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Abstract— The maximal admissible set (MAS) of a dynamical
system characterizes the set of all initial conditions and constant
inputs for which the ensuing response satisfies the specified
state/output constraints for all time. For a discrete-time, linear
time-invariant (LTI) system subject to polytopic constraints
and unknown bounded disturbances, the MAS is known to
be a polytope, which may not be finitely determined (i.e.,
it may not be defined by a finite number of inequalities).
Thus, the steady-state constraint is usually tightened, which
results in a finitely-determined inner approximation of the
MAS. However, the complexity of this approximation is not
known a priori from problem data. This paper presents and
compares two computationally efficient methods, based on
matrix power series and on quadratic ISS-Lyapunov functions,
respectively, to upper bound the complexity of the MAS. The
bounds may facilitate the online computation of the MAS and
the implementation of robust reference governors and model
predictive controllers.

I. INTRODUCTION

Given a dynamical system perturbed by unmeasured

bounded disturbances and subject to state/output constraints,

the maximal admissible set (MAS) characterizes the set of

all initial conditions and constant control inputs (in appli-

cations, the inputs may represent reference commands/set-

points) the response to which satisfies the constraints for

all time. The characterizations of the MAS as defined here

(i.e., including constant inputs) were studied in [1] for the

case of disturbance-free LTI systems and in [2] for the

case of LTI systems with set-bounded disturbance inputs.

The MAS is used in the construction of reference/command

governors for systems with constraints (see, e.g., [3], [4]).

It is also used in Model Predictive Control (MPC) (see,

e.g., [5], [6]) and in set-theoretic control (see, e.g., [7], [8]).

Various simplifications of the MAS, its applications, and its

extensions to other classes of systems have been studied, e.g.,

in [9]–[20].

The MAS may not be finitely determined (see [1] and [2]),

i.e., it may not be described by a finite number of inequal-

ities; however, by tightening the steady-state constraint, a

finitely-determined inner approximation of the MAS, which

satisfies similar invariance properties as the original MAS,

can be computed. It is known that the complexity of this

approximation, i.e., the number of inequalities in the set

description, is not known a priori from the problem data.
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To find it, one would need to construct the MAS iteratively

by adding inequalities one time-step at a time and check

for redundancy of the newly added inequalities. Once all

the newly added inequalities are redundant, MAS has been

fully characterized. In the case of linear systems with linear

constraints, the redundancy check can be performed using

linear programming (LP) which may be computationally

demanding for high-dimensional systems, those with slow

dynamics, and those with constraint sets of high complexity.

For many applications, solving these LPs is computationally

prohibitive in situations where the MAS must be computed

online in real-time to accommodate changing models or

constraints.

To address the above issues, this paper proposes two

computationally-efficient methods to obtain upper bounds

on the complexity of the MAS for linear systems with

linear constraints and set-bounded disturbance inputs. These

upper bounds can aid in constructing the MAS without the

redundancy checking step, thereby greatly speeding up the

computation of MAS (at the expense of having potentially

redundant inequalities in its description). This capability is

particularly useful in a setting where the MAS must be

computed online.

The first method for finding the upper bound leverages

matrix power series and the Cayley Hamilton expansion

to express the output at a time t as a linear combination

of outputs at previous times, which helps determine the

time-step after which the constraints become redundant.

The second method relies on the decay rate of a quadratic

ISS-Lyapunov function towards its constraint-admissible and

robustly invariant level set. This method is inspired by

the existing literature (see e.g., [4], [21]); however, it is

presented here in complete details with explicit bounds and

serves as a benchmark against which the efficacy of the

first method is evaluated. Both methods were proposed for

the disturbance-free case in [22], [23]; the treatment of the

systems with disturbances entail several distinct and intricate

details such as the existence and construction of MAS. We

thus present the theoretical justification for the two methods

and provide corresponding algorithms for their computations.

We compare the upper bounds obtained from both methods

using a numerical study involving systems chosen at random.

Our findings show that the second method is not universally

applicable, as a constraint admissible, robustly invariant level

set may not exist, while the first method finds the upper

bound in all cases in which MAS exists. In instances where

both methods yield an upper bound, the first method’s upper

bound is tighter and hence preferred to that of the second
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method.

This paper is organized as follows. In Section II, we

review the MAS and state the assumptions. Methods 1 and

2 are presented in Sections III and IV, respectively. The two

methods are compared in Section V. Section VI contains

concluding remarks.

