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Abstract— The maximal admissible set (MAS) of a dynamical
system characterizes the set of all initial conditions and constant
inputs for which the ensuing response satisfies the specified
state/output constraints for all time. For a discrete-time, linear
time-invariant (LTI) system subject to polytopic constraints
and unknown bounded disturbances, the MAS is known to
be a polytope, which may not be finitely determined (i.e.,
it may not be defined by a finite number of inequalities).
Thus, the steady-state constraint is usually tightened, which
results in a finitely-determined inner approximation of the
MAS. However, the complexity of this approximation is not
known a priori from problem data. This paper presents and
compares two computationally efficient methods, based on
matrix power series and on quadratic ISS-Lyapunov functions,
respectively, to upper bound the complexity of the MAS. The
bounds may facilitate the online computation of the MAS and
the implementation of robust reference governors and model
predictive controllers.

I. INTRODUCTION

Given a dynamical system perturbed by unmeasured
bounded disturbances and subject to state/output constraints,
the maximal admissible set (MAS) characterizes the set of
all initial conditions and constant control inputs (in appli-
cations, the inputs may represent reference commands/set-
points) the response to which satisfies the constraints for
all time. The characterizations of the MAS as defined here
(i.e., including constant inputs) were studied in [1] for the
case of disturbance-free LTI systems and in [2] for the
case of LTI systems with set-bounded disturbance inputs.
The MAS is used in the construction of reference/command
governors for systems with constraints (see, e.g., [3], [4]).
It is also used in Model Predictive Control (MPC) (see,
e.g., [5], [6]) and in set-theoretic control (see, e.g., [7], [8]).
Various simplifications of the MAS, its applications, and its
extensions to other classes of systems have been studied, e.g.,
in [9]-[20].

The MAS may not be finitely determined (see [1] and [2]),
i.e., it may not be described by a finite number of inequal-
ities; however, by tightening the steady-state constraint, a
finitely-determined inner approximation of the MAS, which
satisfies similar invariance properties as the original MAS,
can be computed. It is known that the complexity of this
approximation, i.e., the number of inequalities in the set
description, is not known a priori from the problem data.
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To find it, one would need to construct the MAS iteratively
by adding inequalities one time-step at a time and check
for redundancy of the newly added inequalities. Once all
the newly added inequalities are redundant, MAS has been
fully characterized. In the case of linear systems with linear
constraints, the redundancy check can be performed using
linear programming (LP) which may be computationally
demanding for high-dimensional systems, those with slow
dynamics, and those with constraint sets of high complexity.
For many applications, solving these LPs is computationally
prohibitive in situations where the MAS must be computed
online in real-time to accommodate changing models or
constraints.

To address the above issues, this paper proposes two
computationally-efficient methods to obtain upper bounds
on the complexity of the MAS for linear systems with
linear constraints and set-bounded disturbance inputs. These
upper bounds can aid in constructing the MAS without the
redundancy checking step, thereby greatly speeding up the
computation of MAS (at the expense of having potentially
redundant inequalities in its description). This capability is
particularly useful in a setting where the MAS must be
computed online.

The first method for finding the upper bound leverages
matrix power series and the Cayley Hamilton expansion
to express the output at a time ¢ as a linear combination
of outputs at previous times, which helps determine the
time-step after which the constraints become redundant.
The second method relies on the decay rate of a quadratic
ISS-Lyapunov function towards its constraint-admissible and
robustly invariant level set. This method is inspired by
the existing literature (see e.g., [4], [21]); however, it is
presented here in complete details with explicit bounds and
serves as a benchmark against which the efficacy of the
first method is evaluated. Both methods were proposed for
the disturbance-free case in [22], [23]; the treatment of the
systems with disturbances entail several distinct and intricate
details such as the existence and construction of MAS. We
thus present the theoretical justification for the two methods
and provide corresponding algorithms for their computations.
We compare the upper bounds obtained from both methods
using a numerical study involving systems chosen at random.
Our findings show that the second method is not universally
applicable, as a constraint admissible, robustly invariant level
set may not exist, while the first method finds the upper
bound in all cases in which MAS exists. In instances where
both methods yield an upper bound, the first method’s upper
bound is tighter and hence preferred to that of the second
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method.

