implies that the metric can be parametrized as follows

ds? = —=2f (du + B)(dV + Kdu + w) + hundxmdxn (4.77)
where 8 = Budx" and o= Bmdx’”, and all the functions are independent of v. Algebraic manipulations of the Killing
spinor equations lead to

6v(p =0, Fuvf" =0,
qun_pqmn = 101 H—pqn_pqmn =0,
qusn_qrsmnp = _(Zaq(P -H q)quHp ’ (478)
7 o
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where certain projection operators I1- in the space orthogonal to £, and ny have been defined, and they can be found in
the appendix of [191]. It was shown that [191] the necessary condition for a Killing spinor to exist is in fact sufficient for
its existence. As is well known, the integrability conditions of the Killing spinor equations imply a subset of the equations
of motion. To state this subset, let us define the frames

et =Ludx", nudx"=e". (4.79)

One finds that all equations motion follow from the integrability conditions of the Killing spinor equations, except the

following com Qnents_14 _
, , ET", E (4.80)
g B B A

where E refer to the EOMs with self-explanatory notation, except that I’-fg is a particular combination of the vector field
equaﬁo&s which can _bze sin\}pliﬁed to read
( )e*PFWYy . (4.81)
E A= Vv w+
Of course, the Bianchi identity for Hp) must also be satisfied. Thus, to find a supersymmetric solution, one may make an
ansatz consistent with (4.77), and use the equations (4.78) as well, to solve the equations listed in (4.80), and the Bianchi
identity for H(s). Based on the results above, a BPS black hole solution in heterotic supergravity with leading stringy

corrections haszbeen obtained in [193], and it takes the form (setting K2 = 1)
ds2=—=""du(dv—"2Z du)+ Z (dp?+ p?dQ? ) + dymdy”, m=1,...,4,

7 2 * 0 3
H=dZ: ANduANdv — p30pZoQ3) ,
-2 -2 —2(Poo é
A= M xidxi, e =e , (4.82)
P21 +p>) 7 Zo

where p? =x'x, Q@) is the volume form of the 3-sphere with unit radius, ij is the anti-self dual part of the SO(4)

generators (i.e. the constant 't Hooft symbol) and Zo, Z are functions depending on p only and they are determined
in [193]. A particular solution is of the form [193]

rpra2 2
Zo = 1+80c(p2_|_1)2 +O(a ),
Z =1+" +0@?,
- 2
Z =1+ 8. — 16—, o(a?), (4.83)
’ 5 pH(p? + Q)

where Q. are integration constants. See [193] for an interpretation of this particular solution. Generalizations to non-
supersymmetric black holes were investigated in [194,195]. It is found that for fixed mass and charges, higher derivative
corrections to black hole entropy are always positive [196].

5.0=09,8,7

Results on higher derivative extensions of supergravities in D = 9, 8, 7 are scarce. One such rare result is provided
in [197], where the bosonic part of half-maximal supergravities in D dimensions is obtained by a toroidal reduction of the
heterotic supergravity with its four-derivative extension, but without the Yang-Mills sector. (See also [198] where such
a reduction is carried out for the 4-torus reduction, including the fermions.) In a double field theory approach, in which
the Yang-Mills sector is also considered, the bosonic sector in D dimensions is also obtained in [48]. Putting aside the Yang—
Mills sector, the reduction on a d-torus T? gives half-maximal supergravity in D 10 =d dimensions coupled to d vector
multiplets. The full bosonic field content is

Qv »Buv , @ , Mimn 'A]T) B (5.1)
where m = 1,...,2d. Furthermore, the scalar fields other than the dilaton ¢ p(arametri%)e the coset SO(d, d)/(SO(d)xSO(d)),
and the scalar matrix Mmx is built out of the coset representative Lo = Luo® L# with aa =1,...,d, as Mmn =
Lo®Ln® + L™ La® . The( Maurer—Car)an form associated with this coset is defined as

b v
(Lt L) s Cha Pra (5.2)
ap A = - -y
P Qw‘

14 The integrability conditions can be studied by either commuting the differential operators that define the Killing spinors equations, or perhaps
more conveniently by using the method of Killing spinor identities [191], developed in [192].
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where Qu.” and Q ! are the composite connections. Up to order o, the bosonic part of the action in D dimensional
spacetimej-takes the form [%97]

1 1 1
I= dpx -ge® R+0 @ovp—-—" H H"™P+ " Trd Sovs—"Fn § nf"W
28 12 Hvp 8 38 4 w m opn

Lo b g @
+8a —2H 1 Qpp (W) + Quvp (Q) = Qpp

Hopa ( Wv,po WV mp po W mg nppo )

+ lﬁpvpoR -2 Ruvpo H 1' +F FP®, +F Si” FP%,
n v poov TRV
+ ngI‘ SVL[SV SVuvSV S + rTI‘ VpSVvSV SV S - 3?TI‘ VHSV\)STI‘V SV S

LA VT po 2 2 pv 1 2 n v
* syHweH o Ha H o = cHWH -+ oHLTrV SV S

1 ( )

1
:1 Hpv,po‘ msm F\)o‘ nt 2F Fpo’ m

-5 waF“p"lsm”F"P,, +

1 1
_ 5 Hu\)p Fuo m(svv S) man o "+ Z Hl,le Fuo_n‘lv UsmnF‘,p "
1

+

1
wSn"Foo uFHPPS,IEY E " Su'F 2 F Y078, Fpg

+

1 1
- FuvaPU oY nt g Fw"Foo m FHYPSIFPe,

1 ( ) 1
_F m (‘;V SV'S 7:1?“‘) o+ =FYPTS nEY T VHSVVS]}

[Ny

2 4
iF m 'V SVPs "FW _EF m YHsvy §° "FVP ,

4 nv P m n 8 Hv P m n

(5.3)

where

S = Mm(n”" , F’: = 2aluA3ﬁ , I)_IHVP = 30uBvp1 , ( )

2
Q vp(u))—Tr “ avm * w[u v ’ pr(Q)=Tr Qluavq)] +;Q[uQva] ’ 5-4)

and similarly for Qup(Q ).

Gauged version of the half-maximal supergravity coupled to n vector multiplets in D dimensions with higher derivative
extension terms, has been obtained from double field theory (DFT) in [48], where the potential and the implications of
the o' corrections for the vacua of the theory are also discussed. In this case, the scalar fields other than the dilaton ¢
parame(rlze the soset S0(d, d+ N)/(SO(d) x SO(d+ N)), and the scalar matrix Mmn is built out of the coset representative

Lm— Lm » Tm Wlth a = 1 El a = 1 d+ N as an - Lnx Ln + Lin Ln ’ whered = 10— D. Itis anortant to
note that here, and in the rest of this section we are now using the index m which takes the values m= 1, . . . , 2d+ N for
simplicity in notation, while the same index is used in eqgs. (5.1), (5.3) and (5.4) to take the values m = 1, . . . , 2d. The

SO(d, d + N) invariant matrix Nmn and its inverse 1" are used to lower and raise indices. The result found in [48] for the

bosonic paﬁt of the action i{1 D =10 — d dimensions is given by

1
S=  dPX =—ge*® R+4V V'@ -4V V'@ -"H H"P
H K 12 Hvp
1 m  pvn 1 W omn
- 47Fu\; F an + nganV M - Vo
o1 W 1o 1, 1, )
+ a H _ZQWP( )= 4 (@) — 4 H‘],T(Q)_ 2480 @)
P TREOMPT RO L + Logugea = V 5.5
uvpo ungauged gauged ’ ( . )
8

where H = dB and the potential associated with the gauged two-derivative theory is
—1 s mn l mn l mn,
Vo = 12jmprﬁw M Mqurs + 4ﬁﬂp qu] PM™ + mnpf v ’ (5-6)
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and fnp are the structure constants of the gauge group with 2d N generators. The order & contribution to the potential
is found to be [48]

v = ( Pmm’Pnn’P_pﬁ - P_mrlz P_ﬂn Pﬂp) Plsq Pvf P_‘ssfmquuqum 75f” "

+ Pl P Py + ip'mmfp'm;Pm; Pog Po P o f™Sf PV ap07S .7)
Further definitions used above are
Rpo (@-) = Ryypo (00-) = imePpc P2, = ox
Py = 12 (Mon = Mun) 5 P on = lz(nmn + M) ,
Q A=AdA -1 A rnanar. (5.8)
pvp L v pl g mp vl

The Chern—Simons forms Q(w), 2(Q) and Q(Q ) are as defined in (5.4) except that in the latter one the composite
C(.)nnectio% Q_ is now vg])ued inSO@@+ N). The La6g7ran ians Lungauged and Lgauged have ver{compligated forms, and they are
given as L’m e and L o in eqs. (3.66) and (3.67) of [48]. In fact, the total ungauged Lagrangian can be obtained from
(5.5) by settfng Sfd = Og, agnd the result is expected to agree with (5.3), which was obtained from the toroidal reduction
of the higher derivative extended heterotic supergravity, uponlettingm %, . . . , 2d as well. As for the potential Vo given
in (5.6), we have checked that it agrees with that found in [199] in 7D, where the couplings were obtained directly by
Noether procedure.

In general, some of the higher derivative extensions of supergravity are relevant for potential ultraviolet divergences.
As we shall see in Section 11.2, the D®R*, D°R*, D*R* and R* terms are relevant for counterterms in dimensions D=9, 8, 7,
respectively. Certain action integrals, including those in D=8, 7, are formulated in the ectoplasm approach, as will be
summarized in Section 11.4.

6. D=6

Higher derivative deformations of 6D supergravities with N= (2, 2), N= (1, 1) and N = (2, 0) apparently have
not been studied directly but some results have been obtained in the latter two cases from the compactifications of the
heterotic string on T and of Type II on K 3, respectively [89,98]. In the case of N = (2, 2) supergravity, resulting from
a toroidal compactification of type II supergravities, the consequences of the duality symmetry for the higher derivative
extension, albeit at the level of the leading terms in R* D*R* D°R* have been explored by various authors, as we shall
review in Section 11.

In the case of N =(1, 0) supergravity, the existence of off-shell formulations makes the construction of higher
derivative supersymmetric invariants more manageable, and we shall review the results obtained in this way. We shall
also review aspects of results obtained from the compactification of heterotic string on K3.

6.1. N =(1,1), 6D supergravity from type IIA on K3

The N = (1, 1) supergravity multiplet consists of the fields

(eu”; llJil_,_; Buv, Ap, Auzj; XL @), (6.1)
wherei= 1, 2is the SU (2)r doublet index. The two-derivative Lagrangian was constructed by Romans [200]. The bosonic
Lagrangian of the ungauged N = (1, 1) sup?gravity without mass deforma’i'yon is given by [200]

- 1 1 _ ; 1 _
e 'Lepan = "R="0 @dnp — e *(f Y+ F JFWH- "2 g HWP
y 4 2 33 4 v uvi j 12 Hvp
1 UvpAto j i
- ge Buv(fp?f‘w + Fpai F'rcj ) 6.2)

where fv and Fy/ are the abelian field strengths of the A, and A/, respectively. The supersymmetry transformations of

the fermions are giveryby/ 1 Vo1
— — 2@ e - 29 = . .
S =Ve—"¢e*vH/ye- (y v — 68 vyr)e “d S+yF e,
uiLui 24 _17\/2 woi 4 Elu _\/121 1 . (2fVP i. 7 vpi j
Sx =" yhd @we — " e 2Py H/e +  ywe 2¢ & +yrF  i)e . (6.3)
i 5 Kol o 7 >'5 (2fuv i nv

Coupling to an arbitrary number of vector multiplets was obtained in [201]. Type IIA string on K 3 yields N= (1, 1)
supergravity coupled to 20 vector multiplets. Focusing only on the NS-NS sector, the effective action up to four-
derivatives has been investigated in [98]. The K3 compactification of the eight-derivative action for type IIA string (4.31)
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was reconstructed from the 5-pt string amplitudes, which upon the use of the lowest order equations of motion in
six-dimensions, reads [98]

[ 1 1 ]
L = _2""_5H4+_H22+_9H22—8H26M v+ 2rea 2 — 16(0p3)?
€ “epan T @ (H2) (H?) Jred e @ (@9
12 6 36 3
A 1 1
+ Qa 1 L 1
16 (tata+ ~ €4€)R(L), ) + " &€sH2R(Q )+ — eqe H
4( 6 ) ] 36
+2B: A tr R(Q+)? | , (6.4)

evenin Bj terms

where in the formula above R({+) is a shorthand notation for the Riemann tensor defined with respect to the torsionful

spin connection

Q w=QawtliHa., (6.5)
*u u 5 M

and various contractions are given by

t4t4R(.Q+)2 = Ru\;aB (Q+)RHVaB Q) ,
1
GesR(Q:)? = Ry P Qs )Rap (1) — 4R, ( Qe )RAM( Qs ) + R(Q)?
1 2 4 1 4 uvpo a nv 2 2 2
—gESGSH R(Q+) - £€4€4H —41; Rupai_lvo' +4R Huv - gRH
22 4

tgH ) —3H (6.6)

in which we have defined

Ru%(Q+) = Rpp™ (Q+), R(Q4) = RWM(Qy),
H* = HupH"YP ,  Hi, = Hupo Hv?® ,  H* = Hyvo Ha"HYPP H" 5 . 6.7)

In arriving at the four-derivative couplings above, one focuses on the factorized (four derivatives) xR? terms in ten
dimensions and makes use of the topological data of K3

I

, RAR=16,
24T IK3
1 \/* vpo nv
36T2 d*x " g (Ruypo RMPC — 4R, RM"Y + R2) = 24 . (6.8)
T k3

Note that the Riemann squared terms, which would naively come from the reduction of the quartic in Riemann curvature
terms in 10D, have canceled out in the tree level part of the Lagrangian. Furthermore, the tree-level terms given in (6.4)
are expected to be canceled by reduction of the eight-derivative action for 10D IIA, reconstructed from 6- and higher-point
string amplitudes [98]. This is consistent with the expected duality between type IIA string on K3 and heterotic string on
T * [89], which maps the one-loop terms in the former to the tree level of the latter. However, to demonstrate the full
cancellation of four-derivative terms in the tree level action requires knowledge of 6-pt and higher-point amplitudes in
10D which are currently unavailable.

6.2. N =(2,0),6D supergravity from type IIB on K3

The N = (2,0) supergravity and tensor multiplets are
(e, ! B ), (Buv, X', @7y, (6.9)
w2 Sy -

wherel = 1,...,4 is the USp(4)r vector index, the 2-form potentials B”Wand the scalars ¢! are anti-symmetric, and
+ denote chirality. The equations of motion of the two-derivative supergravity were given in [202]. Its coupling to an
arbitrary number of tensor multiplets was obtained in [203,204]. In particular, higher derivative extensions of (2, 0)
supergravity with or without matter couplings do not seem to be available. One may consider obtaining such extensions
from the K 3 compactification of type IIB string. At the level of Kaluza—Klein spectrum, the K3 compactification gives an
anomaly-free model with 21 tensor multiplets. Some aspects of the reduction involving higher derivatives in which only
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a (1, 0) subsector, which furthermore keeps only the NS-NS fields (e‘l‘u, Buv, @) are considered in [98]. The results for this
sector resemble those in (6.4).

6.3. N =(1,0),6D off-shell U(1)r gauged supergravity and curvature-squared invariants

The 6D off-shell N = (1, 0) supergravity was constructed in [18] and the Poincaré supermultiplet consists of the fields

( )
eq(15), V"J(lZ), Vu(5), Buw(10), L(1), Epvpo (5), lIJL(40), Xi8) , (6.10)

wherei = 1,2 and V), is a gauge field of the R-symmetry group U (1)r, while Vu’ PSS Vu’ . is traceless and it has no gauge
symmetry. This multiplet is obtained by coupling the dilaton Weyl multiplet to a linear multiplet and making the gauge
choices given in [18, Eq. (3.1)]. The off-shell supergravity obtained in this way was also coupled to an off-shell vector
multiplet
( )
Au(5), Ai(8), Yi(3) , (6.11)

where Y are the triplet of auxiliary fields. The bosonic part of the resulting Maxwell-Einstein supergravity Lagrangian is
given by [18]

1 ,
'L = TLR+TLT'O LOL—- T LH g 4yt~ Lioipp o+ Lpay
ME o 2 H 24 VP Wi, ke vV, ow
1 ) T . 1 1
u i i Y Hvpo At
+=gE Au+Y Yi+ V=18 Yj— FwF — —e€ BuFpo Far (6.12)
2 2 4 16
where
H =30 B , F =20 A , E'=dclgw™vsg E ) (6.13)
Hvp [0 vpl MV [k V] 24 [vi v2-vs)

The B-field is inert under the Maxwell gauge transformations, and therefore, the 8 FA F term respects the gauge
symmetry. The complete off-shell supersymmetry transformation rule for the supergravity multiplet can be found in [205].
Here we only (give the supertransformations of the fermions which take the form

1 ros 1
SYi= 90 + w yPe—-"V 8e+V '€+ H_ ywe,
m Wy b Thg Y g W

N 1 S BT 1 v
Sy’ = N yH8id Le — “yHE € + T ynV " 8kLe — ; L8y H"fe,
bl u 1]' 4 u \/5 Kk j 12 > Hvp j
SAl=TywWF € - " Yie . (6.14)

8 Kv 2 ]
Using Noether procedure in which certain properties of the spin connection with H-torsion were utilized, the
supersymmetric Riemann-squared action was obtained in [206]'° To present the results, we first define the torsionful

connection

®w w=wa*iHa. (6.15)
*u u 5 K

The bosonic part of the supersymmetric Riemann squared invariant takes the form [205].
L2 = Ru™(@-)RW a(w-) = 2Fu(V)FW(V) = 4Fi (V)FM(V)

Riem 1 (1Y ij
UVpo AT ab
+ ;6 Buv Rpa (Ww-)Rara(w-) , (6.16)
where
F(V)w = 200Vuy + 2V 5585, Fi(V )y = 201V,) - 28KviyViy ") . 6.17)
Combining the Maxwell-Einstein supergravity with L, > as
1
L =Lme + 87aLRiem2 , (6.18)

15 The stated property was exploited in [139] where it was observed that the torsionful spin connection and the gravitino curvature transform
like Yang-Mills supermultiplet.
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the elimination of the auxiliary field to go on-shell requires order by order in derivative solution for the vector auxiliary
field, as explained in [205]. At the lowest order in «, the bosonic part of the resulting Lagrangian is [205]

- 1 1 1 _ 1
e’'L = "LR- g2+ L7'9,LOvL- " LH H"P
BCSV 2 4 2 uvp
( ) 24
1 1 v A1
-~ 1+ oag2 F _FW — 7 gwpoixB F F
4 2 (Y 16 w po At
04 [ 1 ]
+_8 Ru\)ab(w —)Ruvab((‘)— )+ ;EHVPG)‘TBuVRpG PW-)Rpg g () - (6.19)
Note that the critical coupling a = —2/¢? observed in [205] falls into the non-unitary regime.

The off-shell Gauss—-Bonnet invariant has been constructed by utilizing a gauged 3-form multiplet [207,208] in the
intermediate steps. Using a gauged 3-form multiplet composed from the dilaton-Weyl multiplet, one can also obtain
a new curvature-squared invariant. One can combine this invariant with Ly, . to form the off-shell supersymmetric
Gauss—Bonnet combination with the bosonic part given by [209,210]

eLes = R RMWPS —4R RW +R2+ AR —RWEH2 + AR gARPe

nvpo 1 Hv 5 1 6, 1 (Y 2> Hvpo A

o ( ) 7( ) ab

+ 4H4 + 1744 H2 - s H2pw — — (E-luvpﬂr BuvRpo ap(w+)Rat ' (w+)

+ ewpoktB F (V)F V) + ehvpodt g Fii (V,)F (V,) , (6.20)
E uw po Xt uw  po Atij

where H? qu and H* are as defined in (6.7).

The bosomc part 6f the last four-derivative invariant we review here is glven by )2
=, R+ H H"P +2L7' L—L7%0 LovL+4Z"Z -, L *EME

a 1 1
Lg2 16( 1o W | g u
1 , _
-~ 2L7'DMLZ 2 iL'E*Z u2L‘1D"(Lz VHILTEYZ
1 1
+7¢ BWONVP + TLTEP)do (VO + TLT'E®)
S T S T
-9 (Vi + " LT'Epow(Vv’ + “LT'EY), (6.21)

v

2 5 Y2 2
where Z,, = V:2 + iV The field equations of auxiliary fields allow us to set them to zero. Once this is done, the action

becomes proportional to the leading order equation of motion of L, and therefore it can be removed by a redefinition of
the field L. If the auxiliary fields are not set to zero, it can be shown that when combined with two-derivative supergravity
Lagrangian, the model still admits a maximally supersymmetric Minkowski vacuum, around which the spectrum consists
of a massless supergravity multiplet and a massive vector multiplet which is unitary when the coefficient in front of the

Ricci scalar squared is positive.
6.4. N = (1,0),6D on-shell curvature-squared invariants and their dualizations

Given that L2 on-shell can be removed by field redefinitions, and putting aside the vector multiplet coupling, let us

consider the two parameter Lagrangian

1 1
Loy = Lsc — —OlLg;o2 — =Y Las, (6.22)

8 8
with Lsc = Lue | afrom (6.12), Ly 2 from (6.16), and Les from (6.20). Going on-shell and redefining the appropriate
fields as detailed in [158], the bosonic part of the resulting on-shell supersymmetric (up to order a and y ) Lagrangian is
given by 1o

[ ]

1 1
-1 —,2¢ = _ = pgHvp
e L ay =€ R+ auq)auq) 12H pr

1 . 1
- T RHV h((D_)R ((L)_)+ 2€”VPGMBWRMﬂb((")—)erab(w )

Hvab

8
1 [
—Sy RM™PPRyyps — 4RMW Ry + R® + 2R,yp0 HWVP® = 4RWHS 4+ RH2
10 1 1
+ G Hiv (HY —2(H,, ¥ + e““P"“B v Roo (004 Ry (00 ) : (6.23)

16 For convention changes compared to those of [205,208], see [158].
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It is useful to consider the dualization of Byy to a dual potential Cyy. To this end, one adds to the Lagrangian Lgy a
total derivative Lagrange multiplier term

1
AL(B,C) = gwpsAH 9 C . (6.24)
2 x 3l pwp o TA

Dualization proceeds by treating H as an mdependent field and integrating over it. After a considerable amount of
calculation, and at the end letting gpv =~ — g, v= & g,y in order to pass to the string frame, to first order in a and y
one finds that [158] [

» o 1 1, 1 -
e Ll =2 "R+ 9 povp — _GMPG  — _(x—y)GwPd (w @G )
ay 4 W 12 wp ATV pab

. (a = ¥)G"P O’ Cupo ) + (0t + )G Dy(w™epadbr)

1 1
+ 2;(oc £V )G 0y (@) = (@ VIRupo R = 1y (<2 R + JR)

Hv,po 1 Hv 2 1 2 Hov
- I(a — Y )Ruvps G + 2411% G — EO(RG - (a=3Y)Rwd ¢

1 3 u
+ (= BY )R + g“" +3Y)RP? 4 —y R 1~ (X = V)G b

2 v 2 2 2 ny
—@+Y)Gud H (o ¥IG D+ G b w2 =3Y)D b
- ;(a 12y ) p) + A - 3y )Pudrdy —2Qa +9y )P Pru — 5(a + 3y ) ()
+ ﬂ(Dqupo)(DuG " ) - ﬂ(D G}\uv)(Dr TllV)
wp o Auv
- —aG ¢ DoGuyp —ad) GpurDjG L)
2

— ]2(—301 + 5y )Guv’p(I Gupve — 4;(oc - Y)GﬁVGZMV - 7ly G2

1 - ( M
- @ —V)G"? G2Gy " — 3Gy  Row —4dpa +4p e (6.25)

where

_ 1
Guvp = 3a[pcvp] , GHvP _ ;(_:uvpcr At Gore qu‘) — Gupo vao ,

G*=GuwpG"?, du=0ud, dw=Vudv, P2=up. (6.26)

While several terms can be removed by field redefinitions, such a step will modify the simple supersymmetry transfor-
mations by introducing the corresponding a or y dependent higher derivative terms. The supertransformations of e,"
and ¢ remain the same in the dualized theory. In the supertransformations of Py and ¥, the duality equation [158, Eq.
(3.6)] needs to be used to replace Hyyp in terms of its dual. Derivation of the supertransformation of Cyy, which is more
involved, is given in [158].

It is interesting to note that if we set & = y in the Lagrangian above, it gives the 6D BdR action up to field
redefinitions [158]. Conversely, the dualization of the 6D BdR action as obtained from the dimensional reduction of
the heterotic string on T * with the focus on the NS-NS sector was performed in [89] where the occurrence of the
Riemann-squared and Gauss-Bonnet invariants with equal coefficients was noted.

Turning to the two parameter dual Lagrangian (6.25), the question of whether the two invariants separately admit
a lift to 10D was addressed in [158], with the motivation that this would give the 10D analog of the 6D Gauss-Bonnet
invariant. It was found that there are obstacles in performing such a lift. This strengthens the expectation that the BdR
action in 10D is the unique four-derivative extension of (1, 0) supergravity, up to field redefinitions. Finally, we note that
a superspace approach to the higher derivative extension of heterotic supergravity in 6D, and its dualization have been
analyzed in superspace in [211].

6.5. N = (1,0),6D on-shell supergravity coupling to higher derivative hypers from dimensional reduction

The lack of an off-shell hypermultiplet with a finite number of auxiliary fields makes the construction of its higher
derivative couplings directly by a Noether procedure a formidable task simply because there are many structures one
can write down, and furthermore, the variation of multitudes of structures gives rise a much larger set of independent
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variations.!” Nonetheless, recently this task has been accomplished for the case of hyperscalars parametrizing the coset
Sp(n,1)/Sp(n) x Sp(1) [190]. We shall review these results in the next subsection.

Another approach, which we shall review below, is the construction of higher derivative matter couplings by
dimensional reduction of higher derivative invariants in 10D. In particular, the case of hyperscalars parametrizing the
coset SO(n, 4)/(SO(ny< SO(4)) may be obtained in this way since it has been proven in [212] that the dimensional reduction
of heterotic supergravity with gauge fields truncated to the Cartan subalgebra must exhibit at string tree level, and to all
orders in o, a continuous O(d, d + 16; R) global symmetry, related to the O(d, d+ 16, Z) T-duality of heterotic strings on
a d-torus. At the two-derivative level, and in the bosonic sector, some time ago it was shown [213] that reduction on T
does give an O(d, d+ 1¢ R) invariant result. More recently, it was shown that the effective action for the bosonic string,
as well as the bosonic sector of the heterotic string at the four-derivative level, in the absence of Yang-Mills fields, do
yield O(d, 4 R) invariant action upon reduction on T? [197]. Soon after, the Yang-Mills were taken into account to obtain
O(d, d+ 16 R) invariant result [214], where, however, the fermionic sector was not considered. The dimensional reduction
of the BdR Riemann-squared action for heterotic supergravity, in the absence of Yang-Mills coupling, on T* and truncation
to (1, 0) supersymmetry was carried out in [198], including the fermion terms and local supertransformations. 18 Here shall
summarize the main results of [198].