The paper uses the following notations: Z+, R, Rn, Rn×n,

and C denote the sets of non-negative integers, real numbers,

n-dimensional vectors of real numbers, n × n matrices

with real entries, and complex numbers, respectively. For

a symmetric matrix P = PT, we say it is positive definite

and write P ≻ 0 if all the eigenvalues of P are strictly

positive. We use the variables t ∈ Z
+, t∗ ∈ Z

+, and m ∈ Z
+

to denote the discrete time index, the finite determination

index (which determines the complexity) of the MAS which

is defined in Section II, and the upper bound on the finite

determination index, respectively. Given two sets U, V ⊂
R

n, their Minkowski sum and Pontryagin difference (P-

subtraction) are defined, respectively, as follows: U ⊕ V =
{w : w = u+ v, u ∈ U, v ∈ V } and U ∼ V = {u : u+ v ∈
U, v ∈ V }. It follows [2] that if 0 ∈ V , then U ∼ V ⊂ U .

Furthermore, if U is compact then so is U ∼ V .

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce the maximal admissible set

(MAS). We then review its computation and complexity, and

state the main assumptions that we use in the paper.

Consider a discrete-time linear time-invariant system de-

scribed by

x(t+ 1) = Ax(t) +Bu(t) +Bww(t)

y(t) = Cx(t) +Du(t) +Dww(t)
(1)

where t ∈ Z
+ is the discrete time index, and x(t) ∈ R

n,

y(t) ∈ R
q , u(t) ∈ R

m, and w(t) ∈ R
s are, respectively, the

state, output, input, and disturbance vectors.

When computing the MAS for use with

reference/command governors, the input u(t) is assumed to

be constant (i.e., u(t) = u, ∀t ∈ Z
+), while the assumption

u = 0 (or equivalently B = D = 0) is made when

computing the MAS for use as a terminal set in MPC. In

both such scenarios, matrix A is stable as it corresponds to

a pre-stabilized system with nominal/terminal control law.

This assumption will be made throughout this paper.

Furthermore, we assume that the disturbance belongs to a

compact polytope W, i.e.,

w(t) ∈ W

but is otherwise unknown, and the output constraint is

defined as

y(t) ∈ Y (2)

where Y is a compact polytope. We assume that the origin

is in the interiors of both W and Y.

The MAS is defined as the set of all initial conditions, x0,

and constant inputs, u, for which (2) is satisfied for all time,

that is:

O∞ = {(x0, u) : y(t) ∈ Y, ∀w(t) ∈ W, ∀t ≥ 0} (3)

Under the assumptions of stability and observability of (1),

this set is a compact polytope, but it may not be finitely-

determined (i.e., may not be described by a finite number of

inequalities). However, a finitely-determined inner approxi-

mation of it with similar invariance properties as O∞ can be

readily obtained as follows. Let

z(t) = x(t)− (I −A)−1Bu

where the inverse exists due to the stability of (1). In the new

coordinate system, u is eliminated from the state evolution

and the dynamics are described by

z(t+ 1) = Az(t) +Bww(t)

y(t) = Cz(t) +H0u+Dww(t)
(4)

where H0 = C(I − A)−1B +D is the DC gain from u to

y. The evolution of the output y(t), t ≥ 1, is then given by

y(t) = CAtz(0)+H0u+Dww(t)+

t−1∑

i=0

CAiBww(t−1− i)

(5)

We can now use the P-subtraction to simplify the description

of the MAS in (3). To this end, define the sets Yt using the

following recursion:

Yt+1 = Yt ∼ CAtBwW (6)

Y0 = Y ∼ DwW (7)

Using these sets and Equation (5), the MAS can be stated in

the z-coordinates as follows:

O∞ = {(z0, u) : CAtz0 +H0u ∈ Yt, ∀t ≥ 0}

As mentioned previously, this set is generally not finitely

determined. However, a finitely-determined, robustly invari-

ant inner approximation, denoted by Õ∞, can be obtained

[2] by imposing a tightened-version of the constraint on the

steady-state output of the system. Let

Y∞ =
⋂

Yt

and consider its compact inner approximation, defined by

Ỹ∞ ⊂ (1− ϵ)Y∞ (8)

where ϵ ∈ (0, 1). To obtain Ỹ∞, one can employ an

algorithm similar to Algorithm 1 of [10] to obtain an inner

approximation of Y∞ and then tighten it by (1 − ϵ). Note

that ϵ quantifies a lower bound on the “gap” between Y∞

and Ỹ∞. This gap is needed to ensures that Õ∞ is finitely-

determined. Using Ỹ∞, the following finitely-determined

inner approximation of MAS can be obtained:

Õ∞ ={(z0, u) : H0u ∈ Ỹ∞,

CAtz0 +H0u ∈ Yt, t = 0, . . . , t∗}

where t∗, referred to as the finite determination index, is

the last “prediction time-step” required to fully characterize

Õ∞. As mentioned in Section I, t∗ is not known a priori.