This paper is organized as follows. In Section II, we
review the MAS and state the assumptions. Methods 1 and
2 are presented in Sections III and IV, respectively. The two
methods are compared in Section V. Section VI contains
concluding remarks.

The paper uses the following notations: ZT, R, R"™, R"**",
and C denote the sets of non-negative integers, real numbers,
n-dimensional vectors of real numbers, n X n matrices
with real entries, and complex numbers, respectively. For
a symmetric matrix P = PT, we say it is positive definite
and write P > 0 if all the eigenvalues of P are strictly
positive. We use the variables t € Zt,t* € Z*,and m € Z+
to denote the discrete time index, the finite determination
index (which determines the complexity) of the MAS which
is defined in Section II, and the upper bound on the finite
determination index, respectively. Given two sets U,V C
R™, their Minkowski sum and Pontryagin difference (P-
subtraction) are defined, respectively, as follows: U & V =
{lww=ut+v,uelUveViand U~V ={u:u+ve
U,v € V}. It follows [2] that if 0 € V, then U ~ V C U.
Furthermore, if U is compact then so is U ~ V.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce the maximal admissible set
(MAS). We then review its computation and complexity, and
state the main assumptions that we use in the paper.

Consider a discrete-time linear time-invariant system de-
scribed by

x(t + 1) = Az(t) + Bu(t) + By,w(t)

y(t) = Cx(t) + Du(t) + Dyw(t) W

where t € ZT is the discrete time index, and z(t) € R",
y(t) € RY, u(t) € R™, and w(t) € R® are, respectively, the
state, output, input, and disturbance vectors.

When  computing the MAS for use with
reference/command governors, the input u(t) is assumed to
be constant (i.e., u(t) = u,Vt € Z*), while the assumption
u = 0 (or equivalently B = D = 0) is made when
computing the MAS for use as a terminal set in MPC. In
both such scenarios, matrix A is stable as it corresponds to
a pre-stabilized system with nominal/terminal control law.
This assumption will be made throughout this paper.

Furthermore, we assume that the disturbance belongs to a
compact polytope W, i.e.,

w(t) € W
but is otherwise unknown, and the output constraint is
defined as
2)
where Y is a compact polytope. We assume that the origin
is in the interiors of both W and Y.
The MAS is defined as the set of all initial conditions, x,

and constant inputs, u, for which (2) is satisfied for all time,
that is:

Oso = {(zo,u) : y(t) €Y, Yw(t) e W,vt >0}

y(t) eY

3)
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Under the assumptions of stability and observability of (1),
this set is a compact polytope, but it may not be finitely-
determined (i.e., may not be described by a finite number of
inequalities). However, a finitely-determined inner approxi-
mation of it with similar invariance properties as O, can be
readily obtained as follows. Let

2(t) =x(t) — (I — A)~'Bu

where the inverse exists due to the stability of (1). In the new
coordinate system, u is eliminated from the state evolution
and the dynamics are described by
z(t+ 1) = Az(t) + Byw(t)
y(t) = Cz(t) + Hou + Dyw(t)
where Hy = C(I — A)"'B + D is the DC gain from u to
y. The evolution of the output y(t),t > 1, is then given by

“4)

t—1

y(t) = CA'2(0)+ Hou+ Dyw(t)+ Y  CA'Byw(t—1—1)
i=0

&)

We can now use the P-subtraction to simplify the description

of the MAS in (3). To this end, define the sets Y; using the
following recursion:

Y1 =Y, ~ CA'B,W
Yo =Y ~ D, W

(6)
)

Using these sets and Equation (5), the MAS can be stated in
the z-coordinates as follows:

600 = {(Zo,u) : C'14tZO + Hyu € Yt, Vvt > O}

As mentioned previously, this set is generally not finitely
determined. However, a ﬁnitely-determined, robustly invari-
ant inner approximation, denoted by O, can be obtained
[2] by imposing a tightened-version of the constraint on the
steady-state output of the system. Let