Let us consider the ordinary dimensional reduction on T*. Putting hats on all the fields and indices of 10D fields, and
decomposing the indices as u = (K, ) and r = (r,a) where p,r = 0,1,...,5and o,a = 1,...,4. As we truncate
supersymmetry from (1,1) to (1,0), we take the 10D vielbein and the two-form potential to be

~3 ( e o ) ~
en’ = > B = (Buw Bua =0, Bag) . (6.27)
0 Ega
For the truncation of the fermions, see [198]. The ansatz (6.27) only gives manifest GL(4) symmetry but not the expected
50(4, 4) duality symmetry. To uncover this symmetry, it is convenient to introduce the SO(4, 4) valued field

¢ . ) ( )
& —2Ef 1 -1
W = pT E 2Ea uBBa 0, p = VL B (6.28)
0 Eq 5 1 1
( o 1 )
which satisfies W W =1, where 1 = 1 0 The Maurer—Cartan form is
_ Q -P_
wo wl = hab wab . p =p , P = P =P , (6.29)
—ab b +pab —pab
H Popt Qo a pa Ha pat Hba
where Qs = —Qxpa are the composite connections associated with SO(4)+. It is also important to note Pyg transforms

under SO(4)+ as
SPuav = A" Pucy + A" Phuge - (6.30)
Using the ingredients summarized above, after a considerable amount of computation, one finds that the dimensional
reduction of the BFI{Q action in 10D on T* yields (for the bosonic part) the result [198]
e 'L=e® "R+g"0 ¢d o— " H H"P —-"p pw
4 WV g ey 4 M 1

(
FH w0 (@) + o (Q9) = - Ruwnn( @R = - Qv Qe
1 'Vab vab ! [ 1 VD
- EQ-M,Q- W — Dy(T+)PyaD H(T)P V™ - FYwY + EZwbzu a

1
-P"'D\ Y — XYw (6.31)

where ‘*)Svp (Q-) is the Chern-Simons form for the composite connection Q-um, Q+pvar denote the standard curvature of

the composite connections Q:pw, and

Xiwvab :=PuaCPVch ’ Yva ::PWCPWC , Zyvab :=Pucapvfb »
va :=6abvaub , va :=8thuvab )
Xab :=g “VXWU;, ) Yoo :=g i Ypvab - (6.32)

17 In the superconformal tensor calculus approach explained in great detail in [18], the coupling of the on-shell hypermultiplets to conformal
supergravity, which is off-shell by construction, is described, yielding a two-derivative action. However, the generalization of these results to higher
derivative couplings has not been explored.

18 1n another approach, the o' extended double field theories [48,52,215-217] were used to obtain the bosonic sector of O(d,d) invariant higher
derivative couplings in [48].

31



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1-95

A key point is that only the last two terms in the Lagrangian are not invariant under SO(4) < SO(4)-, but rather they
break that symmetry down to the diagonal SO(4) subgroup. These are removed by a field redefinition under which all
but the last two terms in the Lagrangian (6.31) are invariant. The last two terms turn into the SO(4)+ x SO(4)- invariant
result —ee?® 7 Ve Zyvap- Thus the now manifestly duality symmetry invariant Lagrangian is given by [198, Eq. 6.2]

1 1 1 ( )
-1y — ¢ = uv _ - pvp _ = nab nvp
e L = e 412 +g"a $a b 12Huvp H 4PWP +H ‘”pr + ‘”ﬁvp
1 Hvmn 1 Hvab 1 Hvab
- ZRuvmn(Q—)R (Q—) - *Q+uvubQ+ - *Q(uvubQ— )]
=D (I )P DWI )P¥™ = 1Y“"Y +.Z W'z —27 s (6.33)

H o+ vab + pv

2 2

where Q: =w* H and I's =T £ H with I representing the Christoffel symbol, and H is the three-form field strength
H = dB. As shown in [198], this result can be written as

Wba Kvab

1 1 1
e'L=e2® TR+g"™0 $0 - H H"WP - P pH
4 H 12 M 4 M
[ uvp( L Q 1 wvmn 1 Hv,po
+ H w IJ-VP((D) + mllVP (Q— ) - 4Ruvmn ((‘))R ((‘)) + zRu\)po H

1 1 1
+ 2fo“,HM - gHuv‘ch”""’U + H*Y tr(PuPL) + Etr(PuP\g) tr(P*PT)
1Co )y oy 1 ()
— tr P PTP"PT" + " tr PTP"PTP" — " tr P"PTP"PT . (6.34)
2 Hov 2 B 2 B
This result is given in different forms in [48,197], but after some algebra and taking into account the convention
differences, the results agree. The supertransformations of the fermions after appropriate field redefinitions are given
by [198]

Bt = Du(@e - %2‘1‘” o () + W, @)y e - P DP T e
n uvp oL Q ] uvp
&y = EYl €dud — o Hwpy €+ S & Gwp (Q-) + owp(Q-) Y €,
SYa =—"yH[P€P v — Ay T P€EP <uYoc . (6.35)
2 K M
6.6. Higher derivative couplings of N = (1,0),6D on-shell supergravity to Yang—Mills and hypermultiplets by Noether

procedure

The construction of the higher derivative couplings of matter multiplets to supergravity is notoriously complicated
due to the fact that many structures in the action and transformation rules are possible, and the number of independent
structures that arise upon supersymmetry variations grows very rapidly. One may perform the dimensional reduction
of the well-established Bergshoeff-de Roo extension of heterotic supergravity action on T* [197,198], and consistently
truncate the result to N =1, 0) supersymmetry which gives couplings of hypermultiplets parametrizing the quaternionic
Kahler (QK) coset SO(n, 4)/(SO(nx SO(4)). In K3 compactification of heterotic string, the low energy effective theory is
also a 6D (1,0) supergravity coupled to vector and hypermultiplets, in which the NS-NS sector gives rise to scalars which
parametrize the QK coset SO(20, 4)/(SO(20x SO(®4)) [21 8-220].'? The same coset also arises from T* compactification of
the NS-NS sector of heterotic supergravity and its truncation to (1,0). Note, however, that this leaves open the question
of how to construct the higher derivative couplings of more general QK manifolds allowed by (1,0) supersymmetry.

In a rare such calculation that employs the Noether procedure, the higher derivative couplings of hypermultiplets that
parametrize a quaternionic projective space Hp(n) = Sp(n, 1)/(Sp(n)< Sp(1)r) to N= (1, 0) supergravity were constructed
in [190]. There are several details for which we refer the reader to [190, Egs. (5.1) and (5.2)] where the final results are
summarized. Here we shall give the bosonic part of the action, and the supertransformations of the fermions. To explain
the notations, let us begin by noting that using the (2 2)x (2n+2) matrix L of Sp(n, 1) as a representative of the coset,
the Maurer—Cartan form can be written as

Qllb PﬂB
L'dL= p Qb (6.36)
A A

19 For a review where the YM sector is also discussed, see [220]. Embedding the instanton in one of the Es groups in a way that Es is completely
broken, for example, gives a N = (1, 0) model with a single tensor multiplet, 492 hypermultiplets, and the remaining Es gauge group. However, the
nature of the QK manifold they parametrize apparently has not been determined.
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where Quw = Qba, Qas = QBa, Pav = —Pva witha,b=1,...,2n,A,B=1,2 and

Pl=0u0" Ve, QP =0wQl", Q' =0ue" Q" (6.37)
Here % denote the hyperscalars, V;A is the vielbein, Q é’(b and Q;B are the Sp(n) and Sp(l) connections on Hp(n).
Furthermore, we have the curvatures

Quva’ = 201,Qu1a” + 2Quu1a Qi = 2Ppya Py’ ¢

quAB = 26[va]AB + 2Q[u|AC QlV]CB = 2P[p.|CAP|V]cB . (6.38)

The bosonic part of the Lagrangian is given by [190]

P
P

1 1
- 1 I
B 2P e 4BFquW
1
+a — 4R wvs(ﬂ RW Q)+ Q“"ABQwAB
( N

1. 1
+y 4Q“ ABQMB — (P2)wv(P2) |+ 4(p2)2 , (6.39)

1 1
e'L=e® TR()+ ¢, Pr -~ 1—2pr g

and the supertransformations by [190]
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1
SA =T FI ywe, (6.40)
q W

where a, 3,y are arbitrary constants, Pzw = P“AHPWA, p? := g"vp? W(PDP)AE = PV”(ADHPWB), the hyperscalar equation

of motion E# := ¢"}(0Lo/0@*)V ™ with Lo representing the two-derivative part of the Lagrangian, and we have the
following fu rther definitions:

Huvp = 3a{qup] - 680)11\\?’)

— L _ Q
6Q ‘*)’uvp 6y Wyp »

2
YM —
(Duvp —tr(A[uavAp1+ Al A A‘ 1,

5 )
L = = Q_
Opvp ?Q-[uavﬂ—p] + 39—[HQ—V )p] ’
2
08y = Q0 Q'+ Z0uIQu Qe
3 [uvp]
Qturs = Wyrs + Hurs ) (641)

where Ay 1= A}ILT’ with tr(T!'T)y = =8, r,s = 0, 1...,5 is the Lorentz vector index, and H = dB.

It is instructive to truncate the Hp(n) model summarized above to Hp(1), in which case the QK coset is Sp(1,1)/(Sp(1¥x
Sp(1)r), and compare it with the result obtained from the BAR higher derivative heterotic supergravity on T* followed by
a consistent truncation to N = (1, 0). The result for the bosonic part of the four-derivative terms obtained by the Noether
procedure described above is given by [190]

[ ) 1
-1 rs
Lnos | _ 20 e (o atp Q) + v 0 — T RIA(QORM(Q)

- Qo+ P P2 + (2a + V2 6.42
@a+ )P Juv )uv @a+ 3y)(P?) (6.42)
4
On the other hand, the 10D BdR heterotic supergravity on T* gives N = (1, 1) supergravity with hyperscalars

parametrizing the coset SO(4, 4)/(SO(4)} > SO(4)-). Truncation to N = (1, 0) was carried out in [190] where it was
observed that while Sp(1)r € SO(4)+, there are two distinct ways of embedding the other Sp(1) factor in SO(4) *< SO@4)-.
Each of these two embeddings gives a result consistent with the general Noether procedure result (6.42) for particular
values of the constant parameter y. In one case we embed Sp(1) € SO(4)+, and truncate by setting the SO(4)- vector
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index to one value, say a = 1.29 Then Py — Punn = Pua and Q- — 0, and as shown in [190] the bosonic part of the
order a Lagrangian obtained from the truncation of the reduction on T* becomes

- [ 1
e lLBos. | - (xezq) HHvP (Dﬁvp (Q_) — zRuVYS(Q— )RHVrS(Q_ y+Q2 , (6.43)
a

where Q2= Qui®Q ¥s* with Qui¥= iQ+ uab(0 )P, This result agrees with the general Noether result (6.42) fory = 0,
upon using the second identity in [190, Eq.(6.1)].
In the second way of truncation, again Sp(1)r < SO(4):+ but the remaining Sp(1) factor is now embedded into

SO(4)-, instead of SO(4)+ considered above. Using van der Wardeen symbols, the vector indices of SQ(4): and SO(4)-
are converted into spinor indices (A, A) and (A, A ) respectively, for instance, Pus = V' (Oa)as’ (Ob)a- 47 P4 . It turns out

- 2 [
that what survives the truncation is Py —-P,* #/ 2. In this case, as shown in [190], the bosonic part of
the order a Lagrangian obtained from the truncation of the reduction on T* now becomes

1a174 _ p 2a27A —
= Py =

4 [
Mhios | = 20 10 (g (0 = 208, Q)

1 1
- ;Ruvrs (Q-)RMS(Q ) + (P2 (PO + , P (6.44)

For notational details see [190]. This result agrees with the bosonic part of the Noether result for the Hp(1) model displayed
in (6.42), fory = —2a. Thus, perhaps not surprisingly, we see that the direct Noether construction in 6D gives a more
general result for higher derivative couplings compared to that obtained from dimensional reduction.

6.7. N = (1,0), 6D off-shell superconformal curvature-cubed invariants from ectoplasm approach

The curvature-cubed terms are known to be absent from superstring effective action [61]. There is no proof but
is likely that algebraically they cannot accommodate 16 or more supercharges. However, they do exist in 6D, N=
(1, 0) supergravity with 8 supercharges [208]. The construction was motivated by supersymmetrizing type B conformal
anomalies in six dimensions. Denoting the leading term in each of the 6D type B anomalies as

. ) 6
Ly = CaudC™"Cl , L2 = Co“Cot? Cy™ , Ls = Cabca(8%0 — 4R7 + S &RIC abed (6.45)

where Cawci is the Weyl tensor, it is claimed that there exist only two superconformal invariant curvature-cubed
terms [208]. Schematically, one of them is the superconformal completion of?!

1 T
—— " ey Ca " Cat Cp) = 8L1 + 4Lz, (6.46)

while the other one contains Ls. Apparently L1 and L2 do not admit separately supersymmetric completions [207]. The
results are obtained by using the ectoplasm approach in off-shell superconformal superspace and the invariants are based
solely on standard Weyl multiplet with the field content [207]
(e, by, Vi, Vi, T™ , D, Wi, X). (6.47)
n H uvp H
We now briefly explain how the two curvature-cubed superinvariants were obtained by using this technique. The

supersymmetric completion of L1 + 11> utilized a primary superfield A% of dimension 9/2 obeying the constraint
2 o
Gy

V(“AB> =0. (6.48)
The components of the superfield A&jk consist of the bosonic fields

(S:bc 7, Ej, F, Clav), AT, Ad) . (6.49)
Using /gjk, a closed 6-form superfield | was constructed in [207] whose nonvanishing components are?

T T Jaees  Jabeder - (6.50)

abcay abeda3 a

The explicit form of these components can be found in [207]. In particular, one has [207, Eq. (4.15)]

Jabcdef = —EapederF - (6.51)

20 gee (6.29) for the notations of different components of Maurer—Cartan form associated with the coset SO(4,4)/SO(4) $O(4). In the rest of this
subsection, a, b label the SO(4) vector indices.

21 This is not in contradiction with the result of [1] where it is shown that N = 1 supersymmetry in 4D does not allow a Riemann-cubed invariant.
Reduction of (6.46) from 6 to 4 dimensions leads to curvature-cubed terms, composed of Ricci tensor and Ricci scalar but not the Riemann tensor,
which can be removed by field redefinitions.

22 The pair of indices (cti) label a symplectic Majorana spinor in 6D, where & = 1, ..4 is chirally projected spinor index, which cannot be raised
and lowered, and i = 1,2 labels the doublet of the R-symmetry group Sp(1)r, which can be raised and lowered by the antisymmetric €;j and €fl.
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Using this ff)rm in (2.14) yields the superconformal invariant action, whose bosonic part is thus given by
In= doxeF. (6.52)
Next, substituting into this action an expression for F built out of the standard Weyl multiplet, one obtains the invariant
Ics = dox =g Li+ lsz + susy completion . (6.53)

The supersymmetric completion of L3 utilized a different primary superfield, B i = B (), of dimension 3, satisfying the

reality condition (Bj)* = B and the constraint
vilgBY b = 25[8 vilgyin (6.54)
a 3 @ 3

The bosonic components of B,/ are
(B i, CiM, C i, Cas, E ¥, F) . (6.55)
a ab a

Again, a closed super 6-form can be constructed using B,/ and takes the form [207]
J=Jo+ w(S), AJg + w(K)a AJs, (6.56)

where w(S). and w(K). are the connection 1-forms associated with special supersymmetry and the special conformal
symmetry, fespectively. The explicit form of the 6-form Jo and 5-forms ]‘;‘,_ ]“Kwere given in [207]. The superconformal
1

invariant action is given by the spacetime component of the 6-form ], whose bosonic part takes the form

I

J— 2
Is= dox =g F+4BaViR(V )t + = CayR(V )" = 16f Cas (6.57)
where in the notation of [2081], the bosonic part of f* is given by
fr=-"Rr+— &R T T P-TTT Tet - §D. (6.58)
T g goa T4V @ g 60 «

One can then form a composite Bj using standard Weyl multiplet and substitute to the action above resulting in the
supersymmetﬁjc completi{)n of L3, namely )

6
Ic c= dx =g Cubcd(SZD — 4R + ~ 89R)Ceed + susy completion . (6.59)
5 e

If the composite Bj is constructed by using vector multiplet instead, one obtains the supersymmetric completion of FoF
denoted by Ir.r.
Based on the supersymmetric completion of conformal anomaly preserving (1,0) supersymmetry, it was proposed that
the conformal anomaly of (2,0) theory denoted by A can be decomposed into a combination of the (1,0) invariants [208]
1
A = Ic,c + glcs + Ir.F , (6.60)

where F is the field strength of an extra SU(2) gauge vector, and the N= (1, 0) gravitino multiplets have been truncated. It
should also be interesting to obtain curvature-cubed invariant under local Poincaré supersymmetry. This requires coupling
the superconformal curvature-cubed invariants with certain compensating matter multiplets and fixing redundant gauge
symmetries, which has not been worked out so far.

6.8. Killing spinors in N = (1,0), 6D supergravity with higher derivatives

The Killing spinors in the off-shell (1,0) supergravity were analyzed in [221,222], and on-shell in [223]. Assuming the
fields respect a U(2)xR? isometry, the most general ansatz with vanishing auxiliary fields is given by

1
ds? = —a2(r)(dt + w03)2 + a2(r)(dz + Aw)? + b(r)2dr2 + ~ c2(r)(c? + dO? + sin2 0d@?) ,

6 1 2 4 3
Be) = 2Pw2 + d(r)dt ANdz + fi(r)dt Aos + f2(r)dz N o3, Aq) = Ao(r)dt + As(r)os,
L=Lr), Vu=Vji=0, (6.61)

where in our notation 63 =d{j —cos 0 d@ and dw= Vol(5®). We have turned off the auxiliary fields since the solutions we
are interested in have vanishing auxiliary fields. The structure of N = (1, 0) off-shell invariants also allows us to truncate
the auxiliary fields that appear quadratically in the action. Thus the solution to the off-shell Killing spinor equations is
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valid beyond the two-derivative supergravity even if the auxiliary fields are set to zero. Supersymmetry of the solution
requires the undetermined functions in (6.61) to obey certain relations that follow from the Killing spinor equations

0=©0 + 1o Y oaB)e + 1y yPe
4 napB 18 uvp ’
0= —\/ yH8id Le — —\/ L&y H"Pe . (6.62)
woj uvp j

2 2 12 2

For convenience, we introduce the complex Weyl spinor

€ =€1 +ie2, (6.63)
and assume the Killing spinor to have the form

€ = II(r)eo, (6.64)

where €o is the standard Killing spinor on a round 2-sphere embedded in the 6D spinor obeying the projection conditions

y012345€0 = —e, y01€0 =—€. (6.65)

Plugging the ansatz for the bosonic fields and Killing spinor into (6.62), the necessary and sufficient conditions for the
existence of a Killing spinor are given in a set of 9 equations that can be found in [222], where they are fully solved
provided the following relations are satisfied

a 2 2
A0+a2=0’ d+aa2=0, c°=r"+P, c=br,
v
ldlLez =72, fi=0, fo=-do&, As=Aim, MH@E)= ai. (6.66)

Thus the solution is determined up to three undetermined functions which we choose to be d, ® and Ao. Furthermore,
the equation |d|Lc* = r? indicates that the horizon value of L is determined by the near-horizon behavior of d.

6.9. Exact solutions of N = (1,0), 6D higher derivative supergravities

Next, we consider solutions of an off-shell theory described by the Lagrangian

1 1
L=rLuel _ + o iz +  BLas , (6.67)
with Lg,..2 and Les from equations (6.16) and (6.20), respectively, and admitting Killing spinors discussed above. The

field equations coming from L,
solutions:

Riem?2 are given in [205], and those of Lcs in [210]. In summary, we describe the following

e There exists an AdSs x §° solution preserving full supersymmetry, which can be put in the form [205]
pPo — _»-28P PO — _n28P —
R’ = -2¢°6° 8%, R’ =-2c°6" 8%, L=Lo,
Hp_\;p = 2C€|,wp, Hmnr = 2c€mnr . (668)

This solution is well studied in the two-derivative case and retains the same form when the supersymmetric
Riemann-squared and Gauss—Bonnet invariants are added. Note that the constants c and Lo are arbitrary.

e Next, we consider the supersymmetric rotating string solution preserving half of supersymmetry. This solution
possesses a U(2)<R? isometry and is captured by the ansatz (6.61). We saw in the previous section that the solution
to Killing spinor equations boiled down to three undetermined functions, namely, Ao, d and w. Solving the field
equations coming from the Lagrangian (6.67) determines these functions. Up to first order in o and (3, they are

given by
_ 22,2 _ _ 4
d=(1+%)1_( 1Ql_'fr2240(_|_Pr(r 2%1) 2P91;’ B -,
oo a % Bra,
2r2  2p2 Q +r2 2
QL PQx(Q1 + 1) = 2]? 2
PTAT L) T e e B 69

The near horizon geometry of the solution is extremal BTZ S° in other words, locally AdSx S°, with full
supersymmetry. Plugging the above solution back to (6.66), one finds that near the horizon, namely as r — 0,
the value of L is given by
Qi+ (a+B)
2

L > L= —2——. (6.70)
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e Non-supersymmetric solutions of the form M1 xM: were studied in [205], with B = 0. These solutions either have no
fluxes turned on, or they have either the 2-form or 3-form fluxes turned on. The split of 6D spacetime is of the form
4 2, 3 3ror 2 4-n these solutions. Non-supersymmetric dyonic black string solutions with curvature-squared
corrections originating from K 3 compactification of IIA string theory have also been constructed in [224,225]. These
solutions possess interesting applications in Weak Gravity Conjecture [8]. For instance, in [226], it was found that
the leading higher derivative corrections to the rotating dyonic black string entropy at fixed conserved charges can
be negative, which contradicts the standard expectation.

e Let us next consider a half-BPS solution of the Riemann-squared extension of the U(1)r gauged N = (1, 0)
supergravity, which has the Lagrangian (6.19). The solution has the form Mink#<S? with a constant dilaton, and a
nonvanishing 2-form flux as follows [205]

R = O, R = lgzL g > L=L ’
Hv mi 0 mn 0
an(W) = igJ6n11z, an(V) = $_g2L0€mn B (671)
V-
2 2

The spectrum of perturbations around this vacuum was studied in [227].

In this section, we shall review off-shell Poincaré supergravity and its coupling to vector multiplets, the curvature-
squared invariants, as well as the procedure for going on-shell. We shall also discuss the off-shell Killing spinors and
exact solutions in the presence of off-shell curvature-squared invariants. A convenient method for constructing these
invariants in component expressions turns out to be the superconformal tensor calculus. Thus in this section, we will
mainly focus on results obtained from this approach. Readers interested in superspace expressions of curvature-squared
invariants are referred to [228-230]. In the case of constructing a Riemann-squared invariant, a convenient trick is to
dimensionally reduce the Yang-Mills multiplet on a circle from 6D, and then using the analogy between supergravity and
Yang-Mills [231]. Invariants with higher than four derivatives are discussed in Section 11.

7.1. Superconformal approach

In five dimensions with N = 2 supersymmetry, it is possible to realize curvature-squared invariants off-shell.
Superconformal tensor calculus, which is based on the exceptional superalgebra F *(4) [232]*° has been one of the main
techniques for the construction of the five dimensional higher derivative models [22]. It is important to note that on
dimensional grounds, in five dimensions the curvature-squared terms do not have the right dimension to be scale invariant
on their own, and therefore their constructions require a compensating scalar field with scaling dimension 1. There exist
two types of off-shell Weyl multiplets in N = 2, 5D supergravity with the following field contents:

Standard Weyl Multiplet : {e.", Ll{f Vil Tw X1, D, by},
Dilaton Weyl Multiplet : {e." , 4y , Vi, Cu By , Wi, 0 ,by} - (7.1)

Here, ¢," is the fiinfbein, by is the gauge field for dilatation, V}/ is the SU(2) R-symmetry gauge field and lIJiuis the
gravitino, which gauges the Q— supersymmetry. These fields are common to both Weyl multiplets. The matter content of
the standard Weyl multiplet includes a real auxiliary scalar D, an anti-symmetric tensor Tw and a symplectic Majorana
spinor x i For the dilaton Weyl multiplet, the matter content is given by a vector field Cy, a two-form gauge field By,
a dilaton field 0 and a dilatino field P . While the dilaton Weyl multiplet has a scalar field 6 which can be used as a
compensator, the Standard Weyl multiplet lacks such a field (the conformal weight of D is 2). Thus, the curvature-squared
models may not need an extra compensating multiplet when the dilaton Weyl multiplet is utilized. However, a vector
multiplet, which contains a weight-1 scalar field p is essential if the Standard Weyl multiplet is used. Finally, as shown
in [25] that while gauged supergravity models based on the standard Weyl multiplet can be constructed by combining
certain off-shell models [26], the same procedure cannot be accomplished in the dilaton Weyl basis without extending it
with an additional matter content given by the linear multiplet

Linear multiplet: {Lij,E.,N ,'}. (7.2)

In the rest of this section, we will investigate the five-dimensional N= 2 higher derivative invariants separately,
depending on the choice of the Weyl multiplet.

23 In the notation of [232], FP(4) is a real form of F(4) with bosonic subalgebra SO(7 - p, p) @ SU(2).
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7.2. N = 2,5D off-shell invariants from the standard Weyl multiplet

7.2.1. Off-shell (and on-shell) Poincaré supergravity and couplings to vector multiplets

The off-shell Poincaré multiplet can be constructed by coupling the standard Weyl multiplet to a vector multiplet and
a linear multiplet, and fixing the redundant gauge symmetry. It has the field content [22,25] displayed in Table 2.

In the case of two-derivative supergravity, the on-shell multiplet fields are simply (e, P, Ap). Note that it is not
known how to construct a healthy two-derivative supergravity model based on the standard Weyl multiplet in six
dimensions [18,28]. Thus, the off-shell matter content provided here is not related to the six-dimensional field content
(6.10). The off-shell multiplet can be coupled to 1 off-shell vector multiplets, each containing the fields (A, A, p, Y.
Defining (p/, AL, Ali Y{/.) where I = 0,1,...,n with “0” representing the fields {p° = p, A‘L = A A=A, Y?j = Yy}
coming from the off-shell Poincaré multiplet, the bosonic part of the off-shell gauged Poincaré supergravity coupled to n
vector multiplets is given by [26]

e Los = “(C+3)R+ (104C—8)T2+4(C—-1)D-N2—-E E*+VivH

8\/ % K VO]
- 2VE*+TC 3 19 ol Grok
p Fl FWK 4 Sc P p’orp
" g4 P T 5 K m
I ] K I ] K pv 1 wvpo A I ] K
=3Cukp Y;Y  —12Cykp p Fy, T+ ge Cix AFypFoa
3 I woI 1
-V =¢1Y;8 —3g1E A, —3gip N, (7.3)
2

whereI = 0,1, ...,nand T*= TaT ™. The constant coefficient Cyx is symmetricin ], ], K and determines the coupling of
n vector multiplets, C =Cuyk p! p/ pX, Ey is a constrained vectoV "E,= 0, N is an auxiliary scalar and ‘{1"7 is the traceless
part of the SU (2) R-symmetry gauge field V. Note that the SU (2) R-symmetry is broken to U (1) due to the gauge fixing
from superconformal to super-Poincaré, and it is gauged by V|, defined by

y P ) "
vi=vi+ 26'JVH, with  V,J8j = 0. (7.4)
The supersymmetry transformation rules of the fermionic fields are given by

i =@ + 1o aby e — Vie +iy - Ty € —iy 7,
u 2 noab uJj u u

1A ) 1 1 ‘
Sxi="€D-" vy -Ri(V)e + iy*?JT € — “iy DT €
j ab

4. e I8 8 @
SAl=—"y-Flei—"ilJple + ply - Te — Yilgj + piny/ , (7.5)
4 2
where the parameter 1’ is defined in terms of the Q-supersymmetry parameter €' as
1 ( 1 _ 1 , .
N="_Y Te— JN§ e+ 7_iE/81k €+ iy“V'(",&)ISikei . (7.6)
3 2 2 ’

The supercovariant curvatures and composite fields are defined as
R (V) = 200 = 204V = 31600 -8y =i Wy - T4,
DT =0T -20 T -3 v x+-=2a R (Q),

W ab W ab He [,1 h]c Z W ab 32 W ab
FIo=200 A=y (Y N+ SpiyT w,
uv TRY| wov 2 nov
Dpl =08 p—"iy M.
m n 5 M
R (Q) =20 ¢ +te oy Wi-2Viy -2y @ +20y-Ty ',
v g T v V) IR v
¢ = Tiy'R (Q)— " iy Y*R 'Q), (7.7)
H 3 Ha 24 K ab

where we used the notation R'l(Q) to indicate that the expression is obtained from Ra(Q) by omitting the ¢ term.
ab 1

The supersymmetry transformation rules for the bosonic fields can be found by imposing a gauge fixing condition in
superconformal transformation rules [26, Egs. (2.1), (2.11) and (2.14)]. See also in [26, Egs. (6.2) - (6.4) ] for the gauge
fixing condition and the decomposition of the superconformal transformation parameters.