To find it, one would need to construct Õ∞ iteratively by

adding inequalities one time-step at a time and checking for
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redundancy of the newly added inequality. Thus, the problem

addressed in this paper can be formally stated as follows:

given the system matrices and the sets Y, W, and Ỹ∞, find

an integer m ∈ Z
+, such that m ≥ t∗. We present two

computationally efficient methods in the next two sections

to solve this problem.

To simplify the presentation, we assume in this paper that

the output is a scalar (i.e., q = 1). The MAS for multi-output

systems can be viewed as the intersection of the MAS’s for

each of the individual outputs. As such, m can be calculated

for each output and the largest one may be selected.

To conclude this section, we summarize our assumptions:

Assumption 1: System (1) is asymptotically stable, the

pair (A,C) is observable, the input u is constant for all time,

the output y is a scalar (q = 1), 0 ∈ intỸ∞, and W is a

compact polytope that satisfies 0 ∈ intW. Furthermore, the

constraint set is given by the interval:

Y := {y : −yl ≤ y ≤ yu} (9)

where yl > 0 and yu > 0 define the lower and upper limits,

respectively.

With the form (9), we can express each Yt in (6)-(7) as:

Yt = {yt : −ylt ≤ yt ≤ yut }

where the bounds satisfy the recursion:

yut = yut−1 −max
w∈W

CAt−1Bww, yu0 = yu −max
w∈W

Dww

ylt = ylt−1 + min
w∈W

CAt−1Bww, yl0 = yl + min
w∈W

Dww

Clearly, we have that yut ≤ yut−1 and ylt ≤ ylt−1 for any t.

Furthermore, we can express Y∞ and Ỹ∞ as:

Y∞ = {y∞ : −yl∞ ≤ y∞ ≤ yu∞}

Ỹ∞ = {ỹ∞ : −ỹl∞ ≤ ỹ∞ ≤ ỹu∞}

where yu∞ := limt→∞ yut and yl∞ := limt→∞ ylt. For the

rest of this paper, we assume that yut , ylt, ỹ
l
∞, and ỹu∞ are

all positive and available. Availability of these parameters

is a reasonable assumption as they are also required for the

computation of the MAS.

III. UPPER BOUND USING METHOD 1

The general idea behind our first method is to expand At

in (5) in terms of lower powers of A. As we show, if there

exists an integer m such that the sum of the coefficients in

the expansion of Am+1 is “sufficiently small,” then m is an

upper bound on t∗. We then show that such an expansion

always exists thanks to the Cayley Hamilton Theorem. We

begin by stating the main result of this section.

Theorem 1: Consider system (1) and suppose Assump-

tion 1 holds. Suppose there exists an integer m, m ≥ 0,

such that Am+1 can be expanded as

Am+1 =

m∑

i=0

αiA
i (10)

where αi satisfy:

∑

i

αi < 1

∑

αi>0

αi

(
yui
ỹu∞

− 1

)
−
∑

αi<0

αi

(
yli
ỹu∞

+ 1

)
≤ ϵ

1− ϵ

∑

αi>0

αi

(
yli
ỹl∞

− 1

)
−
∑

αi<0

αi

(
yui
ỹl∞

+ 1

)
≤ ϵ

1− ϵ

(11)

Then, m is an upper bound on the finite determination index,

t∗; that is, t∗ ≤ m.

Proof: We use mathematical induction to prove that,

for any given initial condition x0 (or z0 in the transformed

coordinates) and constant input u satisfying H0u ∈ Ỹ∞, we

have that: y(t) ∈ Y for t ≤ m implies that y(t) ∈ Y for

t ≥ m+ 1, which means that m is an upper bound on t∗.

For the induction base case, we assume that y(t) ∈ Y (i.e.,

CAtz0+H0u ∈ Yt) for t ≤ m and show that y(m+1) ∈ Y

(i.e., CAm+1z0 +H0u ∈ Ym+1). To show this, write:

CAm+1z0 +H0u =

m∑

i=0

αi(CAiz0) +H0u

=

m∑

i=0

αi(CAiz0 +H0u) +

(
1−

m∑

i=0

αi

)
H0u

(12)

where we have added and subtracted
∑m

i=0 αiH0u in the last

equality. The assumption that
∑

i αi < 1 and H0u ∈ Ỹ∞

imply that the rightmost term satisfies:

−

(
1−

m∑

i=0

αi

)
ỹ
l

∞
≤

(
1−

m∑

i=0

αi

)
H0u ≤

(
1−

m∑

i=0

αi

)
ỹ
u

∞

Furthermore, the assumption that y(t) ∈ Y for t ≤ m

implies that −yli ≤ CAix0 + H0u ≤ yui . Thus, breaking

up the sum in (12) into positive and negative values of αi,

we obtain the following bounds for CAm+1z0 +H0u:

−
∑

αi>0

αiy
l

i+

∑

αi<0

αiy
u

i −

(
1−

m∑

i=0

αi

)
ỹ
l

∞
≤ CA

m+1
z0+H0u

≤
∑

αi>0

αiy
u

i −
∑

αi<0

αiy
l

i +

(
1−

m∑

i=0

αi

)
ỹ
u

∞

The above, together with the bottom two conditions in (11),

results in:

− 1

1− ϵ
ỹl∞ ≤ CAm+1z0 +H0u ≤ 1

1− ϵ
ỹu∞

Finally, (8) implies that −yl∞ ≤ CAm+1z0 + H0u ≤ yu∞,

and since yu∞ ≤ yum and yl∞ ≤ ylm, the result follows.

To prove the induction main step, we assume y(t) ∈ Y for

t ≤ k, where k ≥ m + 1, and show that y(k + 1) ∈ Y. We

proceed as we did in the base case, but this time decompose

Ak+1 = Am+1Ak−m:

CAk+1z0 +H0u = CAm+1Ak−mz0 +H0u
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=

m∑

i=0

αi(CAi+k−mz0 +H0u) +

(
1−

m∑

i=0

αi

)
H0u

The assumption y(t) ∈ Y for t ≤ k together with 0 ≤
i+ k −m ≤ k imply that CAi+k−mz0 +H0u in the above

sum satisfies: −yli+k−m ≤ CAi+k−mz0 + H0u ≤ yui+k−m.

Furthermore, yui+k−m ≤ yui and yli+k−m ≤ yli, which implies

that −yli ≤ CAi+k−mz0 +H0u ≤ yui . The rest of the proof

from this point on follows the same arguments as in the

induction base case. This concludes the proof.

Remark 1: For the case of systems without control inputs

(i.e., u = 0), the tightening of steady-state constraint is not

required in the definition of MAS. Thus, the first condition

in (11) is not necessary (this condition is only used to handle

the steady-state constraint in the proof of the theorem). For

such a case, condition (11) can be restated as:

∑

αi>0

αi

yui
ỹu∞

−
∑

αi<0

αi

yli
ỹu∞

≤ 1

∑

αi>0

αi

yli
ỹl∞

−
∑

αi<0

αi

yui
ỹl∞

≤ 1

(13)

Remark 2: For the case of systems without disturbances

(i.e., w = 0), we have that yli = yl∞ = yl and yui = yu∞ = yu.

Furthermore, ỹu∞ and ỹl∞ can be simply chosen as ỹu∞ =
(1− ϵ)yu and ỹl∞ = (1− ϵ)yl. Thus, condition (11) can be

restated as: ∑

i

αi < 1

∑

αi<0

|αi|
(

yl

yu(1− ϵ)
+ 1

)
≤ ϵ

1− ϵ

∑

αi<0

|αi|
(

yu

yl(1− ϵ)
+ 1

)
≤ ϵ

1− ϵ

(14)

We now prove the existence of, and a develop a method

to construct, the expansion in (10) satisfying condition (11).

Recall that the characteristic polynomial of any square matrix

A ∈ R
n×n is defined as ∆(s) := det(sI − A), which can

be written as:

∆(s) = sn + cn−1s
n−1 + . . .+ c1s+ c0 (15)

The Cayley Hamilton theorem (see [24]) states that any

square matrix satisfies its own characteristic polynomial, i.e.,

∆(A) = 0. This result allows us to express At, for any t ≥ n,

as a finite power series in lower powers of A. Specifically,

An can be expanded as:

An = −c0I − c1A− . . .− cn−1A
n−1 (16)

where ci are the coefficients in (15) and are uniquely defined.

Similarly, An+1 can be expanded in the same powers of A:

An+1 = A(An) = −c0A− . . .− cn−2A
n−1 − cn−1A

n

= (c0cn−1)I + (−c0 + c1cn−1)A+ . . .+

(−cn−2 + cn−1cn−1)A
n−1

Generalizing the above to any t ≥ n:

At =

n−1∑

i=0

βi(t)A
i (17)

where βi(t) denotes the i-th coefficient in the expansion of

the t-th power of A. Note that expansion of At in lower

powers of A is generally not unique, but βi(t) in (17) are,

by construction, uniquely defined.