Yoo:ﬂYt

and consider its compact inner approximation, defined by
®)

where ¢ € (0,1). To obtain Y., one can employ an
algorithm similar to Algorithm 1 of [10] to obtain an inner
approximation of Y, and then tighten it by (1 — €). Note
that € quantifies a lower bound on the “gap” between Y
and Y. This gap is needed to ensures that O is finitely-
determined. Using Y., the following finitely-determined
inner approximation of MAS can be obtained:

600 ={(z0,u) : Hou € §{_OO,
C’Atzo—l—HouEYt, tZO,...,t*}

Yoo € (1— €)Y

where t*, referred to as the finite determination index, is
the last “prediction time-step” required to fully characterize
O4. As mentioned in Section I, t* is not known a priori.
To find it, one would need to construct O, iteratively by
adding inequalities one time-step at a time and checking for
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redundancy of the newly added inequality. Thus, the problem
addressed in this paper can be formally stated as follows:
given the system matrices and the sets Y, W, and Y, find
an integer m € Z%, such that m > t*. We present two
computationally efficient methods in the next two sections
to solve this problem.

To simplify the presentation, we assume in this paper that
the output is a scalar (i.e., ¢ = 1). The MAS for multi-output
systems can be viewed as the intersection of the MAS’s for
each of the individual outputs. As such, m can be calculated
for each output and the largest one may be selected.

To conclude this section, we summarize our assumptions:

Assumption 1: System (1) is asymptotically stable, the
pair (A, C) is observable, the input  is constant for all time,
the output y is a scalar (¢ = 1), 0 € intYo,, and W is a
compact polytope that satisfies 0 € intW. Furthermore, the
constraint set is given by the interval:

Yi={y:—y' <y<y“} 9)

where y' > 0 and y* > 0 define the lower and upper limits,
respectively.
With the form (9), we can express each Y, in (6)-(7) as:

Yo ={ye s~y <y < i)
where the bounds satisfy the recursion:

U U t—1 U U
=y ; —maxCA"" " B,w = — max D, w
Yt Yi—1 weW we Yo y weW v
yt =9 | 4+ min CA"™'B,w, %, =y'+ min D,w
It t—1 wWEW w Wy 0 WEW w

Clearly, we have that y < y* ; and y! < y._, for any ¢.
Furthermore, we can express Y., and Y, as:

Yoo:{yoofyéogyoogygo}
Yoo = {Joo t ~Uoo < Joo < Ui}

where y% := lim; ,. y} and yéo = limy o yé For the
rest of this paper, we assume that y;’, yi géo and y“, are
all positive and available. Availability of these parameters
is a reasonable assumption as they are also required for the
computation of the MAS.

III. UPPER BOUND USING METHOD 1

The general idea behind our first method is to expand A°
in (5) in terms of lower powers of A. As we show, if there
exists an integer m such that the sum of the coefficients in
the expansion of A™*! is “sufficiently small,” then m is an
upper bound on t*. We then show that such an expansion
always exists thanks to the Cayley Hamilton Theorem. We
begin by stating the main result of this section.

Theorem 1: Consider system (1) and suppose Assump-
tion 1 holds. Suppose there exists an integer m, m > 0,
such that A™+! can be expanded as

AT =N "0 A (10)
=0

627

where «; satisfy:

ZO@<1
%

1

yit Yi €
So(L 1) - T (L)< 0
;>0 Yoo ;<0 Yoo 1-ce¢ ( )
[ u
S (1) e (s ) <
a; >0 yOO ;<0 yOO - ¢

Then, m is an upper bound on the finite determination index,
t*; that is, t* < m.

Proof: We use mathematical induction to prove that,
for any given initial condition g (or zp in the transformed
coordinates) and constant input w satisfying Hou € Y., we
have that: y(t) € Y for ¢ < m implies that y(t) € Y for
t > m + 1, which means that m is an upper bound on t*.