This construction of Poincaré supergravity utilizes the vector and the linear multiplets. Alternatively, one may replace
the linear multiplet with a hypermultiplet, which gives rise to an off-shell supergravity with a different field content [24].
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Table 2
The field content of N= 2,5D off-shell Poincaré supergravity multiplet based on the standard Weyl multiplet. The degree of freedom count is
off-shell.
Field e vj Vu T En D N Ay Y; p U X A
D.ofs 10 10 4 10 4 1 1 4 3 1 32 8 8

However, there is no known off-shell higher curvature model with a hypermultiplet compensator, therefore, this option
will not be discussed here. We refer to [23,233,234] for the technical details of the construction of five-dimensional N = 2
off-shell supergravity with vector and hypermultiplets. If we consider the Lagrangian Los by itself, going on-shell amounts
to eliminating the auxiliary fields by means of their algebraic equations of motion. These are given by (see [20] for a
review).

0= Vﬁf
0=V + 3g4
3 > I n

0= E -1,
0= "(104C —8)Ta — 4ciF!,

3 ab
0 = 2N + 3g1p/,
0= C[/Y’} + éz_glaj . (78)

where

C=Cup'pp", Cy=6Cup" . (7.9)

The equation C =Cyx p' p/ pX=1 defines the so-called Very Special Real manifold; for a textbook exposition, see [20].
Substituting the results above into Los gives the following result, which agrees with that obtained long ago by the Noether
procedure [235,236], and reads

11 1
Lon—shell = "R+ _(CU _ C]C])FI FLW] + _C]]ap‘pla”p/

s 2, 8 w 4
1 Hvpo A I ] K
*gE€  CAFFa -V, (7.10)
where
9 9
V=="(giph)2— "Clgig, Cr = 3Cyx p/ pX, (7.11)
4 2

and CV is the inverse of Cy. Note that p's are no longer independent fields due to the constraint C = 1. In summary, this
Lagrangian describes on-shell N = 2, 5D supergravity coupled to n vector multiplets.
The on-shell model can be truncated to a minimal model by setting p! = p~'=const, A:l =p° i‘lu and g1 = é Cyp~ Iwith

Cyxp~'p7/p® = 1. In this case, we obtain the standard minimal on-shell supergravity in five dimensions

1 1 3 v 1
¢ 'Lmin="R—-"F F"W + “ewpodA F F +3g,. (7.12)
2 8 v 8 L vp oA

7.2.2. Off-shell curvature-squared invariants and going on-shell

When the standard Weyl multiplet is utilized, the off-shell models that have been constructed so far are the
Weyl-squared [237] and the Ricci scalar-squared [26] invariants. The bosonic part of the Weyl-squared action is given
by [237]

-1 = [l Ichvpo o &4 12 1024 12 32 pv I
e 'L,2 = ¢ 80 woo + 3pD + 9 pTD- 3DTH\,F
16 I W po w po I 1 uwpoA I 8
- %—p CwpsT T +2CupsT F + @e AuCyprs Con
npoA I ij 16 1 ij MV 1 i uv
- Ee AHV\,p VG)\,'/‘ + ?Yiijv T - gp VHV 1% ij
64 wowp 128 v w256 1w n
+ —p VVTP-PV T - —-—P Tqu VpT - — R Tp.vT p
3 3 92816
32, , 64 I 4 I 22

I Hovp
+ —pRT — —p VuTvw 'V T +1024p T — ——p (T
9p 39 ulvp P 270( )
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64 256 32
— ?T qu wir2 _ Tup Tp}‘Tv;\F uwi _ ?euvpcATpTVT T"7‘F pv I
128
o At wI ==L T

—16€wpo2 T rv T F — P €uvpo ATH TPV ™, (7.13)

3

where c2r are arbitrary constants and the five-dimensional Weyl tensor reads
1
Cuvpo = Ryuvps — 3(gupRva ~ &vpRus — &uoRyp + gvo Ryp)
1

+ E(Supgvc —8uo&vp)R . (7.14)

We have also introduced the following notations,
T4 = TwTb Tea T, (T2)2 = (TwTaby2. (7.15)

The bosonic part ()f the off-shell Ricci-scalar squared action is given by [26]
1 1
e 'Lz = plYyYi +2pYiY! = “plp?2R — “p/F F"W — “p FWFI

R ij 8 4 Hv 2 uv
1 u I I 2 26 , 2 1 v
*5P 0upd p+ppop—4pp (DH =T )+4p F, T
+8p pF T — L€ AWEVPEOR (7.16)
! pv é uvpo A

where (p, Y7, Fy) represent the following composite expressions

p = 2N,
1 U3 8 . )
Yi= /80 -"R—N2—E®E + T24+4D—VHhys
E 8 a 3 a ki

+2E T oyey mig)
NC VA N

Fuv =2 201 Vyj+ 2Ey . (7.17)

For the time being, an off-shell Gauss—Bonnet invariant coupled to n vector multiplets in the standard Weyl basis has not
been constructed.
It is worthwhile to note that the model
L LSG |g=0 + sz (7.18)

12 =
SG+ W

16T Gs 9612

is expected to arise from M-theory compactified on Calabi—Yau threefold where Cyx denotes the triple intersection number
of 4-cycles and czs are the second Chern class numbers of the Calabi-Yau threefold.

The Weyl-squared action (7.13) has been utilized in AdS/CFT correspondence and black hole physics. In particular,
it was found that [238] the four-derivative interactions modify the value of 1/s, namely the ratio of shear viscosity to
entropy density, such that the classical bound n/s = 1715 violated. Applications of the Weyl-squared action (7.13) in
black hole physics will be discussed in Section 7.5.

We conclude this subsection with remarks on how to obtain the on-shell versions of the higher derivative invariants
added to Lo,s. Schematically, the off-shell action takes the form

Sott-shen[ (@] = So[p] + aS1[¢p] . (7.19)

where So and S1 denote the two- and four-derivative actions, respectively, and a is a constant with mass dimension -2. It
follows that the auxiliary field equations must receive corrections proportional to a. The solution to those equations can
be expressed in terms of a series expansion in &

@ =@+ aQ1+ o?@E2+ -, (7.20)

where o is the solution to the zeroth order equation given in the previous section. As a consequence, the on-shell action
has the form

( ,)
Son-shen[@] = So[po] + a Si[o] + @15, [o] +--- . (7.21)

In the above equation, So [po] = 0 when (o is an auxiliary field or a Lagrangian multiplier. Thus, we eliminate the auxiliary
fields by plugging their zeroth order solutions into the action. For the Lagrangian Los, these equations are listed in (7.8).
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Table 3

The field content of N- 2,5D off-shell Poincaré supergravity multiplet obtained from the dilaton Weyl multiplet. The degree of freedom count is
off-shell.

Field e Vi Vu L Cu By Eu N Wi, &
D.o.fs 10 10 4 1 4 6 4 1 32 8

7.3. N = 2,5D off-shell invariants from the dilaton Weyl multiplet

7.3.1. Off-shell gauged Poincaré supergravity coupled to vector multiplets and going on-shell
The off-shell Poincaré multiplet based on the dilaton Weyl multiplet has the field content [22] displayed in Table 3

As we shall see below, on-shell this multiplet is reducible, consisting of the supergravity multiplet (e,’, ’p, Cp), and a

vector multiplet (C, @, L) where dC  is dual to dB. Unlike the standard Weyl multiplet, the Poincaré supergravity multiplet
obtained from the dilaton Weyl multiplet originates from its six-dimensional counterpart. The bosonic part of the off-shell,
gauged Poincaré supergravity coupled to n off-shell Vector multiplets, (Al pl, AL, Y, where I = 1,...,n (unlike the
index I used in the previous subsection), is given by 26174

1 1 o
e 'Lopw = L R— ~GuG™ — “Hupc H™ + ZVH”VU“ + 1L7'9,L0°L — 2L E,E”
’ 2 3

- 1
—2 2EVe—2N2L™! — 4 gCiEr — 2gNL — 4gN — &L+ 28212

1 1
+ay Y'Yli— "D p/D"pl = ~(F' —p Gu)(F

. ub] ] ub)
i o M 4 @
1 abede 1 I ] 7 1 abede 1 I ]
~5€  (Fu=p G)Fyy=p Ga)Ce— 5€  (Fyy = P Gu)BaiVep
1 B 1
— /8P Y181 — gplpIN — “g2plplL2 (7.22)
2 4
where the bosonic part of supercovariant curvatures are defined as
Fl =20(4 , G =201C, H =33B +3C G 1+L¢ . (7.23)
pv Hov Hv (Y Hvp Hovp o MoV o © WP
The constrained vector E. and the three-form gauge field Eac are related to each other via E« = —1;] €abcdeVPE*. The

supersymmetrzf transformation rules for the fermionic fields, up to cubic fermions, are given by

1 1 1
i = = b iV oiie — i Vei + N ij
81]1u 6Ll + 4wu_“ Y, € Vufe,. Zley €+ ZngLyuSJe/_,
) 1r } e 1 o1 1 .
8¢’ =-"_Vid/L8le - V'liivu (lk&)"Lg - “iE/€ + “Ne€ + "N _Ly - G8'e;
2 2 2 2 2 4 2
1 i 3 L
—ﬁEiLy-HS €+ —glL €,
6 2 4 ( )
) 1 o1 ) . 1 .
SAl=—"y-Fle — _iwplez +ply - Te —Yilgi+p! —y T+ "y -G €
4 2 4
1 I i
-~/ =Ip &€, (7.24)
2 2

where Tw = %Gub + 71488ahcdeHEde and Wxpab = Wpab * Hygp. The off-shell supersymmetry transformation rules for the
bosonic fields can be found in [26, Eq.(2.44)]. The transformation rules for the vector multiplet can be found by imposing
the gauge fixing condition [26, Eq.(4.3)] in the transformation rules given in [26, Eq.(4.11)].

To go on-shell, we eliminate the auxiliary fields by using their equations of motion given by

1 1
N=-"gLQ+L)— " glagp'p/, E.=0, Vi=0,

2 4 - v,
" _1 " v -2 poA
Yii = gp'8i, V =—"2¢Guw — g€ H®%, (7.25)
> E ny 6 uvpo A

24 Generalization to Yang-Mills couplings has been obtained [231] in the absence of U(1)r gauging, i.e. for g =0.
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where Vyy = 201 Vy). Substituting (7.25) back into the Lagrangian Lopw we obtain

( )

1 1
e 'Logow = L R — —zcubcﬂb - gHﬂbCH”l" + L7'9,L0°L

1 1
+ ay —_ZDHpID“p’ - ;(Péb - pIGab)(F]“b/ — pIG®)

1 _ i
_ —Eahcm (FI _ pIGab)(FZ,d P’ Gea)Cep

8 ab
1 abede 1 1 ]
~ SaE (Fap = P Gap)BaaVep =V, (7.26)
where
1
V =2g2L(1 +2L) - ;gz(l —4L - L2)ayp'p/ . (7.27)

In summary, this Lagrangian describes N=2, 5D supergravity coupled to a single tensor multiplet and » abelian vector
multiplets. Note that the scalars p' are not constrained, unlike the vector scalars described in the previous subsection.
Presumably, there is an underlying n+2 dimensional very special real geometry in which the (L, p') are the intrinsic
coordinates.
Truncating the n vector multiplets, and dualizing B,y to Cy with field strength G= dC , one obtains the on-shell
Einstein—-Maxwell theory
-1 -1 18 1 (1Y 1 -1 uv

e L=LR+L 9Ld L- j1GwG — L Guv G
1 =
+ — VPP CLGyp Goa+ 287 L(1 +2L), (7.28)

where, as mentioned earlier, (eu”,lIJ"pCu) are the fields of the supergravity multiplet while (C~u, ¢, L) comprises the
Maxwell multiplet. To compare with (7.16), one first passes to the Einstein frame and then makes the identification

1 1 2
@) - ) 1 2

C112=C121=C211=;, p =L 3, p =Ls3, Au=Cu, A

n=Cp . (7.29)

The model can be further truncated to the minimal theory by setting L =1, C~u = Cy which is identical to (7.12) with
Ay and Fuy now replaced by,/Cy and Gyy. To recover the standard convention of minimal supergravity, we need to rescale
the graviphoton Cy — Cy/ 3.

7.3.2. Off-shell Riemann-squared, Ricci-squared, and Ricci Scalar-squared invariants and going on-shell

When the dilaton Weyl multiplet is utilized, all off-shell curvature squared invariants are known in the literature. In
fact, these invariants exist in two forms: the minimal actions with no external matter couplings and the models that
are coupled to n-vector multiplets. Here, we provide the n-vector multiplet coupled models. The off-shell Weyl-squared
action coupled to n-vector multiplets was constructed in [26], and it has the same form as (7.13) but with the following
definitions for Tw and D [25]

a a 26 1 a
D=—-"R—-" G*G — T*T +2T*G + gN+ = g22?+f{t.,
(32 6 @3 ab @y 16
T =G +~ € Hee+ft.. (7.30)
ab ) ab 48 abcde

Note that as D contains the Ricci scalar, the Weyl-squared invariant in dilaton Weyl multiplet is modified by an R?
contribution, and the leading curvature-squared term is given by Cpvps C*"P%+ 1/6R Similarly, the Ricci-scalar squared
action constructed in [26] has the same form as (7.16) where the composite fields are as defined in (7.30).

While the Weyl-squared and the Ricci scalar-squared action can be combined with (7.22), the third invariant, namely
the Riemann-squared action, requires that we set ¢ = 0. The construction of this invariant is based on a map between
the Yang—Mills multiplet and the off-shell, ungauged Poincaré multiplet [231]. When coupled to n-vector multiplets, the
bosonic sector of the Riemann-squared action is given by [26]

- l ao
L a=ar - 4pl(R W@ )= G Ga) (R (w ) = 3G G)

Riem
1 p .
_= Ru\mb _ Gquah FI G I pv i -2G V usz]I
2 (w +) nv ab +p Vij 1% (Y VAR
I i ab 1 I ab W
+p GaVuy(w+)V (w+)G + Ep Vu(w+)G V (w+)Gav
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( ) .

+ €nvpor Flu\;_ 2p lGuv Hpc?\Gah G + gpl euVPU)\Ruvab (@)Gaprcl

Ib—‘s |»—\

nvpo A

—g€ R (@+)Rps ()4 - (7.31)
The Riemann-squared invariant can be combined with the two-derivative action (7.22) and the other curvature-squared
models as long as g =0.

The minimal Weyl-squared and the Ricci scalar-squared models for the gauged dilaton Weyl multiplet are obtained by

considering a single vector multiplet, (Ay, p, A, Yi), and mapping these fields to the fields of the dilaton Weyl multiplet
according to [239],

p—>0, A 5C, Aoy, Y - to-y ¢ - So-1Li . (7.32)
3 K ij 4 ij 2
Upon fixing the redundant superconformal symmetries by choosing 6 = 1 and Y’ = 0, the bosonic sector of the
Weyl2 + 1/6R? invariant is given by [240]
oL, 1 2=~ LRucRict + RwRw = L Re = L €wete CuRonte Rag (7.33)
Worsk 4 3 12 8
1 abcde ij 2 bij 1 G“bGCd ab d
+ =€ C Ve TV + gv" i Viapij + gRuhcd( - 2H"H°
6 ab  cod 4 ac b 16 ab 2 1 ab 4 2 22

=8H G )= ;RaH G+ —R Hy+ RHaG = -RH —4(H )

ab
4 16 2 cd 40 2 a 8

2 2 2 ab cod
-8H - —H H«uG - 4HﬂdH G + -HG + -HaHuaG G
1 3 3 3 3

22 16 2 2ab ac bd 1 ab 2 2ab ¢
+ E(G ) — ?HabG - 5HabHch G - -HaG G +2G GiHa
]1 a bc 8 a be 1 4 4 abcde f
- *(V Gbc)VﬂG + *(v Hbr)VnH - -G + —-€ HawHcaV Gef
3 30, 27 735
abcde f abcde f abcde f
—-2€ Hor VeH: )Gae — — € Ha(V Gef)Gde — — € \% Gaf )Gre Gae
 Hr (VaHe )Gue = (V GG~ e (V GG

— — — . — B — )
—¢ — NHzG" + NG?-8NH?>+ _Vi'LiH® - Va'LiG™ - RN
8 i ab 31 3 3 ab” Lij 1 3 ai ij :_1

- )
+g2 [2H®Ga — _[2G? +2I2H2— N2+ RL? — _g3NL2 - gil4
3 3 3 6 3 6

where Va' = ZO[HVb]ij - ZV[ak(th] kj ) and Hu is defined as H? = ——]l2e”th”Hcde, and we have used the notations,
I‘I2 = H”bH,,h ) G2 = G”bGah , H4 — Hz"bli%
H2, = HaHoe, G, = GGe, G =G"G,. (7.34)
Similarly, the bosonic part of the Ricci scalar-squared action is given by [239]
. 1
e 'L 2 = YUYy = 2VY(NL )VA(NL ™) = ~ €apeac C'GP* G*
R
1 ( 8) 1 4 1
+ G Gah -4 abcdeB 9 NL—l + o = U 4 2 22
LC € ae0c ( ) * LV Vilij— RL_HIL
+1G,0, = 5N, = 1E IV D)= 4gNPL™ + gl (7.35)
8 2 2 2 ! 16

. . . ) .

Gav = 4V[(L7'E,)) + 8L Lif(Varl) = 2L 3Lz-j(v[”Lik ViiLy = 2NL™'Ga ,

P 3 B B y
Y7 = L7 4v'v,L7 - 2RLY - 8H?LY + G*LY)

4 C ) o o)

+L° -N2LY - EE,LY - 2E°LV,LY) - LyVLv,D" . (7.36)
The minimal, ungauged Riemann-squared action can be obtained by using the map (7.32) with g = 0 in (7.31) with just
one vector multiplet and fixing the redundant superconformal symmetries. For the gauged model, the Riemann-squared

action can be obtained as

LRierr\2 = LW2+ 1R2 + 2LRic2 ’ (737)
6
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where the Ric? invariant is only obtained recentli/ and takes the form [239]%°

_1 i, 1, 1,, 1 4 1
e L =" 5 P4 += 4 + " RHaG ;,— ~ RwH ,G,c = ~ RH,
Rie 6ﬁ R 24R 6R Car 3 3 3
1 abcde ij 1 abij 22 16 2 ac b 4 2 ab
- —€ CViye Vi *+ =V Vaij—2(H) + —H,H Gc— —H HaG ,
» b Vaei ¥ - b ( )4 3 »H 1 3 b
( ) ab 2
+ HypHg GG - 2G*GH + TH2G? — "H**G3 - HuG G
2 ac b 1 22 1 4 3 1 uc3 b 3 [a bc]
+G,H Ge— —(G) ——G — =VeG V Ga +2VaHiV H
i 48 24 6 5 5
abcde  f 2 3 4 4
+ —€ \v Gef(4Haww — Gav)(4Hea — Ged) + -NL + —L,
" of (4Hab v)(4Hea a) sNL g *+ 5 L8 )
+% RN - ANHaG® — 2NG2 + Vs iLij(Ga + 4Hab) + 12NH? — 6V*VaN
6
gz( )
-5 2RL? — L*(G? — 4G™ Ha — 24H?) + 4N? + 6V “LIVaL; . (7.38)

In Summary, for the ungauged theories, there are three independent higher derivatives invariant actions described above,
which can be chosen from the set including L L Lpi2 and Lpo. In the case of U(1)r gauged theory, the

Riem?” =2+ 1 R2» PRic
invariants given above are the last three in this list.

We conclude this subsection by describing the procedure for going on-shell in the presence of the higher derivative
invariants. As explained at the end of Section 7.2.2, we need to apply the auxiliary field equations of motion (7.25) in
the four-derivative part of the total action. In what follows, we shall give the on-shell result for the higher derivative

extension of U(1)r gauged minimal N = 2,5D supergravity. To this end, one dualizes the two-form Byy to a vector field

E’u . Next, one truncates the extra vector multiplgf by setting L =1 and CNu = Cp. As explained before, to get the canonical
kinetic term for Cy one also rescales Cy — Cy/ 3.
When higher-derivative terms are considered, using (7.33), and after some field redefinitions applied to the metric and

Cy, the on-shell Weyl-squared action can be recast into the following form [239]

efleh%RZ = Ruvpo R""7 — 4R R™ + R*
1 ab cd 1 4 1 abede fh
- WaeG G +-=-G + —e CaRpe Rep
2 8 23 ,
8¢%G* 14¢°R  50g* &
54 34 54 abcde

- + + - =€  CiGwGu. (7.39)
9 3 3 23

The on-shell Weyl-squared action (7.39) is identical for both the standard and the dilaton Weyl multiplets when the vector
multiplet couplings are truncated.

In the ungauged case, i.e. g= 0, the on-shell Riemann-squared action based on the dilaton Weyl multiplet is equivalent
to the on-shell Weyl-squared action [241]. For the gauged supergravity, the difference between these two actions is
proportional to the on-shell Ricci-squared action of the form

1 ( @ :7) )
e 'L ,=g? . G2—-10R —28g2— 76”“‘1‘3(; G.G, - (7.40)

The Ricci-scalar squared actions based on different Weyl multiplets are also equivalent on-shell and they can be eliminated
by using the lowest-order field equations in the ungauged case when the vector multiplets are truncated. If gauged
supergravity is considered, the on-shell Ricci-scalar squared action is given by
( 2 3
_ 19G 3 .
€' Lea= 825282 + — ~R- Te“mc GucGae (7.41)

which shifts the coefficients of various terms in the two-derivative action. While the on-shell results are compatible with
those of [242], they do not match with the results presented in [241] for ¢ # 0. This is due to the fact that [241] neglected
the g -dependent parts in the map between the standard and the dilaton Weyl multiplets (7.30), leading to missing terms
and erroneous coefficients.

7.4. Off-shell Killing spinors in N = 2,5D supergravity in standard Weyl formulation
The off-shell Killing spinors in N= 2, 5D supergravity were classified by [11,243] where the multiplets involved are the
standard Weyl multiplet (¢”, V4B, byw, Ta, D, Y4, x*), and abelian vector multiplets (p’, Al Y; p o /)‘. For the purpose of
[T u i
25 This is also referred to as the Log invariant in the literature for reasons explained in detail in [239].
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this section, to avoid confusion with the index notation that will be used below, we have denote the R symmetry doublet
index by A = 1, 2. We also use the conventions of [11,243] for convenience. The full map between the conventions

of [11,26,243] can be found in the Appendix B of CE%J/A n the ungauged case, the structure of all known curvature-
squared invariants allows one to set S &)—triplet fields and Y’A 5 equal to zero. Once this is done, the supersymmetry

transformations agree with those in the on-shell theory [244]. On the other hand, in the gauged case, not all the auxiliary
fields can be consistently set to zero. We will thus separate these cases.

In the ungauged case, one can again separate the discussions into two cases based on the property of the Killing vector
built from Killing spinor bilinear.

* When the Killing vector is time-like, the metric can be parametrized as
ds? = ¢4 (dt + w)2 — e Y g mndxmdxn (7.42)
where U is a time-independent function. Accordingly, one can introduce the fiinfbeins
e =e(dt+w), e=e e, i=1,...,4, (7.43)

where ¢ is the vierbein of g"ms, For timelike Killing vectors, it was shown in [243] that the Killing spinor equations
provide a solution for Tw, D, V’:lB and the self-dual field strength F Iu - in terms of U and the scalars p’, and that all

equations of motion follow from the integrability of the Killing spinor equation except the following ones:
Eb=0, Ev, =0, Ey=0, (7.44)

where the field equation of Va3 is projected to the lightcone direction.
e When the Killing vector is null, the metric can be parametrized as

ds? = e2U (F(dy™)? + 2dy*dy”) — e *Y 8ij(dx + aidy ) (dxi + aidy”), (7.45)
where all the functions are independent of y*. Choosing the fiinfbeins
1
et =el(dy’ + ) Fdy), ei=e?Y(dxi+ady), i=1,2,3, (7.46)
the Killing spinor is of the form

v+€=0, €=eeo. (7.47)

In this case, the Killing spinor equations determine T+, T+-, Tij, F 1.;, D in terms of U and the scalars p/, and the only
equations of motion which need to be solved are

Eb=0, E-;=0, E-;=0, E++=0, (7.48)

which are the equations of motion for D, AL T and g++, respectively. In the ungauged case, it is shown by [243] that
the Ricci scalar-squared invariant does not modify supersymmetric solutions.

In the gauged case, Killing spinor equations together with the integrability condition coming from the vanishing
gravitino supertransformation turn out to imply that

NTw=0. (7.49)

Taking into account all Killing spinor equations and their integrability conditions, one finds that it suffices to solve the
following field equations,

E(D)=0, E(Ps)=0, E(Y){5=0. (7.50)
In the case Tw = 0, from the same integrability condition it also follows that [243]
N2
Ravea = — 97(ga[fgd]b) . (7.51)

On the other hand, when Tw is non-zero, N must be zero and the integrability condition of the Killing spinor equation
coming from the gravitino supertransformation reduces to that of the ungauged minimal supergravity [244] with V= 0.
In the gauged theory, unlike the ungauged case, the Ricci scalar-squared invariant does not vanish on the supersym-
metric configurations, modifying both the very special geometry satisfied by the real scalars from the vector multiplets
and the AdSs radius [26]. Consequently, 5D Ricci scalar-squared invariant plays a role in black hole physics and AdSs
holography [13,241,242,245].