To simplify the presentation, we stack the coefficients of

the t-th power into a vector and denote it by β(t):

β(t) = [β0(t) · · ·βn−1(t)]
T ∈ R

n

The following fact characterizes β(t) and its convergence

properties as t → ∞.

Theorem 2: ( [23]) Let A ∈ R
n×n be any square matrix

and let β(t), t ≥ n, be the vector of coefficients in the

expansion of At, as defined above. Then, β(t) satisfies the

recursion:

β(t+ 1) =




0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
...

0 0 · · · 1 −cn−1



β(t) (18)

with initial condition β(n) = [−c0 · · · − cn−1]
T . Also, if

A is asymptotically stable, then limt→∞ β(t) = 0.

The above theorem guarantees the existence of an integer

m such that the coefficients of the expansion of Am+1 as

defined in (10) satisfy condition (11). To see this, compute

β(t) using the recursion in (18) for increasing t starting from

t = n, and stop when
∑

i

βi < 1

∑

βi>0

βi

(
yui
ỹu∞

− 1

)
−
∑

βi<0

βi

(
yli
ỹu∞

+ 1

)
≤ ϵ

1− ϵ

∑

βi>0

βi

(
yli
ỹl∞

− 1

)
−
∑

βi<0

βi

(
yui
ỹl∞

+ 1

)
≤ ϵ

1− ϵ

(19)

Note that such t always exists, because according to The-

orem 2, β(t) → 0 as t → ∞ and thus the left hand side

of (19) can be made arbitrarily small. Such t corresponds

to m+ 1 in Theorem 1, where the αi in (11) are related to

βi(t) in (19) as follows: αi = βi(t) for i = 0, . . . , n − 1
and αi = 0 for i = n, . . . ,m. This leads to Algorithm 1

for finding an upper bound for t∗. Note that the algorithm

does not explicitly use B,Bw, C,D, or Dw. However, these

matrices are required for the computation of yli, y
u
i , ỹ

l
∞, and

ỹu∞.

Algorithm 1 Compute upper bound on t∗ using Method 1

Input: A, yli, y
u
i , ỹ

l
∞, ỹu∞, ϵ

Output: m such that t∗ ≤ m

1: Compute the Cayley Hamilton coefficients, ci, using

(15). Set t = n and initialize β(n) as in Theorem 2.

2: If β(t) satisfies (19), then: m = t− 1, STOP.

3: Increment t by 1. Compute β(t) using (18). Go to step

2.
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Remark 3: The Cayley Hamilton-based expansion in (17)

provides only one possible expansion for Am+1 in Theo-

rem 1. There may be other expansions that lead to smaller

upper bounds for t∗.

IV. UPPER BOUND USING METHOD 2

The second method to find an upper bound on t∗ relies

on the level sets of quadratic (ISS-) Lyapunov functions.

Consider the Lyapunov function

V (z) = zTPz (20)

where P = PT ≻ 0. For each real number r > 0, we define

the r-th level set of V (z) by

Ωr = {z ∈ R
n : V (z) ≤ r}, (21)

which is geometrically the area contained by an ellipsoid in

R
n. To proceed, define the following two sets:

Õn−1 =
{
(z0, u) : H0u ∈ Ỹ∞, CAtz0 +H0u ∈ Yt, (22)

t = 0, . . . , n− 1
}

Z = {z : Cz ∈ Y ∼ Ỹ∞ ∼ DwW} (23)

The first set is the set of all initial conditions and inputs

such that the constraints are satisfied for the first n time-

steps. This set is compact and satisfies Õ∞ ⊂ Õn−1. The

second set is the set of all states that satisfy the constraints

for all realizations of the steady-state admissible inputs and

disturbances. The set Z is not generally compact, but Õ∞

and Õn−1 are, thanks to the observability assumption. The

compactness of Õn−1 is the main reason why it is employed

in the analysis that follows. If Z itself is compact, then Õn−1

may be replaced by Z in the subsequent presentation.

Consider now two level sets of V (z), Ωr1 and Ωr2 , which

are, respectively, the largest level set inscribed in Z and

the smallest level set circumscribing Õn−1 along the z-

coordinates. Mathematically, r1, r2 ∈ R are defined by:

r1 = max
{
r : Ωr ⊂ Z

}
(24)

r2 = min
{
r : ProjzÕn−1 ⊂ Ωr

}
, (25)

where Projz denotes the projection onto z-coordinates. To

find an upper bound on t∗, we determine the conditions under

which Ωr1 is robustly positively invariant, and then quantify

the longest time it takes for any initial state in Ωr2 to enter

Ωr1 . Indeed, if the state enters Ωr1 , it will stay in Ωr1 and

the constraints will be satisfied. Thus, this time would be an

upper bound on t∗. See Fig. 1 for an illustration of these

sets.