For the induction base case, we assume that y(t) € Y (i.e.,
CA'zy+ Hou € Yy) for t < m and show that y(m+1) € Y
(.e., CA™ 12 + Hou € Y, 1). To show this, write:

CA™ 'z + Hou =Y _ ai(CA'z9) + Hou

i=0
(1 — i O[i> H()U
1=0

where we have added and subtracted Y. c; Hou in the last
equality. The assumption that . «; < 1 and Hou € Yoo
imply that the rightmost term satisfies:

)5

(£ (B -

Furthermore, the assumption that y(t) € Y for ¢ < m
implies that —y! < CA'zg + Hou < y¥. Thus, breaking
up the sum in (12) into positive and negative values of «,
we obtain the following bounds for CA™ !z + Hou:

(

<) oyt = Y auyi+

a; >0 a; <0

(12)

m

Z Ozi(CAiZO + H()’UJ) +
=0

m

Sa

=0

1—iai

=0

m
1—20&1'

=0

- Z iy + Z Qiyi —

a; >0 ;<0

) 7 < CA™ 20+ Hou

5
1=0

The above, together with the bottom two conditions in (11),
results in:

1 . 1,
—myloOSCA +1Z0+H0u§iyoc

Finally, (8) implies that —y! < CA™*lzy + Hou < y2,
and since y* < y% and y' < y!,, the result follows.

To prove the induction main step, we assume y(¢) € Y for
t <k, where k > m + 1, and show that y(k +1) € Y. We

proceed as we did in the base case, but this time decompose
Ak+1 — Am+1Ak7m:

CA* 'z + Hyu = CA™ T A=z + Hyu
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m m
_ Zai(CAHk_mZO + Hou) + (1 — Zai> Hyu

i=0 i=0
The assumption y(t) € Y for t < k together with 0 <
i+ k—m < k imply that CA***=™z, + Hou in the above
sum satisfies: —y!,, < CA™ =™z 4 Hou < gy, .
Furthermore, ', , _,, <y andy!, , <yl whichimplies
that —y! < CA™F=™mz, + Hou < y¥. The rest of the proof
from this point on follows the same arguments as in the
induction base case. This concludes the proof. [ ]
Remark 1: For the case of systems without control inputs
(i.e., u = 0), the tightening of steady-state constraint is not
required in the definition of MAS. Thus, the first condition
in (11) is not necessary (this condition is only used to handle
the steady-state constraint in the proof of the theorem). For

such a case, condition (11) can be restated as:

Zazﬁ Zai@ngl

a; >0 ;<0 o

Zal Za%

;<0 yoc
Remark 2: For the case of systems W1th0ut disturbances
(i.e., w = 0), we have that y! =y, = y' and y* =y = y*.
Furthermore, 7% and g can be simply chosen as §% =
(1 —¢€)y* and 3, = (1 — €)y'. Thus, condition (11) can be
restated as:

Zai<1
y! €

I —L— +1) <
Z'“'(yuae)*)—le

a; <0
€
1
>+)—1—

S fod (Gt
a; <0
We now prove the ex1stence of, and a develop a method
to construct, the expansion in (10) satisfying condition (11).
Recall that the characteristic polynomial of any square matrix
A € R™ " is defined as A(s) := det(sI — A), which can
be written as:

A(s) = 8"+ ¢, 18"+ ...

The Cayley Hamilton theorem (see [24]) states that any
square matrix satisfies its own characteristic polynomial, i.e.,
A(A) = 0. This result allows us to express A¢, for any ¢ > n,
as a finite power series in lower powers of A. Specifically,
A™ can be expanded as:

An:—COI—ClA—...

13)
<1

+c1s+ ¢ (15)

—cp1 A (16)

where c; are the coefficients in (15) and are uniquely defined.
Similarly, A”*! can be expanded in the same powers of A:

= A(A") = —cgA — ... — o A"t — ¢, A"
= (Cocn_l)I + (700 + clcn_l)A + ...+

(_Cn—Q + Cn—lcn—l)Anil

An+1

Generalizing the above to any ¢ > n:

n—1
= Z Bi(t)A
=0

a7

where [3;(t) denotes the i-th coefficient in the expansion of
the t-th power of A. Note that expansion of A’ in lower
powers of A is generally not unique, but §;(¢) in (17) are,
by construction, uniquely defined.

To simplify the presentation, we stack the coefficients of
the ¢-th power into a vector and denote it by 3(¢):

Bt) = [Bo(t) - Buor(t)]"

The following fact characterizes [(t) and its convergence
properties as ¢t — oo.