7.5. Exact solutions of N = 2,5D higher derivative supergravities

For the ungauged model described by supergravity plus a Weyl-squared invariant in the standard Weyl formulation,
solutions preserving maximal supersymmetry are as follows:
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e Five-dimensional Minkowski space. All the gauge fields and auxiliary fields vanish. The very special real (VSR)

geometry condition remains to be”®

1
;CIIKMIM]MK =1. (7.52)
e The Godel-type solution [244]. All the auxiliary fields vanish, and the metric is of the form
ds? -2 Kk @ 02 2 2 2
=k (dt+ z° o, ) —k@dr +r dQ;), (7.53)

where k and ¢,i = 1,2, 3 are constants and o ® are the left invariant one-forms on S°. The scalar fields M! = const,
L

the U(1) field strength F :N and v,y are anti-self dual and proportional to a linear combination of the hyper-complex
structu{e of the base manifold R*% The VSR condition is modified to be [243]

C M!M MK IC(i)C(i)
g K =1-caM 12k2 » (7.54)
where cur is the coefficient in front of the Weyl-squared invariant.
e AdS:xS3, in wf}lich the metric and electric fluxes are
ds? r > 2k, 2 2
= 41?511‘ - r—z[dr +r dQ;],
Fi _ = Midt pdr, (7.55)
2k

where scalar field M is constant and all the other fields vanish. The VSR geometry condition is modified to be [243]

1
C M'MIMK 1 ca M (7.56)
6 © 144k’
AdS»xS? arises as the near horizon limit of electrically charged supersymmetric black holes. The black hole entropy
can be computed by extremizing the entropy function and the result turns out to be [11]

vV caq
Sen=2m Q%1 +

oo At (7.57)

where g’ is the electric charge and Q2 := %CUK q'qd q~.
e AdSsxS? in which the metric and fluxes are [246]

ds? = £2ds2  + £2dQ,, 5= 104,

A AdS s 2 5
! 3
P
Fl = —€2, v=-_Hae2,
2
M P 12
= —, D= —, 7.58
7 » (7.58)
where the modified VSR geometry condition can be expressed as
1
€3 =C plplpk+~ ¢ p'. (7.59)
A K 12 b

AdSsxS? arises as the near horizon limit of supersymmetric black strings and captures their entropy. When the
excitation ener%}i/of the bla\c/k strir\]g is large, the entropy is given by the Cardy formula,

Ccr CR
Sbs = 2T —ht+ —hr , (7.60)
6 6

where /i1, hir are eigenvalues of the AdSs energy generators Lo, L o and cig are the central charges associated with the
CFT residing on the boundary of AdSs. Thus gomputing black string entropy boils down to derivinﬁ the two central
charges. The sum of the cenfral charges c = Z(CL + cr) can be obtained by éxtremizing the on-shell action over all
the parameters in the solution while keeping the magnetic charges pl fixed [11]. The result is given by

3 1
c=6P3+ cupl, P3:=" Cyxplp/pX . (7.61)
4 6

26 I this section, we set p! = -M! and Taw = 1an, in order to follow the notation and conventions of [243].
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The difference of the two central charges is obtained from the coefficient of the induced 3D Lorentz Chern-Simons

term from S? compactification of the supersymmetric Weyl-squared action. Using p' = — 127 @2 F I, the term
A A Tr(R A R) yields the following Lorentz Chern-Simons term in the 3D effective action
cap' | 2
- Tr(Cdll + "T'3). (7.62)
1921t 3
M3
From this formula one can read off cr — cr using the formula derived in [247]
1
CL—CR= — 2C21p1 . (7.63)
Combining (7.61) with (7.63), one finds
1
cL=6P3 + 2(:21;71, CrR = 6P3 + cap! . (7.64)

As pointed out in [11], the central charges obtained from the gravity side match with those expected from the dual
CFT [248].

e The near horizon geometry of the rotating BMPV black hole [249] itself turns out to be a maximally supersymmetric
solution, in whjch the metric and fluxes take the form

;
ds? 2k o w2 2k 2 2 2
= 4f7(dt + ﬁC GR ) - ﬁ[d?’ +7r dQS] y
I I (VNG
F I
= S Mdt Adr+ Mo, Adr, (7.65)
where M' = const and all the auxiliary fields vanish. For ¢ = 0, it becomes AdS: x S°. The very special geometry

condition is modified to be [243]

)

1 I
 CoeMIMIME = g — el o+ 3 00 - (7.66)

1

36 k

The entropy of the BMPV black hole is governed by its near horizon geometry above and was studied in [250]. The

result is of the form
v

I
—_— c2rq
Sbh = n Q - ]3(1 +

16032 """

where | is the angular momentum and the ellipsis denotes corrections from higher derivative terms beyond the
current setup.

D, (7.67)

The half-BPS black holes with Weyl-squared correction have been studied in [251,252] where the full solution is given
numerically. One feature is that for singular supersymmetric black string or black hole solutions with vanishing entropy
in the two-derivative theory, the four-derivative corrections yield a non-zero entropy and shield the singularity behind a
smooth event horizon [253]. Finally, it is noted that the relation between 5D /4D supersymmetric solutions with higher
derivative corrections has been studied in [250,252].

In the gauged case, there is the maximally supersymmetric AdSs solution, on which the VSR receives corrections from
the Ricci scalar-squared invariant [26]. The half-BPS solutions of the form AdSx Sg with Sg being a genus-g Riemann
sphere were studied in [13].

There are several results that have been obtained in the construction and study of higher derivative supergravities in
4D over the years, the ones on N= 1 supergravity going back to the mid-eighties [254-256]. We shall survey the existing
results for 1 <N <8, most of which are for the R-symmetry ungauged supergravities. While explicit higher derivative
invariants have been constructed for N = 4 conformal supergravity, and N = 1, 2 supergravities, thanks to the existence
of their off-shell formulations, such results are very difficult to come by for N > 4. In this section we shall primarily
survey the cases of N < 4, and their four derivative extensions. As a six derivative extension involving Riemann-cubed
term, it was shown long ago that it does not exist for N =1, 4D supergravity [1]. Regarding 4D supergravities with N > 4,
we shall make one exception by considering [257] on the D*R* invariants for N = 8 ungauged supergravity, in view of
the fact that it is one of the rare papers in which the superpartners of D*R* are constructed. In this section, we shall also
survey the construction of Killing spinors, and discuss the cosmological applications of R + R? type supergravities.
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8.1. D*R* invariants for N = 8,4D supergravity from superamplitudes

In the spin-helicity formulation, the 4-point maximum helicity violating (MHV) superamplitude in ungauged N =
8, D = 4 supergravity, corresponding to supersymmetric completion of R? is of the form [257]
8 . 4

( > ) 4
My = L M D)NaiMbi 8.1
4 256 {abMame M<12>4. (8.1)
i=1 ab=1
wherei = 1,...,8 labels the SU(8) fundamental representation 1,...,4 labels the scattering particles, N are
Grassmann bookkeeping variables and y
@ @@ aB @ NN
=2Aq A s (ab) =€ 7\“7\8 , [abl=€¢ A, ?\B (8.2)

From the superamplitude, one can extract the matrix elements of all independent 4-point amplitudes which carry certain
irreps of SU (8). The matrix element for any desired set of four external particles is obtained by applying a specific
Grassmann derivative of order 16, see [258]. The bosonic part of the action constructed in this way is found to be [257]

La=1R- ReBYs 4 L o caghB giiigiy gt ¢
R 4 OBY8 ROR By & 04 aﬁy& qu(’Sa 0" ™00 ikl
—-1R - R api 58 - ap daaaBB ATy ABS i
FoBiigyy go8pab R F aqBB g1y i
2 apys oPy s ij O(GYS afij y 8k 0*“0"" o™ ¢
+ir Pl giagBbaivg®y 4 Lpig o pebuguavp O‘BP
(xBy& dB 1 ijkl 5 013 TR o3kl
1
+2F1] P a FaBklauFﬂBav — — Fil QRQVF k]mnaaaaBB
ap M Bl 24 &B apij (P ¢ klmn
- lF'] JVF . (Pklmnauadaa[iﬁ(p = lFif F (pk]nmaaaaBB(PIN
13 o aBjn v iklm 4 ap apmn " pv ijkl
ijkl  mnpqg HP  vOo 1 ijkl  mnpq VP Ho 1 ijkl  mnpg pv po
+§(pu0 (pvp (pijmn(pklpq + 9mu q)\}po' (pijkm(pbzpu] 2§(pp.v q)po' q:)mnpqq:)ijkl ’ (83)

where (p"ffl = Ou .+ O, @M, a, B and &, B are the indices of the 2-spinors, and Ragy s is the linearized Weyl tensor,
and Yang-Mills curvature is decomposed as,
1 ( )aa

=4 (o )BB( @ *tEglp - (8.4)

ny ap

There are 30 additional terms that are quadratic in fermions in the Lagrangian above, and 8 more terms that are quartic
in fermions. The R* invariant in N= 8 supergravity was also obtained using the linearized on-shell superspace formalism
in [259].

For the D*R* superinvariant the corresponding superamplitude can be conveniently written as [257]

Mk = Pi(s, t, u)MHV (8.5)
where Px is a totally symmetric kth order polynomial in Mandelstam variables. For instance [260]
P2 =(s2+ 2+ u?), P3=(s®>+3+ud), Pis=(s2+1+u2)?, 8.6)

where s, f, u are the standard (dimensionful) Mandelstam variables. Using (8.5) one can build the linearized D%*R*
invariant by distributing the partial derivatives on the four fields involved in the R* invariant. To be more specific, denoting
any term from the R* invariant as A(x)B(x)C(x)D(x), one applies the replacement rule [257]

SMYHV — 20uA0"BCD, tMMYY — 20,ABOCD, uMMHY — 20,ABCOMD,
$2MMHV. — 40,0y AO"OVBCD, stMMHYV — 40,,0vA0"BOVCD , 8.7)
4 4

and so on.

Note that although allowed by maximal supersymmetry, the R* term does not appear in N= 8 supergravity because
otherwise its nonlinear supersymmetry completion leads to nonvanishing 6-pt matrix element in the single soft limit [261]
which is incompatible with the continuous Ezz symmetry at the perturbative level [258,262-264]. On the other hand,
the R* term does appear in the low-energy effective action of string theory, with the continuous E7z symmetry broken
down to its discrete version by non-perturbative effects. Consequently, constraints on the matrix element implied by the
low energy theorem associated with the continuous E7z no longer hold. Similar statements apply to the D*R* and D°R*
in N = 8 supergravity versus string theory. 2% 4

The low energy effective action of string theory implies that the D R invariants should come with scalar dependent
functions which are invariant under Ez»(Z). In particular, the moduli dependent functions in front of R* and D*R* satisfy
Laplace equations (11.2) and (11.3) on E7z/SU(8),

A® +42)E® =0,  (Aw+ QEw =o0. (8.8)
(0,0) 3 (1,0)
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Table 4
The field content of N = 4 superconformal Weyl multiplet. 20. denotes the 20-dimensional complex representation of SU(4) while 20, refers to the
real one.

Field 7 M N 4 Pa i E; T 7 Xk D'
u u 1l _ — [ab]
SU4) 1 4 1 15 1 4 10 6 20. 20,
Weyl weight -1 -3 0 0 2 1 1 3 2
Solutions to these equations are [265,266]
E
R*: E*y =E” -
©, [1000000]; 5
Dirt: g =1pF ) (8.9)

@0 2 "[1000000]; 3

“)
0,0
expansion, and a nonperturbative part. The perturbative part consists of a tree level and an one-loop level term. The D*R*
coupling also has a similar expansion but this time the perturbative parts consist of tree-level, one-loop, and two-loop
contributions. On the supergravity side, explicit computation [267] shows that the 4D maximal supergravity is finite at
four-loop level. Analysis based on continuous E7z symmetry rules out UV divergences at five and six loops [261]. It is
expected that the first divergence appears at seven loop level and is of the form D*R* [4].

These functions are defined in Section 11.1. The expression for E  , has a perturbative part in 4D string coupling constant

8.2. N =4,4D off-shell conformal supergravity in ectoplasm approach

Off-shell N = 4, 4D Poincaré supergravity is not expected to exist. The two-derivative on-shell version exists [268-270]
but its higher derivative extension has not been studied, to the our best knowledge. On the other hand, N =4, 4D off-
shell conformal supergravity has been constructed [21], and it turns out to be of considerable interest (see [271] for a nice
review). To name a few, off-shell N=4, 4D conformal supergravity coupled to SUQRxU(1) or U(1)* gauge theory was
conjectured to be finite to all loop orders and free of conformal anomaly [271]. The model also arises from the twistor
string theory according to Berkovits and Witten [272].

The complete N = 4,4D conformal supergravity was obtained recently in [273,274] using the ectoplasm approach.
The fields in the superconformal Weyl multiplet are summarized in Table 4.

The complex scalar field parametrizes the SU(1,1)/U(1) coset

PP =1, @* =nB(pp)’, NP = diag(l, -1). (8.10)

The construction of the conformal supergravity action is carried out in ectoplasm approach based on a closed super 4-
form . The lowest Weyl weight term Jopsy is restricted to contain only Lorentz scalars. The other fields that appear in
the spacetime component of the closed super 4-form are listed in Table 5. Readers are referred to [274] for the detailed
properties satisfied by these fields. The superconformal invariant action is given by the spacetime component Juwc: whose
bosonic palT is simply

S= d%eF. (8.11)

One can then construct a composite F using Weyl multiplet and substitute the result into the action above to obtain the
action for the N = 4 conformal supergravity [273]

-1 _ 1 wvpo TSNS S ; .
e "Lesc = H(@,) pra (@ + Fw (V)IFP (V)i + 7 EiiD2Ei — 4TaviD*De T <bij
2 ) I 4
—P uD"DyP’ +--+ +cec.. (8.12)

The complete bosonic action was given in [273] and the fermionic terms can be found in [274]. Here we only give kinetic
terms of fields, so that one can see which of them are dynamical. P, and P , are given by

Py = @“eapDu®, Py = -@ae™® Dy . (8.13)
In terms of three left-invariant vector fields associated with the group SU(1, 1), defining
DU:(poca —@ a‘ D*:cpsaﬁa, D™ = @oe 9 , (8.14)
A « (ﬂ « (')('ﬁ ap (ﬂ

H(gp«) is homogeneous of zeroth degree in the holomorphic variables so that it satisfies
D*H=0, DH=0. (8.15)
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Table 5
Fields that appear in the spacetime component of the closed 4-form. . .
Field AT Cu E7 Eab)” ETj F p Kijk QO Qf
a ij a
SU4) 20- 20- 10 6 15 1 20 20. 4 4
2 2 2 2
Weyl weight 2 2 3 3 3 4 5 5 7 i
Table 6
The field content of off-shell N = 2,4D Poincaré supergravity obtained from the standard Weyl multiplet.
Field e, v/ Vu Au Ta D X Wi Yii G Epv i X o
D.ofs 6 8 3 4 6 1 1 3 3 2 3 24 8 8

In the previous sections, we have discussed how to obtain models preserving Poincaré supersymmetry from those
which are invariant under superconformal transformations. One has to couple the conformal supergravity to a certain
compensating matter multiplet. In N = 4 supersymmetry, the only matter multiplet is the vector multiplet. At this stage,
an off-shell formulation of N =t vector multiplet is still unknown. However, we can still discuss how many vector
multiplets are needed at the linearized level [271]. It turns out that six N= 4 abelian vector multiplets with a rigid SO(4)
group are needed to fix the dilatation, local SU(4) and special supersymmetry [275].

The N =3 conformal supergravity can be obtained from the N= 4 case by decomposing the N= 4 supermultiplets
under N = 3 superconformal group and truncating out a N= 3 gravitino multiplet. We refer to [276,277] for the details
of this truncation.

8.3. N =2,4D off-shell supergravity invariants from the standard Weyl multiplet

® Off-shell N= 2, 4D Poincaré theory

The first way to construct N = 2,4D Poincaré supergravity is via coupling standard Weyl multiplet to suitable
compensating matter multiplets, followed by fixing redundant gauge symmetries including local conformal boosts,
dilatation, SU(2), U(1)a and special supersymmetry. In this case, it is well known that in order to write down a meaningful
two-derivative action, at least two compensating multiplets are needed which are chosen to be a Maxwell multiplet
(X, Qi, Wy, Yij) and a tensor multiplet (Lij, ¢, G, E,w). After choosing the gauge fixing conditions,

SU@): L;=8,¥=, D:L=1, K:b,=0, Ul)a: X=X, Sa:d'=0, (8.16)
2

one obtains the off-shell N = 2,4D Poincaré supergravity multiplet displayed in Table 6. The two-derivative Poincaré
supergravity Lagrangian is the following sum

e 'Lsc=e 'Lv—e'Lr, (8.17)
where Lv and Lt are the Lagrangians which describe off-shell N = 2, 4D Poincaré supergravity coupled to a vector [278]
and a tensor multiplet [279], respectlvely, and they are given by

ey = - 72 1. pv— + pHv+

4x (_R— D) +4DyXD "X+ SF(W)F (W) + 2Fw(W)F W)

1 1 1
TXEFTWHTW + FT (W)T“V y—TYiYy — = Xt Tt + 1T TV,

4 uv (1Y 2 ij 32 (1Y 1%
-1 1 0 2, W_ 4
¢ L= B+D+ER+|GI+ vbm X GG =S E W
8
- = &, (8.18)
2 2
where 1
X=@ —id)X, Eh=Tewprgp , Vi=vi+ 8V (8.19)
0 0 2 v pA n n 2 0

The equations of motion for D, X, G, Yi, Ey, V), V, "7 and Tw lead to
1 g
X==, Ap=0, G=G =—Eg, Yij = gv%&j,

V-

En=0, Vu= 2gW,, Vii=0, Tuw =-8Fu . (8.20)

Juy

27 Here we use the notations of [280].
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Substituting the solutions back to Lss, one obtains the on-shell two-derivative minimal supergravity
- 1 3
e'Lsc=-"R-"F F" + g2, (8.21)
2 2" 8
e Weyl-squared invariant

The first curvature-squared invariant was constructed in [21] using superconformal tensor calculus. We denote it by
Ly as it contains the Weyl-squared term. After gauging fixing, the bosonic part of the complete invariant is given by

eIl 2 =C  CWPL2F (AFW(A)+6D2 + i (VYEW VY + ¥ (V)F”"(V)

w Hvpa Y v i
1 1 23 4
- TTWVV VPTT — TTWY VPTT — T TV T T”"+ , (8.22)
4 K pv 4 K pv 512 W po

where F,y(V) and Fﬁv (V') are defined as in (6.17).

e Gauss—Bonnet invariant

The second curvature-squared invariant was obtained in [281] using superconformal superspace technique. The
construction utilizes a pair of chiral and anti-chiral superfield ® + of weight w # 0. Then one builds the nonlinear version
of the kinetic multiplet denoted by T [[n ®x+]. It is of weight 2 and it is obtained by acting on In & with four superspace
derivatjives. The density formula for the kinetic multiplet gives rise to

aJ aJ
dix L _ +1 — _
e = g g, Tlin -] sgigp. TN ®-1, (8.23)

where E: are (anti)chiral measures, and

1 , ,
o1 2= 2R RW - 2R2-2F (A)P”V(A) 6D - ~Fii (V)E® (V)

Ric 3 1P-V 1 1 2 W ij
-7F (VMFYW)+ —TWVV VPTY + TTWY VP TT
Y 4 1 S pv 4 S pv
+— T TW™TTT TP - — v st (8.24)
512 W po 2w M

The dependence on @ 4 only appears in the total derivative term. Using the expression for Weyl tensor in four
dimensions, one can see that the Gauss-Bonnet invariant is given by

Les = Lyy2 + L2 - (8.25)

e Ricci scalar-squared invariant

The supersymmetric Ricci scalar-squared action has been constructed by employing superconformal tensor calculus,

and the bosomc par{of the reult is élven by 279,28 J(
e

=— R+D +E2 R+D + |G| R+2D
11 1 1
Lg2
2 3 3 6
[ . l( - o _)] l[ l( B . _)]2
- DyE, F(WV)™ - 2T G+T"G + SF(V)H\,—ZTH\G+THQ;
1 ( _ . _)2 ) ) )
- _T G+T'G +|p GI’+2( E,?—4 |G|>+EE"". (8.26)
64 W pv 1 1 V] 18
and the supertransformations of the fermions by
l ; . A - . .
Syt = 2@ +1y'11“u) — A )e —Vie — Y Ty e—-yn,
H X Hoog wab o B ui/‘ 16 H . H
8x'=—"vy-D/T€—"y-F(V)ie + "y -FA€e+De+ " y-Tn,
24 6 73 24
1 .
8Qi=2D/Xei +2_y -Fei+ Yiye +2Xni, (8.27)
where 1 1
Fo=F -IXTT, o ="1Ges -E/es +Vf (gome & - (8.28)
uv Hv 2 uv i \/5 if \/2 if m kji

In the expressions above, the i,j indices are raised and lowered using €7 and €.
The four-derivative supergravity invariants have been applied to study holography and black hole physics in [280,282—
284]. To be specific, [280,284] considered the model

Lup = (16Tt GN)_lLSG + (c1 — c2)Ly2 + c2LcB . (8.29)
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It was found that every solution of the two-derivative theory also solves the field equations derived from the four-
derivative Lagrangians. Nonetheless, the four-derivative Lagrangians do contribute to the on-shell action and to the black
hole entropy[ For asymptotically AdSs solutions listed in Table 2 of [284], the on-shell Euclidean action takes the form
lp= 14 %;G— 2= oy B P+ samcy, (8.30)

where £ denotes the AdSs radius, F is a constant resulting from the evaluation of the two-derivative action on M
and X is the Euler characteristic of Ms, whose values are given in Table 2 of [284]. If the theory (8.29) arises from
s7 compactification of 11D or CP 3 compactification of 10 IIA supergravity with higher derivative corrections, it is
conceivable that (8.29) provides a gravitational description of the dynamics involving only the stress tensor sector of ABJM
theory [284]. So far, coefficients c¢i and c2 are not determined from the gravity side since the S” compactification of 11D
or CP 3 compactification of 10 TIA supergravity with higher derivative corrections has not been worked out. However, they
may be computed via a combination of holography, conformal bootstrap and localization techniques [285,286]. In [284]
some attempts for fixing c1 and c2 were carried out by comparing the gravitational on-shell action to the free energy of
ABJM theory on squashed 3-sphere. Furthermore, one also requires that the stress tensor 2-pt function computed from
the gravity side matches with those in the CFT side. In this way, it is possible to fix just the coefficient c1 due to a possible
unknown shift in the relation between £2/Gn and N.

In [284], the entropy of black hole is also computed. Although the solutions are not modified by the four-derivative
interactions, [the entropy does receJive corrections. Using the Wald entropy formula, one obtains [284],

LOHmON A e 8.31)
2 1 1 4 °
{2 4GN

Sy = 1

where A and x(H) denote the area and Euler number of the horizon.

e Quartic in Weyl tensor invariant
An off-shell Weyl* invariant was introduced in superspace in [287] with the Lagrangian

{ ( ) ( )}
L= d® E VA”VA” VaBVBh +16Xaw — VA”Vf VZVBh —16iYas W2W2 + h.c., (8.32)

where a =1, 2 is the U (2) R-symmetry index, A = 1, 2 is the Weyl spinor index, and the superfields X« and Yas are
certain components of the torsion and curvature in superspace. The off-shell N= 2 Poincaré supermultiplet involved is
the 40 440 component multiplet displayed in Table 6. We will not present the details of the superspace construction
here, as they can be found in [287]. It is pertinent to mention, however, that [287] focuses exclusively on the superspace
formulation, and does not present the component formulation of the Weyl* invariant. Nevertheless, it has been shown
that the above action does provide the off-shell supersymmetric completion of the Ci C_2, where C: is the (anti)self-dual

part of the Weyl tensor.

8.4. N =2,4D off-shell supergravity invariants from the dilaton Weyl multiplet

® Off-shell supergravity

Another formulation of off-shell N =2, 4D Poincaré supergravity can be obtained by coupling the dilaton Weyl mul-
tiplet to a tensor multiplet [288]. After fixing local SU(2), U(1)4, dilatation, conformal boosts and special supersymmetry,
the off-shell supergravity multiplet is given in Table 7 in which the auxiliary fields are V%, V,,, C, Eyy. This multiplet can
also be obtained by reducing the 5D off-shell supergravity multiplet and truncating out a vector multiplet. The bosonic

two-derivative supergravity action based on the multiplet above is given by [288]
1 1

-1 -1 T 1 ny ny

e Lig= LR— _L 9uLd L+ LFuW(W)E_ (W)+ TFu(W)F (W),
+= HY 4 [CI’L™t — B4 LeuvaEg F (V)+LViv*, (8.33)
o4 WP n 2\/5 pv pA TR
where
E*="enwdE , H =30 B . (8.34)
2 v pA Hvp W vpl]

On-shell, the field equations imply that the auxiliary fields can be set to zero, and the off-shell multiplet decomposes
into the on-shell supergravity multiplet plus the on-shell vector multiplet. One of the scalars in the vector multiplet is
obtained by dualizing the massless two form Byy to a pseudoscalar. We shall consider the coupling of 1 off-shell Maxwell
multiplets to the off-shell N = 2,4D supergravity. The n vector multiplets will be denoted by

AL N XY, T=1,.,n, (8.35)
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Table 7
The field content of off-shell N.= 2,4D Poincaré supergravity obtained from the dilaton Weyl multiplet.
a 7 7 7
Field e Vi Vu Wy W B L Epv C LIJH 0]
D.o.fs 6 8 3 3 3 3 1 3 2 24 8

where X! are the complex scalars and Y are the auxiliary scalars. Further useful ingredients are defined as follows

T,v=K.y, Kwi=FWhw+iF(W)u,  P:=T, T,
1

1 e A
A:=_16KWKW' B:=CL1—7£p(pJ8ijL2. (8.36)

e Riemann-squared invariant and coupling to n vector multiplets
Off-shell N = 2,4D supergravity coupled to n Maxwell multiplets is described by the Lagrangian [288]
- «—> -
e'L=4D GD"X '+~e H"G D "X +4D (G K")D*K
u oI 3 HVpA I n A Av
1 VpA ad (_)u —HA\ |V o+
+ e HPNG K°)D MK +32D (G T™™MD'T
3 HVpA A 68 p P VA
8Huwa (G Tﬁ)?GTJr +4DuG D B +1e A~
- 1 v -
H P v o - K 3 P-VDAH *G gD "B
1 I il
+GLo+ G1L; + Gal2 + GpLs + GarLy + GpiLs + GyLg + Gaal7

+ GaplLs + GppLo + GgLio + GggL11 + GgiLi2 + GgalL13 + GgpL14 + h.c. , (8.37)

n

where G(X!, B, A, P)isa prepotential, G¢ dG/9X', G= 02G/dX'dA and similar notation is used for the derivatives
of G with respect to other fields. Expressions for Li can be found in [288]. In particular, choosing G= A, one obtains the
Riemann-squared invariant

e P 16Ramca(@-)Rei(w-) + 4Du(w7)KﬂiD”(oof)Kab
+7 €abeaH" Ky D (o0 YK & = F(V))i E(V)WY = “F (V)F™(V)
3 - v if 2 Hv

1 - —~ —~ i
+—2 K@K a(Fn(W)FM (W) + FE (W )F*(W)) — 4K Rata(w )K “* + h.c., (8.38)

where (Jofhu = u)ﬂh - %H 1. A more general curvature-squared invariant can be obtained by noting that L2, L3, L1 contain

independent curvature-squared structures, and therefore, as a special case, choosing the prepotential as

1
G(X!,A,P,B) = 1—6ch +BP+YyB? (8.39)
gives
( ” ) )
e 'L:= aR™“R™ +8BC™™¥C™ + “B-""y R2+---+(hc), (8.40)
abed abced 3 128

where Canca is the Weyl tensor and the ellipsis denotes the remaining bosonic terms which can be read off from (8.37).
Up to cubic fermions, the supersymmetry transformation rules of fermions are given by [288]
i i v if

S8y, =2Dy(w+)€ - 5Y Ew(W) +\}Fuv(‘;\7))£ €,

1 —
Sg' = VELS"JE], + E/sfi/e - Ge + 2L817'nj ,

O = 1 1 pw I T j I
i 2D/Xie + Y Fu ée+Ye+2X7, (8.41)
with the following definitions
R 1 ,. 1,._
Fav = Foy = X Ty = X Ty
ni = - éy Mevpo H € — Sly W (W) + iFyy (W))€i (8.42)

The N = 2,4D supergravity coupled to n vector multiplets, extended by Weyl-squared invariant, has been employed to
derive the higher derivative corrections to the near horizon geometry of asymptotically flat supersymmetric black holes.