We state the main results in the following theorem.

Theorem 3: Consider system (4) with Lyapunov function

(20), and suppose Assumption 1 holds. Suppose that both

(22) and (23) are non-empty and have the origin in their

interiors. Let ζ > 0 be a number such that Q = −(ζ +
1)ATPA+ P ≻ 0 and r1 > M

1−σ
, where

σ = 1− λmin(Q)

λmax(P )

M = λmax(P )

(
1

ζ
+ 1

)
max
w∈W

wTBT
wBww

(26)

z2

z1

Z
projÕn−1

Fig. 1. Illustration of the key idea behind the second method. The set
Z is illustrated as the strip between the two horizontal lines. The set

projÕn−1 is the hatched box. The smaller ellipse is the largest level set
of V (z) inscribed in Z. The larger ellipse is the smallest level set of V (z)
circumscribing projÕn−1.

Then, we have that r2 > r1, and that an upper bound on t∗

is given by

m = floor

( log
(

r1(1−σ)−M

r2(1−σ)−M

)

log(σ)

)
(27)

where the floor operator returns the previous largest integer.

Proof: Note that r1 exists because Z is convex and

non-empty and has the origin in its interior, and r2 exists

because Õn−1 is compact. The rest of the proof leverages

three facts from linear algebra. First, the eigenvalues of a

symmetric, positive-definite matrix are all real and positive.

Second, for any P = PT ≻ 0, we have that λmin(P )xTx ≤
xTPx ≤ λmax(P )xTx, where λmin and λmax are well-

defined thanks to the first fact. Given V (x) = xTPx, the

second fact allows us to write −xTx ≤ − V (x)
λmax(P ) , which we

use below. Third, for any vectors x and y, and any ζ > 0, we

have that 2xT y ≤ ζxTx+ 1
ζ
yT y. This follows by simplifying

the inequality, (
√
ζx− 1√

ζ
y)T (

√
ζx− 1√

ζ
y) ≥ 0. Note that,

for a fixed ζ, this bound is tight for y = ζx.

We now write the change in the Lyapunov function along

the trajectories as:

V (z(t+ 1))− V (z(t))

= zT (ATPA− P )z + wTBT
wPBww + 2zTATPBww

= zT ((1 + ζ)ATPA− P )z + (
1

ζ
+ 1)wTBT

wPBww

≤ zT ((1 + ζ)ATPA− P )z + (
1

ζ
+ 1)max

w∈W

wTBT
wPBww

≤ −λmin(Q)zT z +M ≤ −λmin(Q)

λmax(P )
V (z) +M

where, starting from the second line, we have dropped the

argument (t) to simplify notation and, on the third line, we

have employed the third fact above with xT = zTATP
1

2

and y = P
1

2Bww. We now simplify the above expression as

follows: V (z(t+ 1)) ≤ σV (z(t)) +M , which implies that:

V (z(t)) ≤ σtV (z(0)) +
1− σt

1− σ
M (28)
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where σ is as defined in the Theorem. Note that any

Lyapunov level set satisfying r > M
1−σ

is a robustly positively

invariant set because the Lyapunov difference is negative.

Thus, by the assumption stated in the theorem, Ωr1 is

invariant and also constraint admissible. The goal is now to

quantify the longest time it takes for any initial state in Ωr2 to

enter Ωr1 , which implies that the constraints will be satisfied

for all time-steps afterwards. To this end, note that any

z(0) ∈ Ωr2 satisfies V (z(0)) ≤ r2. Therefore, V (z(t)) ≤
σtr2 + 1−σt

1−σ
M . Furthermore, to ensure z(t) ∈ Ωr1 , we

must have V (z(t)) ≤ r1. Therefore, we set V (z(t)) ≤
σtr2 +

1−σt

1−σ
M ≤ r1, which implies that

t >
log
(

r1(1−σ)−M

r2(1−σ)−M

)

log(σ)

Any t satisfying the above will be an upper bound on t∗.

Since we are interested in the smallest integer time-step after

which the constraints are redundant, we take the floor of the

right hand side of the above.

Finally, Õ∞ contains all positive invariant, constraint-

admissible sets, which implies that Ωr1 ⊂ Õ∞. Thus, we

have the following inclusions: Ωr1 ⊂ Õ∞ ⊂ Õn−1 ⊂ Ωr2 ,

which means that r2 ≥ r1, as required.