Theorem 2: ( [23]) Let A € R™*™ be any square matrix
and let 5(t),t > n, be the vector of coefficients in the
expansion of A?, as defined above. Then, (3(t) satisfies the
recursion:

eR"”

0 0 0 —Cp
1 0 0 —C1
Bi+1)=|0 1 0 = gy s
00 -+ 1 —cp_1
with initial condition S(n) = [-¢p -+ — cn_l]T. Also, if

A is asymptotically stable, then lim;_,, 5(¢) = 0

The above theorem guarantees the existence of an integer
m such that the coefficients of the expansion of A™t! as
defined in (10) satisfy condition (11). To see this, compute
B(t) using the recursion in (18) for increasing ¢ starting from
t = n, and stop when

Z,B,»<1
> 6 (L 1) -

Sa (L)<

B:>0 Yoo B:<0 go 1 (19)
€

Soa(d-1)-Sa (L)<=

Bi>0 Yoo Bi<0 Yoo

Note that such t always exists, because according to The-
orem 2, 3(t) — 0 as ¢t — oo and thus the left hand side
of (19) can be made arbitrarily small. Such ¢ corresponds
to m + 1 in Theorem 1, where the «; in (11) are related to
Bi(t) in (19) as follows: o; = B;(t) for i = 0,...,n — 1
and «; = 0 for ¢+ = n,...,m. This leads to Algorithm 1
for finding an upper bound for t*. Note that the algorithm
does not explicitly use B, B,,,C, D, or D,,. However, these
matrices are required for the computation of yﬁ, TR ﬂéo, and

Yoo

Algorithm 1 Compute upper bound on t* using Method 1

Input: Ayl v 7L 7L €
Output: m such that t* < m

1: Compute the Cayley Hamilton coefficients, c;, using
(15). Set t = n and initialize S(n) as in Theorem 2.

2: If B(t) satisfies (19), then: m =t — 1, STOP.

3: Increment ¢ by 1. Compute 5(t) using (18). Go to step
2.

628
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Remark 3: The Cayley Hamilton-based expansion in (17)
provides only one possible expansion for A™*! in Theo-
rem 1. There may be other expansions that lead to smaller
upper bounds for t*.

IV. UPPER BOUND USING METHOD 2

The second method to find an upper bound on t* relies
on the level sets of quadratic (ISS-) Lyapunov functions.
Consider the Lyapunov function

V(z) =2TPz (20)

where P = PT > 0. For each real number r > 0, we define
the r-th level set of V(2) b

Q. ={zeR":V(z) <r}, (21)

which is geometrically the area contained by an ellipsoid in
R™. To proceed, define the following two sets:

On—1 = {(20,u) : Hou € Yoo, CA 2 + Hou € Y, (22)
t=0,...,n—1}

Z={2:Cz€Y ~ Yo ~ D, W}

The first set is the set of all initial conditions and inputs
such that the constraints are satisfied for the first n time-
steps. This set is compact and satisfies Ooo C Op_1. The
second set is the set of all states that satisfy the constraints
for all realizations of the steady-state admissible inputs and
disturbances. The set Z is not generally compact, but O
and Oy, are, thanks to the observability assumption. The
compactness of O, is the main reason why it is employed
in the analysis that follows. If Z itself is compact, then O,,_1
may be replaced by Z in the subsequent presentation.
Consider now two level sets of V(z), Q,, and (2,.,, which
are, respectively, the largest level set inscribed in Z and
the smallest level set circumscribing O,,_; along the z-
coordinates. Mathematically, 71,72 € R are defined by:

Q, CZ}
Projzén,l C QT},

(23)

r1 = max {r : 24)

(25)

o = min {r :

where Proj, denotes the projection onto z-coordinates. To
find an upper bound on ¢*, we determine the conditions under
which €2,., is robustly positively invariant, and then quantify
the longest time it takes for any initial state in {2, to enter
Q,, . Indeed, if the state enters 2,.,, it will stay in €),, and
the constraints will be satisfied. Thus, this time would be an
upper bound on t*. See Fig. 1 for an illustration of these
sets.