53



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1-95

These results, when combined with the Wald formula [289], yield the macroscopic entropy of these black holes [290-297].
For models arising from type IIA string theory compactified on a CY3, the prepotential, up to linear order in P, takes the
form [290]

G(X! 1 XXXt 11 X
» P) = - gCIIKT - ZZ6ZC21}FP » (8.43)
where Cix is the intersection numbers of the four-cycles of the CY3 and cxzr s denote its second Chern-class numbers, with
I=1, ..., bawhere b2 is the second Betti number. The resulting macroscopic entropy of the supersymmetric black holes
carrying elect%c/magnetic charges (go, q1, p° = 0,p') is given by
1
S=2m " qCuxp'p/pK + capl),
& 1
q g+ Dglqg, D =-"C pk. (8.44)

0T 0 45 7 i 6 K
This result is in agreement with the microscopic entropy formula computed in [248,298]. A comprehensive review of
D = 4 supersymmetric black holes with stringy higher derivative corrections can be found in [9].
A special class of supersymmetric black holes in N = 2,4D supergravities arising from Calabi-Yau compactifications
satisfies

ChxplplpX =0, (8.45)

corresponding to the so-called small black holes with vanishing classical horizon area, indicating the existence of a null
singularity. However, when higher derivative corrections are taken into account, analysis based on near horizon geometry
suggests the singularity is smoothed out by a horizon with a non-vanishing area arising at order o [299,300],

Y

[q0]carp!
24 '

which is proportional to . Therefore this class of black holes are given the name ““small black holes”. From (8.44), its
entropy is deduced to be

A=8n (8.46)

v
— |qolc2ipt — A 8.47
S =4m >4 5’ (847)

differing from the Bekenstein-Hawking entropy formula obeyed by the large black hole by a factor of 2. This difference
is natural given that this result for the entropy is not merely a leading order result but encodes significant contributions
from o correction.

The resolution of the singularity, however, has been questioned in [301-303] for certain two-charge black hole solution
arising in the 6-torus compactification of heterotic string which is S-dual to ITA on K 3% T2, First of all, general four-charge
black holes with Riemann-squared corrections were constructed in [301,302] which illustrated that the two-charge black
holes still contain a curvature singularity. Based on these solutions, [303] further argued that the small black holes are
in fact already regular in the zeroth-order supergravity approximation and Cyxp'p/F< 0 does not necessarily imply
a singular horizon of vanishing area. The reason is that the charges p' in (8.44) were obtained from the near horizon
geometry and can differ from the genuine conserved charges in the presence of higher curvature couplings. Thus in the
context of supergravity with stringy corrections, from p’ = 0 one cannot deduce that the corresponding conserved charges
vanish. However, it is the vanishing of the genuine conserved charges that leads to a singular horizon. Further discussions
of small black holes in heterotic string can be found in [304,305].

8.5. N =1,4D off-shell supergravity in U(1) extended superspace and four-derivative invariants

The construction of higher derivative off-shell N =1, 4D supergravity was carried out long ago within frameworks
employing different sets of auxiliary fields. A convenient way to list possible sets of auxiliary fields is to start from a
20 + 20 off-shell multiplet consisting of [306]

{€(6), M(2), bu(4), Awv(3), C(1), au(3), D(1); Wu(12), X(4), A(4)} , (8.48)

where M is a complex scalar, by is a non-gauge vector field, C and D are real scalars, Ay and ay are 2-form and 1-form
gauge fields, and Yy, X, A are Majorana spinors. Setting to zero the fields (A, C, X) gives the off-shell 16 16 multiplet,
which we refer to as Type 1 [307],

16+16, Type L {e4(6), M(2), bu(), au(3), D(1); Wy(12),A(4)} - (8.49)
Setting to zero (ay, D, A) in (8.48) instead gives another off-shell 16 + 16 multiplet, which we refer to as Type II,

16 +16, TypeIl:  {e5,(6), M(2), bu(4), Aw(3), C(1); Wu(12), X(4)} . (8.50)
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Setting to zero (Apv, C, X; aw, D, A) in (8.48) instead gives an off-shell 12 + 12 multiplet, known as ““old minimal’’ [308],
Old minimal:  {e5,(6), M(2), bu(4); Wu(12)} - (8.51)

Finally, setting to zero (M, by, C, D; X, A) gives another off-shell 12 + 12 multiplet known as ‘““new minimal” [309,310],
New minimal: {E'ﬁ (6), Apv(3), au(3); Yu(12)} . (8.52)

Here, we shall begin by reviewing the known curvature-squared invariants in the framework of the Type I off-shell
formalism [311]. Later, we shall consider its truncation to the old minimal off-shell framework, and separately we shall
also consider certain higher derivatives invariants in the new minimal off-shell framework [312].

In Type I off-shell formalism, the bosonic part of the off-shell invariants discussed in [311], where references to earlier
literature can be founfl, are

- )
e 'L = —,R= 7 MM —bbe +2¢D,

1
e 'L = " D2+ fFWr
2

[
1 1
-1 = _abcd = \YJ
e 'L > = C Cab(d+ Fu Ei 2
w8y B M 1( )
-1 T a \YJ \YJ
ey o=— RRap + —R2— D2—— FWE,, +2fW ,
Ric? 8 % ( 6 6 uv f Y fuy )
3 1
e”LRz = - (R-2Dp+ b —|M|2 R-2 70" + 2|M|* D
4
R (RN S G )
+3D'MDWM =3 Db +ib" A1 D M- MD M
l( 4 2 p noo2
~5 M| + M| b b+ @® by , (8.53)
., 1
where Rav = Rav — IT]abR and
Sfuv =20av; , Fuv = fuv + i0pbvy ,
DHM = apM + 2 gﬂuM , Duba = auba - (Duucbc . (854)

The off-shell supertransformations of the fermions, up to cubic fermionic terms, are

8¢ =20 — oty +ga)e—ibye— ¥ b/lye— ¥ ReM +ilmMy )e,
n Wy n H5 3 M5 3 M 5
SA = ifyvy We + iysDe . (8.55)

It is worth noting that the combination 2Ly, > + Ly 2 gives the Gauss-Bonnet term, which is a total derivative in D= 4.

Considering Li + L2 alone, it has unusual properties [313]. Firstly, the gauge field ay couples not only to the gravitino but
also to the gaugino A. Furthermore, eliminating the auxiliary field D using its field equations gives a positive cosmological
term with a fixed value proportional to the square of the U(1) coupling constant. The elimination of D also gives a
homogeneous supersymmetry transformation of the gaugino, thereby triggering a super-Higgs effect [313].

One can truncate the Type I multiplet to the old minimal formulation by setting

ay=0, D=0, A=0. (8.56)

This is a consistent truncation at the level of supersymmetry transformations, and it is to be implemented in the off-shell
action. Performing this truncation, one obtains off-shell invariants in the old-minimal formulation from (8.53). In this case,

given that we need not worry about the local U (1) symmetry gauged by a,, a new off-shell invariant becomes possible,
and it is given by

e 'La=M+M - pywiy . (8.57)

Considering the combination Li+Ls, the elimination of M generates a negative cosmological constant. The spectrum of
the model Li +als bky 2 ay b was studied in [314]. For generic choices of the coefficients a and b, it was found that
excitations of the theory around an AdS: background consist of the massless supergravity multiplet, and a single massive
spin 2 mulﬁplit. The latter oge consists of tl—§ following Aﬁd& irreps

5
D E +*2)EBD(E 7)€BD(E +1*)63D(E + 1) Eo>—_ 8.58
o+ o, o+ 1, ok o1 0> (8.58)
with V
1 a1 5 1
E =1+ 1-—_> H=> -— <b<o. (8.59)
2 a%b 2 8a?
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Here D(E, s) denotes a UIR of AdSs with the lowest weight state with energy E, and spin s. The condition E > 4 1is
needed for the unitarity of the representation. However, this does not guarantee ghost-freedom for the massive spin 2
state. Indeed, assuming that the parameters a and b satisfy the condition (8.59), one finds ghostly kinetic terms for the
massive spin 2 multiplet [314]. For further properties of this model, see [314] where possible ways of evading the ghost
issue by imposing certain boundary conditions [315] is also discussed.

8.6. N =1,4D off-shell supergravity in the new minimal formulation and four-derivative invariants

In the new minimal formulation, the auxiliary fields are an antisymmetric tensor gauge field B,y and a vector gauge
field V, which gauges the chiral U(1) symmetry in the supergravity multiplet [310]. The bosonic part of the off-shell
supergravity Lagrangian, in conventions of [312], is given by

e M= —"R-"H™H 4 2emwoygp | (8.60)
5 5 we g BV opo

where H = dB. The supersymmetry and gauge transformations are given by

i, .
Ser = Ze_y Wy’ SYy = Dp(Q+, Vi)e + iysAy,

8B = 3eyy , & =lieyyyap +9 A, (8.61)
Y 5 MV Hog 5K ab n
where
Q p=wupEeW*Hy,, V =v +li,H . (8.62)
pt 0 0 p+ g M abc

Further definitions are

Yy = 2D[u(9+,€/+)‘l’v] , Hyvp = a[uBVj?] )

D,(Q,,V,)e= 9 A (8.63)

[

1
-0
4 M

The new minimal set of auxiliary fields makes it possible to use the analogy between supergravity and Yang-Mills to
construct higher derivative invariants. Indeed, three off-shell curvature-squared invariants are constructed in [312], with

bosonic parts given by28

e 'Lo=—-"R aw(Q R™U(Q )-2F (V )F™W ),
4 Hv - 1— [UAVAREE S +
i w ( )2
e7Ls = = Fuu(VIFW(V) = g R(w) + HZ,
-1 — 1 uvab 1 UVpo HA
e 'Ls = 4Ru\,ﬂb(ﬂ_ RMVP(Q_ ) — i€ D 3y Foo (V)
1
v u  vpo
“Fu(Vo)F  (Va) = PuHvpsD H . (8.64)

Once again using the analogy between supergravity and Yang—-Mills, the off-shell supersymmetrization of tr(R A R) has
also been found in [312] and its bosonic part takes the simple form

[ ( 2 )
Pt Q-0p Qo- — S Bv-Qp-Qo- (8.65)

Iy = i
e = -1
5 s
where tr(QuQv ) =u’Qvi”. Integrating this over a manifold M with boundary 0M, it yields action for supersymmetric
Lorentz—Chern-Simons on M.

The coupling of a scalar multiplet, {4, B, Y, F, & , and Yang—Mills multiplet{ Ay, A, D), to new minimal supergravity has
been given as well in [312]. The pseudoscalar appears everywhere in the action under a derivative as 0B, and therefore it
can be dualized tga two—fot}n po{ential Apy. The resustin%action, including the Lagrangians L1 and L, is given by [312]

L=IL1+AL+Lyvm —e 0 AOMA+F2+ G2 — ~e¢F F™P, (8.66)
'8 2 Hvp
where
F =90 A -1x, -1xy + 240 B ,
uvp L vpl 4 hvp 5 4 Hvp 3 [0 vp]

( )
Xip = tr Qu-0vQp_ — PROTO N P

™ ( 2
wo = tr AudyApy — JAuAvAg (8.67)

28 For an on-shell construction of a curvature-squared invariant, we refer the reader to [312].
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and the bosonic part of the supersymmetric Yang—Mills action is given by

(1 1)
e 'Lym=—-g Jfr - FuF HY — 5D (8.68)

8.7. Off-shell Gauss—Bonnet and its higher derivative scalar couplings in old minimal formulation

The couplings of matter to N=1, 4D higher derivative supergravity were initiated in a series of papers [254-256],
motivated by the low energy effective theory of heterotic string compactified on Calabi—Yau three-folds. Let us first
recall the coupling of off-shell scalar multiplets to supergravity in the old minimal formulation without higher derivative
corrections. Denoting the fields of the old-minimal multiplet by (eﬁ , u, by, Py), the Lagrangian is given [316]29

- 1 1, , w1 . 1 «
'L =7 @R-"@"d ZiOwZi*+ b @ OZi+ @uu’ —b b
12 2 0y ;3% 5 18 "
+ @ ht Wi+ T A 'hz’+*w*)+h 8.69
Z(Pij 5 Vi 3” P; > € (8.69)

where 512 ,ZY) = -3¢ KZ2 *,)/ S with K z, Z,*)hre resenting. the Kghler, Ii:ootential and W(Z2) is the holomor&ﬁhic _suaper 0-
tential. The priimes denote differentiation with réspect to 22 or Z™', and in particular ¢, j mheans the second derivativ of
*

@ with respect to Z' and Z/*. The vector field by, and the complex scalar u = S — iP a re the auxiliary fields in the old
minimal supergravity multiplet, and /' is the auxiliary field of each the scalar multiplet.

Next, let us consider the coupling of the off-shell Gauss—Bonnet invariant to the off-shell scalar multiplets. This was
achieved in [256] with the Lagrangian giver{1 by

9 |
¢'Len = “f(Z)*R*R—R*R)+ f(Z)D'L, + £ Ru = Lu(uu” + 50 )
8 o2 3
1
+iu"Dpb" + 2ib"0u”  + hec. (8.70)

where f(Z) is an arbitrary function of the scalar fields Zi and

. 2 3
L =u'@ - “Yu+D (b b")+2ib"B — “ib b b’ + “€™p Db |
i m viop Vi v op

3 3 "V 2 °
B =3R -1¢ R+ iF @)- L +v Py + 1o b, (8.71)
Iy 5 W 6 W ny 6 p uv 3 RV

with Fuv(b) = 20[uby).

A higher derivative coupling of the chiral multiplets to old minimal supergravity has also been constructed [317,318].
Its construction utilizes the superspace method and demands absence of propagating ghosts. In the notation of [317], the
bosonic part of the Lagrangian is given by

)
e 'Lias = SHZ'@“Z@VZ“BVZ’* - KK D ZIONZ! + W R Tirs| (8.72)

where Tijkis| is the lowest component of the tensor superfield Tiwi which is chiral and it is required to be hermitian
and symmetric in pairs of indices i, jas well as ¥ , # 30 We can now consider a linear combination of all three off-shell
super-Poincaré invariant Lagrangians,

L = Lsc + alLcs + BLuas , (8.73)

from which one can deduce that the auxiliary field /' obeys the cubic equation

(

1 .1 Al 1
0=@" W'+ W + u'@ +aof “Ru"-"u"(@wu" +5b ") +iu"D A +2iD"0 u*
a
i 2 i 3 i i 2 3 B H

)

+2B(-H"OuZIONZI" + WHE ™) Tijkss| (8.74)

In the absence of Gauss—Bonnet coupling and restricting to a single chiral superfield, the auxiliary field equation was
analyzed in [317]. It was found that when a superpotential is present, the auxiliary field h admits three distinct solutions,
which lead to three distinct theories. One of these solutions is related to the usual solution for h that one obtains in
two-derivative chiral supergravity, while the other two solutions correspond to new branches of the theory.

The Lagrangian L= Lsc+ PLws was generalized in [318] to include the coupling of Yang-Mills multiplets such that
the Yang-Mills fields gauge an isometry group of the Kéahler sigma model parametrized by the scalars Zi. The cubic field
equation for the auxiliary field /', encountered in this case as well, was analyzed by considering a single scalar multiplet.
We refer the reader to [318] for further details.

29 Here we are using the notation and conventions of [256].

30 Examples given in [317] are Tijksex = Qikxgjex + Qjkx itx, and Tijkxex = Rikxjex.
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8.8. Weyl* tensor invariant in old minimal formulation from superspace

In the context of the(old minima)l formulation, an off-shell Weyl* invariant was introduced in superspace in [319]
[ ( ]
L=-"" E3V?+ R aw2W?+1 420 + h.c., (8.75)
42 3
where o is an arbitrary constant. This Lagrangian has been worked out in components in [319]. While the terms involving
the fermions are very complicated, the bosonic part turns out to be remarkably simple given by

[( ) ) ]

1 1 3
'L = - R —(MF+ N* = A4y = — 0 Copvpo €177 Coppa CEP7 7 4207, (8.76)

where Cipvpo are the (anti)self-dual part of the Weyl tensor, and ellipsis represents the terms involving the auxiliary
fields (M, N, Ay).

8.9. N =1,4D supersymmetric extension of Starobinsky type R + R* models

The R? extension of general relativity, known as the Starobinsky model [320], is one of the most studied and successful
inflationary models. At the bosonic level, the Starobinsky model is given by

1
e'L — R, R2. (8.77)

6M?
Its supersymmetric completion in the off-shell Type I multiplet formulation is given by the combination of L1 and Ly
action from (8.53) [311]. In the new minimal setting, the off-shell Starobinsky model is given by the combination of (8.60)
and Ls from (8.64). Note that in both the Type-I and new minimal settings, auxiliary fields can be consistently set to zero,
leading to an identical on-shell result.
The R+ R? Starobinsky model can also be expressed as a scalar—tensor theory, which is its most convenient form in
cosmological applications, by considering the following Lagrangian [321]

1
17 = — A2 — —
e L=A+ 6M2A d(A—-R), (8.78)
which, upon integrating out the ¢, takes us back to (8.77). Varying this action with respect to A, im,/posing the resulting
field equation, performing the Weyl rescaling guv ~ — $guv and finally introducing a scalar field ¢ = 3/2In ¢, the action
reads
( v )
— 3 2 - {‘P
e”'L = R - dupdng - 2M 1—e 3 ) (8.79)

This action is known as the scalar-tensor form of the Starobinsky model. Its supersymmetric version has been obtained
in [322]. Following the same logic that leads to (8.79), the following result has been obtained for the bosonic part of the
supersymmetrized R + R? action in the old minimal formulation [323]:
e 'L="R-K-0 zworz V) -v, (8.80)
5 K
where ,] = 1,2 and

(. )
V=ek KIDIWD;W —3WW ,

K = -3log (z“’ +7Z® - z<2>z'<2>)
v ( )

W=3 6MZ® ZbH-" (8.81)
2
and Kr:= K KI/;/:E K,If and DiW = W + KiW. Parametrizing the complex scalar Z®" as [322]
1 2
- = I
ZW="e " +ib, (8.82)
2
the action is invariant under b — —band Z® — —Z®, 5o that one can setboth b = 0 and Z® = 0 consistently. Doing

so yields the scalar—tensor formulation of the Starobinsky model (8.79).
The Lagrangian (8.78) can be generalized by replacing A2 with M> *"A2". This gives R + R", upon elimination of A,
and the potential

(n—=1) - \/7 Cv )%f
M2 3¢ ®_1 ) (8.83)

2n71/(n—1)

@I

V(g) = e
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The supersymmetric completion of R + R" model, in the off-shell old-minimal formulation is given by [322,324],!
e'L="R-|S|*+3A A"
n

2
g e (G ne1
+aRe R+ 6A"A +6iV A¥+2|S|? x — R2+ RA"A + R|S|?

[ H 12 K 6

2n=3 ., - -
+3(AA 2+ [S|*+ (- 1)A"A SS +3(V AM2+ (n—1)S oS
H 3 n n
N
+(3n = 5)i|S[A(VpA") + (21 — 2)iAuS S . (8.84)

This was constructed in [322] in superspace, and in [324] by using superconformal tensor calculus in which the Weyl
multiplet is coupled to a chiral multiplet compensator. In the latter approach, upon fixing the redundant symmetries,
one obtains the off-shell Poincaré theory, in which the scalar S of the chiral multiplet ends up being an auxiliary field.
Note that in the Lagrangian above, the complex scalar S has developed a kinetic term. If we do not treat the R" as a
small perturbative extension of the Einstein term, then the scalar S is unstable during the inflationary phase [325,326].
To avoid this problem, one can take the compensating chiral multiplet to be nilpotent [327-329]. In that case, the scalar
S becomes bilinear in the fermions, and the bosonic part of the action turns out to be (8.84) with S set to zero. The dual scalar—
tensor model can then be constructed by following the steps spelled out in action [324], the resulting bosonic action
being L e(R =0u@d+@ V) where the potential V is given by (8.83).

In the case of the new minimal supergravity, one can again start with the supersymmetric completion of R +R? theory,
which is now given by the lowest order in derivative Lagrangian (8.60) and the Lagrangian Ls in (8.64) that contains the
R? term. Next, one considers the analog of (8.78) in the new minimal formulation. This is done in [323] by introducing a
linear multiplet playing the role of the Lagrange multiplier, and a vector multiplet, which upon the use of the Lagrange
multiplier equation of motions becomes equal to a composite vector multiplet whose highest component contains the
Ricci scalar. In the conventions of [323], integrating out the Lagrange multiplier gives a solution in which a chiral scalar
multiplet with scalars (¢, a) arises. The resulting on-shell Lagrangian is given by [323]

1 i
= — VoCa
L = R - 422 PR (V) + 82%emo FU (T (V) - 204 60 9 a + v
( N )2
I
P QN —3-232 1—e 23 | (8.85)

Note that the vector V|, eats up the scalar 4, so that this Lagrangian describes tf bosonic coupling of on-shell N = 1
supergravity to a single massive vector multiplet. Analogous construction of R + n&R" can be found in [330].

8.10. Off-shell Killing spinors in N = 1,4D supergravity

Motivated by constructing supersymmetric field theories on curved manifolds, off-shell Killing spinors in four-
dimensional N =1 and N =2 supergravities with Lorentzian or Euclidean signature have been studied extensively.
Here, we will focus on the off-shell N =1 supergravity with Lorentzian signature. Readers interested in the Euclidean
case are referred to [331-336]. Supergravity backgrounds preserving certain amount of supercharges in off-shell & 2
(conformal) supergravity with Lorentzian and Euclidean signatures can be found in [335-337].

Off-shell Killing spinors in N = 1,4D old minimal supergravity

Off-shell Killing spinors in the N=1, 4D old minimal supergravity were first studied by [338] in pursuit of supergravity
backgrounds preserving maximal off-shell supersymmetry. Later on, more general supergravity backgrounds preserving
less supersymmetry were investigated in [339]. Here our presentation will closely follow [339]. In the old minimal
supergiravity, the vanishing of supersymmetry Viriation of the gravitino gives the Killing spinor equation

1 1
i _ 1 . _
V. 6(YHV 289V, + 6Vu(S +iy,P) €=0. (8.86)
From the integrability of the Killing spinor equation, one can deduce the following conditions for a supergravity

background to preserve maximal supersymmetry [338,339]

SVy=PVy=0, 9.S=0.L =0,
VuWy =0, Cupo =0,

R =2wv -g vy-lg (s24py. (8.87)
uv g MV uv 3 W

31 The first line is obtained from (8.53) by setting ¢ =0 and letting by = 3Ay,, M = 35, R = -R.

59



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1-95

When V= 0, and S, P are non-vanishing constants, the background is AdSs with the radius 3/ S? + P2 Ifinstead, V is
a non-vanishing covariantly constant vector,and S = P= 0, the background turns out to be R > or AdSs > R [338,339].
In general, the background preserves only a fraction of maximal supersymmetry. Assuming there exists a spinor
satisfying the Killing spinor equation, one can show that its bilinear K, = €yu€ is a null Killing vector. Assuming K “Vu =0,
one can show that K, is hypersurface orthogonal. One can choose special coordinates (#, v, y") so that K*dy = 0v, and
thus the metric admitting such a Killing vector can be parametrized as

ds>=H™ ' Fdu? + 2dudv + gmndymdy» , (8.88)
where H, F and §mn depend onlylon coordinates (u, y™). To proceed, one introduces the vierbein basis

et H'du, e =dv+ Fdu, e =H %esdyn . (8.89)

= > m
Exploring the consequences of Killing spinor equation leads to the solutions for auxiliary fields [339],
~ 3/2 2 mn -3/2
S=-HV"(H Xw, P=HE¢ uH X), V-=0,
Vi = —HemnX"0uX , Vi =H"?[=Xum(€"0uXp) + EmnX (VP X))] . (8.90)

Jhus the general, SHREIIAYY Rasksievnd, adaiting.ak 1sastope filliag spingsds chasapier s 28 dlttol dorddtibnk

Yyte=0, Xsy‘€=¢€. (8.91)

When K"V, # 0, the geometric meaning of the background is unclear and deserves further study. It should be noted
that so far, one has not employed field equations that are model-dependent. In N =1, 4D old minimal formulation
of Einstein-Weyl and more general curvature squared supergravities, various supersymmetric solutions were studied
in [340-342].

Off-shell Killing spinors in N= 1,4D new minimal supergravity
In the convention of [339], vanishing of supersymmetry variation of gravitino leads to the Killing spinor equation in
N =1,4D new minimal supergravity

. P e _
Vu + 1y5Au - 2(yu 26u)ysvV €e=0, (8.92)

where Ay, and V), satisfying WV, = 0, are auxiliary fields. Combining the integrability of the Killing spinor equation with
the requirement of maximal supersymmetry gives rise to the conditions

VuVy =0, 9uAv =0, Cuvps =0,
Ruv =2(VuVy — g Vp VP). (8.93)

A solution to the equations above is given by R x S% or AdSs x R with

1
Vi=Ai=0, Vo=", Ao=const, (8.94)
r
where 7 is the radius of S* (AdSs), and subscript /0" labels the component in the R-direction.
Supergravity backgrounds preserving less supersymmetry were also analyzed in [339]. Using the same metric (8.88)
and vierbein (8.89), the existence of at least one Killing spinor is guaranteed by taking the vector fields to be

1 3 1
A =V.=0, Vu= ZH‘”ZE,;;anH, Avt Va=- BT X0X",

1 S SN ]
Aw = _HP — X € 0n(H 22 Xp) + EnnXn VP (H XY, (8.95)

where A: and V: are lightcone projections of the vectors, and H, Xw are described in the previous subsection. Different
from the old-minimal case, here, the Killing spinor obeys one projection condition y *e= 0. Thus a generic off-shell
background in new minimal supergravity preserves two of the four supersymmetries. As noticed in [339], this solution
contains AdSs with non-trivial auxiliary vectors breaking the AdS isometry. The background discussed so far corresponds
to the untwisting case, meaning that the Killing 1-form Kudx" built from a bilinear of the Killing spinors satisfies
K NdK = 0. More general backgrounds for which the untwisting condition is violated can be found in [343]. There
is also a close relation between N = conformal Killing spinors and Killing spinors in new minimal supergravity as
described in [343].
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9.D=3

Ungauged N =8 and N =16 supergravities were coupled to scalar multiplets in [344]. Generalizations to other
ungauged N < 16 cases were provided in [345]. The most general gaugings of these theories were achieved in [346],
which also provides references to earlier works. We shall review results for higher derivative invariants in the case of
off-shell N =1, 2 supergravities in 3D. In the case of N= 8 supergravity in 3D, higher derivative extensions have been
obtained in [197] from the ordinary dimensional reduction of N =1, 10D heterotic supergravity on torus T”, and in [48]
from its double field theory formulation.