Note that, for a fixed ζ, the choice of P in Theorem 3

affects the upper bound, m, in a complicated manner through

r1, r2, σ, and M . Similarly, for a fixed P , the choice of ζ

affects m through σ and M . It thus remains to find a suitable

P and ζ in Theorem 3. It is generally desirable to minimize

σ to ensure fast decay rate of the Lyapunov function along

the trajectories. It is also desirable for M
1−σ

to be as small as

possible so that r1 will satisfy r1 > M
1−σ

as required by the

theorem. Therefore, we propose to select P such that σ is

as small as possible, and select ζ to ensure M
1−σ

is as small

as possible. Of course, these choices will not necessarily

result in the globally minimal value for the upper bound

on t∗. However, our numerical studies showed that this was

the case in most instances. The next theorem describes the

choices for P and ζ. In this theorem, ρ := maxi |λi(A)|
denotes the spectral radius of A.

Theorem 4: Suppose ζ < ( 1
ρ(A)2 − 1). Then, the scalar σ

in Theorem 3 satisfies 0 ≤ σ < 1. Furthermore, the matrix

P that results in the smallest σ is obtained by solving the

Lyapunov equation

ĀTPĀ− P = Q (29)

where Ā =
√
1 + ζA and Q = I . The corresponding value

of σ is σ = ρ(A)2. Finally, the value of M
1−σ

in Theorem 2

is minimized by

ζ = −3

4
+

√
1 +

8

ρ(A)2
(30)

Proof: The proofs for 0 ≤ σ < 1, the choice of P and

Q, and σ = ρ(A)2 are similar to the proof of Theorem 6 of

[23]. To prove the choice of ζ, we note that with Q = I ,

λmax(P ) = 1
1−ρ(A)2 and σ = ρ(A)2. Thus, M

1−σ
can be

written as:

M

1− σ
=

(
1
ζ
+ 1

(1− (ζ + 1)ρ(A)2)2

)
max
w∈W

wTBT
wBww

The expression in the large parentheses is the only term that

depends on ζ. Taking the derivative of this expression, setting

it equal to 0, and solving for ζ, we obtain the formula in the

theorem.

Procedures for computing r1 and r2 in the theorem are

well-established, see, e.g., [25]. Specifically, under the as-

sumptions of Theorem 3, the set Z is the interval [−yl0 +
ỹl∞, yu0 − ỹu∞] of the real line. Thus, r1 can be found by

r1 =
(min{yl0 − ỹl∞, yu0 − ỹu∞})2

CP−1CT
(31)

To find r2, we first compute Õn−1 and convert it from H-

representation into the V-representation. Let the vertices of

Õn−1 in the V-representation be denoted by vj ∈ R
n+m,

where the first n components correspond to the z-coordinates

and the next m components correspond to the u-coordinates.

Then, r2 can be found by

r2 = max
j

{v̄Tj P v̄j} (32)

where v̄j ∈ R
n is a vector consisting of the first n compo-

nents of vj .

Remark 4: Polynomial time algorithms exist that can

convert a polytope from the H-representation to V-

representation, see e.g., [26]. However, these algorithms may

be computationally intensive in higher dimensions. This may

hamper the use of Method 2, e.g., in situations where the

upper bound on t∗ must be computed online. To remedy

this, one can replace Õn−1 by any compact superset with

known vertices (if such superset is available), or apply the

algorithms in [27] to directly find the bounding ellipsoid Ωr2 .

These algorithms are applicable in situations where informa-

tion about the size or aspect ratio of Õn−1 is available.

The above results lead to Algorithm 2 for finding an upper

bound for t∗.

Algorithm 2 Compute upper bound on t∗ using Method 2

Input: A, yli, y
u
i , ỹ

l
∞, ỹu∞, ϵ

Output: m such that t∗ ≤ m

1: Compute: ζ using (30), P using (29) with Q = I , σ =
ρ(A)2, and M using (26).

2: Compute r1 using (31). If r1 ≤ M
1−σ

, m = ∞. STOP.

3: Construct Õn−1 as in (22), convert to V-representation,

and compute r2 using (32).

4: Compute m using expression (27).

Remark 5: The condition r1 > M
1−σ

in Theorem 3 may

not be met, even with the P and ζ computed using Theo-

rem 4. This would mean that there is no robustly invariant

level set of the Lyapunov function that is also constraint

admissible. In such situations, Method 2 cannot produce an
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upper bound on t∗. We will explore this further in the next

section, where we provide a numerical comparison between

the two methods.