We state the main results in the following theorem.

Theorem 3: Consider system (4) with Lyapunov function
(20), and suppose Assumption 1 holds. Suppose that both
(22) and (23) are non-empty and have the origin in their

interiors. Let { > 0 be a number such that @ = —({ +
1)ATPA+ P -0 and 71 > "L, where
)\ma/l' P
M = Mpae(P) | = +1 | maxw? BT w BuwW
C weWw

629

22

21

Fig. 1. Tllustration of the key idea behind the second method. The set
Z is illustrated as the strip between the two horizontal lines. The set
projOn_1 is the hatched box. The smaller ellipse is the largest level set
of V/(z) inscribed in Z. The larger ellipse is the smallest level set of V' (2)
circumscribing projOp 1.

Then, we have that v > 71, and that an upper bound on t*
ri(l—o)—M
ro(l—o)—M

is given by
log(o) )

where the floor operator returns the previous largest integer.
Proof: Note that r; exists because Z is convex and
non-empty and has the origin in its interior, and ro exists
because O,,_1 is compact. The rest of the proof leverages
three facts from linear algebra. First, the eigenvalues of a
symmetric, positive-definite matrix are all real and positive.
Second, for any P = PT = 0, we have that A, (P)zTz <
2T Pr < Apaw(P)zTx, where A\ and Apan are well-
defined thanks to the first fact. Given V(z) = zT Pz, the
second fact allows us to write —z7z < — /\,V("‘t()P) , which we
use below. Third, for any vectors z and v, and any ¢ > 0, we
have that 227y < (x :H- 1y y. This follows by simplifying
the inequality, (v/(z — —= ) (VCx — ~zY) = 0. Note that,
for a fixed (, this bound 1s tight for y = C:c.
We now write the change in the Lyapunov function along
the trajectories as:

V(z(t+1)) = V(z(t))
= 2T(A"PA - P)z +w" BT PB,w +2:" AT PB,,w

m = floor 27

(log(

=2T((1+ATPA - P)z + (% +D)w”BLPB,w

(1 +¢)ATPA - P)z + (2 +1) max wT BT PB,w
AWL(LQIE‘(F))

where, starting from the second line, we have dropped the
argument (¢) to simplify notation and, on the third line, we
have employed the third fact above with 27 = T AT Pz
and y = P 2 B,,w. We now simplify the above expression as

follows: V(z(t + 1)) < oV (2(t)) + M, which implies that:
1—ot

l1—0

< Amin(Q)z 2+ M < — V(z)+M

V(z(t) < o'V (2(0) + M

(28)
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where o is as defined in the Theorem. Note that any
Lyapunov level set satisfying r > % is a robustly positively
invariant set because the Lyapunov difference is negative.
Thus, by the assumption stated in the theorem, €2, is
invariant and also constraint admissible. The goal is now to
quantify the longest time it takes for any initial state in §2,., to
enter €),.,, which implies that the constraints will be satisfied
for all time-steps afterwards. To this end, note that any
z(0) € Q,, satisfies V(2(0)) < ry. Therefore, V(z(t)) <
olry + 1{_‘?; M. Furthermore, to ensure z(t) € Q., we
must have V(z(t)) < r;. Therefore, we set V(z(t)) <
otry + 11__°: M < ry, which implies that
Ta (1= =M

os (3622)
log()

Any t satisfying the above will be an upper bound on t*.
Since we are interested in the smallest integer time-step after
which the constraints are redundant, we take the floor of the
right hand side of the above.

Finally, O, contains all positive invariagt, constraint-
admissible sets, which implies that ,, C O. Thus, we
have the following inclusions: €, C Oo C Op—1 C Qp,,
which means that o > r;, as required. ]

Note that, for a fixed (, the choice of P in Theorem 3
affects the upper bound, m, in a complicated manner through
r1, T2, 0, and M. Similarly, for a fixed P, the choice of (
affects m through o and M. It thus remains to find a suitable
P and ¢ in Theorem 3. It is generally desirable to minimize
o to ensure fast decay rate of the Lyapunov function along
the trajectories. It is also desirable for % to be as small as
possible so that r; will satisfy r; > % as required by the
theorem. Therefore, we propose to select P such that o is
as small as possible, and select { to ensure % is as small
as possible. Of course, these choices will not necessarily
result in the globally minimal value for the upper bound
on t*. However, our numerical studies showed that this was
the case in most instances. The next theorem describes the
choices for P and (. In this theorem, p := max; |\;(4)]
denotes the spectral radius of A.