We shall first review the higher derivative superinvariants for the off-shell N =1, 2 supergravities in 3D, and their
salient properties, including the issue of ghost freedom and the (non)unitarity of their holographic duals as certain 2D
CFTs. In the case of N = 2 supergravity in 3D, there exist two distinct off-shell supergravities. They are also referred
toas N = (1, 1) and N = (2, 0) supergravities, because they admit vacuum solutions with super AdS symmetry,
OSp(2, p) ® OSp(2, q), with (p, )= (1, 1) and (p, (2, 0), respectively. Since this terminology is associated only
with the nature of the vacuum solution, we shall refer to the total amount of supersymmetry N= pt+ g instead, in
characterizing the supersymmetry of the actions in what follows.

Beyond N = 2, we shall review off-shell N = 6 conformal supergravity coupled to matter, in which the gravitational
sector contains the Lorentz Chern-Simons term. Its consistent truncations easily yield such models for N < 6. On-shell
similar couplings will be reviewed for N = 8. We shall also comment on superspace formulations for 4 =N <38
Beyond four-derivative extensions, linearized results are available in [347]. Finally, we will also summarize results on
exact solutions of higher derivative extensions of 3D (conformal) supergravities.

It is worthwhile to mention that three-dimensional higher-derivative supergravity only makes sense
non-perturbatively. Indeed, if treated perturbatively, they can always be reduced to (cosmological) Einstein-Hilbert
supergravity and a gravitational Chern-Simons supergravity by means of field redefinitions and truncations [348].

9.1. N =1,3D higher derivative supergravities

9.1.1. Off-shell invariants from superconformal tensor calculus

The off-shell N =1, 3D supergravity multiplet consists of a vielbein, a Majorana gravitino, and a real scalar auxiliary
field. A general Lagrangian up to four-derivatives, has been constructed in [349] by using superconformal tensor calculus.
Its bosonic part is given by ( )

1 ( 1 v_3 1 3
e'Li=06 R-25 + MS + R RM—-"R2—"RS?—- "5t

m2 8 v 2
( 3
+ L "R24+ 16505 +12RS2 +365¢ + L st + RS2
~ 5 2
ﬁn( 1 ) ( mz »°
+7 S3+ RS + " ewAle O lo+"Tolt ©.1)
u 5 M Wopv  goutovp

where (0, M, m, 1, W, 1) are independent coupling constants. Thus, there are six independent off-shell invariants. The
fermionic parts of Ls, Lm and Ly can be found in [349, Egs. (2.8) and (2.10)], and the fermionic part of the L,,>
can be found in [349, Eq. (2.39)]. The supersymmetric completion of a specific combination of L, and L2, namely
+£,2 4/8L,2-is given in [349, Eq. (2.24)]. The bosonic part of the most general six-derivative supersymmetric Lagrangian
is given by [350]

e L2 = mR(wR“P R J)r a2RRuy R + @3R3 N

3 3 1
+ — a1 +as RWGHSGVS + = a1+ 8a2+32a3 —  as + a7 RSaS

(1% ) 32 ( 4 )
123 1 v 117 5 1
+ a1+ 4a2 —as — ~as S2R VR“ - ar +2a2+  ae — ar RO SOHS
(32 64 ) 8 2 .
+ 23 + z +14aq +a + 1 + Z - R2S2
a a a a, a— " a
(512 a2 R 16 7 )
309 3
+ - a1 — 104a2 — 384as — 16a4 + 2as +  as — 10a7 S20 SOHS
(.16 2 5‘
+ 2357 +27a_+ 80 +Q +_5 1 +_5 RS*
a a a a —a a — a a
(256 ? 2t 7 2t 87 ot
527 1 1
+ a1+ 52a> + 160a3 + 25a4 — 3as +  as + a7z +as S°, (9.2)
32 4 2
where ai withi = 1,..., 8 are free parameters. The fermionic parts of these 8 independent invariants have not been
P P P

provided in the literature. The following special cases of L1 have been studied extensively in the literature:
N =1: Topological Massive Gravity (TMG): o,M,n,
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N =1: New Massive Gravity (NMG): o,m’ =3m?/5,
N =1: Generalized Massive Gravity (GMG): o, U, m? = 3m 2/ 5, 9.3)

where the specified parameters are kept and u” = o0. The fermionic parts of the Lagrangians Lrs and L® can be
straightforwardly obtained from the ingredients provided in [349-351]. Off shell, the supertransformation of the sole
fermionic field is

)

1 1
quu = au + 4wu”l’yub €+ 2Syue . 9.4)

The supersymmetric completions of these massive gravity models admit a maximally supersymmetric AdSs vacuum. Thus
they are holographically dual to supersymmetric 2D CFTs. With their higher derivative extensions, the left and right central
charges for the CFT duals are given by [)349]

3£ 1 _ 1
come = 22 L 9.5)
YR ag 202m2 uf
which reproduces those of NMG in the g — oo limit while TMG is obtained in the m — oo limit. The central charges for
extended NMG (ENMG), corresponding to the following choice of free parameters in (9.2)

9 17 3
a =1, a =— , a = , a = —
1 2 8 5 64 4 32
3 3 3 33
a =—, a =, a =-—, a =— , (9.6)
° 4 ° 8 7 8 8 160
are of the form )
3L 1 a
CENMG = o + - . ©.7)
L/R 2G 2022 Smte?

It is important to note that GR in three dimensions with or without a cosmological constant, has no propagating degrees
of freedom and local dynamics may be generated by adding higher-curvature terms at the price of introducing potentially
ghost-like excitations. The special combinations listed in (9.3) are meticulously designed to avoid non-unitary perturbative
degrees of freedom. Amongst them, TMG contains a single massive helicity-2 state where the mass is sourced by the
gravitational Chern-Simons term, hence acquiring the name Topologically Massive Gravity. For NMG and GMG, their
spectrum contains a pair of helicity-*2 states.

9.1.2. On shell minimal massive supergravity from third way consistency
Finally, in three-dimensions, there exist bosonic higher-derivative gravity models based on the third way consis-
tency [352,353]. The landmark of these models is that the integrability of the metric field equation requires the metric
field equation itself rather than being a geometric identity. Although the third way field equations cannot arise from
the variation of a diffeomorphism invariant functional involving only the metric and its derivatives, a local Lagrangian
formulation can be achieved by introducing a number of auxiliary fields whose elimination by field equations gives rise
to the higher-derivative gravitational equations of motion. So far the only supersymmetric third way consistent model
was given in [35[4,355] 1
L=ewp e R +Ae,efele +Te D (@er+K &0 + l;ab%*"p”%b@p ) ) 9.8)
Here, R = dw® g“”fu)bu)c with w @(e) and w Is an independent (torsionful) spin connection. D(®) denotes the
covariant derivative with respect to ® and {t , k,JA are free parameters. The bosonic part of this model is known as the

Minimal Massive Gravity (MMG) [356]. In [354,355], the N=1 MMG model was derived up to and including quartic
fermions. Up to cubic fermion terms,)the supersymmetry transformation rules for the fermionic fields are given by

8L|Ju = Du(u))e —i nt +n_l Y, SLPM = Dkgu)')e - in‘ryue , 9.9)
where the constant N satisfies
1 ( 1 )> N ( 1 )
A= 1 nt + - ~ 5 nt — e (9.10)

For the time being, the fully supersymmetric completion of the MMG is yet to be obtained and possible ways of completing
the model beyond the quartic-fermion level were suggested in [355].
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9.2. Off-shell N = (1,1),3D higher derivative supergravities

The field content of the off-shell N = (1, 1), 3D multiplet is

{en, W, Vi, S}, (9.11)

where the gravitino is a Dirac spinor, the auxiliary vector V|, is not associated with any gauge symmetry, and the auxiliary
scalar S is complex. Recall that the terminology of N =(1, 1) means that there exists a Lagrangian which admits an AdS

vacuum with OSp(2, 1POSp(2, 1) symmetry. The bosonic part of off-shell N= (1, 1), 3D supergravity up to and including
four-derivative terms is given by [357]

)
e L=,y = 6 R +2VHY, —(2|s|2 + M(S + 5% ) ]
11 2
+Ll —4 g Ry Hh(m) Wpay + 3muub Wy Wpe,, + gp FwVp
L RW P TR e R 2 S|* - Fu F™
— - + + —_
+ 7,2 RW va 4 8 | | 4 | v

( ) 3 11 7 —>
+6 'V K“2+—(vz)2+ VS|P - 60 S9uST - TivHsT d s
2 4

5 mn
X [
+7_ R +16|S|* +4(V2)2 + 6R |S|* + 4RV? + 12 |S|* V2
m
]
* /K M s ( u)z
~160;5 045" ~8IVS" 3,75 +16 VWV |
1 10
+= RS2+ 9|S|2+252V2 — 4iS2V VM + he. . 9.12)
. n
m2 3

The fermionic part of the Lagrangian proportional to 6 , M and 1/ can be found in [357]. The fermionic terms of the four
derivative action have not been given in component form explicitly, but it is straightforward to write them down using
the ingredients provided in [357]. The supersymmetry transformation rules for the gravitino is given by

SY =@ + 1@y )e— iV yvy e-lgsy (Be) . 9.13)
K R 4 M ab 2 v 3 2 3

Special cases of the N = (1, 1), 3D model arise as follows:

N = (1,1): Topological Massive Gravity (TMG): m8= m=m=o0,
2 2 2 2
N = (1,1) : New Massive Gravity (NMG): p=oo,m =-m,m =8m ,
2 2 2 2
N =(1,1): Generalized Massive Gravity (GMG): m = gm ,m =8m . (9.14)

9.3. Off-shell N = (2,0),3D higher derivative supergravities

Next, we summarize the off-shell N = (2, 0), 3D higher derivative couplings. The field content is
{efp U, Cy, Vy, D}, (9.15)

where the gravitino is a Dirac spinor, Cy is the gauge field, the auxiliary field V| is non-gauge and the auxiliary field D is
real. Note that the notation N = (2, 0) means that there exists an AdS vacuum solution with OSp(2, 2) @ O(2, 1) symmetry.
The bosonic part of off-shell N = (2, 0),3D supergravity up to and including four-derivative terms is given by

( )
¢ 'Legy=0 R —[zcz - 8D2 —8ewp CudvV, +M 2D — ews CuGvp

1 1 pvp 2 ab c
" 1) - 48 Ry (W) wpg + 3“’“ W Wpe +EWPELV)
[
1 1
+ = Ry RY - ;RZ +4RD? + RG2 - 2R, G*G” +48D* + 8DuD
m
]

]

( )2
+8D°G” + (G°)Y = 2(Fu + VuGy)? — V G y+4DG

1l ( ) ]
+ ~ 5 (R+24D2+2G?»)2 -8 F + 2V[HGV] + 4DGHV 2 +64DoD , (9.16)
m
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where
Gu = €upG™?, G2 := G,G". 9.17)

The fermionic part of Ls , Lm and Ly can be found in [357]. The fermionic terms of the four derivative action have not
been given in component form explicitly, but it is straightforward to write them down using the ingredients provided
in [357]. The supersymmetry transformation rules for the gravitino is given by

1 )
81]1u = au + 4u)u“b Yo —iV, €~ 21y l}/V"G wE~Y De. (9.18)

9.4. Off-shell N = 4,3D higher derivative supergravities

Off-shell N = 4 topologically massive supergravity was constructed in [358] in superspace by coupling the N= 4
conformal supergravity [359] to a compensating hypermultiplet. Upon fixing the conformal symmetries, the resulting

208 + 20r Poincaré supermultiplet consists of
a7 1o
{ewBpwW,y;Yp,w}, (9.19)

wherel & . . ., 4,thevector fieldsarein (3, 1)+(1, 3)of SO(4), w, y arereal scalars, the rest are Majorana spinors. The
vector fields in (3, 1) are gauge fields, and the spinor w'isin (2, 1) of SO(4). The degrees of freedom are 3, 15, 1, 1; 16, 4}.
The off-shell topologically massive supergravity Lagrangian is given by [358]

_ 1 i 1 2
e'L=-R+ B'BY + 2y + 2wW? + T e%tr Rpwe = W,mpmc
2 3

( , )M

—S“bctr FavBe — gBﬂBbBL‘ - 2Wy ) (9.20)

where Bj = — 1@( 1iiBay is the self-dual part of the vector fields. Note that going on shell gives w = —pand y = —21?,
thereby leading to
> 1
L=—e(R+2n)+ uics , (9.21)

which admits an AdS vacuum with pf = 1, where € is the AdS radius. This is the critical point at which the bulk gravity
mode disappears, and a single helicity 2 boundary graviton arises [360]. Aspects of the coupling of the model above to
matter have been studied in superspace in [361].

A higher derivative extension of N = 4, 3D supergravity beyond the Lorentz CS term has been constructed, albeit at
the linearized level, by using superconformal tensor calculus [347]. After fixing the conformal symmetries, the resulting
off-shell supergravity multiplet consists of the following 24s + 24r fields

if i i i
{hw, Vu ,E,D, Py, x, ¥ } 9.22)

where i = 1, ..., 4, thescalars D, E, @ are real, and the spinors are Majorana. The degrees of freedom are
$, 18, 1, 1,;116, }.Up to and including five derivatives, the linearized level Lagrangian constructed in [347] has the
following schematic form:

) 1( ) 1( 1

-1 = v in] cee _ v in, “e - J— v in oo

e L= 2h Gl + + P.h Clim + + 2 zeumhll aGCQ, ) +
A0 )
*op RimGEm -7, 9.23)
where Gﬁ\i,“) is the linearized Einstein tensor, and

clin) — ¢ g gin) glin) — pin) _ ln Rin) | (9.24)

uv 33 T pv ’ nv Y 4 1Y

For further details, including the supertransformations, see [347].

The part of the Lagrangian proportional to 1/p in (9.23) constitutes the bosonic part of conformal supergravity. Its
superconformal coupling to the so called Chern-Simons matter is of considerable interest. In what follows we shall
review such couplings for N =6, 8 (denoted by N below to save N for flavor groups) from which couplings with less
supersymmetry can be obtained by consistent truncations. We shall comment briefly on their superspace formulations in
Section 9.7.
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9.5. N = 6,3D higher derivative conformal supergravity coupled to matter

The on-shell N #% conformal supergravity including the Lorentz-Chern-Simons term coupled to ABJM matter was
constructed in [362] by employing Noether procedure. The complete off-shell version was constructed later in [363] also
by means of Noether procedure. The off-shell field content of N = 6,3D conformal supergravity is [363,364]

r A ij if i ijk i
{ewBu 5, CwE ,D ; WX X} (9.25)
where i = 1,...,6, A= 1, . .., 4label the vector and spinor representations of the R-symmetry group. The i, j

indices are anti-symmetrized and the spinors are Majorana, B,*s and C, are the gauge fields of the R-symmetry group
SU (4)r <U (1)r. The fields Ei, Dij, Xijk, Xi, which have conformal dimensions 15 2; 3/2, respectively, thus satisfy
algebraic field equations. This multiplet was coupled to on-shell SU (N ) gauge invariant ABJM model®> which has the

field content
A a

{Z,, Ay v Pan}, (9.26)
where A% is the SU(N) gauge field, Z# and s are the scalars and fermions. The bosonic part of the Lagrangian is given
by [363]

L= 1€ trwpdvwp+ 2wuwvwp —€  tr BudvBp + 2BuBvBp —2€  CudvCp

Hvp Hvp - Hvp

2 .3 - 2 3 1
~2eD Eil + €imnE E E —eD Z “D*ZA - Te|YBC2  TR|Z|

i
1 3

ij kI mn HoA a Anl -
5 3 8

)

I\)I<'

(
— €V FPAWD, AB, + Ff Caf " pATAY ADy

1, - - 1, O
+V[éeE'Jfﬂh @riz’yuzz bd+VcéeDU tr(ZT9Z7) = e BVEI| Z 2, (9.27)
where
B _ped (ZBZC '11+6[BZC]Z'bZD) ZTi77Vb = ZA iy, Bz b
w S wZL L, AC e phy ( o =Z T)a"Z ",
(ZZ)b =747 4", |Z|*=Z 7. (9.28)

Up to leading order in fermions, the model is invariant under the following superconformal transformations of the

fermionic fields
Slpli = Dl»’-ei + Yu'fli ’
8Xijk - _Z%Ljy uve[iGjl:l]v + lzeijklmnelen + lélez']'klmnY uelD p.Emn _ %EIEWEM]
2

__ ijklmnnIEmn ,
Sxi = - y“"eiG i i l i if L ijklmn j kI mn i ij
_ +e]D] yu(—:]D E]+ \/*(—:] (—:]E E +n]E],
Y n
412 2 8 2 1
Sy, = _?Liy nei(T' 1) AP pZ8 + %ei(f‘ Npc VB¢ —S_iek(F iT k)ABZIBEiJ'
2 2
1 i i B
+ [~ )amm Z, , (9.29)
2 2
where
Ci‘llv = auBf{ - (3\;15'.{1 + B:EB]:,] - Bi,kgz , Guv =201uCy; - (9-30)

Here, Bg = Bﬁg(l" i)aB, and the gauge covariant derivative Dy contains the SO(6) x U (1) gauge fields. The closure of the
superconformal algebra on the matter fields requires their field equations and therefore while the conformal supergravity
sector is off-shell, the total Lagrangian is invariant on-shell in the matter sector, as observed in [363]. The field equations

32 The allowed gauge groups in the absence of coupling to supergravity were classified in [365] (see also [366]). Upon coupling to supergravity,
new possible groups arise, and their superspace formulation has been discussed in [361]. In the case of coupling to supergravity, there exists a
model with gauge group SU (N x U (1) and matter fields in the fundamental representation. The model discussed here corresponds to that model in
which the U(1) is decoupled by setting its charge to zero.
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of the auxiliary fields are algebraic and can be readily solved to express them in terms of the ABJM fields as

) o - 1 T ]
D/ = wij;pf“bcd(zr’fz ) (ZZ W+ —~Ep2zZTZ ) (22 - 8%z,
8 2 64 2

1 -
Ei="Viptr(ZTiZ ). 9.31
g gt ) (9-31)

Using these expressions in (9.27) yields the on-shell model obtained earlier in [362], and the Lagrangian in convention
of [362] takes the form,>>
) ( ” )

1ly 2 2
L= ENVP tr (Tua w,* 3u) (0,0, WP tr B(uava+ B BVBp ) (9.32)

12 —_

H evCadC — e|Z?2lR—| D ZA2 evetr AJA + AAA -V,

vV p o Hul + = L vp - -~
8 2 3 VP

IN |
=

where
A A A B b oA A

DyuZ, = OuZo + By 8Zy + Ay o2y, +qCuZ, (9.33)
and

A =fachd Apdc , f“hcd = A" )[ar (ta )b]d ,
with A an arbitrary constant, and t* the generator of SU(N) [367]. The scalar potential takes the form

2 ab cd l ab Cd) ( _) a ( _) b ( _) ¢
V=" v = fUvafdd zZ zZ Y4
3 [ 2 a b ]
1 C 200, 1,090,
+ Wha — ZZ Z7Z ZZ + —|Z| yv4 yv4
2 [ a b 4 a b

JL S GRS B | )
H2 =T w(ZZ P Pl (ZZ ) -
48 32

(9.34)

5
2-64
The on-shell supersymmetry transformations of the fermionic fields, in convention of [362], are given by

o =+ \/%D (w,B)e, +y M, ,

n u u
2

1z . (9.35)

~ [ ) Ca,0
SWar =y ' D2+ f“y - Z T2 2% +T' #°czz" '€

+I‘A;T] izg ) (9.36)

where I'j, are the chirally projected SO(6)r gamma matrices.
9.6. N = 8,3D higher derivative conformal supergravity coupled to matter

The off-shell field content of N = 8,3D conformal supergravity is
r ik ik A ABC

{ewBu,E ,D ;WLx } (9.37)
wherei =, ..., 8and A= 1, ..., 8 label the vector and spinor representations of the R-symmetry group SO(8), By
are the gauge fields and anti-symmetrizations in SO(8) indices are understood. The scalars E/¥ and D¥ have opposite
SO(8) dualities. Writing Diu=neikmmwaD™"1/4 it was shown in [368] that there are two distinct off-shell conformal
supergravities for N= 1 and N = —1. As far as the Lagrangians are concerned, in the case of 1 = 1 the coupling of
BLG matter with SU (2)x SU (2) gauge symmetry [369,370] to off-shell conformal supergravity background was achieved
in [368] but neither the Einstein—Hilbert Lagrangian nor the Lorentz Chern-Simons conformal supergravity action exists
in this off-shell setting. This is due to the fact that this would require a term of the form E¥'Djx, which is not possible due
to opposite duality properties [347].3* Interestingly enough, it was shown in [368] that the coupling of N= 8 conformal
supergravity background to Chern—-Simons matter was not possible for 1= —1 unless one puts the conformal supergravity
on-shell.

Focusing on the coupling of N = 8 on-shell conformal supergravity to BLG matter in the presence of Einstein-Hilbert
and Lorentz Chern-Simons terms, we turn to the construction of [371,372]. In the absence of coupling to supergravity the
allowed gauge group is SU (2) x SU (2) [369,370] but in the presence of supergravity more groups, and in particular SO(N),
are possible [361,372]. Following [372], we shall summarize the bosonic sector of the coupled system with SU(2) x SU (2)

33 According to [362] the matter fields carry U(1)r charge q = *1/4, as fixed by supersymmetry, while in [363] it is +1/2.
34 Decomposing the index = {I, 8} with I = 1,...,7 gives an N= 7 off-shell supermultiplet and a linearized off-shell action in which the
Lorentz Chern-Simons term is present since the required term of the form Dyxi.EVXL now exists. See [347] for further details.
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gauge symmetry, which brings in new couplings, just as in the N = 6 case summarized in the previous subsection. It will
be straightforward to deduce the case of SO(N) gauge symmetry from these results as will be explained below. The fields

of the on-shell supergrav1ty and matter multiplets are

{eu ’ Bl“]' lIJu} ’ {X/z' l"Ja ’ A } (938)

where a = 1,...,4 labels the vector representation of the gauge group SO(4x SU(2)x SU(2). The bosonic part of the
Lagrangian constructed in [372] is of the form

il o 2 ) ( 2 )]
L= e trw g w + W ww —eWPtrBaB+ BBB
Hv p [ P P
n 2 3
1 1 ( ~ ~ )
—— eXR-DuXD W= — e tr AudvAp + - A AvApy -V, (9.39)
16 2 3"
where D is the supergravity covariant derivative (see [372, Eq.(2.12)] for its definition) and
~a 1 )
ab _ abed __ ab cd
Ay = A€ 4418”1 Al (9.40)
and the potential is given by
( ) 1 ( )2
v=-"Tae eMEAXIXIXE" + T —ep? X2XI —4XIXIX! (9.41)
12 32-64 br
with X? = X' X’ and A a constant. The supertransformations of the fermionic fields, up to cubic fermions, are [372]

a a

1
Sy = i\;%)u(oo, B)e +yun,

.o~ . 1 y o 1 . ( S 1 . )
8y, = y'T'eD, X' — Aeacal” TeX) XI X + gur‘ e XXX - 1}(’2(2
+X.I'n . (942)
It was observed in [372] that setting A = 0 gives a result which can be readily extended to an SO(N) invariant one by

simply declaring the range of the index a tobe 1 to N.
Models summarized above accommodate topologically massive gravity. A massive gravity version is known at the
linearized level. The linearized N = 8 off-shell supergravity multiplet consists of the following fields

{huw Buij’ Eijkl’ Dijkl’ q)ijkl i zjk 1]10} (943)

wherei, j= 1..., 8. Allbut{y 7 and ®¥¥ constitute the Weyl multiplet, with triality used to replace the SO(8) spinor
indices on the fermions with the bosonic ones. The extra fields arise from taking eight copies of N= 8 scalar multiplets,
each containing 8s 48r degrees of freedom, and imposing certain constraints on them in order to fix the redundant local
symmetries, as detailed in [347]. At the linearized level, the bosonic part of the Lagrangian is given by [347]. Schematically,
it takes the form

) ( ) ( )
T S SV 1 * 1 v , A g
e L= h”’ GUin) 4 « .. 4 — T entp ) a Clin) 4 ««v 4 C ) Clin) 4 ... . (9.44)
2 pv m2 2 HoT pv Mé (i) v
The linearized supertransformations of the fermionic fields are given by
‘ 1 , 1 .
SYyi = —"yrod h € —Bie+ "y yrBig ,
u 4 p HO u 2 H P
Sxijk — iy hE z]ek] +y "o I’,E’Jk’)e + Dikle l
i 3
syt = =y uplieh 4 pilel 4 Y@ (p'f“)e (9.45)
4 H

where M/ = gnved, Bié.
9.7. Comments on superspace formulation for matter coupled 4 < N < 8 models

So far we have focused on N = 1, 2, 4, 6, 8. On-shell N= 3, 5, 7 models can be obtained by suitable truncations of
the N =8 model summarized above. Off-shell, on the other hand, one can start from the N = 6 model that describes
the coupling of conformal supergravity to Chern-Simons matter and perform consistent truncation as follows [363]

N=5: eu’,L|J’4u,Bi{l,Xl‘jk,XG,I:“’s,Di6 ,
N=3:e/,W,,B], X . (9.46)
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There exists a large body of literature on superspace formulations of these theories which go beyond the scope of this
review. In particular, Chern-Simons matter coupled N =6, 8 models were treated in [372], while more extensive studies
covering the range 4 < N <8 were conducted in [361].% In terms of on-shell superfields, the spinor derivative of the
scalar is

DuQ =ilA«, «=1,2, i=1,...,N. (9.47)

The lowest component of Q represents the matter scalars, which in general carry the spinor index of the R symmetry

group and flavor indices for fundamental or bifundamental representations. The derivative of A takes the form
; 1
n

i i

Do =Vl DuQ + S€asH (9.48)
where H' = Hi, + Hés with constraints
1

- « . )
r [Hsg; =-5 WMLy +4KT 7 Q
inl — pi
rUnl = rig + &, (9.49)
where F 7 and GY correspond to the field strengths of gauge fields associated with gauging a flavor group of the form Fx G.

The constraints on H' are solved cases by case for 4< N < 8, and the field equations for the matter fields are presented
in superspace in [361]. It is also found that on-shell, the super Cotton tensor satisfies

Wik = — ufgj rikQ . (9.50)
Imposing Q to be constant, supersymmetry requires that
4KTiQ = —WikT'uQ . (9.51)

Using (9.50) in this equation, K can be solved for, and it turns out to be the cosmological constant, as can be deduced
from the commutator [Dy, Dv] = 4K 2Mu\,.

9.8. Higher derivative N = 8,3D supergravity from higher dimensions

Ungauged N = 8, 3D supergravity coupled to scalar multiplet whose scalars parametrize the coset SO(n,8)/SO(n) >
50(8) was constructed in [344]. We are not aware of a direct construction of its higher derivative extension. However,
such an extension can be obtained from ordinary dimensional reduction of heterotic supergravity extended by Riemann-
squared term on torus T~. In the resulting action, the scalar fields parametrize the coset SO¢h 7,7)/(SO(n + 7) >
S50(7)) [48,373]. A detailed construction in which the SO(7,7)/(SO(7) %50(7)) coset is enlarged to SO(8, 8)/(SO(8) >60(8))
upon dualization of the 7 + 7 vectors coming from the metric and Kalb—Ramond field, was achieved in [373] at least in
the bosonic sector. This construction also incorporates the dilaton into the parametrization of the enlarged coset. Here
we shall summarize this result, without specifying the embedding into the heterotic supergravity, the details of which
can be found in [373].