V. NUMERICAL COMPARISON

This section presents a comparative analysis of the upper

bounds provided by Algorithm 1 for Method 1 (i.e., the

power series-based method) and Algorithm 2 for Method 2

(i.e., the Lyapunov-based method). Since this comparison

cannot be carried out analytically, we conduct a Monte Carlo

study of randomly-generated systems using Matlab 2020b.

To generate each random system, we first randomly gen-

erate n, the order of the system, by sampling the uniform

distribution between 1 and 5. We then generate a state-space

model with that order by using Matlab’s drss command,

which returns a set of Lyapunov-stable systems with possibly

repeated poles. To ensure Assumption 1 is robustly satisfied,

we reject systems for which the spectral radius is greater than

0.999 and the smallest singular value of the observability

matrix is less than 0.0001. For simplicity, we assume that

the constraint is symmetric (yu = yl = 1), the disturbance

w is a scalar bounded to the interval [−0.01, 0.01], and that

Dw is 0. The value of ϵ was chosen to be 0.01.

Using the above methodology, we generate a total of

16,000 random systems. For each randomly generated sys-

tem, we compute Õ∞, and the systems for which Õ∞ was

empty are thrown out. A total of 15,810 systems remain. For

each of the remaining systems, we compute t∗, as well as

the upper bounds on t∗ using Algorithms 1 and 2. We denote

these upper bounds by m1 and m2 respectively, where the

subscript refers to the respective method.

Notably, only 5229 systems (about one third of the total)

result in viable upper bounds using Method 2. The remaining

two-thirds of the systems do not satisfy r1 > M
1−σ

so a bound

cannot be found. Method 1, however, results in a bound for

all the systems considered. To compare the upper bounds

against the true value of t∗, we construct the histograms of

mi − t∗, i = 1, 2, as seen in Fig. 2 for Method 1 and Fig. 3

for Method 2. The statistics of these distributions are shown

in the respective figure legend. These statistics should be

compared with caution: Method 2 did not yield a bound for

many of the systems in which t∗ was large, so the statistics

appear smaller.

To directly compare the two methods, Fig. 4 shows the

histogram of m2 −m1. Interestingly, Method 1 outperforms

Method 2 in all cases. This is consistent with our earlier

results reported in [23] for the disturbance-free case. In-

vestigation of this observation is an interesting topic for

future research. In conclusion, not only is Method 1 more

broadly applicable, it results in tighter bounds as compared

to Method 2.

From these figures, it may appear that the upper bounds

are too conservative for some systems. To investigate, we

plot, in Fig. 5a, m1 − t∗ as a function of the spectral

radius of A, ρ. As can be seen, large m1 − t∗ (i.e., loose

bound) can be attributed to large ρ (i.e., slow systems). To

investigate further, we normalize both t∗ and its upper bound

Fig. 2. Histogram of m1 − t∗ (i.e., the tightness of the upper bound
obtained via Method 1). In the legend, µ, σ, and mdn refer to the mean,
standard deviation, and median, respectively.

Fig. 3. Histogram of m2 − t∗ (i.e., the tightness of the upper bound
obtained via Method 2).

Fig. 4. Comparison between the upper bound provided by Methods 1, m1,
and by Method 2, m2. Interestingly, m1 ≤ m2 in all cases.
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Fig. 5. Analysis of m1 as a function of the spectral radius, ρ(A).

m1 to allow for a fair comparison between the different

systems. The normalization is achieved by scaling t∗ and

m1 by log(ρ). Taking logarithms is inspired by the fact

that continuous-time poles and discrete-time poles are related

through z = esTs , where Ts is the sample time. Assuming

Ts = 1 to allow for direct comparison between the systems,

we obtain s = log(z). Thus, scaling by log(ρ) normalizes

each t∗ or m by the “continuous-time time constant” of the

system. The results are reported in Fig. 5b. As can be seen,

in the normalized coordinates, the spread is narrow and the

upper bound is not as conservative as it appeared before.

Similar plots can be generated for Method 2.

VI. CONCLUSION

This paper introduced two computationally efficient meth-

ods for obtaining upper bounds on the finite determination

index of the (inner approximation) of the Maximal Admis-

sible Set for discrete-time LTI systems subject to bounded

disturbances. The first method is based on matrix power se-

ries while the second method is based on Lyapunov analysis.

We provided a rigorous introduction to both methods, along

with a detailed numerical comparison. Our results show that

Method 1 outperforms Method 2 and is applicable to a

broader range of systems.

In future work, we plan to investigate the reasons behind

the superior performance of Method 1 in our numerical study.

We also aim to explore other power series expansions beyond

those provided by the Cayley-Hamilton method, in order to

improve the upper bounds in Method 1.
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