Theorem 4: Suppose ¢ < (577 — 1). Then, the scalar o
in Theorem 3 satisfies 0 < o < 1. Furthermore, the matrix
P that results in the smallest o is obtained by solving the
Lyapunov equation

ri(l—o)—M

t>

(29)

where A = /T + CA and Q = I. The corresponding value
of o is o = p(A)2. Finally, the value of 2= in Theorem 2
is minimized by

ATPA-P=Q

3 8
ST e
Proof: The proofs for 0 < o < 1, the choice of P and
Q, and o = p(A)? are similar to the proof of Theorem 6 of
[23]. To prove the choice of (, we note that with @ = I,
Amaz(P) = ﬁ and ¢ = p(A)2. Thus, 2L can be
written as:

1+ (30)

l—0o
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1
(1= (C+1)p(A)%)?

The expression in the large parentheses is the only term that
depends on (. Taking the derivative of this expression, setting
it equal to 0, and solving for (, we obtain the formula in the
theorem. [ ]
Procedures for computing r; and ro in the theorem are
well-established, see, e.g., [25]. Specifically, under the as-
sumptions of Theorem 3, the set Z is the interval [—yé +
7L, yd — y“] of the real line. Thus, r; can be found by

= maxw’ BY B, w
weW

l1—0c

(min{yh — 74, v — g })?
CP-1CT

T = (€29)
To find 75, we first compute 6n_1 and convert it from H-
representation into the V-representation. Let the vertices of
O,—1 in the V-representation be denoted by v; € R"™,
where the first n components correspond to the z-coordinates
and the next m components correspond to the u-coordinates.
Then, 75 can be found by

ro = mjax{@;‘-FP@j} (32)
where v; € R™ is a vector consisting of the first n compo-
nents of v;.

Remark 4: Polynomial time algorithms exist that can
convert a polytope from the H-representation to V-
representation, see e.g., [26]. However, these algorithms may
be computationally intensive in higher dimensions. This may
hamper the use of Method 2, e.g., in situations where the
upper bound on ¢* must be computed online. To remedy
this, one can replace O,,_; by any compact superset with
known vertices (if such superset is available), or apply the
algorithms in [27] to directly find the bounding ellipsoid £2,.,.
These algorithms are applicable in situations where informa-
tion about the size or aspect ratio of O,,_; is available.

The above results lead to Algorithm 2 for finding an upper
bound for ¢*.

Algorithm 2 Compute upper bound on ¢* using Method 2

1 ~u
oo7yoo76

Output: m such that t* < m

Input: A, y!,y*, 7

: Compute: ¢ using (30), P using (29) with Q@ =1, 0 =
p(A)?, and M using (26).

Compute 71 using (31). If r; < 2L

T-o» T = 00. STOP.
Construct O,,_1 as in (22), convert to V-representation,
and compute 7o using (32).

Compute m using expression (27).

M

Remark 5: The condition 71 > 7=~ in Theorem 3 may
not be met, even with the P and { computed using Theo-
rem 4. This would mean that there is no robustly invariant
level set of the Lyapunov function that is also constraint
admissible. In such situations, Method 2 cannot produce an

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on July 31,2025 at 18:58:26 UTC from IEEE Xplore. Restrictions apply.



upper bound on t*. We will explore this further in the next
section, where we provide a numerical comparison between
the two methods.

V. NUMERICAL COMPARISON

This section presents a comparative analysis of the upper
bounds provided by Algorithm 1 for Method 1 (i.e., the
power series-based method) and Algorithm 2 for Method 2
(i.e., the Lyapunov-based method). Since this comparison
cannot be carried out analytically, we conduct a Monte Carlo
study of randomly-generated systems using Matlab 2020b.