An essential ingredient in describing the action in 3D is the scalar current defined in terms of the O(8, 8) scalar matrix
M, as follows

Ju=0uMM™*. (9.52)
The O(7,7) invariant metric NmMN and projector Pmn are defined as

( 0 & 0 O\

Ls'" 00 OJ Py = » M) L...,7 9.53

= > = — - » m, n=1,...,/. .

™"=Lo 0 01 v =g (e (9.53)
0 0 1 0

It is also useful to define the O(8, 8) compensating vector

u={0,1,0} . (9.54)

35 For purely conformal supergravity sector, earlier work existed; see, for example, [359] where new results for off-shell N = 3,4, 5 supergravity
actions were given.
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Given that the field equation for the 3-form field strength implies that it is a constant, and choosing that constant to be
zero, the bosonic sector of the Riemann-squared extended heterotic supergravity on T’ gives the action [373]

I= dx =g R+ _TrauMauM_l
8
o« ol

et ) )
2° 32Tr TWJT 16Tr JWTJ Mn

1 () v 1 C ) v
- @TE Juv' Tr () + 178Tr Tu* Tr (W)
rere L (uPn] y‘]Vpu) +1 (uPn] ol L"Pu) 1 (uPn] l"]“Pu)
2 & 2 J 2 J

—lTr (] JV) (uPnJ*¥Pu) + lTr (] J“) (uPn]J“Pu)
4 ( 8 )]

+e ¥ o uf)n]u]vpu ()uPn]”]"Pu)+ Lan]u]“Pu )(uPn]\,]"Pu) , (9.55)

where @ is the dilaton field. While the O(8, 8) symmetry is manifest in the two-derivative action, it is clear that the
four-derivative part breaks that symmetry due to the presence of the compensating vector u, and the appearance of the
dilaton. In describing the lift of this theory to 10D, the required formulae that give the expression for the coset scalar
matrix M in terms of the 10D heterotic supergravity fields are provided in [373].

A massive deformation of the theory above is obtained by switching on the three-form field strength [373]. The mass
parameter arises from the dualization of the two-form field Byy. At the two-derivative level, the massive deformation
results in a topological mass for the vectors and a potential for the dilaton which breaks O(8, 8) to O(7, 7) [374]. A four-
derivative extension of this theory is worked out in [373] where it is also shown that a novel Chern-Simons term based
on composite connections arises and that remarkably it is O(8,8) invariant to leading order in the deformation parameter.

9.9. Killing spinors and exact solutions

In what follows, we shall review the solutions to the Killing spinor equations for N =1, 2, 3D supergravities. While
there is an extensive literature on the solutions for these theories, we shall focus on the review of those of topologically
massive supergravities. Exact solutions of N =(1, 1) and NMG theory can be found in [375], and those of N = (1, 1) and
GMG theory in [376,377].

9.9.1. On-shell Killing spinors in N = 1 TMG and exact solutions

In N =, 3D supergravity, all fermions are two-component Majorana spinors. This severely restricts the structure of
supersymmetric background configurations, that is, only planar-wave type solutions with a null Killing vector as well as
maximally supersymmetric AdSs and Minkowski background solutions are possible. For TMG, the Killing spinor equation
is given by setting S = m and 6y =0 in (9.4). In this case, K* =€y He is a null Killing vector for commuting Killing
spinor €, i.e.

KYKy =0, VuKy + VK = 0. (9.56)
The integrability condition for the Killing spinor
( )
G"W - m2g" yve =0, (9.57)

implies that the only maximally supersymmetric configurations are the Minkowski space with m= 0 and the anti-de
Sitter space with Gpy = ngp\). The most general local forms of the supersymmetric solutions are classified depending on
the value of gravitational Chern-Simons coupling [ [378]

WF—1:ds?=dp? + 2e2P dudv + e PF(u)du2,

p=1:ds?=dp2+2ePdudv + pf(u)du?,

w=—1:ds2=dp2+2ePdudv + pe?P f(u)du?, (9.58)
where f (u) is an arbitrary function of u, and we have set m = 1. The Killing spinor equation is solved by a single, v-
independent Killing spinor for all these plane-wave solutions [378]. If f (u)= 0, however, there is a supersymmetry

enhancement with two Killing spinors and the solutions become the AdSs in the Poincaré patch. There is also an extremal
BTZ black hole solution with a single, globally defined, Killing spinor.

69



M. Ozkan, Y. Pang and E. Sezgin Physics Reports 1086 (2024) 1-95

9.9.2. Off-shell Killing spinors in N = (1, 1), 3D theory and 1/4 exact supersymmetric solutions of TMG

In the case of N = (1, 1) supersymmetry, the off-shell Killing spinor equation is given by setting B = 1 and {5y = 0
in (9.13). The consequences of this equation are described in detail in [379]. Here we shall summarize the exact and
supersymmetric solutions that use the properties of the Killing spinors.

For the time-like Killing vector, and focusing on the solutions with

S=m, Vo, V1 constants , V=0, (9.59)
where the indicated components of the vector are in the tangent space, the solutions can be summarized as follows [379].

e Round AdSs: The solution is given by
Z ( )
ds® — —dTt2 +dx2 +dy? L=m". (9.60)
12
For this solution, the components of the vector field are V;, = 0.
e AdSs pp-wave: The solution is given by
5 du? 4 dxtdx” ( )21

d? = f ———— LD dx_ T (9.61)
u u

and the vector field V in this coordinates takes the form
V=@l +1)uM dx . (9.62)

The limit uf — -2 leads to the ““minus’ null warped AdSs metric.
e Null warped AdSs: If the non-vanishing components of the vector field are set to

Vo=—, Vi=m=—-£1, (9.63)

and |pf| = 2, indicating that V2 = 0, then the following metric is a solution to the equations of motion

ds? = —e™*"de2 F 2¢7 "V dtdx + dy? . (9.64)
Upon change of coordinates

y="Llogu, t = €x, x = FLx', (9.65)

one recovers the “minus” null warped AdSs metric, which is the pf — —2 limit of (9.61).
e Spacelike squashed AdSs: Imposing the components of the vector fields to be (9.63) and setting| u§ < 2, the
following metric is a solution to the equations of motion
2 [ 2 2 C ! )2]
d52=% ﬂit—2+dl+v2 dx + db

(9.66)
z z

This is a spacelike squashed AdSs with squashing parameter v2 given by %2 1/4(uf)>. The terminology of
““squashed” is due to V2 < 1.

e Timelike stretched AdSs: Imposing the components of the vector fields to be (9.63) and setting| pf > 2, the
following metric is a solution to the equations of motion

C, ) :
ds2 = 42 —v2 dx + 4T 4 de—"Z'sz . 9.67)
z b2

This is a timelike stretched AdSs with squashing parameter v, again defined as v = 1/4(u#)% The terminology of
““stretched” is due to v2 > 1.

All these background solutions, except for the AdSs metric, preserve 1/4 of the supersymmetries.

9.9.3. Killing spinors in N= (2,0),3D theory and exact solutions in TMG

In the case of N = (2, 0) supersymmetry, the Killing spinor equation is given by setting S{yy= 0in (9.18). InN= (2, 0)
four-derivative gravity (9.16), the presence of the RD? term is problematic for ghost-freedom on AdS background, and the
combination that cancels RD? term is not the NMG combination, again leading to ghost-like fluctuations around AdS
vacua. This problem does not exist in N= (1, 1) theory owing to the existence of an off-diagonal RS> action that cancels
out the RS? term in the supersymmetric NMG action [357]. Consequently, the existing literature on the supersymmetric
backgrounds and black hole solutions only focuses on N = (2, 0) topological massive gravity, which is equivalent to
setting m =m = o0 in (9.16).
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In the case of a null Killing vector, the analysis is identical to the N = 1 theory [378]. For a timelike Killing vector,
it is possible to make a weaker ansatz compared to N = (1, 1) theory, i.e. the components of the vector field V|, can be
non-constant in the flat basis. In fact, if the metric is assumed to be of the form [380]

ds? = —f2 (dt + A)? + e2° (dx2 + dy2) , (9.68)

in the adapted coordinates ¢, =xx?= y , then the solutions can be classified by the following ansatz [380]

M
fp = constant, D = g’ (9.69)
where p = €72% 91 A2 and M is constant. Based on the ansatz for the metric and the equations of motion for the vector
fields C, and V), the ansatz (9.69) can be further split into two sub-cases: (i.) f and p are separately constant and (ii.) f
and p are not necessarily constant.

Taking p and f to be constants, all solutions are characterized by the constant values of two parameters; p =po =
const. and K which is defined es

of )
K=2(-pn+2D + pf) - D —f2p?, (9.70)
4
If f is not constant, choosing a special form fp = —2u for the ansatz (9.69), the solutions are classified in terms of four

parameters, {K1, k2, c1,d1}. In this case, f and p are given by
f= ehxT12/¥ p = —2pe e/ (9.71)

where h = cix + du.
The consequences of the Killing spinor equation are described in detail in [380], where several supersymmetric
solutions of TMG can be found, and which we list below.

e Fully supersymmetric solutions:
In this category, only the first two solutions have f = constant.

Round AdS: For k < 0 and p? = ||, the solution is given by a round AdS metric (9.60) as long as M # 0. In this
f = constant and K is defined in (9.70).

Warped timelike flat: For k = 0 and po # 0, the solution is given by the warped timelike flat metric

ds? = — (dt + poxdy)? +dx? + dy? . (9.72)
z-warped null flat: For k1 # 0 and c1 = 0 along with k1 = —k2, the solution is given by

ds?2 = —e2V/Mde — 2dtdy + dw? . (9.73)
Spacelike squashed AdS: For k1= k2, c1 # 0 and c1 > 2y, the solution is identical to (9.66) with the squashing

parameter v= 4p2/ci® < 1.
Timelike warped AdS: For k= k2, a1 # 0 and a1 < 2y, the solution is identical to (9.67). In this case, the
deformation from AdSs is stretched, i.e. v= 4p2/ci® > 1.
Null warped AdS: For k1 = k2, c1 # 0and 1 = 2|, the metric is null warped AdS given by the pf — —2 limit of
the AdSs pp-wave metric (9.61).

e The half-supersymmetric solutions:
In this category, only the first two solutions have f = constant.

Warped timelike AdS: For k < 0, pZ # |k| and po # 0, the solution is a warped timelike AdS.
)2
1
ds2=— dt— Polg, "~ 4
[e| x INES
For po=0and p=-M/4, the solution is given by R: x Hz.
Lorentzian Sphere: For k 3 0 and po = —p — 2D, the solution is given by the Lorentzian sphere

)
ds2=—(dt + A)2+ — dB2 +sin20d? , (9.75)
K

(dx2 + dyz) . (9.74)

where

A= _Po cosOdg . (9.76)
K

I -Metric: For k1 # 0 and ¢1 > 0, the solution is given by

(¢ (¢ ) )
ds2 = —e2x2® gr+ 2UT K29 5 gy 4 L‘“fﬁ ) 9.77)
K1 K1 K1 x

which is referred to as the I' -metric [380] due to the appearance of the gamma function.
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z-warped null AdS: For k1 # 0 and c1 = 0 along with kK1 # k2 and k2 # 0, the solution is given by

16D? aw? 4 2dudv )/
2= —— TWZEp24 9.78)
(2D —p)* w2 ’

which is an AdS pp-wave metric. Nevertheless, the solution has the following non-relativistic rescaling symmetry
ur— Azu, wi— Aw, vi— AZ+zy, (9.79)

Hence, (9.78) is also referred to as null z-warped metric [380].

9.9.4. Exact solutions of higher derivative conformal supergravity coupled to matter
For models describing N = 4, 5,7 conformal supergravity coupled to matter, when the scalar compensator acquires a
vev of form

Q = diag (v,0,...,0), (9.80)

and choosing v that gives the canonical Einstein-Hilbert term, the potential gives rise to a cosmological constant whose
value is listed below [358,361]

!‘rplz for N =4
A= 2—95 2 for N=5 (9.81)

l4u2 for N=7.
Given that the gravitational part of the Lagrangian relevant for determining the propagating degrees of freedom is given
by
1
L=e(R+2A)+ uﬂ:cs , (9.82)

it follows that the case of N = 4 has chiral gravity sector with Lagrangian (9.21) discussed earlier.

The case of N = 6:

In the model reviewed in Section 9.5, the p dependent terms in the potential are due to coupling of supergravity to
the ABJM model, and they play a role in finding an AdS vacuum solution. It has been noted in [381] that in this model,
upon setting

Z]A=diagﬁﬁﬂﬂuv,0,...,0), p=1,...,4, (9.83)
P
and choosing v that gives the canonical Einstein—Hilbert term, the potential gives rise to a cosmological constant
2| 5p? — 24p + 16 p=1,...,4. (9.84)
A=p ,
3p?
In particular for p = 1, in the gravitational sector, one gets the so called chiral gravity Lagrangian, displayed in (9.21),

as observed in [362]. As was mentioned in the previous footnote, there are other possible gauge groups. The couplings
to supergravity have not been spelled out in components in those cases but they have been formulated in superspace
in [372] for 4 =N <8, following the framework laid out in [361]. In particular, SU (N ) x U (1) is among the possible
gauge groups, where the U (1) is not to be confused with U (1), and the coupling constants depend on a single parameter.
For a particular choice of this parameter, taking Z as in (9.83), and choosing v that gives the canonical Einstein-Hilbert
term, the potential gives rise to a cosmological constant [361]

12_.F
A=p2]=-1], p=1,...,4. (9.85)
p
In this case, p = 1 gives chiral gravity, as discussed above.
The case of N = 8:
The vacuum solutions of the SO(N) model were considered in [372,381]. Taking the scalars to have the form (9.83), and
choosing v2 = 16/p to get the canonical Einstein—Hilbert term, the potential gives rise to the cosmological constant [381]
A=pz -1 , p=1,...,8. (9.86)

In this case p = 2 gives the chiral gravity. Furthermore, it has been noted in [381] thatin the caseof p =3 andp = 6,
the model admits null-warped AdSs solution.
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10. Lower dimensions

10.1. D=2

In 2D, there exists (p, q) type of supersymmetry where p and g refer to the number of left- and right-handed
supersymmetry generators. There are subtleties in the characterization of supermultiplet structures in this case, as
explained, for example, in the appendix of [382]. We shall focus on (p, p) supergravities below.

Supergravity in 2D is topological. In the case of N =(1, 1), 2D supergravity, its particular coupling to a single scalar
multiplet gives rise to the Jackiw—Teitelboim (JT) supergravity, see, for example, [383] for a review. This model is much
studied due to the fact that it is a soluble quantum gravity model, and holographically dual to the so-called SYK quantum
mechanical model. To begin with, we shall briefly recall the N= (1, 1) super JT model. The off-shell N= (1, 1)
supergravity multiplet consists of a graviton e,", a gravitino Yy and an auxiliary scalar field A. The N= (1, 1) super
JT model was constructed in [384], by using a curvature multiplet superfield S, a scalar superfield ®, and the determinant
of the supervielbein E. In the convention of [385], their expansions are given by

S = A+i0%%Eq + 02C,
D = @ +i0oq + O2F,

E =e(1— "i0%0 A2+ ferms), (10.1)
2 a
where 8¢ is a two-component Majorana spinor, 82 = 820, C = —R- ' A2 +ferms, and Za = -2y 5B e®Daipg — 'y B rap A.
2 o 2 o

The actioans given by [384]
I= dxd*©0 E®(S—-K), (10.2)
where K is a constant. In components, this readily gives

1
I= dxe [p (R—"KA)+F(A+K)+ ferms? . (10.3)
2

Substituting the algebraic field equation of F into the action gives the well-known JT action I = d’xe @R+ A) where
A=37K 2, The off-shell action (10.2) can be extended by elevating K to be a scalar superfield, and introducing two new
off-shell ierariants involving two arbitrary functions of the superfield K, namely f(K) and g(K), as follows [385],

I= dxd0E &:(s —K)+f(K)+ ig(K)D“KDaK] : (10.4)

Integratinﬁ out @ this time gives

I= dxd®E 5((5) + ig(S)D“SDaS] . (10.5)

In components, the b(osonic pagt of this ﬁction takes the form [385]

, 1
e'lL=—-f(A) R+ A2 —g(A) 2A2R+2R?> - 2(VA)2 — ~ A+ , (10.6)
2 2
and the supertransformation of the gravitino is given by
1
Sy =2Dye + EYuGA . (10.7)

Despite the presence of R* in the model (10.6), this is JT supergravity coupled to an extra scalar multiplet in disguise. The
vacuum solution of the model (10.6) has been analyzed in [386], where it was shown that by choosing f and g suitably,
one can have nontrivial extremum of the potential breaking supersymmetry spontaneously.

The N = (2, 2) and N = (0, 4) dilaton supergravities and their matter couplings are known [387,388]. Here N = (p, q)
refers to p left-handed and g right-handed Majorana—Weyl spinors. The case of N=16, 2D supergravity, where N counts
the number of Majorana spinors, can be obtained from circle reduction of N =16, 3D supergravity, and it has been a
subject of several studies, in part owing to its infinite-dimensional symmetries [389,390] and integrability [391,392]. We
are not aware of higher derivative extensions of the dilaton supergravities discussed so far, apart from the fact that a
dimensional reduction of Bergshoeff-de Roo heterotic supergravity on torus T® which gives higher derivative extension
of N = 8, 2D supergravity. So far, the bosonic sector of the general result obtained from the reduction on torus T*
has been worked out in [48,197], as discussed in Section 5. To express the action in 2D, it suffices to set d = 8 in
(5.5), taken from [48]. In the resulting four-derivative extended N = 8, 2D theory, the scalars parametrize the coset
S50(8,8 + nv)/(SO(8) x SO(8 + nv)), where nv is the dimension of the Yang—Mills group in 10D heterotic supergravity.
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102. D=1

Reduction of heterotic string on 9-torus leads to a half-maximal supersymmetric mechanics model with higher time
derivatives. The heterotic string tree level effective action up to and including order a'® terms, as discussed in Section 4.3,
is given by

— ’3 ’
L= d% —gLph+ e_z‘p%(%)z% s8R + éeloelo Rt *O@H (108)

where Lhet. is from (4.33) in which both a and B are understood to be proportional to o It has been shown that setting
Bij to zero, where i,j = 1,...,9, and parametrizing the 10D metric G,y and dilaton ¢ as
@="P®+ " log g, G =diag(-n, g), (10.9)
2 2 g i
the action }10.8) reduces to (up to field redefinitions) [393]

L1 . 1 )
I= dtne® —d2-"Tr(SH) + ~  aTr(SH

8 128
a b G o)
— o1 @ 15Tr(S%)2 4 128((3) 3Tr(S®)— Tr(sH)* , (10.10)
where S is given by
( )
s= % § . (10.11)

The terms in the first line are straightforwardly obtained from the dimensional reduction of (5.3), followed by field
redefinitions of n, ® and g along the lines described in [393, Eq. (2.31)]. Restoring the Bij dependence by duality
transformation rules, the action becomes manifestly O(9, 9) invariant, as explained in [393]. The eight-derivative terms
appearing in (10.10) also arise in type IIA string on torus T?, and they are given in [394] with Bj dependence retained as
well (see also [395]).

11. R*, D*R* and D®R* invariants and duality symmetry in diverse dimensions

So far we have mostly discussed the four-derivative extensions of supergravities, with few exceptions. Here we shall
turn to eight and higher derivative extensions. Even though they are very difficult to construct explicitly, if one assumes
the existence of a hidden symmetry, such as those listed in Table 8 for maximal supergravities, the terms of the form
R*, D*R* D°R* multiplied by the so-called modular functions of the moduli have been studied, in which the focus is on
the construction of these moduli dependent functions. These functions carry information about duality symmetries, as well
as nonperturbative contributions of branes to the effective action. In the next section we shall review briefly the modular
functions in dimensions 3 < D <10, mostly obtained from the analysis of the four-point supergraviton amplitudes,
and their various limits.>® We shall then recall the relevance of these results to the UV divergences and counterterms
in supergravities. Finally, we shall review, again briefly, the construction of the higher derivative actions as integrals in
ordinary or harmonic superspace, and in the ectoplasm approach.

11.1. Eisenstein series in leading gravitational part of the invariants

A great deal of information can be obtained on string theory effective actions, and thus higher derivative extensions of
supergravities that describe their low energy limits, by studying the four-point supergraviton amplitude. This amplitude
has analytic and non-analytic parts. The analytic part has a low energy expansion in Mandelstam variables, and it can be
expressed in terms of a local effective action, which schematically takes the form (in Einstein frame)

> 4p+6q+8—D I D V— (D). Adp+6q704
S= £y d”x  —g E@pg 0F"*1R*, (11.1)
p=0,g=—-1
)

where b is the Planck length, p and g denote powers of 62 and 03, where o« := 4[—D (sF+t*+u"), with s, t, u representing

the standard Mandelstam variables built out of the external momenta in the corresponding amplitude, and R* lenotgs the
fourth order polynomial tstsR* in the Riemann tensor. The p = 0, g = —1 term is the Hilbert-Einstein term 2 dPx -gR
The functions E((%’?w depend on the coordinates on the moduli space Mp = E11-D /Ki1-p, where Eqi-p is the duality group

in D dimensions and Kii-p is its maximal compact subgroup. These functions must be invariant under the left-action of

36 In the case of maximal supergravity in 1D, the expected duality symmetry Eio has been utilized in [396] (see also [397-400]) to find restrictions
on the higher derivative corrections to 11D supergravity.
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Table 8

U duality groups Gi(R) = Ea+1+1)(R) and their maximal compact subgroups.
d Ga(R) K Gu(Z) D
0 SL(2,R) SO(2) SL(2,2) 10
1 SL(2,R) x R* SO(2) SL(2,Z) x Z2 9
2 SL(3,R) x SL(2,R) SO3)x SO(2) SL(3,Z) x SL(2, Z) 8
3 SL(5,R) SO(5) SL(5,Z) 7
4 Spin(5, 5, R) (Spin(5)x Spin(5))/Z> Spin(5,5, Z) 6
5 Es©(R) Usp(8)/Z: Es©)(2Z2) 5
6 E7#)(R) Su(8)/z- E7z(Z) 4
7 Ese(R) SO(16)/Z> Es@)(Z) 3

the discrete subgroup Eu p(Z) @E11 n(R) on Mp [104,125]. Moreover, they must also satisfy differential equations from
supersymmetry for 4p+ 6q < 8[78,97,265,401-408] that can also be understood representation-theoretically [409-411].
These are Poisson-type equations of the form [265,266]

(A _3(11=D)D= 8))E(D)

= 6TéD s . (11.2)
( D-2 ©0) ’
512 = DYD —7)
- E® = 40702)8p7 +7E® &p4, (11.3)
D-2 ) (1,0) ’ ©,0) -
( 55
6(14 = D)D = 6)" ) ®) 2 2 )
A- D—2 Eon = —(E@e) +40g(3)8p,6 + 3 Ep,0) 8p,s
85
+2?E(1‘0)8D,4 . (11.4)

The scalar Laplace operator A is defined on Mp, and in a convenient parametrization of Mbp, it can be found, for example,
in [105, p. 513].

We recall that the string amplitudes contain analytical part and non-analytical part. The latter is due to massless
thresholds meaning that the internal lines of massless particles are on mass-shell. The Kronecker delta terms in D =
6,7, 8 arise from the non-analytic part of the string amplitude roughly as follows [266,412,413]. The massless threshold
contributions to string amplitudes contain logarithmic terms of the form log(—£2sf (x)) where f(x) is a complicated
function of x = —t/s. In going to Einstein frame, this term gives rise to an additional term which is analytic and

it involves a proportionality factor logyp,, where D is the lowest dimensions in which L-loop maximal supergravity
has ultraviolet divergences, and yp = {dgz/Vu) = (i’D/fs)D_2 where V@) is the volume of d-torus. The delta terms in
D=6, 7, 8in (11.2)—(11.4) arise from the action of the Laplace operator on these log yp terms [412]. Turning to the log s
dependent terms in maximal supergravity, they arise after the subtraction of the € pole in the amplitude evaluated at
D = Di+ 2€ in a dimensional regularization scheme. More specifically, the single pole in € arises as & s/W)* /€, where

is an arbitrgry scale introduced in dimensional regularization. It can be removed by adding a counterterm so as to give
( 3/W* -1 /€ which gives the finite result log( —5/p) in the limit € —0 In D =6, 7, 8, the counterterms are of the
form D°R* D*R* R*, respectively. In general, in D dimensions, logarithmic divergence can appear at L loop, associated
with 9"R",

O"Rm:  n+2m=(DL-2)L+2. (11.5)

Turning to Langlands-Eisenstein series (often referred to as Eisenstein series), which are associated with the maximal
parabolic subgroup Pg € G, they are defined as [409]

Eﬁs )= e2{0pHI ) (11.6)
Y €PR (Z\G(2)

where 3 is the simple root labeling the maximal parabolic subgroup Pg and wg is a basis vector in the space dual to the
root space obeying (wg , P)=1. H(g) resides in the Cartan subalgebra of G(R) and is defined via the Iwasawa decomposition
of an arbitrary group element g € G according to

g =nell®@k, with n€ N(R), k€K(R), (11.7)

where N is the unipotent subgroup of G, and K is the maximal compact subgroup of G. The convergence of %Gs (g) requires
that the complex parameter s satisfies the condition (swp—p, wp) > 0; see, for example, [105]. In the normalization chosen

above, E, (@) =1

37 If one uses UV momentum cut-off A instead, it will manifest itself as the divergence log( /A?). Thus, the terminology of “logarithmic
divergence” refers to the A cut-off scheme.
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Fig. 1. Bourbaki (on the left) and standard Dynkin diagram labeling conventions for the group Ei+1.

We shall now summarize the existing results for ESg(g) for the U duality groups displayed in Table 8. To begin with,
it is convenient to define

Egs Egr
Egeror-ayy = 28@9EG" (11.8)

where [0%107"] is the Dynkin label associated with the simple root § in Bourbaki conventions; see Fig. 1. In the case of
SL(d) with B = [0%107¢], itzc:an be expressed as (see, for example, [412,414])

1
SL(d, =
[00((—)11011—(1—1];5 ) " ( .. )s ’ (11'9)
{mi}ezd {0} Cil-ia gilfl P giafa 1o
where the sum is over all values of m' with the values m! = m? = +-- = 0 omitted, gii is the metric on SO(d)\SL(d),
and c1ie = m[a1 cee m’g]. The ones for Ear; with d = 4 are more subtle; see, for example, [105,412]. The results for (Io—fg)
are [95,265,409,410,414-416]
. D) _ pEan
3<D=<7: Eoo = Elod;i , (11.10)
®) ~SLB) 2 ~SLE)
D=28: Ego =E 3+ 2E,,U), (11.11)
[10];
—-9- ) — \y-3/7FSL©2) 4/7
D=9: Eooy =V / E[ll;%(‘r) +4¢(2)v4/7 (11.12)
D=10: 10 = ESL@(Q) , for 1IB supergravity , (11.13)
©0  1;3
where v parametrizes R* and (T, U, ) parametrize the SL(2, R)/SO(2) coset. The results for E((l:1))0) are [107,265,409,417]
o _1
3<D=<5: E = " EEa1 | (11.14)
a,0 1041;5
© ? [50(5],5) 4 5065
D=6: Eqg = 21[10000];5, + 4;15[0000]];3 , (11.15)
@ L s T s16)
D=7: E4p= 21’5[1000];5 * 50 Elooon]s » (11.16)
D=8: E® = 2psLe — ApSLOpSLO) , (11.17)
(1,0 [10];3 [1];22[10]»‘1/2 AUV(3
D=9: E® = Sy-5/7Este) + — T()VY/7ESL® + —Z-(—)—Z-(—)V-uﬁ i (11.18)
o 13 15 ;3 15
D=10: E = ESL® for 1IB supergravity , (11.19)
1,0 013

where the hats indicate the finite part of the series after subtraction of an € pole as in [265], and V is an element
of GL(1) c GL(2, R). Note that the perturbative contributions to R*, D*R* and D°R* are identical in type IIA and type

IIB [266]. Since there are no D-instantons in type IIA, there are no non-perturbative contributions in that case. In
D)
©0,0)
nonperturbative part. The perturbative part consists of a tree level and one-loop level term. In the case of E

general, the expression for E has perturbative part in string coupling constant expansion in D dimensions, and a

((1:1))0)( the
perturbative contributions consist of tree-level, one-loop (vanishing in D = 10), and two-loop contributions.

In obtaining many of the results above, the following three limits have been used in [265]:

e The decompactification limit from D to D + 1 dimensions: This is the limit in which the radius r« of one compact

dimension becomes large. In this limit ED) leads to a finite term which is required to produce E fj ;1)).

e Perturbative string theory limit: This is the limit in which the D-dimensional string coupling constant becomes small,
and in this limit, the expansion of E?p)q) in powers of the D-dimensional string coupling is required to reproduce the
known perturbative string theory results.
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e The semiclassical M-theory limit: This is the limit in which the effects of wrapped p-branes are suppressed and
the Feynman diagrams of compactified eleven-dimensional quantum supergravity should give a valid expansion
in powers of the inverse volume of the torus.

For more details, see [265]. Note also that the explicit forms of these couplings can also be obtained by direct calculation
from exceptional field theory loops [418]. In the case of type II string theory, the analytic contribution to the low
energy expansion of the amplitudes at genus-one has been treated as a power series in space-time derivatives with
coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet
torus [419,420].

As to E(((? ;) which cannot be represented as an Eisenstein series, apparently no closed form expression is known for it

as yet. Nonetheless, an implicit expression for it as a two-loop Schwinger integral can be found in [421]. See also [266],
where its weak coupling and decompactification limits have been explored.

11.2. Relevance to UV divergences and counterterms in supergravity

From the point of view of supergravity divergences appearing in explicit loop computations in diverse dimensions, it
is also useful to note the following points, which are essentially summarized in Table 9.
(D) (D)
eIn D=9, Ey, and E,, cannot be deduced from supergravity divergences in maximal theory using dimensional
regularization. This is due to the fact that these two functions receive contributions from tree and one-loop levels.
However, divergences in maximal 9D supergravity start showing up at two-loop (one-loop divergences are absent in
odd dimensions when using dimensional regularization) which would contain information on the DBR* term [422].
e D = 8 is the lowest dimension where the R* term first appears in one loop UV divergences, both in the maximal
and half-maximal cases. In addition, there is a two-loop divergent D°R* counterterm in the maximal theory.
e D = 7 is the lowest dimension where the D*R* term first appears in two-loop UV divergences in the maximal theory.
e In D = 6, maximal supergravity admits a logarithmic divergence at three-loop level, which is related to the
o
we have not discussed so far. In the N= (1, 1) theory, there is also a D’R* divergent term appearing at two-loop
level.
e In D =5, maximal supergravity is finite at four-loop level [422,423]. It is likely that the first divergence in 4-pt
supergraviton amplitude appears at six-loop level and is of the form D'R*.
e In D= 4, pure N =4 supergravity is divergent at four loop [424]. The recent five-loop computations show that

logarithmic term in the weak coupling expansion of E [412], namely the function in front of the DPR* term which

maximal supergravity possesses a UV divergence at D = 24 [425], corresponding to the operator DPR* which is
the same operator that may appear in the seven-loop divergence of 3= 4 maximal supergravity. D= 4, N= 5
supergravities are finite up to and including four loops [423], and D =4, N = 1, 2 supergravities are finite up to
and including two loops [1].

As discussed earlier in more detail, it is also worth recalling that the logarithmic divergences are related to the dimension
dependent source terms in (11.2)-(11.4) [266,412,413].

The UV divergences in supergravities summarized above are based on the loop calculations that have been carried out
explicitly. These results suggest that there exist fully nonlinear supersymmetric extensions of the D*R* terms that arise in
the local counterterms, assuming that the quantization schemes employed respect supersymmetry. Turning this argument
around, in cases where loop calculations are not available as yet, if one can construct the (nonlinear) supersymmetric
completion D*R*, it would potentially imply the existence of divergences at appropriate loop order. For example, in
D =4 the maximal theory seems to allow a D®R* invariant, which means that potentially a seven-loop divergence may
arise [4]. As to duality symmetries, their fate at the quantum level deserves scrutiny separately.

11.3. Invariants in D = 4 supergravities in ordinary and harmonic superspace

Here we shall summarize known constructions of invariants in 4D maximal, as well as N=4, 5, 6 supergravities, in
ordinary and mostly harmonic superspace approaches. The leading curvature terms will be of the form D*R* for various
values of k. We shall first recall the two maximally supersymmetric nonlinear invariants in ordinary superspace. Next,
we shall summarize the number of invariants with maximal as well as N =4, 5, 6 supersymmetry in the harmonic
superspace approach. Some of them will be available only in linearized harmonic superspace, and those which are known
at the nonlinear level may not exhibit the full duality symmetry, as shall be summarized below.

In ordinary curved superspace, R* and D*R* invariants can only be realized at the linearized level. On the other hand,
there exist nonlinear D''R* and D®R® actions in ordinary superspace, as given in (11.20) and (11.21), which also preserve
the full duality symmetry. Finally, there exist also nonlinear invariants in harmonic superspace with the leading term

f(@VFR* in 4D, N= 4,5, 6,8 supergravities preserving only the maximal compact subgroup of the full duality group.
In [4,259], the following two nonlinear invariants havereen provided:

L=  dxd?0 E(x, 0) £9B £&B Yo iy Zk)([s mnpx‘B’””'” ~  dixe (VPR22 4., (11.20)
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Table 9

This table exhibits supergravity divergences in four-point supergraviton
amplitude obtained by explicit computations in D dimensions using di-
mensional regularization, with the exception of 3= 4, N=8 at 7 loops, in
which case an acceptable invariant has been put forward. See next section
for further remarks.

Local operator D L N Refs.
Ri 8 1 Max [422]

8 1 Half max [426]

10 1 Half max [426]
D2R* 6 2 (1,1) [427]

4 4 Half max [424]
D*R¢ 7 2 Max [422]
DRI 8 2 Max [422]

6 3 22) [428]

9 2 Max [422]
D8R 4 7 Max [429]

2 5 Max [425]
DR* 7 3 Max [428]
DIOR4 10 2 Max [422]
DI2R4 11 2 Max [92,422]
D> R* 9 3 Max [428]
D?'R* 11 3 Max [428]

i R ~ ik, -
L= d'xd”0 E(x,0) e e xamopmx Gx 3"~ dxe(VR +00), (11.21)

where Xaijk is a spinor superfield whose lowest component represents the spin 1/2 fields in the 56-plet of SU (8). These
invariants are fully E7¢7) invariant because they are constructed from a full superspace integral of a superfield entering the
superspace torsion. It is also worth mentioning that a dimension 16 invariant starting with D®R*as an ordinary superspace
action integral does not exist because it may come from the integral E, which, however, vanishes [430].

We now turn to the summary of invariants that have been constructed in harmonic superspace in 4D. There exist
linearized supersymmetric action integrals for N -extended supergravities in 4D which can be written as integrals in
harmonic superspace, some of which admit a nonlinear extension [37]. Denoting the N -extended superspace by Mn, the
(N, p, q) harmonic superspace is defined as the direct product M~ x Kp,; where [431]

Kpg=SU(p) x UN —p —q) x U(@)\SUN) . (11.22)
It is convenient to define the following projections of the spinorial covariant derivatives
Daqr := ui'Dyq; , I-D({ = (Z/L_l)iID_; , (11.23)

where ui' = (w', ur, ur’) with the indices (r, R, r') labeling the fundamental representations of SU(p), SU(N — p — q) and

Su(g), resioectively. In terms of these derivatives, analytic fields in harmonic suﬁerspace are defined to be those which
are annihilated by (Dar, D " ). They can also be harmonic analytic, which means they are holomorphic with respect to the
o

o operator on Kp,, see, for example, [429, Egs. (3.1) and (3.2)] and [432] for further details. Invariant action integrals in
harmonic superspace are constructed by integrating analytic fields with respect to an appropriate measure. For (N, p, )
harmonic superspace, such a measure at the linearized level in 4D is given by [431,432]

dugq := d*du[Dy+1++-DnD t--- D N7, (11.24)
where du is the standard Haar measure on Kp,.
D=4,N=38

To construct the linearized N = 8 supersymmetric action integrals, we need the superfield Wi which is in the 70-plet
of SU(8) with the appropriate reality condition, and satisfying the constraint

DaiWikim = DaiiWi,] - (11.25)

With the above ingredients, the following three linearized supersymmetric SU(8) invariant action integrals have been
constructedj[432] _f

L= du$ Wi~  dixtstsR, (11.26)
E 23
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)
I, = dus  eRSTUWRrs Wru '~ dix DR , (11.27)
| 22 |
I =  dp® ef-ReeS-S6Wp rr Wrrs Wrss Wsss ~  dxD°R*, (11.28)
g 1,1 123 451 623 456
where

W: = uliuzfu3"u4’ ijl » (11.29)
WRrs = w ‘upjugkus! Wik , (11.30)
WRrsT = 1 ‘g iuskur! Wik . (11.31)

These are the only ones that can be written down. However, it has been shown that the first two do not have a
generalization to curved superspace. A nonlinear version of the first invariant in the superform (ectoplasm) approach has
been considered in [429] where it has been shown that it does not have Ez7(R) symmetry. It has also been shown [429]
that the dimensional reduction of the R* term in 11D on seven-torus gives the leading term fR* in 4D where f is a scalar-
dependent function which satisfies the Laplace equation (A + 42)f = 0, in agreement with (11.2), and therefore it is
consistent with E7z(Z). Note that in terms of the notation introduced in (11.1), f = E((Ag,o) which is given in (11.10).

The invariant given in (11.28) admits a nonlinear extension with the measure Eq. (11.24), denoted by duw,,), given
in [430] for d p.(s,l,l).38 However, it turns out that this invariant does not have E7» symmetry. Another invariant that has
SU (8) but not E77) symmetry is given by

I J ( )

I, 5= dusiy BE(V) ~  dixe f(@)VR2-VORZ 4 -, (11.32)
where f5(¢) is the (appropriately normalized) SU(8) invariant function of the 70 scalar fields discussed in [261,429] and

FILV) := whatukgutgV " VI K i Vi (11.33)

where V" is a superfield whose lowest order component is the representative of the coset E7»(R)/SU (8). Note that
this invariant differs from (11.28) by having a scalar dependent function in front of the leading gravitational term.
Finally, it is worth noting that an E7»(R) invariant and nonlinear action integral in full superspace which integrates

to D®R* is_ known to exist and it is given by [4]
I=  dueiy B B, (11.34)

J N
where BGB =x ;;JX" sii. It can be shown that this invariant reduces to ~ d*xd®20 (Wi W72 ~ 7 g% VER* + ---" in the

linearized approximation.

D=4,N =4,5,6
All results summarized below for the D = 4,N = 4,5, 6 superinvariants are taken from [430]. An analog of the
invariant (11.34) ej_(ists also for D =4,N =4,5,6 and it takes the form

IN =12 v Beg B (11.35)
where
{
B-= Xjp XN for NV =4,5 (11.36)
af forN =6, ’

ij 1 3 Lijkly~
XB Xaei * §Xoc X “Boijid

where XM, X7 ;54 are defined in [430, Eq.(4.14)]. Schematically, these invariants contain D2N"R4, Tt is stated in [430]
that these have the full duality symmetries, namely SO*(12),SU(5,1),SU(4) x SU(1,1) for N = 6,5,4 supergravities,
respectively, For N = 6 there are two other invariants given by

«C 5 4 4 )

I; = d”(é.l.l) gB B J-dfjei Bag; + 3 JopoiBag?
( )
= duein FI(V) ~  dixe fo(@)VR2 - VR + -+ (11.37)

38 Note that the linearized measure is denoted by dp.‘”; 7 while its nonlinear extension is denoted by dunp,.).
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where
I = X" Xeckim »
af ki B
FU(V) = wadiur ¢ ¥ VI VgV, (11.38)

and Vi, is a superfield whose lowest component is the representative of the coset SO*(12)/U (6), and £(¢p) is a function on
that coset. It is stated in [430] that both of these invariants have only the U (6) symmetry. Similarly, there is an additional
D=4,N 7 5 invariant given b}f

)
E= duein FI(V) ~  dixe f@)R2-R2+---", (11.39)
where
FIYV) = wlatjuk dh EiViV V. (11.40)

Here Vi is a superfield whose lowest component is the representative of the coset SU(5,1)/U(5), and f5(¢) is a function
3

on that coset. It is stated in [430] that this invariant has only U (5) symmetry.”
11.4. Invariants in ectoplasm approach in 4 <D < 8

Here we shall summarize briefly the results of [405] for the action integrals in ectoplasm approach in harmonic
superspace and in the linearized approximation. The formulae below refer to the integrands for the action (2.14), in
which the closed superform is defined in (D|32) superspace extended by harmonic variables as described in the previous
subsection, and its pull back to the D dimensional spacetime is evaluated at 6 = 0.

e D=8, maximal

- ) )
R4 : U ™ "D "Egypy L, = (D’[;n]E(z,l,l) L, (11.41)
n-0 n=0
Cm ) ( )
V4R4 . z glj_y( D‘kDan] E(Z,I,O) L(4k)[4n] + u—2 DDF4W]E(2_1IO)) L(—4)[4n]
n=0 k=0
ﬁ ( n ! ) 4n
DimE; L™, (11.42)
n=0

In 8D, maximal supergravity has the duality group SL(2)< SL(3), and the scalar fields parametrize the symmetric
space SL(2)/S0O(2) xSL(3)/SO(3). The Kéhler derivative on SL(2)/SO(2), parametrized by the complex scalar U, is
denoted by D, while the SU (2) isospin 2 tangent derivatives on SL(3)/SO(3) are defined as Dix, with i, j, k, [ running
from 1 to 2 of SU (2). The Leb[*] are SL(2) x SL(3) invariant eight-superforms in the isospin 2n representation of
SU (2) with U (1) weight 4k. In particular [405]

Lo o (t8t86aahRauabRRR) + e (11.43)

The indices of the function E (1, p, q) refers to the harmonic superspace construction of the associated invariant
in the linearized approximation, whereas the notation E, /4 indicates that the corresponding invariant cannot be
written as a Lorentz invariant harmonic superspace integral in the linearized approximation. A combination of the
~ SL(2) ~ SL3)
functions Ee2,) and its complex conjugate E@z) is related to Ep;y;;, the function E@,1) is proportional to E (0], & 2
combination of E,1,0) and its complex conjugate E(z,0,1) is proportional to EF{3EH _;/, and E’1 /4 is proportional to
ESLG)s as specified in [405].
[10]; 3
e D = 7,maximal

)

R4 : i (D’[lo‘z,l] E(4,2) L[O,Zn] , (1144)
n=0
n 20
¢ ) 3 ( »

454 n+2k 4k,2n n 0,2n

VAR DBy LT, DioanEy rlo2n, (11.45)

1n,k=0 n=0

39 In a recent paper [433], it has been asserted that in the D =4, N =4 actions discussed above, the Grassmann analyticity constraint on the
harmonic superspace fields breaks the composite local H symmetry, where H refers to the stability subgroup in the G/H cosets, with G representing
the duality symmetry group.
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In 7D, maximal supergravity gdmits the duality group SL(5), and the scalar fields parametrize the coset SL(5)/SO(5).

The covariant derivative D" acts on this coset TI}? }t denotes (n + 2k)-fold product of the [0, 2] representation

of Sp(2) [421] 4k 2n irreps. " denotes SL(5) invariant superform in the 4k 2n of Sp(2),

= SO(5) projected tothe [ , ] L [,

i.e. traceless tensors of SO(5) with 2k pairs of antisymmetric indices and 2n additional symmetrized indices. The

indices of the function E(n,p) refer to the harmonic su erspace construction of the associated invariant-n the

linearized approximation. The function Ew,) is related to E>® 3, and E@,1y and E; , are proportional to ESL(5)
[1000];5 / [oo01];

2SLE . - . ) . '
and £ °0 5, respectively. A combination of the last two functions defines E (17)0 . The notation E,,, denotes that the
[1000]; (1,0) 1/4

corresponding invariant cannot be written as a Lorentz invariant harmonic superspace integral in the linearized
approximation. It was noted in [408] that in D=7 the D°R* type invariants cannot be defined in the linearized
approximation as harmonic superspace integrals.

e D = 6, maximal

)
R4 : i (DE‘O,n]‘[O,n] Eu2p plonkionl, (11.46)

n=0

n+&E220
z ( 14 2k

) L [0,n],[0,n+2k]

4p4
VR [0,1],[0,n+2Kk] Euz0
n,k=0
Ekgzo
142k )
Diojn, [2k,] Euany 1 [2knl.[2kn] ) i

n,k=

In 6D, maximal supergravity admitg the duality grou%a SO(5, 5), and the scalar fields parametrize the coset SO(5, 5)/(SO(5)x

SO(5)). The covariant derivative D" acts on this coset and it denotes (1 +2k)-fold product of the [0, 1] %10, 1]

representation of Sp(2)  Sp(2) [2knl[2kn]  SO(5) projected to the 2k n 2k n_irreps. [2kn][2kn] denotes the

x = SO(5) x [ . 1x[, L

S50O(5, 5) invariant superform in the ([2k, n], Rk, n) of Sp(2) >5p(2). The indices of the function E (71, p, q) refer to the

harmonic superspace construction of the associated invariant in the linearized approximation. The function E,2,2) is
SO(5,5) ~ S0(5,5)

proportional to E y e A combination of the functions Ew,,0) and Ew,2) is related to E oal: The function Eu,)

is proportional 6%k, . At the linearized level, the D°R® invariant was given in [40%°#4%(3.27)]. Its nonlinear

[00001];3
version was suggested in [408, Eq. (3.28)]; see, however, [433] for a recent discussion on this problem.

e D =5, maximal
i ( n ) L[O,O,O,n] ,

R : Diooon] E@a (11.48)
n=0
n+{E=220 ( )

VAR : ngflio,n] Ega) L1290 (11.49)
1,k=0

In 5D, maximal supergravity admits the duality group Ee(), with the maximal compgct subgroup USp(8) = Sp(4) /Zo.

The scalar fields parametrize the coset Eee)/USp(8). The covariant derivative D" acts on this coset and it

denotes (n  2k)-fold product of the 001 [0,2k,0,1] irreps.  [0,2k,0,1]
+ [, , , ] representation of Sp(4) projected to the [Q 2k, 0,#]

denotes Ee) invariant superform in the [0, 2k, 0, n] of Sp(4). The function E@gy is proportional to E &) 3, and the

[100000]; »
function Eg 2 is proportional to EE©) 5. At the linearized level, the D°R* invariant was given in [408, Eq. (3.7)].
’ [100000]; 7
Its nonlinear version was suggested in [408, Eq. (3.8)].
e D = 4, maximal
4. i ( n ) [0,0,0,,0,0,0]
R*: D10,0,0,1,0,0,0] Egaq L ’ (11.50)
n=0
n+220 )
V4R . (D’fgfﬁnom] Ega 1,[0.60,1,0k0] (11.51)
n,k=0

In 4D, maximal supergravity admits the duality group E7», with the maximal compact subgroup SU(8)/Z:. The

scalar fields parametrize thecoset E7(7/SU (8). The covariant derivative D~ acts on this coset and it denotes
[0,k,0,72,0,k,0] )

(n + 2k)-fold product of the [0,0,0,1,0,0,0] representation of SU(8) projectei to the [0,k,0,n,0,k,0] irreps.

L10k0m0k0] Jenotes E7) invariant superform in the [0, k,0, 1,0, k, 0] of SU(8). The function E4,4 is proportional
E . . .
to E[17(()Z))0000]’- 3, and the function Espp) 18 proportional to Eﬁg(%oooo]; 5. At the linearized level, the D°R* invariant was

given in [4082, Eq. (2.17)]. Its nonlinear version was suggested in [4208, Eq. (2.18)].
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e D =4, non —maximal N =5, 6 supergravities in 4D have also been investigated in [429]. Explicit expressions
for the attendant closed super four-forms have not been constructed but their analyses at the linearized level are
sufficient to show that the R* invariant with N=6, 5, and D?R* invariant with N=6 are not invariant under
linearized duality transformations of SO*(12) and SU (5, 1), respectively, which involve constant shifts in scalars.
This is not surprising since there are no appropriate functions of the scalars in front of the leading terms in these
invariants, which preserve the continuous duality symmetry. See [429] for further details.

12. Concluding remarks

There are several open problems in the construction and analysis of higher derivative supergravities. We have
summarized a number of approaches to their construction in Section 2, but we also saw, especially in the example of
11D supergravity, the enormity of the complications in the construction of even the leading higher derivative terms.
The situation is more manageable for four derivative extensions when they exist. But beyond that, for example in the
case of much studied eight derivative extensions, complete results even in the bosonic sector are very rare, let alone the
fermionic terms. Taking into account duality symmetries turns out to have profound consequences but its implementation
has challenges as the number of derivatives grows, and even when the remarkable functions of the moduli needed for the
duality symmetries are known, it is always a challenge to go beyond the leading terms in curvature. In filling the several
existing gaps in the landscape of higher derivative supergravities, it is not entirely clear which methods among those
surveyed in Section 2 are the most promising ones, and if they are even feasible, say beyond eight derivatives. Ultimately,
it may be necessary to develop new and extremely powerful computer-based techniques.

Putting aside the problem of finding more extensive results on higher derivative extensions of supergravities, one
may focus on the analysis of those which have been already constructed, and investigate further their applications in
black holes, cosmology, holography and the Swampland program, as mentioned in the introduction. In studying higher
derivative extensions of matter coupled gravity, it is of course essential to ensure that unitarity and causality principles
hold. Here we shall summarize very briefly some of the key conclusions drawn so far from the criteria of unitarity and
causality, and we shall do so in chronological order.

First, in [434] it was shown that in the context of AdSs/CFTs correspondence, the requirement of the positivity of the
energy on the CFT side puts restrictions on the conformal anomaly coefficients, which are related to the coefficients
a and c of the Euler and Weyl-squared invariants in CFT4, respectively. This, in turn, implies a restriction on the
coefficient of quadratic curvature corrections to the bulk action, the relevant one being equivalently the Riemann-squared,
or Weyl-squared or Gauss—Bonnet term [435]. These results were generalized to AdS7/CFTs in [436]. Subsequently,
using a relationship between the positivity of the energy flux in CFT and the causality in the bulk theory, and under
certain assumptions, a range in which A is constrained to lie was found in any dimensions in [437]. Next, a different
setting for causality considerations involving the scattering of gravitons was considered in [438]. In the context of
AdSs/CFTs, as well as bulk gravity that admits Minkowski vacuum, it was shown that an infinite tower of states with
] > 2 are needed to restore causality. Furthermore, the unitarity and analyticity of graviton amplitudes were shown to
constrain the coefficients of quartic in Riemann curvature terms [439]. A constraint on the coefficient of the Riemann-
squared term was found later in [440] which simply requires that it is positive. Further advances were made in [441]
where constraints imposed by causality and unitarity on the low-energy effective field theory expansion of four-particle
scattering amplitudes were studied in flat space. The constraints found on the amplitudes can be translated to restrictions
on the coefficients of R*, D*R* and D®R* terms. In [442], again in flat space, using S-matrix and dispersion relations, it
was derived that in 10D maximal supergravity, the coefficient in front of R* term, denoted by go, resides in the region
0 <go 3(8T G/M®) where M is the scale beyond which the EFT breaks down. In string theory, this constraint is satisfied
as goM®/(8TtG) =2{(3) =2.4. These computations were generalized to maximal AdS supergravity in 5D in [443], where
similar bounds were found. Finally, the consequences of the causality, analyticity and IR divergence obstructions to UV
completion were sharpened further in [444], where more comprehensive references are provided as well.

In conclusion, it is well motivated to pin down the role of supersymmetry, duality symmetries, and the physical require-
ments such as unitarity and causality in determining the structure of the higher derivative extensions of matter coupled
quantum gravity, and much remains to be done. These considerations may provide a sound framework for effective field
theory approach to quantum gravity up to an appropriate cut-off energy scale. More ambitiously, contemplating a UV
completion, given that the need for introduction of an infinite tower of massive higher spin states is widely appreciated,
it would be interesting to understand the nature of such states in comparison with those arising in string theory. In
the context of studying the constraints on the coefficient of the Riemann-squared term, a general UV completion of the Gauss—
Bonnet term, which involves the coupling of massive higher spin states, were considered, for example, in [440]. In a more
general setting, the important question of whether UV complete theory of quantum gravity is uniquely determined by string
theory has been addressed in many works, see, for example [445] and references therein. If the bottom to top approach turns
out to yield results that differ from those in string theory, it will be natural to study if such results can offer a progress
in addressing some of the challenging problems in matter coupled quantum gravity, such as the very early universe
and black hole physics.
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Appendix. Notations

Given matrices Mi,i =1, ..., 4, the ts symbol is defined as
1l Mig12 * * * Mada8 = —2 tr MiMz tr MaMa + tr MiMs tr MoMa + tr MiMa tr MaM3
+8 tr MiM2MsMas + MiMsMaMa + MiMaM2Ms . (A.1)

Definitions specific to 11D and 10D used in Sections 3 and 4 are as follows:

Definitions in D =11

ellellR4 = ehrhsate €v1...v8abcRp.]p.2V]V2 tee Rp.7p.8v7v8 » (A.2)
tsts (ABCD) = "8 {18 A o1 Busagisbs Casaghsie Dayagbrbs » (A3)
tstg 2R3 = ta]mﬂs th]mhs Ful bq chuzhz CdRu3a4h3h4 e Ru7a8b7b8 (A4)

enenF’R> = €M M0ey o Fuu V1Y Fugu Y2+ +  Ryggy "1 (A.5)

Definitions in D =10

€10€10R* = eulmugahe‘)y--VsﬂbRH1H2V1V2 - RP?PS‘,?‘,S , (A.6)
€969|G3|’R® = Eappypug €VIVEGHM2 Gy, IRYM LU RIS (A7)
tots| G3|2R3 = Byt FV1-V8 G[ulvl,;G_ Hz]ﬂszllaM Vavy - RM7Hs Vg » (A.8)
€8€8| G3|2R3 B _2l Eubul"'ug egb‘”---"s G[ v QG- Hz]a VZRH3H4V3V4 o RH7H8V7V8 ’ (A9)
6969H2R3 - _ (eloelo)v&:.\.’ﬁsHmuzv HV v ZHORH3H4V vt RH?HSV N (A.10)
€g€gH2(VH)2R - _ (€1o€1o)vﬂ'{'j_‘_)_i18H”0“lquv ¥y ZV“3H”4V v RH7I—l8v Y- (A.ll)
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