To generate each random system, we first randomly gen-
erate n, the order of the system, by sampling the uniform
distribution between 1 and 5. We then generate a state-space
model with that order by using Matlab’s drss command,
which returns a set of Lyapunov-stable systems with possibly
repeated poles. To ensure Assumption 1 is robustly satisfied,
we reject systems for which the spectral radius is greater than
0.999 and the smallest singular value of the observability
matrix is less than 0.0001. For simplicity, we assume that
the constraint is symmetric (y* = y' = 1), the disturbance
w is a scalar bounded to the interval [—0.01,0.01], and that
D,, is 0. The value of ¢ was chosen to be 0.01.

Using the above methodology, we generate a total of
16,000 random systems. For each randomly generated sys-
tem, we compute O, and the systems for which O, was
empty are thrown out. A total of 15,810 systems remain. For
each of the remaining systems, we compute t*, as well as
the upper bounds on ¢* using Algorithms 1 and 2. We denote
these upper bounds by m; and my respectively, where the
subscript refers to the respective method.

Notably, only 5229 systems (about one third of the total)
result in viable upper bounds using Method 2. The remaining
two-thirds of the systems do not satisfy r; > % so a bound
cannot be found. Method 1, however, results in a bound for
all the systems considered. To compare the upper bounds
against the true value of ¢*, we construct the histograms of
m; —t*, 1 =1,2, as seen in Fig. 2 for Method 1 and Fig. 3
for Method 2. The statistics of these distributions are shown
in the respective figure legend. These statistics should be
compared with caution: Method 2 did not yield a bound for
many of the systems in which ¢* was large, so the statistics
appear smaller.

To directly compare the two methods, Fig. 4 shows the
histogram of ms — my. Interestingly, Method 1 outperforms
Method 2 in all cases. This is consistent with our earlier
results reported in [23] for the disturbance-free case. In-
vestigation of this observation is an interesting topic for
future research. In conclusion, not only is Method 1 more
broadly applicable, it results in tighter bounds as compared
to Method 2.

From these figures, it may appear that the upper bounds
are too conservative for some systems. To investigate, we
plot, in Fig. 5a, m; — t* as a function of the spectral
radius of A, p. As can be seen, large m; — t* (i.e., loose
bound) can be attributed to large p (i.e., slow systems). To
investigate further, we normalize both ¢* and its upper bound
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Fig. 2. Histogram of m; — ¢* (i.e., the tightness of the upper bound
obtained via Method 1). In the legend, p, o, and mdn refer to the mean,
standard deviation, and median, respectively.
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Fig. 3. Histogram of ma — t* (i.e., the tightness of the upper bound
obtained via Method 2).
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Fig. 4. Comparison between the upper bound provided by Methods 1, m1,
and by Method 2, ma. Interestingly, m1 < mg in all cases.
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Fig. 5. Analysis of 1 as a function of the spectral radius, p(A).

mq to allow for a fair comparison between the different
systems. The normalization is achieved by scaling t* and
my by log(p). Taking logarithms is inspired by the fact
that continuous-time poles and discrete-time poles are related
through z = e*Ts, where T} is the sample time. Assuming
T, =1 to allow for direct comparison between the systems,
we obtain s = log(z). Thus, scaling by log(p) normalizes
each t* or m by the “continuous-time time constant” of the
system. The results are reported in Fig. 5b. As can be seen,
in the normalized coordinates, the spread is narrow and the
upper bound is not as conservative as it appeared before.
Similar plots can be generated for Method 2.

VI. CONCLUSION

This paper introduced two computationally efficient meth-
ods for obtaining upper bounds on the finite determination
index of the (inner approximation) of the Maximal Admis-
sible Set for discrete-time LTI systems subject to bounded
disturbances. The first method is based on matrix power se-
ries while the second method is based on Lyapunov analysis.
We provided a rigorous introduction to both methods, along
with a detailed numerical comparison. Our results show that
Method 1 outperforms Method 2 and is applicable to a
broader range of systems.

In future work, we plan to investigate the reasons behind
the superior performance of Method 1 in our numerical study.
We also aim to explore other power series expansions beyond
those provided by the Cayley-Hamilton method, in order to
improve the upper bounds in Method 1.
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